wo 2012/054620 A1 I 1A A0KO0 000 RO OO

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

. -

(19) World Intellectual Property Organization
International Bureau

(10) International Publication Number

(43) International Publication Date \:_?___/
26 April 2012 (26.04.2012) PCT WO 2012/054620 Al
(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
GO6F 9/44 (2006.01) kind of national protection available). AE, AG, AL, AM,
(21) International Application Number: AO, AT, AU, AZ, BA, BB, BG, Bl1, BR, BW, BY, BZ,
: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
PCT/US2011/056908 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT.
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
19 October 2011 (19.10.2011) KR, KZ, ILA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(30) Priority Data: M, ZW.
12/907,986 19 October 2010 (19.10.2010) Us
(84) Designated States (unless otherwise indicated, for every
(71) Applicant (for all designated States except US): APPLE kind of regional protection available): ARIPO (BW, GH,
INC. [US/US]; 1 Infinite Loop, Cupertino, California GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
95014-2094 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD,

RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ,
DE, DK, EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT
LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS,
SE, SL SK, SM, TR), OAPI (BF, BJ, CF, CG, CL, CM,
GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors; and

(75) Inventors/Applicants (for US only): ORDING, Bas [NL/
US]; 1 Infinite Loop, M/S 302-1NS, Cupertino, Califor-
nia 95014 (US). LOUCH, John O. [US/US]; 1 Infinite
Loop, MS: 111-HOM, Cupertino, California 95014-2094

(US). Declarations under Rule 4.17:
(74) Agents: GOTTLIEB, Kirk A. et al.; Fish & Richardson — as fo applicant’s entitlement to apply for and be granted
P.C., P.O. Box 1022, Minneapolis, Minnesota a patent (Rule 4.17(i1))

55440-1022 (US). — as fto the applicant's entitlement to claim the priority of

the earlier application (Rule 4.17(iii))

[Continued on next page]

(54) Title: MANAGING WORKSPACES IN A USER INTERFACE

1002

| £ EA 2

Dashboard ?_ 104 Desktop 1 l 106 Desktop 2 z 108 My Desktop ?— 110 Ca\endar>

112

124a

1200 122b 126 126 2
1307 %

FIG. 1

(57) Abstract: Providing a bridge interface for managing virtual workspaces is disclosed. A plurality of workspace images is pre-
sented in a user interface, each workspace image corresponding to a different virtual workspace available to a user of a computer
system. A user input is received indicating a selection of a presented workspace image. The user interface is updated to display a
plurality of application windows associated with the selected virtual workspace. The displayed application windows are visually
grouped into one or more clusters, each cluster corresponding to one or more application windows sharing a common characteris-
tic.

WO 2012/054620 A1 00000) 00T A A0 RO

Published:
— with international search report (Art. 21(3))

WO 2012/054620 PCT/US2011/056908

MANAGING WORKSPACES IN A USER INTERFACE

CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Application Serial No. 12/907,986, filed

on October 19, 2010, the content of which is incorporated by reference herein.

TECHNICAL FIELD
[0002] This disclosure relates generally to managing virtual workspaces on a computing
device.
BACKGROUND
[0003] Modern graphical user interfaces allow a large number of graphical objects or

items to be displayed on a display screen at the same time. Leading personal computer operating
systems, such as Apple Mac OS®, provide user interfaces in which a number of windows can be
displayed, overlapped, resized, moved, configured, and reformatted according to the needs of the
user or application. Taskbars, menus, virtual buttons and other user interface elements provide
mechanisms for accessing and activating windows even when they are hidden behind other
windows.

[0004] As a result, most computers today are capable of running a great number of
different programs. This can be done by the computer executing software code locally available
to the computer or by connecting the computer to a remote application server, for example over
the internet. Examples of application programs include mainly business-related software such as
records management programs and meeting organization programs, software that is used
alternatively for business or personal use, such as word processors or email applications, and
software that is mainly intended for personal use such as online chat or music file management
programs.

[0005] With the large number of different applications available, users are encouraged to
work with a multitude of items in their computers. Some categories of items, such as files of a
certain type, can be limited to use by a particular application program, while other item
categories can be compatible with several programs. Depending on the user’s needs, he or she

can need to use several different programs in a limited period of time as part of a daily work

WO 2012/054620 PCT/US2011/056908

routine or to accomplish a particular goal. As a result, users sometimes have several windows
open on the computer display at the same time.

[0006] However, with numerous windows open at once, the desktop can become
cluttered and difficult to overview. As a result, it can be difficult for the user to find a particular
application when needed. Further, the numerous windows and running applications can be
difficult to organize and manage efficiently. For example, the user may have difficulty quickly
identifying application windows that are associated with each other. In some instances, the user
may have multiple workspaces, each workspace with a different configuration of graphical
objects such and application windows. The user may need to quickly move from one workspace

to the next while also being able to dynamically make changes to a workspace as needed.

SUMMARY
[0007] In a first general aspect, a method for managing virtual workspaces is disclosed.
A plurality of workspace images is presented in a user interface, each workspace image
corresponding to a different virtual workspace available to a user of a computer system. A user
input is received indicating a selection of a presented workspace image. The user interface is
updated to display a plurality of application windows associated with the selected virtual
workspace. The displayed application windows are visually grouped into one or more clusters,
cach cluster corresponding to one or more application windows sharing a common characteristic.
[0008] Implementations can include any or all of the following features. The shared
common characteristic of at least one application windows cluster is that the application
windows are different instances of a same application. The shared common characteristic of at
least one applications windows cluster can also be that the applications windows are instances of
different applications that share at least some common functionality. The common functionality
of the different applications in a given cluster comprises at least one of word processing,
electronic mail, web browsing, file browsing, system utility, spreadsheet manipulation, drawing,
digital photo manipulation, system utility, and instant messaging. The method can further
include displaying a common characteristic indicator for each cluster. The common
characteristic indicator can comprise a visual representation of an identity of an application that
represents the common characteristic. The common characteristic indicator can also comprise a

visual representation of a functionality that represents the common characteristic. Each of a

WO 2012/054620 PCT/US2011/056908

plurality of clusters is displayed such that no window of any cluster overlaps with any other
window of any other cluster.

[0009] In a second general aspect, a computer program product is tangibly embodied in a
computer-readable storage medium and includes instructions that, when executed, generate on a
display device a graphical user interface for presenting virtual workspaces and perform the
following operations. A plurality of workspace images is presented in a user interface, each
workspace image corresponding to a different virtual workspace available to a user of a
computer system. A user input is received indicating a selection of a presented workspace
image. The user interface is updated to display a plurality of application windows associated
with the selected virtual workspace. The displayed application windows are visually grouped
into one or more clusters, each cluster corresponding to one or more application windows
sharing a common characteristic.

[0010] Implementations can include any or all of the following features. The shared
common characteristic of at least one application windows cluster is that the application
windows are different instances of a same application. The shared common characteristic of at
least one applications windows cluster can also be that the applications windows are instances of
different applications that share at least some common functionality. The common functionality
of the different applications in a given cluster comprises at least one of word processing,
electronic mail, web browsing, file browsing, system utility, spreadsheet manipulation, drawing,
digital photo manipulation, system utility, and instant messaging. The method can further
include displaying a common characteristic indicator for each cluster. The common
characteristic indicator can comprise a visual representation of an identity of an application that
represents the common characteristic. The common characteristic indicator can also comprise a
visual representation of a functionality that represents the common characteristic. Each of a
plurality of clusters is displayed such that no window of any cluster overlaps with any other
window of any other cluster.

[0011] The details of one or more implementations of managing items in a user interface
are set forth in the accompanying drawings and the description below. Other features, aspects,

and advantages will become apparent from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

WO 2012/054620 PCT/US2011/056908

[0012] FIG. 1 illustrates an exemplary user interface showing a bridge interface for

viewing and managing virtual workspaces.

[0013] FIG. 2A illustrates an exemplary user interface showing reordering of workspace
images.
[0014] FIG. 2B illustrates an exemplary user interface showing a transition from one

active workspace to a different workspace while in the bridge interface.

[0015] FIG. 2C illustrates an exemplary user interface showing a change in the
workspace associated with an application window.

[0016] FIG. 2D illustrates an exemplary user interface showing a creation of a new

workspace using an appropriate drag and drop action.

[0017] FIGS. 3A-3D illustrate exemplary actions performed on a cluster of application
windows.

[0018] FIG. 4 illustrates an exemplary user interface showing creation of a new virtual
workspace.

[0019] FIG. 5 is a flow diagram of an exemplary process for displaying a bridge view of

workspaces in a user interface.

[0020] FIG. 6 is a flow diagram of an exemplary process for changing the virtual
workspace associated with an application window.

[0021] FIG. 7 is a flow diagram of an exemplary process for changing from one active
workspace to a different active workspace.

[0022] FIG. 8 is a flow diagram of an exemplary process for expanding a cluster of
application windows.

[0023] FIGS. 9A-9C illustrate exemplary software architecture for implementing the
bridge interface processes described in reference to FIGS. 1-8.

[0024] FIG. 10 is a block diagram of exemplary hardware architecture for implementing
the user interfaces and processes described in reference to FIGS. 1-9C.

[0025] Like reference symbols in the various drawings indicate like elements.

WO 2012/054620 PCT/US2011/056908

DETAILED DESCRIPTION
Overview

[0026] Computing systems, such as personal computers, handheld devices, smart phones,
gaming devices, portable computers, and so on, typically include hardware components such as a
processing unit (e.g., one or more processors), memory, and various input and output devices
(e.g., a display, a keyboard, a mouse, a touch-sensitive surface). An software operating system
(O/S) can be installed on the computing system and executed by the processing unit to control
the operations of the computing system.
[0027] Many operating systems and software applications employ graphical user
interfaces (GUIs) to present information to users and to receive user input for controlling the
behavior and functionality of the underlying computing devices and/or application programs. A
typical two-dimensional GUI of an operating system can be described as a “desktop” metaphor.
[0028] Visually, a desktop of an operating system can provide a background (e.g., a
desktop plane) on which other graphical objects, such as icons representing connected peripheral
devices (e.g., disk drives, network devices, printers, etc.), installed programs, stored documents,
open windows of executing application programs, file system folders, and so on, can be
presented. In addition, user interface elements that allow user interaction with some aspects of
the operating system can be presented at various locations on the desktop as well. For example,
a three-dimensional menu bar showing basic controls of the desktop environment, a system tray
showing programs executing in the background, a docking station for shortcuts to frequently
used application programs, and so on, can also be presented on the desktop plane.
[0029] An operating system of a computing device can often support a large number of
active applications at the same time, and each of the active applications can have multiple open
windows concurrently presented on the desktop plane. The user can switch among the active
applications and the open windows by selecting (e.g., clicking on) the window he/she wishes to
access. Upon user selection, the selected open window can obtain input focus and becomes the
current active window (or “top window”) of the desktop. The user can interact with the current
active window in a manner dictated by the application program providing the active window.
[0030] The windows, icons, application components, taskbars, and other graphical items
currently displayed on the desktop are, in some instances, components that a user has recently

used or plans to use. When the number of application windows and graphical objects displayed

WO 2012/054620 PCT/US2011/056908

on a desktop increases, the user may prefer to associate certain application windows with each
other. For example, a user may prefer to group together application windows that are related to
the same task or application windows that have been or will be used within the same time frame.
[0031] In some implementations, the graphical objects can be grouped together into one
or more virtual workspaces, or “spaces.” As used herein, a space is a grouping of one or more
applications, or windows, in relation to other applications or windows, such that the
program(s)/application(s) of a single space is visible when the space is active, and so that a view
can be generated of all spaces and their contents. Each space can depict a different desktop
arrangement, including application windows, desktop images, icons, or other graphical objects
that are displayed only when the associated space is active. A user can focus a view of the
windows in a particular selected space such that the windows are enlarged or brought forward in
the GUI with respect to windows in unselected spaces. An application program can have more
than one window in a space, or an application can have windows in more than one space, to
name a few examples.

[0032] A bridge interface of the GUI can present an overview of the spaces currently
available to the user to allow the user to efficiently manage the different spaces. As used herein,
a bridge view or bridge interface can be a display in a user interface of multiple virtual
workspaces displayed concurrently with at least some of the application windows associated with
one of the virtual workspaces. Thumbnail images can be displayed to represent each space,
providing a miniature representation of each space as the space would look if activated. In some
implementations, each thumbnail image is a live depiction of the status of application windows
associated with the space represented by the thumbnail image. The user can navigate and select
the thumbnails to activate a particular space using different user inputs. In the bridge interface,
an activated space includes presentation of application windows associated with the space in an
organized format, allowing the user to quickly identify and access application windows sharing a

common characteristic.

Exemplary User Interfaces for Viewing and Managing Desktops in a User Interface
[0033] FIG. 1 illustrates an exemplary user interface 100, which can be a desktop of an
operating system. The two-dimensional desktop plane has the appearance of being substantially

co-planer or parallel to the display surface of an underlying hardware screen. When an

WO 2012/054620 PCT/US2011/056908

application executing in the operating system environment generates a new window, the window
can be displayed on top of the two-dimensional desktop plane. The user interface 100 can
include spaces presented in a bridge view 100 of the desktops and applications in the present
example. The depiction includes elements which can be found in a display of a graphical user
interface and space elements, here a dock 130 for display of available applications, groups of
open application windows (120, 122, 124, 126, 128), system spaces such as a dashboard 104 or
calendar 112, and several individual spaces (106, 108, 110) arranged in a row of thumbnails 103,
cach thumbnail representing a different space. A dashboard can be an application used for
hosting mini-applications known as widgets. In some implementations, a dashboard can be a
semi-transparent layer that is invisible to the user unless activated (e.g., by clicking an icon).
When the dashboard is activated, the user's desktop is dimmed and widgets appear in the
foreground. Widgets can provide functionality and/or information. The widgets can be moved
around, rearranged, deleted and recreated. In some implementations, dashboard widgets can be
HTML files that are displayed within the dashboard.

[0034] Toolbars provided by applications or the operating system can be shown on a
display of a computer. In some implementations, the toolbar is hidden from view during display
of the bridge view 100. The toolbar can include items such as menus, icons, and informative
objects. Some menus can be general and not specific to a particular application, such as a file
menu. Other menus can be application dependent, such as a terminal menu, in which case they
can be added to or removed from the toolbar depending on whether a corresponding application
window is active. In general, an “active application window” refers to a program window that is
designated as the primary recipient of user input for input devices such as a keyboard, touchpad,
or touch screen. The user, or a component such as the operating system, can cause a different
program window to be designated as the active program window within a given space. Icons can
be used to present information to the user, such as status information, and/or can be used to
access functions via, for instance, popup menus or commands for opening another application
window. The display can also include a docking element 130, which provides an areca where
commonly used or preferred applications can be easily accessed through selection of icons
included in the docking element 130, each icon associated with a different application.

[0035] A computer display with multiple spaces is shown, including a first space 106, a

second space 108, and a third space 110. In the illustrated bridge view, the spaces are arranged

WO 2012/054620 PCT/US2011/056908

in a row 103 near the top of the display, with each space showing portions of a larger desktop
which may be zoomed, for instance, to show more detail. In some implementations, the row of
spaces 103 can be arranged in different formats and different locations on the screen. For
example, the spaces in row 103 can be separated into different groups based on whether the
space is a system space, such as dashboard 104, or a user-defined space. System spaces can be
displayed together in row 103 while user-defined spaces can be displayed adjacent the system
spaces, for example. Each of the spaces is represented in the bridge view by a condensed
representation of the application windows open within that space. In the illustrated example,
space 106 is represented in the row of spaces 103 by a visual workspace image 106, or thumbnail
image, comprising a miniaturized depiction of the application windows opened within space 106.
In zoom mode, a single space can be active and presented with a larger size, with the application
windows contained in the other spaces being hidden or only partially visible. An “active” space
is a selected space having its components readily available and visible for access by a user.
While a particular space is active, the visual components associated with other spaces may be
hidden from view. The spaces represent a desktop surface larger than what can be shown on
display at once. Thus, application windows are depicted in reduced size to be able to show all or
most of the active windows in the space.

[0036] In certain implementations, a space can be dedicated to a particular application or
arrangement of applications. For example, as depicted in FIG. 1, a space can function as a
dashboard 104 of commonly used applications, such as a weather report, clock, calculator, or
other applications designated as dashboard applications. Spaces can also be dedicated for other
uses, such as a calendar or planner as represented by space 112.

[0037] Each space can also be associated with a particular image such as a desktop
wallpaper 170. A desktop wallpaper 170 functions as an image displayed in the background of a
desktop interface. Accordingly, in addition to being associated with a group of open application
windows, each space can be associated with certain display settings, such as a particular desktop
image to be displayed in the background when the space is activated. In this instance, each space
functions as its own desktop, and a user can personalize each space by determining the
background image, the application windows used, or other settings for a particular space

according to the user’s preferences.

WO 2012/054620 PCT/US2011/056908

[0038] One or more application windows can be arranged in multiple ways within a
space. Application windows can be positioned such that they fully or partially overlap one
another. They can be resized or moved around in spaces to accommodate the user. Particularly,
while many windows can be open at once and distributed among the spaces, in some
implementations only the application window(s) in a particular space will be visible when that
space is active. In some instances, programs or windows from another space that is not currently
activated can be visible. For instance, in the bridge view 100 depicted in FIG. 1, all available
spaces can be shown in an organized arrangement such as the row of spaces 103. In other
instances, a small representation of another space can be visible on the display apart from the
bridge view to achieve a “picture-in-picture” effect. In some cases, an application or window
can briefly appear even if its space is not being displayed; for example, some events such as
finishing a task can cause a program window to appear for a limited time or until a user
dismisses the window.

[0039] When a space is activated, the application windows of the activated space are
restored to their original positions before entering the bridge view 100. The display can exit the
bridge view 100 in some implementations and present only the contents of the activated space.
The background image associated with the space is displayed as the desktop wallpaper. When
the bridge view 100 is displayed, the application windows for a space are grouped or clustered
together in available arcas of the screen. In certain instances, each grouping of windows
includes all application windows or application instances associated with a particular application
for a particular desktop. Further, each grouping of windows can be described as a “cluster” of
application windows. The grouping of windows can also be based on other shared
characteristics, such as windows that are associated with different applications but are similar in
functionality. For example, several web browser windows may be open in a particular space. If
the space is activated, the windows within the space are enlarged as if they are pulled into the
forefront of the display. Each of the web browser windows in the space can be grouped together
in a certain region of the screen, forming a cluster of web browser windows. Each cluster of
windows can be associated with an icon indicating the particular application associated with the
windows in a certain cluster of windows. Accordingly, a user can identify, based on the icon
displayed in the region of a particular cluster of windows, the types of windows found in the

cluster. Still further, a user can optionally select application windows to group together as a

WO 2012/054620 PCT/US2011/056908

cluster regardless of whether the application windows share a common characteristic or are
associated with the same application.

[0040] In the illustrated example, space 106 is currently selected. As seen in FIG. 1,
cach grouping of application windows (120, 122, 124, 126, 128) associated with space 106 is
depicted in the selected desktop for space 106. Further, each grouping of application windows
can include open application windows for a particular application or that share a common
characteristic. For example, application windows associated with a web browser can be grouped
together in one cluster 128, and an icon 128a can be displayed in the vicinity of the cluster 128 to
allow a user to quickly determine that the application windows in cluster 128 are associated with
a web browser application. A separate icon 128b associated with the web browser application
can also be depicted in a docking element 130 for easy opening of additional windows of the
web browser application. Similarly, each cluster in space 106, such as clusters 120, 122, 124,
and 126, is associated with a different application. In some implementations, the clusters are
displayed such that no window of any cluster overlaps with any other window of a different
cluster. As depicted in FIG. 1, each of the clusters is a grouping of application windows
associated with particular applications that a user can select from a docking element 130. The
docking element 130 includes icons (120b, 122b, 124b, 126b, 128b, 180, 190) for each
application available to a user. In some implementations, the dock 130 is displayed in the user
interface regardless of the space that is currently active, allowing a user to navigate the dock 130
without losing the selected space.

[0041] Each cluster of windows can contain windows that have been reduced in size to
group the windows associated with the same application together in the same region of the GUI.
In certain implementations, the application windows across all clusters are reduced in size by the
same scale factor to maintain the relative proportionality of the spaces. If a particular cluster has
been activated, or if a specific window within the cluster is selected, the window(s) can be
expanded to a larger size. If multiple windows are grouped in a cluster, they can be arranged in a
particular order, such as in a cascading or overlapping arrangement. In some implementations,
an ordering algorithm can be used to determine a particular order for the arrangement of
windows in a cluster. For example, the ordering algorithm can use various heuristics, settings,
user preferences, or other parameters to determine an order to arrange the windows in a cluster.

The parameters used by the ordering algorithm can include, for example, the dimensions

10

WO 2012/054620 PCT/US2011/056908

associated with each window, the type of window, how recent a window was accessed relative to
other windows in the cluster, how recognizable a part of the window is, empirical data related to
a user’s preferences, and other factors used to determine an appropriate arrangement of the
windows in a cluster. Further, within each cluster, the windows can be arranged such that
windows with the highest priority are displayed with the most exposed areas compared to
windows of lower priority. The priority of each window can depend on various factors such as
how recently the window was accessed by the user, for example. For example, in a cluster of
multiple application windows, a particular window that a user most recently interacted with (e.g.,
clicked on) may be designated as the active window in the cluster. In some implementations,
windows in a cluster are grouped together in an area of the GUI and not necessarily stacked or
overlapping. The clusters of windows can be grouped in a particular area based at least in part
on where the windows were located in the GUI before the windows were clustered.

[0042] The bridge view shown in FIG. 1 allows the user to see the available spaces and
choose which space to use. In some implementations, a user can transition into or out of the
bridge view through a particular user input, such as a keyboard input, a particular gesture on a
touchpad, a selection using an input device such as a mouse, or any other appropriate user input.
When in the bridge view mode, applications can continue to run and program windows can be
displayed in a normal fashion, for example on a smaller scale. Program windows can continue to
update, for example, displaying animations, refreshing their contents, etc. The continuous
updating of application windows can be shown in both the thumbnail images in row 103 and the
clusters of windows in the bridge view 100. In a sense, the bridge view 100 mode provides a
visual overview of all spaces and the applications and visual settings within each space to a user.
Users can navigate between spaces with appropriate user input, such as by mouse, keyboard hot
keys, key combinations, gestures, or other mechanisms. Other devices can also be used for
input, such as those for providing alternate input capability for physically handicapped users. It
can be possible for the user to zoom in on a subset of spaces. In one implementation, the system
can automatically switch from one space to another based on a predefined event, such as when a
specific application is launched or an application makes a particular output.

Exemplary Actions for Managing Spaces in a Bridge View
[0043] FIGS. 2A-D depict example screenshots 200, 250, 280, and 290 of different

actions performed on spaces in a bridge view. For example, as illustrated in FIG. 2A, the spaces

11

WO 2012/054620 PCT/US2011/056908

in the bridge 203 can be rearranged by a user or automatically by a computer application. In the
illustrated example, the spaces are initially arranged in a particular order, with a dashboard space
204 at the far left, then a first space 206, a second space 208, a third space 210, and a calendar
application 212 at the far right. A user can optionally rearrange the order of the spaces using an
appropriate user input. For example, the user can execute a drag and drop action using a mouse
or touchpad to re-locate spaces displayed in the row of thumbnails 203. Many operating systems
enable a drag and drop operation to be performed on items that are currently selected in a GUI.
In the drag and drop operation, representations of the selected items can be moved (or
“dragged”) in the user interface from one area of a GUI to another area of the GUI following the
movement of a pointer (e.g., a mouse cursor or pointing device on a touch-sensitive surface).
When the items are released (or “dropped”) over the drop zone of a desired target area, the
selected items become the content items of the desired target area.

[0044] In the illustrated example, a user can drag and drop a space 208 from one location
and insert the space into a different area, such as between different surrounding spaces. In
certain implementations, however, some spaces are moveable and some are fixed. For example,
a particular desktop such as space 206 can be designated as a default space and remains fixed in
the row of thumbnails 203. As seen in FIG. 2A, space 208 can be extracted from an original
position between spaces 206 and 210, and inserted further to the right between spaces 210 and
212. As auser navigates the row of spaces 203, a pointer or other indicator of input sliding over
a particular space thumbnail can trigger an animation that temporarily enlarges the space
thumbnail to allow a user to view the contents of the space in greater detail, while the
surrounding spaces shrink in size to accommodate the temporary enlargement. If the space is
moved to a new position already occupied by another space, the other space can be automatically
relocated to make room for the moved space. Also, the relocated space or one or more other
spaces can be adjusted to fill the vacated space position. In some implementations, the
animation of rearranging space 208 can include a depiction of space 208 being pulled from its
original location by a cursor controlled by a user, following the cursor as the cursor moves to a
different area of the screen, and detaching from the cursor onto a region of the screen after the
user has entered an input such as releasing a button on an input device. Here, space 208 is

moved between spaces 210 and 212, and space 210 shifts to the left to assume space 208’s

12

WO 2012/054620 PCT/US2011/056908

original position in the row 203. A user can also specify a preferred way to handle space
movements.

[0045] Other operations can be performed on a space such as, for example, renaming a
particular space or selecting a new wallpaper for a space.

[0046] FIG. 2B illustrates an example screenshot of a transition from one active space to
a different active space. In certain implementations, a user can activate a first space and then
scamlessly transition from the first space to a newly activated second space. For example, when
a user activates a space, such as space 206 in FIG. 2B, the clusters of application windows and
the desktop wallpaper associated with space 206 are displayed in workspace 260. Here, the
application windows and desktop wallpapers associated with spaces that are not currently
activated are not displayed in the main workspace 260 of space 206 (although condensed
versions of those application windows and desktop wallpapers may be seen in the thumbnail
images in the row of images 203 representing different spaces, such as images of spaces 208 and
210).

[0047] The user can select a different space, such as space 210, for activation using an
appropriate input. In some instances, a user can select space 210 for activation by clicking on
the image representing space 210 in the row of thumbnails 203 using a cursor or finger on a
touchscreen, entering a particular input on a keyboard, or using a particular gesture with the
user’s fingers on a multi-touch input device. The particular gesture can include a swipe of the
user’s fingers across the multi-touch input device, for example. The user’s selection of space
210 for activation causes a deactivation of space 206 before activation of the workspace 270
associated with space 210. The transition can be illustrated using any appropriate animation.
For example, as illustrated in FIG. 2B, the transition can be depicted as a sliding of workspaces
across the screen. The animation can include sliding the workspace 260 being deactivated off
the screen to the left as the newly activated workspace 270, including the desktop wallpaper and
cluster of applications associated with selected space 210, slides onto the screen from the right.
The direction of the sliding workspaces can correspond to the relative positions of the spaces in
the row of thumbnails 203. In the present example, the newly activated space 210 is located to
the right of the previous space 206, so the sliding motion of the workspaces 260 and 270 is from
right to left.

13

WO 2012/054620 PCT/US2011/056908

[0048] The switch from one space to an adjacent space can be accomplished using
different gestures on a multi-touch input device. In some implementations, a user can perform a
swiping gesture on a multi-touch input device in a direction from right to left in order to switch a
currently active space to a space represented by a thumbnail image to the right of the thumbnail
representing the currently active space. Alternatively, a user can perform the swiping gesture
from left to right in order to switch a currently active space to a space represented by a thumbnail
image to the left of the thumbnail representing the currently active space.

[0049] Further, as seen in FIG. 2B, the newly activated space 210 is represented by a
thumbnail that is adjacent to the previous space 206. Accordingly, the animation includes
transitioning from one workspace 260 directly to another workspace 270. In certain
implementations, a sliding animation can also be used for transitioning between two spaces that
are not adjacent to each other in the row of thumbnails 203, such as transitioning directly from
space 208 to space 210, for example. In this instance, some detail from the desktops of spaces
between the two spaces can be included in the animation to depict the spatial relationship
between spaces and from one active space to another active space. Accordingly, a transition
from space 208 to space 210 in the illustrated example can include an animation showing details
from space 206 sliding across the entire screen between the animations of space 208 sliding off
the screen and space 210 sliding onto the screen.

[0050] FIG. 2C depicts another example action that can be performed during
management of desktop spaces. A user can create a space with an initial arrangement of
application windows, icons, or desktop wallpaper. The user can then change the contents or
appearance of the space using various inputs. For example, a user can move an application
window or an entire cluster of windows from one space to another or associate the application
window with a different space. This change can be initiated by the user, for example, because
the application window is to be used in connection with the applications(s) already present in the
other space. In the illustrated example, a currently active space 206 can include a particular
application window 282 that a user wants to move to a different space 210. The user can select
the application window 282 and, using an appropriate motion such as a drag and drop operation,
transfer the application window 282 to a different space 210 by dropping the application window
on the thumbnail image representing space 210. The application window 282 selected by the

user can be one application window, multiple application windows from the same cluster, or an

14

WO 2012/054620 PCT/US2011/056908

entire cluster of application windows. In some implementations, a new instance of the window
is created in space 210 as window 284 while in other instances a copy of the application window
is formed in space 210 while the original window 282 remains in space 206. While the above
example describes a single application window being moved, other moves are also possible in
some implementations. For example, it can be possible to move all windows of a type, all
windows of a single application, or a selection of windows. In some implementations, some
changes to spaces, such as moving content from one space to another, can be done in the bridge
view or a zoom-in mode.

[0051] FIG. 2D depicts an example of creating a new space using an appropriate input
such as a drag and drop operation. In the bridge view 290, a user can select an application
window 282 and drag and drop the application window to a location 292 in between two other
spaces 208 and 210. In some implementations, this operation automatically triggers creation of a
new space containing application window 282, with the thumbnail image of the new space
located at 292 between spaces 208 and 210.

[0052] The user can signal his or her intentions to transfer an application window using a
menu, icon, popup menu, gesture, hot-key or key combinations, to name some examples. The
application window to be moved can be selected, in some implementations, via mouse clicks or
gestures, combinations of button presses such as tabs or arrows, or combinations thereof.
Various methods of moving the application windows can be used, such as by using a mouse to
drag the application window from the originating space and drop it into the destination space, or

using keyboard commands to reposition the application window into the destination space.

Exemplary Actions for Managing Windows in a Cluster
[0053] FIGS. 3A-D depict example actions for managing clustered application windows
in the bridge view. As described above in connection with FIG. 1, application windows sharing
at least one common characteristic can be grouped together in a cluster 300 based on the
common characteristic. Each cluster can include application windows from the same space that
share the common characteristic. In some implementations, however, a user can link application
windows from other spaces that share the same characteristic as well. In some implementations,
cach application window in a particular cluster represents different instances of the same

application. Alternatively, each application window in a particular cluster can represent

15

WO 2012/054620 PCT/US2011/056908

instances of different applications that share at least some common functionality. For example,
application windows associated with different applications that share common functionality,
such as word processing, clectronic mail, web browsing, file browsing, system utility,
spreadsheet manipulation, drawing, digital photo manipulation, system utility, or instant
messaging, for instance, may be grouped together in a cluster, even if the application windows
represent instances of different applications.

[0054] As illustrated in FIG. 3A, each of the application windows 302, 304, 306, and 308
can be grouped together in close proximity to each other. The application windows that are
grouped together can be currently open windows in the respective spaces or windows
representing recently closed windows and displaying an image of the last known appearance of
the closed window. In some instances, the application windows are visually presented as a stack
of overlapping windows, each of the overlapping windows having different associated z-depths,
while in other instances, the application windows are in close proximity but not overlapping.
The particular arrangement of application windows in a cluster can be based on various factors
such as user preferences, common practices across a community of users, visibility of the
different windows, or other potential factors. In FIG. 3A, the application windows 302, 304,
306, and 308 are visually presented as a stack of overlapping windows in a cluster. In some
implementations, each of the application window center points can be aligned.

[0055] The application windows in FIG. 3A can also be displayed with a visual indicator
310 of the common characteristic shared among the application windows in the cluster 300. The
visual indicator 310 is, in some instances, an icon 310 depicting a visual representation of the
common characteristic associated with the cluster 300. For example, if the common
characteristic of the application windows in the cluster 300 is that the application windows are
all instances of a specific web browser application, the standard icon typically used to represent
the web browser application can be used as the common characteristic indicator 310 here. If the
common characteristic of the application windows is a common functionality, such as
application windows associated with performing photo editing, an icon 310 of a camera, for
example, can be used to denote that the application windows in the cluster are related to photo
editing.

[0056] A user can perform one or more actions to expand the cluster 300 of application

windows so that the application windows are more visible to the user. In certain

16

WO 2012/054620 PCT/US2011/056908

implementations, the user can click on the indicator 310 using a pointer 312 associated with an
input device to expand the application windows in the cluster 300, as depicted in FIG. 3B. After
the user performs the action for expanding the cluster 300, the application windows 302, 304,
306, and 308 can be visually shifted in a radial direction away from a center point where the
centers of the application windows were formerly aligned so that the user can view the contents
of the application windows. Further, the dimensions of some or all of the application windows
can be increased as the application windows are moved away from the cluster 300. In some
instances, the application windows of a cluster 300 that has been expanded can cover up
application windows in other clusters that have not been expanded. Further, application
windows in other clusters can further be “de-emphasized” by being shifted toward the edges of
the GUI or darkened relative to the cluster currently being expanded.

[0057] In some implementations, the application windows are expanded from the center
point of the cluster 300 in a single step such that the application windows transition from their
overlapping positions as seen in FIG. 3A to their respective separated positions in FIG. 3C. The
application windows of a cluster can be displayed in expanded mode such that no window of the
cluster overlaps with any other window of the cluster as seen in FIG. 3C. In some instances, the
dimensions of the application windows can be reduced to achieve display of the application
windows in such a non-overlapping manner.

[0058] The application windows can also shift away from the center of the cluster 300 in
increments such that, at each increment, more of each application window is visible to the user as
seen in FIG. 3B. In certain implementations, a user can enter successive iterations of input to
effect a spreading apart of the application windows in the cluster 300 in increments, the
application windows spreading in a radial direction gradually at each increment. In some
instances, the user may not want to spread the application windows completely apart and may
only want to obtain a glimpse of the contents of the application windows in a cluster as depicted
in FIG. 3B. The user can enter an appropriate input, such hovering a cursor over the cluster or
entering slight gestures or movements around the cluster, to effectively cause the application
windows to move slightly apart from each other, giving the impression that the cluster of
application windows was nudged by the user. In some implementations, a user can also identify

a specific application window from a cluster of windows to be displayed in full in the GUI. For

17

WO 2012/054620 PCT/US2011/056908

example, a user can click directly on a titlebar of the application window to separate the window
from the cluster to allow the user to view the complete window.

[0059] Different types of user inputs can be used to effect the visual manipulation of
application windows in a cluster 300. User inputs associated with a cursor, such as drag and
drop operations, can be used to effect visual movement of the application windows. In another
example, a user can also gradually spread apart the application windows by hovering a cursor
associated with a mouse or touchpad, or a finger in connection with a multi-touch input device,
over the clustered application windows. A user can also spread apart application windows using
a scrolling motion with the user’s fingers, for example. The spreading apart of the windows can
be based on the speed or repetition of the user’s scrolling. For example, an upward scrolling
motion using the fingers can trigger the spreading apart of application windows in a cluster while
a downward scrolling motion can trigger collapsing of the application windows in the cluster.
Further, on a multi-touch input device or touch screen, a user can use two fingers in contact with
the input device to simulate a spreading motion using the tips of the user’s fingers, for example.
As the user’s fingers move away from each other from a central position with the fingers in close
proximity to one another to an expanded position, the application windows in the cluster spread
apart in proportion to the relative distance between the fingers.

[0060] FIG. 3C is a visual depiction of the action of combining application windows in a
cluster or reversing the spreading of the application windows described above in connection with
FIG. 3B. The contraction of the application windows 302, 304, 306, and 308 back into a cluster
can occur automatically when a different cluster is selected for expansion or when a different
space is activated. In certain instances, however, a user can initiate the collapse of the
application windows into a compact grouping using inputs similar to those described above in
connection with FIG. 3B. For example, a user can move a cursor 312 to click on the common
characteristic indicator 310 or other area of the user interface to effect the collapse of the
application windows. The application windows then shift inwardly toward a center point from
their original positions so that portions of the application windows are now overlapping. Further,
the application windows in a cluster can be collapsed automatically in response to a user’s

selection for expansion of application windows in a different cluster.

Exemplary Actions for Creating a New Desktop Space

18

WO 2012/054620 PCT/US2011/056908

[0061] FIG. 4 illustrates an example configuration for creating new desktop spaces. A
user can generate new spaces using an appropriate user input such as by clicking on or selecting
an icon 410 displayed on the desktop or entering a particular input on a keyboard or a gesture on
a multi-touch input device, for example. In some implementations, a new thumbnail image
representing the new space 414 can be automatically created after the user opts for creation of
the new space. Further, a configuration tool 420 can be displayed to provide options for a user to
enter a name 422, theme 424, or wallpaper 426 for the new desktop space 414. A new desktop
space can also be created automatically when an application is launched into full screen mode, a
user selects full screen mode from within an application, or the user creates a new application
window.

[0062] A new desktop space can also be configured upon creation without the
configuration tool 420. For example, if a particular application window is already open in a
different space, a user can access the application window and explicitly tag the window for
insertion into the newly created space 414. The user can also drag and drop the application
window onto the thumbnail image representing the new space 414 to include the window in the

new space 414.

Exemplary Processes for Presenting a Bridge View of Desktop Spaces in a User Interface
[0063] FIG. 5 is a flow diagram of an exemplary process 500 for displaying a bridge
view of desktop spaces in a user interface. In the exemplary process 500, workspace images are
presented in a user interface (510). The workspace images can be images corresponding to
different virtual workspaces available to a user of a computer system. For example, the
workspace images can be thumbnail images that depict a condensed live snapshot of the
application windows, desktop configuration, and other graphical objects present in each virtual
workspace. Each thumbnail image displayed in the user interface can correspond to a different
virtual workspace.

[0064] The virtual workspace can be conceptualized using a “desktop” metaphor, and
accordingly, the virtual workspace is a desktop space or, simply, a space. A user input is
received indicating a selection of a presented workspace image (520). The user can select a
particular workspace image to activate the space represented by the image. In some

implementations, a plurality of workspace images are presented to the user, allowing the user to

19

WO 2012/054620 PCT/US2011/056908

navigate the images and select a particular image to access the contents of a space associated
with the image. The user input for selecting a particular space can include, for example, using a
cursor to click on the workspace image associated with the particular space, a keyboard input, or
predefined gestures using a multi-touch input device.

[0065] After selection of a workspace image, application windows associated with the
selected workspace are grouped into clusters based on a shared common characteristic of the
application windows in each cluster (530). The shared common characteristic of application
windows in a cluster can be a same application associated with the windows in the cluster. In
some instances, application windows that are instances of different applications but share a
common functionality can be grouped together as a particular cluster.

[0066] The user interface is updated to display application windows associated with the
selected workspace as visually grouped clusters (540). Each cluster of application windows can
be visually depicted such that a user can efficiently differentiate application windows associated
with different shared characteristic. For example, the application windows in each cluster can be
visually depicted within close proximity of one another and separate from application windows
of other clusters.

[0067] FIG. 6 is a flow diagram of an exemplary process 600 for changing the virtual
workspace associated with an application window. A virtual workspace associated with a
workspace image can be activated and displayed to a user, the display including presentation of
one or more application windows. If a user has selected at least one application window in the
displayed virtual workspace (610), the user can drag the selected application window to a new
location (620). If the new location coincides with a workspace image different from the
workspace image associated with the displayed virtual workspace (630), the virtual workspace
associated with the selected application window is changed to correspond to the virtual
workspace associated with the different workspace image (640).

[0068] FIG. 7 is a flow diagram of an exemplary process 700 for changing from one
active workspace to a different workspace. An active workspace can be presented to a user in a
user interface. The user can perform an input (710) that matches a predetermined gesture (720).
If the user’s input matches the predetermined gesture, the currently active workspace is changed

to another workspace (730).

20

WO 2012/054620 PCT/US2011/056908

[0069] FIG. 8 is a flow diagram of an exemplary process 800 for expanding a cluster of
application windows. A plurality of application windows can be grouped together in a cluster
based on a shared common characteristic. The cluster can be initially depicted in the user
interface as a group of application windows in close proximity to each other, some of which can
be overlapping. An appropriate user input is received to separate the application windows in the
cluster (810). If the received user input indicates selection of a displayed cluster (820), the user
interface is updated to display the application windows of the selected cluster such that no
window overlaps any other window (830). If one or more application windows are too large to
prevent overlap after updating of the user interface (840), the dimensions of one or more
application windows of the selected cluster can be reduced so that the application windows do
not overlap.

[0070] The above processes are merely examples. Various combinations of the above

processes are possible.

Exemplary Software Architecture
[0071] FIG. 9A is an exemplary software architecture 900 for implementing the
processes and user interfaces described in reference to FIGS. 1-8. In some implementations, the
program modules implementing the processes can be part of a framework in a software
architecture or stack. An exemplary software stack 900 can include an applications layer 902,
framework layer 904, services layer 906, OS layer 908 and hardware layer 910. Applications
(e.g., email, word processing, text messaging, etc.) can incorporate function hooks to an
accessibility API. Framework layer 904 can include bridge view Ul modification engine 912.
The bridge view Ul modification engine 912 can make API calls to graphics services or libraries
in services layer 906 or OS layer 908 to perform all or some of its tasks described in reference to
FIGS. 1-8. The bridge view UI modification engine 912 can also make API calls to the
application layer 902 to obtain the information necessary to define thumbnail images of virtual
workspaces, and determine the location and the content of thumbnail images of virtual
workspaces according to the descriptions disclosed in this specification. The bridge view UI
modification engine 912 can also make API calls to services or libraries (e.g., text services) in

services layer 906 or OS layer 908 to perform all or some of its tasks.

21

WO 2012/054620 PCT/US2011/056908

[0072] Services layer 906 can provide various graphics, animations and UI services to
support the graphical functions of the bridge view Ul modification engine 912 and applications
in applications layer 902. In some implementations, services layer 906 can also include a touch
model for interpreting and mapping raw touch data from a touch sensitive device to touch events
(e.g., gestures, rotations), which can be accessed by applications using call conventions defined
in a touch model API. Services layer 906 can also include communications software stacks for
wireless communications.

[0073] OS layer 908 can be a complete operating system (e.g., MAC OS) or a kernel
(e.g., UNIX kernel). Hardware layer 910 includes hardware necessary to perform the tasks
described in reference to FIGS. 1-8, including but not limited to: processors or processing cores
(including application and communication baseband processors), dedicated signal/image
processors, ASICs, graphics processors (e.g., GNUs), memory and storage devices,
communication ports and devices, peripherals, etc.

[0074] One or more Application Programming Interfaces (APIs) may be used in some
implementations. An API is an interface implemented by a program code component or
hardware component (hereinafter “API-implementing component”) that allows a different
program code component or hardware component (hereinafter “API-calling component”) to
access and use one or more functions, methods, procedures, data structures, classes, and/or other
services provided by the API-implementing component. An API can define one or more
parameters that are passed between the API-calling component and the API-implementing
component.

[0075] An API allows a developer of an API-calling component (which may be a third
party developer) to leverage specified features provided by an API-implementing component.
There may be one API-calling component or there may be more than one such component. An
API can be a source code interface that a computer system or program library provides in order
to support requests for services from an application. An operating system (OS) can have
multiple APIs to allow applications running on the OS to call one or more of those APIs, and a
service (such as a program library) can have multiple APIs to allow an application that uses the
service to call one or more of those APIs. An API can be specified in terms of a programming

language that can be interpreted or compiled when an application is built.

22

WO 2012/054620 PCT/US2011/056908

[0076] In some implementations, the API-implementing component may provide more
than one API, each providing a different view of or with different aspects that access different
aspects of the functionality implemented by the API-implementing component. For example,
one API of an API-implementing component can provide a first set of functions and can be
exposed to third party developers, and another API of the API-implementing component can be
hidden (not exposed) and provide a subset of the first set of functions and also provide another
set of functions, such as testing or debugging functions which are not in the first set of functions.
In other implementations, the API-implementing component may itself call one or more other
components via an underlying API and thus be both an API-calling component and an API-
implementing component.

[0077] An API defines the language and parameters that API-calling components use
when accessing and using specified features of the API-implementing component. For example,
an API-calling component accesses the specified features of the API-implementing component
through one or more API calls or invocations (embodied for example by function or method
calls) exposed by the API and passes data and control information using parameters via the API
calls or invocations. The API-implementing component may return a value through the API in
response to an API call from an API-calling component. While the API defines the syntax and
result of an API call (e.g., how to invoke the API call and what the API call does), the API may
not reveal how the API call accomplishes the function specified by the API call. Various API
calls are transferred via the one or more application programming interfaces between the calling
(API-calling component) and an API-implementing component. Transferring the API calls may
include issuing, initiating, invoking, calling, receiving, returning, or responding to the function
calls or messages; in other words, transferring can describe actions by either of the API-calling
component or the API-implementing component. The function calls or other invocations of the
API may send or receive one or more parameters through a parameter list or other structure. A
parameter can be a constant, key, data structure, object, object class, variable, data type, pointer,
array, list or a pointer to a function or method or another way to reference a data or other item to
be passed via the API.

[0078] Furthermore, data types or classes may be provided by the API and implemented

by the API-implementing component. Thus, the API-calling component may declare variables,

23

WO 2012/054620 PCT/US2011/056908

use pointers to, use or instantiate constant values of such types or classes by using definitions
provided in the API.

[0079] Generally, an API can be used to access a service or data provided by the API-
implementing component or to initiate performance of an operation or computation provided by
the API-implementing component. By way of example, the API-implementing component and
the API-calling component may cach be any one of an operating system, a library, a device
driver, an API, an application program, or other module (it should be understood that the API-
implementing component and the API-calling component may be the same or different type of
module from each other). API-implementing components may in some cases be embodied at
least in part in firmware, microcode, or other hardware logic. In some implementations, an API
may allow a client program to use the services provided by a Software Development Kit (SDK)
library. In other implementations, an application or other client program may use an API
provided by an Application Framework. In these implementations, the application or client
program may incorporate calls to functions or methods provided by the SDK and provided by the
API, or use data types or objects defined in the SDK and provided by the API. An Application
Framework may, in these implementations, provide a main event loop for a program that
responds to various events defined by the Framework. The API allows the application to specify
the events and the responses to the events using the Application Framework. In some
implementations, an API call can report to an application the capabilities or state of a hardware
device, including those related to aspects such as input capabilities and state, output capabilities
and state, processing capability, power state, storage capacity and state, communications
capability, etc., and the API may be implemented in part by firmware, microcode, or other low
level logic that executes in part on the hardware component.

[0080] The APIl-calling component may be a local component (i.c., on the same data
processing system as the API-implementing component) or a remote component (i.c., on a
different data processing system from the API-implementing component) that communicates
with the API-implementing component through the API over a network. It should be understood
that an API-implementing component may also act as an API-calling component (i.c., it may
make API calls to an API exposed by a different API-implementing component) and an API-
calling component may also act as an API-implementing component by implementing an API

that is exposed to a different API-calling component.

24

WO 2012/054620 PCT/US2011/056908

[0081] The API may allow multiple API-calling components written in different
programming languages to communicate with the API-implementing component (thus the API
may include features for translating calls and returns between the API-implementing component
and the API-calling component); however, the API may be implemented in terms of a specific
programming language. An API-calling component can, in one embedment, call APIs from
different providers such as a set of APIs from an OS provider and another set of APIs from a
plug-in provider and another set of APIs from another provider (e.g. the provider of a software
library) or creator of the another set of APIs.

[0082] FIG. 9B is a block diagram 920 illustrating an exemplary API architecture, which
may be used in the implementation of some the processes and user interface changes disclosed
herein. As shown in FIG. 9B, the API architecture 920 includes the API-implementing
component 922 (e.g., an operating system, a library, a device driver, an API, an application
program, software or other module) that implements the AP1 924. The API 924 specifies one or
more functions, methods, classes, objects, protocols, data structures, formats and/or other
features of the API-implementing component that may be used by the API-calling component
926. The API 924 can specify at least one calling convention that specifies how a function in the
API-implementing component receives parameters from the API-calling component and how the
function returns a result to the API-calling component. The API-calling component 926 (e.g., an
operating system, a library, a device driver, an API, an application program, software or other
module), makes API calls through the API 924 to access and use the features of the API-
implementing component 922 that are specified by the API 924. The API-implementing
component 922 may return a value through the API 924 to the API-calling component 926 in
response to an API call.

[0083] It will be appreciated that the API-implementing component 922 may include
additional functions, methods, classes, data structures, and/or other features that are not specified
through the API 924 and are not available to the API-calling component 926. It should be
understood that the API-calling component 926 may be on the same system as the API-
implementing component 922 or may be located remotely and accesses the API-implementing
component 922 using the API 924 over a network. While FIG. 9B illustrates a single API-
calling component 930 interacting with the API 924, it should be understood that other API-

25

WO 2012/054620 PCT/US2011/056908

calling components, which may be written in different languages (or the same language) than the
API-calling component 926, may use the API 924.

[0084] The API-implementing component 922, the API 924, and the API-calling
component 926 may be stored in a machine-readable medium, which includes any mechanism
for storing information in a form readable by a machine (e.g., a computer or other data
processing system). For example, a machine-readable medium includes magnetic disks, optical
disks, random access memory; read only memory, flash memory devices, etc.

[0085] In FIG. 9C (“Software Stack” 930), an exemplary implementation 930,
applications can make calls to Service A 932 or Service B 934 using several Service APIs
(Service API A and Service API B) and to Operating System (OS) 936 using several OS APIs.
Service A 932 and service B 934 can make calls to OS 936 using several OS APIs.

[0086] Note that the Service B 934 has two APIs, one of which (Service B API A 938)
receives calls from and returns values to Application A 940 and the other (Service B API B 942)
receives calls from and returns values to Application B 944. Service A 932 (which can be, for
example, a software library) makes calls to and receives returned values from OS APl A 946,
and Service B 934 (which can be, for example, a software library) makes calls to and receives
returned values from both OS API A 946 and OS API B 948. Application B 944 makes calls to

and receives returned values from OS API B 948.

Exemplary Device Architecture

[0087] FIG. 10 is a block diagram of exemplary hardware architecture 1000 for a device
implementing the bridge view of virtual workspaces processes and interfaces described in
reference to FIGS. 1-9. The device can include memory interface 1002, one or more data
processors, image processors and/or processors 1004, and peripherals interface 1006. Memory
interface 1002, one or more processors 1004 and/or peripherals interface 1006 can be separate
components or can be integrated in one or more integrated circuits. The various components in
the device, for example, can be coupled by one or more communication buses or signal lines.

[0088] Sensors, devices, and subsystems can be coupled to peripherals interface 1006 to
facilitate multiple functionalities. For example, motion sensor 1010, light sensor 1012, and
proximity sensor 1014 can be coupled to peripherals interface 1006 to facilitate orientation,

lighting, and proximity functions of the mobile device. Location processor 1015 (e.g., GPS

26

WO 2012/054620 PCT/US2011/056908

receiver) can be connected to peripherals interface 1006 to provide geopositioning. Electronic
magnetometer 1016 (e.g., an integrated circuit chip) can also be connected to peripherals
interface 1006 to provide data that can be used to determine the direction of magnetic North.
Thus, electronic magnetometer 1016 can be used as an electronic compass. Accelerometer 1017
can also be connected to peripherals interface 1006 to provide data that can be used to determine
change of speed and direction of movement of the mobile device.

[0089] Camera subsystem 1020 and an optical sensor 1022, e.g., a charged coupled
device (CCD) or a complementary metal-oxide semiconductor (CMOS) optical sensor, can be
utilized to facilitate camera functions, such as recording photographs and video clips.

[0090] Communication functions can be facilitated through one or more wireless
communication subsystems 1024, which can include radio frequency receivers and transmitters
and/or optical (e.g., infrared) receivers and transmitters. The specific design and implementation
of the communication subsystem 1024 can depend on the communication network(s) over which
a mobile device is intended to operate. For example, a mobile device can include
communication subsystems 1024 designed to operate over a GSM network, a GPRS network, an
EDGE network, a Wi-Fi or WiMax network, and a Bluetooth network. In particular, the wireless
communication subsystems 1024 can include hosting protocols such that the mobile device can
be configured as a base station for other wireless devices.

[0091] Audio subsystem 1026 can be coupled to a speaker 1028 and a microphone 1030
to facilitate voice-enabled functions, such as voice recognition, voice replication, digital
recording, and telephony functions.

[0092] I/0 subsystem 1040 can include touch screen controller 1042 and/or other input
controller(s) 1044. Touch-screen controller 1042 can be coupled to a touch screen 1046 or pad.
Touch screen 1046 and touch screen controller 1042 can, for example, detect contact and
movement or break thereof using any of a plurality of touch sensitivity technologies, including
but not limited to capacitive, resistive, infrared, and surface acoustic wave technologies, as well
as other proximity sensor arrays or other elements for determining one or more points of contact
with touch screen 1046.

[0093] Other input controller(s) 1044 can be coupled to other input/control devices 1048,

such as one or more buttons, rocker switches, thumb-wheel, infrared port, USB port, and/or a

27

WO 2012/054620 PCT/US2011/056908

pointer device such as a stylus. The one or more buttons (not shown) can include an up/down
button for volume control of speaker 1028 and/or microphone 1030.

[0094] In one implementation, a pressing of the button for a first duration may disengage
a lock of the touch screen 1046; and a pressing of the button for a second duration that is longer
than the first duration may turn power to the device on or off. The user may be able to customize
a functionality of one or more of the buttons. The touch screen 1046 can, for example, also be
used to implement virtual or soft buttons and/or a keyboard.

[0095] In some implementations, the device can present recorded audio and/or video
files, such as MP3, AAC, and MPEG files. In some implementations, the device can include the
functionality of an MP3 player, such as an iPod™. The device may, therefore, include a pin
connector that is compatible with the iPod. Other input/output and control devices can also be
used.

[0096] Memory interface 1002 can be coupled to memory 1050. Memory 1050 can
include high-speed random access memory and/or non-volatile memory, such as one or more
magnetic disk storage devices, one or more optical storage devices, and/or flash memory (e.g.,
NAND, NOR). Memory 1050 can store operating system 1052, such as Darwin, RTXC,
LINUX, UNIX, OS X, WINDOWS, or an embedded operating system such as VxWorks.
Operating system 1052 may include instructions for handling basic system services and for
performing hardware dependent tasks. In some implementations, operating system 1052 can
include a kernel (e.g., UNIX kernel).

[0097] Memory 1050 may also store communication instructions 1054 to facilitate
communicating with one or more additional devices, one or more computers and/or one or more
servers. Memory 1050 may include graphical user interface instructions 1056 to facilitate
graphic user interface processing; sensor processing instructions 1058 to facilitate sensor-related
processing and functions; phone instructions 1060 to facilitate phone-related processes and
functions; electronic messaging instructions 1062 to facilitate electronic-messaging related
processes and functions; web browsing instructions 1064 to facilitate web browsing-related
processes and functions; media processing instructions 1066 to facilitate media processing-
related processes and functions; GPS/Navigation instructions 1068 to facilitate GPS and
navigation-related processes and instructions; and camera instructions 1070 to facilitate camera-

related processes and functions. The memory 1050 may also store other software instructions

28

WO 2012/054620 PCT/US2011/056908

(not shown), such as security instructions, web video instructions to facilitate web video-related
processes and functions, and/or web-shopping instructions to facilitate web shopping-related
processes and functions. In some implementations, the media processing instructions 1066 are
divided into audio processing instructions and video processing instructions to facilitate audio
processing-related processes and functions and video processing-related processes and functions,
respectively. An activation record and International Mobile Equipment Identity (IMEI) or
similar hardware identifier can also be stored in memory 1050. Memory 1050 can also include
other instructions 1072.

[0098] Each of the above identified instructions and applications can correspond to a set
of instructions for performing one or more functions described above. These instructions need
not be implemented as separate software programs, procedures, or modules. Memory 1050 can
include additional instructions or fewer instructions. Furthermore, various functions of the
mobile device may be implemented in hardware and/or in software, including in one or more
signal processing and/or application specific integrated circuits.

[0099] The features described can be implemented in digital electronic circuitry, or in
computer hardware, firmware, software, or in combinations of them. The features can be
implemented in a computer program product tangibly embodied in an information carrier, e.g., in
a machine-readable storage device, for execution by a programmable processor; and method
steps can be performed by a programmable processor executing a program of instructions to
perform functions of the described implementations by operating on input data and generating
output.

[00100] The described features can be implemented advantageously in one or more
computer programs that are executable on a programmable system including at least one
programmable processor coupled to receive data and instructions from, and to transmit data and
instructions to, a data storage system, at least one input device, and at least one output device. A
computer program is a set of instructions that can be used, directly or indirectly, in a computer to
perform a certain activity or bring about a certain result. A computer program can be written in
any form of programming language (e.g., Objective-C, Java), including compiled or interpreted
languages, and it can be deployed in any form, including as a stand-alone program or as a

module, component, subroutine, or other unit suitable for use in a computing environment.

29

WO 2012/054620 PCT/US2011/056908

[00101] Suitable processors for the execution of a program of instructions include, by way
of example, both general and special purpose microprocessors, and the sole processor or one of
multiple processors or cores, of any kind of computer. Generally, a processor will receive
instructions and data from a read-only memory or a random access memory or both. The
essential elements of a computer are a processor for executing instructions and one or more
memories for storing instructions and data. Generally, a computer will also include, or be
operatively coupled to communicate with, one or more mass storage devices for storing data
files; such devices include magnetic disks, such as internal hard disks and removable disks;
magneto-optical disks; and optical disks. Storage devices suitable for tangibly embodying
computer program instructions and data include all forms of non-volatile memory, including by
way of example semiconductor memory devices, such as EPROM, EEPROM, and flash memory
devices; magnetic disks such as internal hard disks and removable disks; magneto-optical disks;
and CD-ROM and DVD-ROM disks. The processor and the memory can be supplemented by, or
incorporated in, ASICs (application-specific integrated circuits).

[00102] To provide for interaction with a user, the features can be implemented on a
computer having a display device such as a CRT (cathode ray tube) or LCD (liquid crystal
display) monitor for displaying information to the user and a keyboard, a mouse or a trackball, or
a pointing device (e.g., a finger or stylus on a touch-sensitive surface or touch-sensitive display)
by which the user can provide input to the computer.

[00103] The features can be implemented in a computer system that includes a back-end
component, such as a data server, or that includes a middleware component, such as an
application server or an Internet server, or that includes a front-end component, such as a client
computer having a graphical user interface or an Internet browser, or any combination of them.
The components of the system can be connected by any form or medium of digital data
communication such as a communication network. Examples of communication networks
include, e.g., a LAN, a WAN, and the computers and networks forming the Internet.

[00104] The computer system can include clients and servers. A client and server are
generally remote from each other and typically interact through a network. The relationship of
client and server arises by virtue of computer programs running on the respective computers and

having a client-server relationship to each other.

30

WO 2012/054620 PCT/US2011/056908

[00105] One or more features or steps as disclosed herein can be implemented using an
API. An API can define on or more parameters that are passed between a calling application and
other software code (e.g., an operating system, library routine, function) that provides a service,
that provides data, or that performs an operation or a computation.

[00106] The API can be implemented as one or more calls in program code that send or
receive one or more parameters through a parameter list or other structure based on a call
convention defined in an API specification document. A parameter can be a constant, a key, a
data structure, an object, an object class, a variable, a data type, a pointer, an array, a list, or
another call. API calls and parameters can be implemented in any programming language. The
programming language can define the vocabulary and calling convention that a programmer will
employ to access functions supporting the API.

[00107] In some implementations, an API call can report to an application the capabilities
of a device running the application, such as input capability, output capability, processing
capability, power capability, communications capability, etc.

[00108] A number of implementations have been described. Nevertheless, it will be
understood that various modifications may be made. For example, elements of one or more
implementations may be combined, deleted, modified, or supplemented to form further
implementations. As yet another example, the logic flows depicted in the figures do not require
the particular order shown, or sequential order, to achieve desirable results. In addition, other
steps may be provided, or steps may be eliminated, from the described flows, and other
components may be added to, or removed from, the described systems. Accordingly, other

implementations are within the scope of the following claims.

31

WO 2012/054620 PCT/US2011/056908

What is claimed is:
CLAIMS
1. A method performed by one or more processors executing on a computer system, the

method comprising:

presenting a plurality of workspace images in a user interface, each workspace image
corresponding to a different virtual workspace available to a user of the computer system;

receiving user input indicating a selection of a presented workspace image; and

updating the user interface to display a plurality of application windows associated with
the selected virtual workspace, wherein the displayed application windows are visually grouped
into one or more clusters, each cluster corresponding to one or more application windows

sharing a common characteristic.

2. The method of claim 1 wherein the shared common characteristic of at least one
application windows cluster is that the application windows are different instances of a same

application.

3. The method of claim 1 wherein the shared common characteristic of at least one
applications windows cluster is that the applications windows are instances of different

applications that share at least some common functionality.

4. The method of claim 3 wherein the common functionality of the different applications in
a given cluster comprises at least one of word processing, electronic mail, web browsing, file
browsing, system utility, spreadsheet manipulation, drawing, digital photo manipulation, system

utility, and instant messaging.

5. The method of claim 1 further comprising displaying a common characteristic indicator

for each cluster.

32

WO 2012/054620 PCT/US2011/056908

6. The method of claim 5 wherein the common characteristic indicator comprises a visual

representation of an identity of an application that represents the common characteristic.

7. The method of claim 5 wherein the common characteristic indicator comprises a visual

representation of a functionality that represents the common characteristic.

8. The method of claim 1 wherein each of a plurality of clusters is displayed such that no

window of any cluster overlaps with any other window of any other cluster.

9. A computer program product tangibly embodied in a computer-readable storage medium,
the computer program product including instructions that, when executed, generate on a display
device a graphical user interface for presenting virtual workspaces and perform the following

operations:

present a plurality of workspace images in a user interface, each workspace image
corresponding to a different virtual workspace available to a user of the computer system;

receive user input indicating a selection of a presented workspace image; and

update the user interface to display a plurality of application windows associated with the
selected virtual workspace, wherein the displayed application windows are visually grouped into
one or more clusters, each cluster corresponding to one or more application windows sharing a

common characteristic.

10. The computer program product of claim 9 wherein the shared common characteristic of
at least one application windows cluster is that the application windows are different instances of

a same application.

11. The computer program product of claim 9 wherein the shared common characteristic of
at least one applications windows cluster is that the applications windows are instances of

different applications that share at least some common functionality.

33

WO 2012/054620 PCT/US2011/056908

12. The computer program product of claim 11 wherein the common functionality of the
different applications in a given cluster comprises at least one of word processing, electronic
mail, web browsing, file browsing, system utility, spreadsheet manipulation, drawing, digital

photo manipulation, system utility, and instant messaging.

13. The computer program product of claim 9 further comprising displaying a common

characteristic indicator for each cluster.

14. The computer program product of claim 13 wherein the common characteristic indicator
comprises a visual representation of an identity of an application that represents the common

characteristic.

15. The computer program product of claim 13 wherein the common characteristic indicator

comprises a visual representation of a functionality that represents the common characteristic.

16. The computer program product of claim 9 wherein each of a plurality of clusters is
displayed such that no window of any cluster overlaps with any other window of any other

cluster.

17. A system comprising:

a display device;
a computing device in communication with the display device, wherein the computing
device is configured to perform at least the following:
present a plurality of workspace images in a user interface, each workspace image
corresponding to a different virtual workspace available to a user of the computer system;

receive user input indicating a selection of a presented workspace image; and

34

WO 2012/054620 PCT/US2011/056908

update the user interface to display a plurality of application windows associated with the
selected virtual workspace, wherein the displayed application windows are visually grouped into
one or more clusters, each cluster corresponding to one or more application windows sharing a

common characteristic.

18. The system of claim 17 wherein the shared common characteristic of at least one
application windows cluster is that the application windows are different instances of a same

application.

19. The system of claim 17 wherein the shared common characteristic of at least one
applications windows cluster is that the applications windows are instances of different

applications that share at least some common functionality.

20. The system of claim 17 further comprising displaying a common characteristic indicator

for each cluster.

35

PCT/US2011/056908

WO 2012/054620

1/15

qeci
eozl
0zt
ezl
443
47
lepusjen 0L Im dopiseg Ay 804 Im Z dopiseqg 904 | dopiseq Emogswmn_

==l

/Pemh

€01

NQE

PCT/US2011/056908

WO 2012/054620

2/15

Z dopisaQ

802
474
Jepusien M doy gNN | dopiseq vewlm pJeogyseq
—1

—— i

AV
Ewlﬂ

€0¢

NSN

PCT/US2011/056908
3/15

WO 2012/054620

>

ZiZ —tepusied 807, cdopised Lz, dopiseQ

N SNN | dopiseq POz pleogyseq

< <

T 8 &8 0|

Nemw

PCT/US2011/056908

WO 2012/054620

4/15

242 —epusieD

Y]

(1174

=

dopiseg AN

SNN | dopiseQg

y0¢ pJeoqgysed

10

N

i

005

€0¢

Ncmw

PCT/US2011/056908
5/15

WO 2012/054620

Y]

21T —‘epusie) 807 _, ¢ dopisaQ

< —

j

dopiseq AW .SNN | dopise@ p0OZ pieoqused

€0¢

Neaw

WO 2012/054620 PCT/US2011/056908

|

6/15
300 304
¢]
] | 308
306_|
N | Y | 302
—~— -
 —
/
310 | 312
FIG. 3A
3002
206 304
S

o
b3
Co

FIG. 3B

WO 2012/054620 PCT/US2011/056908

7715

308 | ,

3062__| Sl
/
N~

PCT/US2011/056908

8/15

=))
Nawv wlmwv

434

Jaded|lepn IP@N&

[a]
_E awsay] 2 pzp
[a]

0Ly PWEN 2 zzp [o0zv
uoneinbyuon) soedg
Evﬂlaozwmn_ MBN mcvlm z dopysaq gvlm | dopisaq ng pieoquse(

- - - =/

1 cop

o oo |00

WO 2012/054620

Ngv

|

WO 2012/054620

5002

9/15

Present Workspace Images in Ul

510

Receive User Input Indicating a
Selection of a Presented

Workspace Image 20

v

Group Application Windows
Associated With the Selected
Workspace, Each Group Sharing a

Common Characteristic 530

v

Update Ul to Display Application
Windows Associated With the
Selected Workspace As Visually

Grouped Clusters 540

End

FIG. 5

PCT/US2011/056908

WO 2012/054620 PCT/US2011/056908

|

10/15

"

Has User Selected at Least
One Application Window?

Yesl
Has User Dragged \
Selected Application

Window(s) to a New
Location? 620

Yesl

Does New Location
Coincide With a Different
Workspace Image? ¢3¢

Yesl

Change Virtual Workspace
Association of Selected
Window(s) to Correspond to a
Virtual Workspace Associated
with the Different Workspace

Image 640

End

FIG. 6

WO 2012/054620 PCT/US2011/056908

|

11/15

7002

Has User Performed an \
Input?
710 / No
Yesl
Does the \
Performed Input
Match a Predetermined No
Gesture? 720
Yesl

Change Active Workspace to

Another Workspace End

130

FIG. 7

|

WO 2012/054620

8002

12/15

Receive User Input
10

I

User Input Indicates

PCT/US2011/056908

Selection of a Displayed
Cluster? 20

Yesl

N

Update Ul to Display
Application Windows of
Selected Cluster Such That No
Window Overlaps Any Other

Window 830

|

One or More Windows Too \

Large to PreventOverIap?/ No

840

Yesl

Reduce Dimensions of One or
More Application Windows of
Selected Cluster 850

FIG. 8

End

WO 2012/054620 PCT/US2011/056908

_F

13/15
9001 9127
Applications
pplicati 902
Drag and Drop Ul Modification Engine
904
Services/Librari
rvices/Libraries 906
O/S
908
Hardware
910

FIG. 9A

WO 2012/054620 PCT/US2011/056908

|

14/15

920
_<4 API-Calling Component(s)
926

API Calls, Return

Values,
Parameters
$ Parameters

Application Programming Interface
924

API-Implementing Component(s)
922

FIG. 9B

930((

Application A 940 Application B 944

|

: Service B Service B
Service A API API A 938 API B 942
Service A 932 Service B 934

OS API A 946 OS API B 948

Operating System (OS) 936

FIG. 9C

WO 2012/054620 PCT/US2011/056908

|

15/15

)‘ 1000

. . 1052 1017
Operating System Instructions -S_ S
P 3oy _S_ 1054 »| Accelerometer

iy 1056

Communication Instructions
GUI Instructions
nstruc |onl . _5—1058 j1015
Sensor Processing Instructions ———3| Location Processor
, _5—1060
Phone Instructions

1062
Electronic Messaging Instructions -S_ 1016

1064
Web Browsing Instructions -S_ —> Magnetometer

- - - _S_ 1066
Media Processing Instructions _S_ 1068
— , 1010
GPS/Navigation Instructions 1070 Motion Sensor j_
Camera Instructions 1072
Other Instructions S j 1012
—> Light Sensor
-~ j‘ 1014
Memory L —» Proximity Sensor
1 1050)— 1020
v YYVVVY Camera
Memory Interface 1006 _L NN Subsystem

1002 g } y| Peripherals Wireless 1022

Interface [€» Communication j—1024
Subsystem(s)

1004 1028
Processor(s) I PREN :(]f

.. Audio Subsystem 1030
1026 = | —Dy

I t
5‘ 1042 /O Subsystem 5— 1044 5_ 1040

Touch-Screen Controller Other Input Controller(s)

A A

A 4 A 4

Other Input / Control
{ Touch Screen Devices)
1046 1048

FIG. 10

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2011/056908

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F9/44
ADD.

According to International Patent Classification (IPC) or to both national classification and IPG

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X HENDERSON D A ET AL: "ROOMS: THE USE OF 1-20
MULTIPLE VIRTUAL WORKSPACES TO REDUCE
SPACE CONTENTION IN A WINDOW-BASED
GRAPHICAL USER INTERFACE",

ACM TRANSACTIONS ON GRAPHICS: TOG, ACM,
us,

vol. 5, no. 3, 1 July 1986 (1986-07-01),
pages 211-243, XP000600869,

ISSN: 0730-0301, DOI: 10.1145/24054.24056
paragraph [0001] - paragraph [3.3.2]
figures 9a,9b,10

X EP 0 961 200 A2 (SUN MICROSYSTEMS INC 1-20
[US]) 1 December 1999 (1999-12-01)
paragraph [0014] - paragraph [0032]

_/__

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents : i i i "

"T" later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the
invention

"A" document defining the general state of the art which is not
considered to be of particular relevance

"E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention
filing date cannot be considered novel or cannot be considered to

"L" document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of ancther "v* document of particular relevance; the claimed invention

citation or other special reason (as specified) cannot be considered to involve an inventive step when the

"Q" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
"P" document published prior to the international filing date but in the art.
later than the priority date claimed "&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the international search report
19 January 2012 02/02/2012
Name and mailing address of the ISA/ Authorized officer

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040, -
Fax: (+31-70) 340-3016 Kusnierczak . Pawel

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

International application No

paragraph [0020] - paragraph [0028]

PCT/US2011/056908
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X ROBERTSON G ET AL: "THE TASK GALLERY: A 1-20
3D WINDOW MANAGER",
CHI 2000 CONFERENCE PROCEEDINGS.
CONFERENCE ON HUMAN FACTORS IN COMPUTING
SYSTEMS. THE HAQUE, NETHERLANDS, APRIL 1 -
5, 2000; [CHI CONFERENCE PROCEEDINGS.
HUMAN FACTORS IN COMPUTING SYSTEMS], NEW
YORK, NY : ACM, US,
1 April 2000 (2000-04-01), pages 494-501,
XP001090199,
ISBN: 978-0-201-48563-9
page 494, Teft-hand column, line 18 - page
497, right-hand column, line 16
A EP 0 697 691 A2 (IBM [US]) 1-5,
21 February 1996 (1996-02-21) 8-13,
16-20
column 5, line 28 - column 9, Tline 4
A US 2006/224991 Al (STABB CHARLES W [US] ET 1-5,
AL) 5 October 2006 (2006-10-05) 9-13,
17-20
paragraph [0044] - paragraph [0059]
A EP 1 033 649 A2 (DASSAULT SYSTEMES [FR]) 6,7,14,
6 September 2000 (2000-09-06) 15

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2011/056908
Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0961200 A2 01-12-1999 CN 1238617 A 15-12-1999
EP 0961200 A2 01-12-1999
JP 11353085 A 24-12-1999
us 6239798 Bl 29-05-2001

EP 0697691 A2 21-02-1996 DE 69533568 D1 04-11-2004
DE 69533568 T2 13-10-2005
EP 0697691 A2 21-02-1996
JP 8055002 A 27-02-1996
us 5564002 A 08-10-1996

US 2006224991 Al 05-10-2006 CN 101133381 A 27-02-2008
EP 1866730 A2 19-12-2007
JP 2008535083 A 28-08-2008
KR 20080001706 A 03-01-2008
US 2006224991 Al 05-10-2006
WO 2006107324 A2 12-10-2006

EP 1033649 A2 06-09-2000 CA 2299870 Al 03-09-2000
DE 1033649 T1 23-08-2001
DE 60003246 D1 17-07-2003
DE 60003246 T2 06-05-2004
EP 1033649 A2 06-09-2000
JP 2000305688 A 02-11-2000
us 6459441 Bl 01-10-2002

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - wo-search-report
	Page 54 - wo-search-report
	Page 55 - wo-search-report

