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EARLY DETECTION OF RECURRENT BREAST CANCER
USING METABOLITE PROFILING

CROSS-REFERENCE TO RELATED APPLICATION
[001] This application claims benefit of provisional patent application serial number
61/316,679, filed on March 23, 2010, the entire disclosure of which is incorporated herein by

reference.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH
[002] This invention was made with United States government support under
R0O1GMO085291 from the National Institute of General Medical Sciences. The United States

government has certain rights to this invention.

TECHNICAL FIELD
[003] The present disclosure generally relates to small molecule biomarkers comprising a
panel of metabolite species that is effective for the early detection of breast cancer recurrence,
including methods for identifying such panels of biomarkers within biological samples by
using a process that combines gas chromatography-mass spectrometry and nuclear magnetic

resonance spectrometry.

BACKGROUND
[004] Breast cancer remains the leading cause of death among women worldwide. It is the
second leading cause of death among women in the United States, with nearly 190,000 new
cases and 40,000 deaths expected in the year 2010. Although breast cancer survival has
improved over the past few decades owing to improved diagnostic screening methods breast
cancer often recurs anywhere from 2 to 15 years following initial treatment, and can occur
either locally in the same or contralateral breast or as a distant recurrence (metastasis).
Recent studies of nearly 3,000 breast cancer patients showed that the recurrence rate 5 and 10
years after completion of adjuvant treatment were 11 percent (“%’) and 20%, respectively.
Numerous factors such as stage, grade and hormone receptor status are shown to have
association with recurrence. Higher stage tumors often have higher propensity to recur. For
example, a recent study reports that 7%, 11% and 13% of recurrence after S years for stage I,
IT and III tumor cases, respectively. In addition, conditions such as lymph node invasion and

absence of estrogen receptors are factors in a higher relapse rate and a shorter disease free



WO 2011/119772 PCT/US2011/029681

22—

survival. Studies have shown that early detection of locally recurrent breast cancers can

improve survival rate significantly.

[005] Common methods for routine surveillance of recurrent breast cancer include periodic
mammographic examinations, self-examination or physician-performed physical examination
and blood tests. The performances of such tests are poor, and extensive investigations for
surveillance have not proven effective. Often, mammography misses small local recurrences
or leads to false positives, resulting in low sensitivity and specificity, and unnecessary
biopsies. In view of the unmet need for more sensitive and earlier detection methods, the last
decade or so has witnessed the development of a number of new approaches for detecting
recurrent breast cancer and monitoring disease progression using blood based tumor markers
or genetic profiles. The in vitro diagnostic (“IVD”) markers include carcinoembryonic
antigen (“CEA”), cancer antigen (“CA”) 15-3, CA 27.29, tissue polypeptide antigen (“TPA”),
and tissue polypeptide specific antigen (“TPS”). Such molecular markers are thought to be
promising since the outcome of the diagnosis based on these markers is independent of the
expertise and experience of the clinicians and it potentially avoids sampling errors commonly
associated with conventional pathological tests, such as histopathology. However, currently
these markers lack the desired sensitivity and specificity, and often respond late to

recurrence, underscoring the need for alternative approaches.

[006] Up to nearly 50% improvement in the relative survival of patients can be achieved by
detecting the recurrence at a clinically asymptomatic phase, showing the need for a reliable
test that is based on biomarkers that are indicative of secondary tumor cell proliferation.
However, the performance of the commercially available non-invasive tests based on
circulating tumor markers such as carcihoembryonic antigen and cancer antigens is too poor
to be of significant value for improving early detection. This is because the levels of these
markers are also elevated in numerous other malignant and non-malignant conditions
unconnected with breast cancer. Considering such limitations, the American Society of
Clinical Oncologists (ASCO) guidelines recommend the use of these markers only for
monitoring patients with metastatic disease during active therapy in conjunction with

numerous other examinations and investigations.
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[007] Metabolite profiling (or metabolomics), can detect disease based on a panel of small
molecules derived from the global or targeted analysis of metabolic profiles of samples such
as blood and urine. Metabolite profiling uses high-resolution analytical methods such as
nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) for the
quantitative analysis of hundreds of small molecules (less than ~1,000 Da) present in
biological samples. Owing to the complexity of the metabolic profile, multivariate statistical
methods are extensively used for data analysis. The high sensitivity of metabolite profiles to
even subtle stimuli can provide the means to detect the early onset of various biological

perturbations in real time.
SUMMARY OF THE INVENTION

[008] A monitoring test for recurrent breast cancer with a high degree of sensitivity and
specificity is provided that detects the presence of a panel of multiplicity of biomarkers that
were identified using metabolite profiling methods. The test is capable of detecting breast
cancer recurrence about a years earlier than current available monitoring diagnostic tests.
The panel of biomarkers is identified using a combination of nuclear magnetic resonance
(NMR) and two dimensional gas chromatography-mass spectrometry (GCxGC-MS) to
produce the metabolite profiles of serum samples. The NMR and GCxGC-MS data are
analyzed by multivariate statistical methods to compare identified metabolite signals between
samples from patients with recurrence of breast cancer and those from patients having no

evidence of disease.

[009] In a preferred embodiment, a method is disclosed for detecting a panel of a
multiplicity of predetermined metabolic biomarkers that are indicative of the recurrence of
breast cancer in a subject, comprising obtaining a sample of a biofluid from the subject;
analyzing the sample to determine the presence and the amount of each of the metabolic
biomarkers in the panel; wherein the presence and the amount of each of the metabolic
biomarkers in the panel as a whole are indicative of the recurrence of breast cancer in a
subject. Typically the biofluid is blood, plasma, serum, sweat, saliva, sputum, or urine.

Preferably the biofluid is serum.

[0010] In a preferred embodiment, the panel of a multiplicity of metabolic biomarkers

consists of at least seven compounds selected from the group consisting of
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3-hydroxybutyrate; acetoacetate, alanine, arginine, asparagine, choline, creatinine, glucose,
glutamic acid, glutamine, glycine, formate, histidine, isobutyrate, isoleucine, lactate, lysine,
methionine, N-acetylaspartate, proline, threonine, tyrosine, valine, 2-hydroxy butanoic acid,
hexadecanoic acid, aspartic acid, 3-methyl-2-hydroxy-2-pentenoic acid, dodecanoic acid,
1,2,3, trihydroxypropane, beta-alanine, alanine, phenylalanine, 3-hydroxy-2-methyl-butanoic
acid, 9,12-octadecadienoic acid, acetic acid, N-acetylglycine, glycine, nonanedioic acid,

nonanoic acid, and pentadecanoic acid.

[0011] In another preferred embodiment, the panel consists of 3-hydroxybutyrate,
acetoacetate, alanine, arginine, choline, creatinine, glutamic acid, glutamine, formate,
histidine, isobutyrate, lactate, lysine, proline, threonine, tyrosine, valine, hexadecanoic acid,
aspartic acid, dodecanoic acid, alanine, phenylalanine, 3-hydroxy-2-methyl-butanoic acid,
9,12 octadecadienoic acid, acetic acid, N-acetylglycine, nonanedioic acid, and pentadecanoic

acid.

[0012] In a further preferred embodiment, the panel consists of 3 hydroxybutyrate, choline,
glutamic acid, formate, histidine, lactate, proline, tyrosine, 3 hydroxy-2-methyl-butanoic acid,
N-acetylglycine, and nonanedioic acid. In another preferred embodiment, the panel consists
of choline, glutamic acid, formate, histidine, proline, 3 hydroxy-2-methyl-butanoic acid, N-
écetylglycine, and nonanedioic acid. In yet another preferred embodiment, the panel consists

of 3-hydroxybutyrate, choline, formate, histidine, lactate, proline, and tyrosine.

{0013] In a preferred embodiment the metabolic biomarkers in the panel are determined by
obtaining samples of biofluid from subjects with known breast cancer status; measuring one
or more metabolite species in the samples of by subjecting the sample to nuclear magnetic
resonance measurements; measuring one or more metabolite species in the samples of by
subjecting the sample to mass spectrometry measurements; analyzing the results of the
nuclear magnetic resonance measurements and the results of the mass spectrometry
measurements to produce spectra containing individual spectral peaks representative of the
one or more metabolite species contained within the sample; subjecting the spectra to
multivariate statistical analysis to identify one or more metabolite species contained within
the sample; and determining which metabolic species are correlated. with a given breast

cancer status.
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[0014] In another preferred embodiment, a method is disclosed for detecting secondary tumor
cell proliferation in a mammalian subject comprising: obtaining a sample of a biofluid from
the subject; analyzing the sample to determine the presence and the amount of each of the
metabolic biomarkers in a panel of predetermined biomarkers; wherein the presence and the
amount of each of the metabolic biomarkers in the panel as a whole are indicative of
secondary tumor cell proliferation in a mammalian subject. Typically the biofluid is blood,

plasma, serum, sweat, saliva, sputum, or urine. Preferably the biofluid is serum.

[0015] In a preferred embodiment, the panel of a multiplicity of metabolic biomarkers
consists of at least seven compounds selected from the group consisting of
3-hydroxybutyrate, acetoacetate, alanine, arginine, asparagine, choline, creatinine, glucose,
glutamic acid, glutamine, glycine, formate, histidine, isobutyrate, isoleucine, lactate, lysine,
methionine, N-acetylaspartate, proline, threonine, tyrosine, valine, 2-hydroxy butanoic acid,
hexadecanoic acid, aspartic acid, 3-methyl-2-hydroxy-2-pentenoic acid, dodecanoic acid,
1,2,3, trihydroxypropane, beta-alanine, alanine, phenylalanine, 3-hydroxy-2-methyl-butanoic
acid, 9,12-octadecadienoic acid, acetic acid, N-acetylglycine, glycine, nonanedioic acid,
nonanoic acid, and pentadecanoic acid. In another preferred embodiment, the panel consists
of 3-hydroxybutyrate, acetoacetate, alanine, arginine, choline, creatinine, glutamic acid,
glutamine, formate, histidine, isobutyrate, lactate, lysine, proline, threonine, tyrosine, valine,
hexadecanoic acid, aspartic acid, dodecanoic acid, alanine, phenylalanine, 3-hydroxy-2-
methyl-butanoic acid, 9,12 octadecadienoic acid, acetic acid, N-acetylglycine, nonanedioic

acid, and pentadecancic acid.

[0016] In a further preferred embodiment, the panel consists of 3 hydroxybutyrate, choline,
glutamic acid, formate, histidine, lactate, proline, tyrosine, 3 hydroxy-2-methyl-butanoic acid,
N-acetylglycine, and nonanedioic acid. In another preferred embodiment, the panel consists
of choline, glutamic acid, formate, histidine, proline, 3 hydroxy-2-methyl-butanoic acid, N-
acetylglycine, and nonanedioic acid. In yet another preferred embodiment, the panel consists

of 3-hydroxybutyrate, choline, formate, histidine, lactate, proline, and tyrosine.

[0017] In a preferred embodiment the metabolic biomarkers in the panel are determined by
obtaining samples of biofluid from subjects with known secondary tumor cell proliferation;

measuring one or more metabolite species in the samples of by subjecting the sample to
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nuclear magnetic resonance measurements; measuring one or more metabolite species in the
samples of by subjecting the sample to mass spectrometry measurements; analyzing the
results of the nuclear magnetic resonance measurements and the results of the mass
spectrometry measurements to produce spectra containing individual spectral peaks
representative of the one or more metabolite species contained within the sample; subjecting
the spectra to multivariate statistical analysis to identify the at least one or more metabolite
species contained within the sample; and determining which metabolic species are correlated

with secondary tumor cell proliferation.

[0018] In another preferred embodiment, a method is disclosed for detecting the recurrence
breast cancer status within a biological sample, comprising: measuring one or more
metabolite species within the sample by subjecting the sample to a combined nuclear
magnetic resonance and mass spectrometry analysis, the analysis producing a spectrum
containing individual spectral peaks representative of the one or more metabolite species
contained within the sample; subjecting the individual spectral peaks to a statistical pattern
recognition analysis to identify the at least one or more metabolite species contained within
the sample; and correlating the measurement of the one or more metabolite species with a
breast cancer status. Preferably, the one or multiple metabolite species is selected from the
group consisting of 2-methyl,3-hydroxy butanoic acid; 3-hydroxybutyrate; choline; formate;
histidine; glutamic acid; N-acetyl-glycine; nonanedenoic acid; proline; threonine; tyrosine;
and combinations thereof. Typically the sample comprises a biofluid, preferably serum.
Typically the mass spectrometry analysis comprises a two-dimensional gas chromatography

coupled mass spectrometry analysis.

[0019] In another preferred embodiment, the invention provides a panel of biomarkers for
detecting breast cancer, comprising at least one metabolite species or parts thereof, selected
from the group consisting of consisting of 2-methyl, 3-hydroxy butanoic acid; 3-
hydroxybutyrate; choline; formate; histidine; glutamic acid; N-acetyl-glycine; nonanedenoic

acid; proline; threonine; tyrosine; and combinations thereof.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0020] The above-mentioned aspects of the present teachings and the manner of obtaining
them will become more apparent and the teachings will be better understood by reference to
the following description of the embodiments taken in conjunction with the accompanying
drawings, in which corresponding reference characters indicate corresponding parts

throughout the several views.

[0021] Figure 1A is a flow chart describing one embodiment of a method of biomarker
selection, model development, and validation. The samples were split into a training set
consisting of NED (n=141) and recurrence samples (n=49) near the time of diagnosis and
post diagnosis, and a testing set of samples consisting of pre-diagnosis recurrence samples.
The training set of samples were divided into 5 cross validation groups of patients. Logistic
regression was used for biomarker selection using 5 fold cross validation. Model building
used partial least squares discriminant analysis (PLS-DA) modeling with leave one out
internal cross validation. Validation was performed on the prediagnosis samples. Figure 1B
is a flow chart describing another embodiment of biomarker selection, model development,
and validation. The samples were randomly split into a training set (n=140, 66 recurrence
samples and 74 NED samples) and testing set (n=117 samples, 50 recurrence samples and 50
NED samples). Variable selection was performed using logistic regression, and a predictive
model was constructed based on 7 biomarkers identified in NMR studies and 4 biomarkers

identified in GC studies.

[0022] Figure 2A shows a typical 500 MHz one dimension 'H NMR spectrum, Figure 2B
two dimension GCxGC/TOF-MS total ion current (TIC) contour plot spectrum (without

solvent) from a post recurrence breast cancer patient.

[0023] Figure 3A-F shows a validation procedure for MS biomarkers: 3A is a three
dimension GC x GC-TOF total ion current (TIC) surface plot chromatogram; 3B is a typical
one dimension TIC GCxGC-TOF chromatogram; 3C shows the selected metabolite (glutamic
acid) based on the chromatogram for the selected ion peak at m/z 432; 3D shows a mass
spectrum of glutamic acid from an NED patient; 3E shows the mass spectrum for glutamic
acid from a patient with recurrent breast cancer; and 3F shows a mass spectrum for glutamic

acid for commercial sample of that metabolite.
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[0024] Figure 4A-K shows box and whisker plots illustrating the discrimination between post
plus within recurrence (“Recurrence”) versus NED patient for all samples for the 7 NMR and
the 4 GCxGC/MS markers, expressed as relative peak integrals. The horizontal line in the
mid portion of the box represents the mean while the bottom and top boundaries of the boxes
represents 25" and 75™ percentiles respectively.' The lower and upper whiskers represent the
minimum and maximum values respectively, while the open circles represent outliers. The y-
axis provides relative peak integrals as described in the Methods section. Figure 4A is based
on NMR data for formate. Figure 4B is based on NMR data for histidine. Figure 4C is based
on NMR data for proline. Figure 4D is based on NMR data for choline. Figure 4E is based
on NMR data for tyrosine. Figure 4F is based on NMR data for 3-hydroxybutyrate. Figure
4G is based on NMR data for lactate. Figure 4H is based on GCxGC/MS data for glutamate.
Figure 41 is based on GCxGC/MS data for N-acetyl-glycine. Figure 4] is based on
GCxGC/MS data for 3-hydroxy-2-methyl-butanoic acid. Figure 4K is based on GCxGC/MS

data for nonanedioic acid.

[0025] Figure SA-R shows box and whisker plots illustrating the discrimination between post
plus within recurrence (“Recurrence”) versus NED patient for all samples for additional
markers, expressed as relative peak integrals. The horizontal line in the mid ponidn of the
box represents the mean while the bottom and top boundaries of the boxes represents 25" and
75™ percentiles respectively. The lower and upper whiskers represent the minimum and
maximum values respectively, whilke the open circles represent outliers. The y-axis provides
relative peak integrals as described in the Methods section. Figure 5A is based on NMR data
for arginine. Figure 5B is based on GCxGC/MS data for dodecanoic acid. Figure 5C is
based on NMR data for alanine. Figure 5D is based on GCxGC/MS data for alanine. Figure
SE is based on NMR data for phenylalanine. Figure SF is based on GCxGC/MS data for
phenylalanine. Figure 5G is based on GCxGC/MS data for aspartic acid. Figure SH is based
on NMR data for glutamate. Figure 51 is based on NMR data for threonine. Figure 5J is
based on NMR data for valine. Figure 5K is based on NMR data for acetoacetate. Figure 5L
is based on NMR data for lysine. Figure SM is based on NMR data for Creatinine. Figure SN
is based on NMR data for isobutyrate. Figure 50 is based on GCxGC/MS data for
hexadecanoic acid. Figure 5P is based on GCxGC/MS data for 9,12-octadecadienoic acid.
Figure 5Q is based on GCxGC/MS data for pentadecanoic acid. Figure SR is based on
GCxGC/MS data for acetic acid.
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[0026] Figure 6A shows a ROC curve generated from the PLS-DA model illustrated in
Figure 1A and described below, using data from Post and Within (="Recurrence”) samples
versus data from NED samples, and the performance of CA 27.29 on the same sambles.
Figure 6B shows box-and-whisker plots for the two sample classes, showing discrimination
of Recurrence samples from the samples from the NED patients by using the model-predicted
scores. Figure 6C shows a ROC curve generated from the PLS-DA prediction model by using
the testing sample set based on the second statistical approach illustrated in Figure 1B.
Figure 6D shows box-and-whisker plots for the two sample classes, showing discrimination
of Recurrence samples from the samples from the NED patients by using the predicted scores

from the testing set.

[0027] Figure 7A shows the percentage of recurrence patients correctly identified using the
11 biomarker model (BCR Profile 1, filled squares) as a function of time for all recurrence
patients using a cutoff threshold of 48, compared to the percentage of recurrence patients
correctly identified using the CA 27.29 test (filled triangles). Figure 7B shows the percentage
of NED patients correctly identified using the 11 biomarker model (filled squares) as a
function of time using a cutoff threshold of 48, compared to the percentage of NED patients
correctly identified using the CA 27.29 test (filled triangles). Figure 7C shows the percentage
of recurrence patients correctly identified using the 11 biomarker model (filled squares) as a
function of time for all recurrence patients using a cutoff threshold of 54, compared to the
percentage of recurrence patients correctly identified using the CA 27.29 test (filled
triangles). Figure 7D shows the percentage of NED patients correctly identified using the 11
biomarker model (filled squares) as a function of time using a cutoff threshold of 54,
compared to the percentage of NED patients correctly identified using the CA 27.29 test
(filled triangles).

[0028] Figures 8A and 8B show the percentage of recurrence patients correctly identified as
recurrence based on their estrogen receptor (ER) status (Figure 8A) and progesterone receptor
(PR) status (Figure 8B) as a function of time using the same 11 biomarker model (BCR
Profile 1) and a cutoff threshold of 48. In Figure 8A, ER minus status is indicated by the
filled triangles and ER plus status is indicated by the filled squares. In Figure 8B, PR minus
status is indicated by the filled triangles and PR plus status is indicated by the filled squares.
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[0029] Figures 9A-9D show ROC curves generated from the prediction model using the
training set (Figure 9A) and the testing set (Figure 9B) using the statistical approach
illustrated in Figure 1B. Box and whisker plots for the two sample classes showing
discrimination between Recurrence samples from NED samples using the predicted scores

from the training set (Figure 9C) and testing set (Figure 9D).

[0030] Figure 10 is a summary of the altered metabolism pathways for metabolites that
showed significant statistical differences between breast cancer patients with recurrence of
the cancer and those with no evidence of disease (NED). The metabolites shown outlined
with a solid line were down-regulated in recurrence patients while those shown outlined with
a dashed line were up- regulated. In addition to the 11 metabolites used in the metabolite
profile, a number of the other, related metabolites from Table 2 and Figures 4 and 5 are also

shown in Figure 10.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

[0031] In one preferred embodiment, a monitoring test for recurrent breast cancer that was
developed using metabolite profiling methods is disclosed. Using a combination of nuclear
magnetic resonance (NMR) and two-dimensional gas chromatography—mass spectrometry
(GCxGC-MS) methods, we analyzed the metabolite profiles of 257 retrospective serial serum
samples from 56 previously diagnosed and surgically treated breast cancer patients. One
hundred sixteen of the serial samples were from 20 patients with recurrent breast cancer, and
141 samples were from 36 patients with no clinical evidence of the disease during ~6 years of
sample collection. NMR and GCxGC-MS data were analyzed by multivariate statistical
methods to compare identified metabolite signals between the recurrence samples and those
with no evidence of disease, producing a set of 40 biomarkers (Table 2, below). A subset of
eleven metabolite markers (seven from NMR and four from GCxGC-MS) was selected from
an analysis of all patient samples by using logistic regression and 5-fold cross-validation. A
partial least squares discriminant analysis model built using these markers with leave-one-out
cross-validation provided a sensitivity of 86% and a specificity of 84% (area under the
receiver operating characteristic curve = 0.88). Strikingly, 55% of the patients could be

correctly predicted to have recurrence more than a year (13 months on average) before the
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recurrence was clinically diagnosed, representing a large improvement over the current breast

cancer—monitoring assay CA 27.29.

[0032] The embodiments of the present disclosure described below are not intended to be
exhaustive or to limit the disclosure to the precise forms disclosed in the following detailed
description. Rather, the embodiments are chosen and described so that others skilled in the

art may appreciate and understand the principles and practices of the present disclosure.

[0033] Unless defined otherwise, all technical and scientific terms used herein have the

meaning commonly understood by a person skilled in the art to which this invention belongs.

[0034] As used herein, "metabolite" refers to any substance produced or used during all the
physical and chemical processes within the body that create and use energy, such as:
digesting food and nutrients, eliminating waste through urine and feces, breathing, circulating
blood, and regulating temperature. The term "metabolic precursors" refers to compounds
from which the metabolites are made. The term "metabolic products" refers to any substance

that is part of a metabolic pathway (e.g. metabolite, metabolic precursor).

[0035] As used herein, "biological sample" refers to a sample obtained from a subject. In
preferred embodiments, biological sample can be selected, without limitation, from the group
of biological fluids (“biofluids”) consisting of blood, plasma, serum, sweat, saliva, including
sputum, urine, and the like. As used herein, "serum" refers to the fluid portion of the blood
obtained after removal of the fibrin clot and blood cells, distinguished from the plasma in
circulating blood. As used herein, "plasma" refers to the fluid, non-cellular portion of the

blood, as distinguished from the serum, which is obtained after coagulation.

[0036] As used herein, "subject" refers to any warm-blooded animal, particularly including a
member of the class Mammalia such as, without limitation, humans and non-human primates
such as chimpanzees and other apes and monkey species; farm animals such as cattle, sheep,
pigs, goats and horses; domestic mammals such as dogs and cats; laboratory animals

including rodents such as mice, rats and guinea pigs, and the like. The term does not denote a

particular age or sex and, thus, includes adult and newborn subjects, whether male or female.

[0037] As used herein, "detecting" refers to methods which include identifying the presence

or absence of substance(s) in the sample, quantifying the amount of substance(s) in the
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sample, and/or qualifying the type of substance. "Detecting" likewise refers to methods which
include identifying the presence or absence of breast cancer tissue or breast cancer recurrence

in a subject.

[0038] ”Mass spectrometer” refers to a gas phase ion spectrometer that measures a parameter
that can be translated into mass-to-charge ratios of gas phase ions. Mass spectrometers
generally include an ion source and a mass analyzer. Examples of mass spectrometers are
time-of-flight, magnetic sector, quadrupole filter, ion trap, ion cyclotron resonance,
electrostatic sector analyzer and hybrids of these. "Mass spectrometry" refers to the use of a

mass spectrometer to detect gas phase ions.

[0039] The terms "comprises,” "comprising,” and the like are intended to have the broad

" Ny

meaning ascribed to them in U.S. Patent Law and can mean "includes,” "including" and the

like.

[0040] It is to be understood that this invention is not limited to the particular component
parts of a device described or process steps of the methods described, as such devices and
methods may vary. It is also to be understood that the terminology used herein is for purposes
of describing particular embodiments only, and is not intended to be limiting. As used in the
specification and the appended claims, the singular forms "a,” "an,” and "the" include plural

referents unless the context clearly indicates otherwise.

[0041] The present disclosure provides a monitoring test based on a panel of selected
biomarkers that have been selected as being effective in detecting the early recurrence of
breast cancer. The test has a high degree of clinical sensitivity and clinical specificity and is
capable of detecting breast cancer recurrence at a much earlier time point than current
monitoring diagnostics. The test is based on biological sample classification methods that
utilize a combination of nuclear magnetic resonance (“NMR”) and mass spectrometry
(“MS”) techniques. More particularly, the present teachings take advantage of the
combination of NMR and two-dimensional gas chromatography-mass spectrometry
(“GCxGC-MS”) to identify small molecule biomarkers comprising a set of metabolite species
found in patient serum samples. Panels of these identified biomarkers have been found to be
effective in detecting recurrent breast cancer at an early stage by comparing identified

metabolite signals between recurrence samples and no evidence of disease samples, providing
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an indication of recurrence more than a year earlier than presently available diagnostic tests

or clinical diagnosis.

[0042] Metabolite profiling utilizes high-throughput analytical methods such as nuclear
magnetic resonance spectroscopy and mass spectroscopy for the quantitative analysis of
hundreds of small molecules (less than ~ 1000 Daltons) present in biological samples. Owing
to the complexity of the metabolic profile, multivariate statistical methods are extensively
used for data analysis. The high sensitivity of metabolite profiles to even subtle stimuli can

provide the means to detect the early onset of various biological perturbations in real time.

[0043] In the present study, the metabolite profiling method was used to determine and select
metabolites that are sensitive to recurrent breast cancer and are detected in serum samples. A
combination of NMR and two dimensional gas chromatography resolved MS (“2D GC-MS”)
methods were utilized to build and validate a model for early breast cancer recurrence
detection based on a set of 257 retrospective serial serum samples. The performance of the
derived 11 metabolite biomarkers selected for the model compared very favorably with the
performance of the currently used molecular marker, CA 27.29, indicating that metabolite
profiling methods promise a sensitive test for follow-up surveillance of treated breast cancer
patients. In particular, over 60% of the recurring patients could be identified more than 10
months prior to their detection by clinical diagnosis. The resulting test provides a sensitive

and specific model for the early detection of recurrent breast cancer

[0044] While this metabolite profile was discovered using a platform of NMR and MS
methods, one of ordinary skill in the art will recognize that these identified biomarkers can be
detected by alternative methods of suitable sensitivity, such as HPLC, immunoassays,

enzymatic assays or clinical chemistry methods.

[0045] In one embodiment of the invention, samples may be collected from individuals over
a longitudinal period of time. Obtaining numerous samples from an individual over a period
of time can be used to verify results from earlier detections and/or to identify an alteration in

marker pattern as a result of, for example, pathology.

[0046] In one embodiment of the invention, the samples are analyzed without additional

preparation and/or separation procedures. In another embodiment of the invention, sample
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preparation and/or separation can involve, without limitation, any of the following
procedures, depending on the type of sample collected and/or types of metabolic products
searched: removal of high abundance polypeptides (e.g., albumin, and transferrin); addition
of preservatives and calibrants, desalting of samples; concentration of sample substances;
protein digestions; and fraction collection. In yet another embodiment of the invention,
sample preparation techniques concentrate information-rich metabolic products and deplete
polypeptides or other substances that would carry little or no information such as those that

are highly abundant or native to serum.

[0047] In another embodiment of the invention, sample preparation takes place in a manifold
or preparation/separation device. Such a preparation/separation device may, for example, be a
microfluidics device, such as a cassette. In yet another embodiment of the invention, the
preparation/separation device interfaces directly or indirectly with a detection device. Such a

preparation/separation device may, for example, be a fluidics device.

[0048] In another embodiment of the invention, the removal of undesired polypeptides (e.g.,
high abundance, uninformative, or undetectable polypeptides) can be achieved using high
affinity reagents, high molecular weight filters, column purification, ultracentrifugation
and/or electrodialysis. High affinity reagents include antibodies that selectively bind to high
abundance polypeptides or reagents that have a specific pH, ionic value, or detergent
strength. High molecular weight filters include membranes that separate molecules on the
basis of size and molecular weight. Such filters may further employ reverse osmosis,

nanofiltration, ultrafiltration and microfiltration.

[0049] Ultracentrifugation constitutes another method for removing undesired polypeptides.
Ultracentrifugation is the centrifugation of a sample at about 60,000 rpm while monitoring
with an optical system the sedimentation (or lack thereof) of particles. Finally,
electrodialysis is an electromembrane process in which ions are transported through ion
permeable membranes from one solution to another under the influence of a potential
gradient. Since the membranes used in electrodialysis have the ability to selectively transport
ions having positive or negative charge and reject ions of the opposite charge, electrodialysis

is useful for concentration, removal, or separation of electrolytes.
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[0050] In another embodiment of the invention, the manifold or microfluidics device
performs electrodialysis to remove high molecular weight polypeptides or undesired
polypeptides. Electrodialysis can be used first to allow only molecules under approximately
35 30 kD to pass through into a second chamber. A second membrane with a very small
molecular weight cutoff (roughly 500 D) allows smaller molecules to exit the second

chamber.

[0051] Upon preparation of the samples, metabolic products of interest may be separated in
another embodiment of the invention. Separation can take place in the same location as the
preparation or in another location. In one embodiment of the invention, separation occurs in
the same microfluidics device where preparation occurs, but in a different location on the
device. Samples can be removed from an initial manifold location to a microfluidics device
using various means, including an electric field. In another embodiment of the invention, the
samples are concentrated during their migration to the microfluidics device using reverse
phase beads and an organic solvent elution such as 50% methanol. This elutes the molecules

into a channel or a well on a separation device of a microfluidics device.

[0052] Chromatography constitutes another method for separating subsets of substances.
Chromatography is based on the differential absorption and elution of different substances.
Liquid chromatography (LC), for example, involves the use of fluid carrier over a non-mobile
phase. Conventional LC columns have an in inner diameter of roughly 4.6 mm and a flow
rate of roughly 1 ml/min. Micro-LC has an inner diameter of roughly 1.0 mm and a flow rate
of roughly 40 pl/min. Capillary LC utilizes a capillary with an inner diameter of roughly 300
im and a flow rate of approximately 5 pl /min. Nano-LC is available with an inner diameter
of 50 um-1 mm and flow rates of 200 nl/min. The sensitivity of nano-LC as compared to
HPLC is approximately 3700 fold. Other types of chromatography suitable for additional
embodiments of the invention include, without limitation, thin-layer chromatography (TLC),
reverse-phase chromatography, high-performance liquid chromatography (HPLC), and gas
chromatography (GC).

[0053] In another embodiment of the invention, the samples are separated using capillary
electrophoresis separation. This will separate the molecules based on their electrophoretic

mobility at a given pH (or hydrophobicity). In another embodiment of the invention, sample
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preparation and separation are combined using microfluidics technology. A microfluidic
device is a device that can transport liquids including various reagents such as analytes and

elutions between different locations using microchannel structures.

[0054] Suitable detection methods are those that have a sensitivity for the detection of an
analyte in a biofluid sample of at least 50 uM. In certain embodiments, the sensitivity of the
detection method is at least 1 uM. In other embodiments, the sensitivity of the detection

method is at least 1 nM.

[0055] In one embodiment of the invention, the sample may be delivered directly to the
detection device without preparation and/or separation beforehand. In another embodiment of
the invention, once prepared and/or separated, the metabolic products are delivered to a
detection device, which detects them in a sample. In another embodiment of the invention,
metabolic products in elutions or solutions are delivered to a detection device by electrospray
ionization (ESI). In yet another embodiment of the invention, nanospray ionization (NSI) is
used. Nanospray ionization is a miniaturized version of ESI and provides low detection limits

using extremely limited volumes of sample fluid.

[0056] In another embodiment of the invention, separated metabolic products are directed
down a channel that leads to an electrospray ionization emitter, which is built into a
microfluidic device (an integrated ESI microfluidic device). Such integrated ESI microfluidic
device may provide the detection device with samples at flow rates and complexity levels that
are optimal for detection. Furthermore, a microfluidic device may be aligned with a detection

device for optimal sample capture.

[0057] Suitable detection devices can be any device or experimental methodology that is able
to detect metabolic product presence and/or level, including, without limitation, IR (infrared
spectroscopy), NMR (nuclear magnetic resonance), including variations such as correlation
spectroscopy (COSy), nuclear Overhauser effect spectroscopy (NOESY), and rotating frame
nuclear Overhauser effect spectroscopy (ROESY), and Fourier Transform, 2-D PAGE
technology, Western blot technology, tryptic mapping, in vitro biological assay,
immunological analysis, LC-MS (liquid chromatography-mass spectrometry), LC-TOF-MS,
LC-MS/MS ,and MS (mass spectrometry).
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[0058] For analysis relying on the application of NMR spectroscopy, the spectroscopy may
be practiced as one-, two-, or multidimensional NMR spectroscopy or by other NMR
spectroscopic examining techniques, among others also coupled with chromatographic
methods (for example, as LC-NMR). In addition to the determination of the metabolic
product in question, 'H-NMR spectroscopy offers the possibility of determining further
metabolic products in the same investigative run. Combining the evaluation of a plurality of
metabolic products in one investigative run can be employed for so-called "pattern
recognition". Typically, the strength of evaluations and conclusions that are based on a
profile of selected metabolites, i.e., a panel of identified biomarkers, is improved compared

to the isolated determination of the concentration of a single metabolite.

[0059] For immunological analysis, for example, the use of immunological reagents (e.g.
antibodies), generally in conjunction with other chemical and/or immunological reagents,
induces reactions or provides reaction products which then permit detection and measurement
of the whole group, a subgroup or a subspecies of the metabolic product(s) of interest.
Suitable immunological detection methods with high selectivity and high sensitivity (10-1000
pg, or 0.02-2 pmoles ), e.g., Baldo, B. A,, et al. 1991, A Specific, Sensitive and High-
Capacity Immunoassay for PAF, Lipids 26(12): 1136-1139), that are capable of detecting
0.5-21 ng/ml of an analyte in a biofluid sample (Cooney, S.J., et al., Quantitation by
Radioimmunoassay of PAF in Human Saliva), Lipids 26(12): 1140-1143).

[0060] In one embodiment of the invention, mass spectrometry is relied upon to detect
metabolic products present in a given sample. In another embodiment of the invention, an
ESI-MS detection device. Such an ESI-MS may utilizes a time-of-flight (TOF) mass
spectrometry system. Quadrupole mass spectrometry, ion trap mass spectrometry, and
Fourier transform ion cyclotron resonance (FTICR-MS) are likewise contemplated in

additional embodiments of the invention.

[0061] In another embodiment of the invention, the detection device interfaces with a
separation/preparation device or microfluidic device, which allows for quick assaying of
many, if not all, of the metabolic products in a sample. A mass spectrometer may be utilized
that will accept a continuous sample stream for analysis and provide high sensitivity

throughout the detection process (e.g., an ESI-MS). In another embodiment of the invention,
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a mass spectrometer interfaces with one or more electrosprays, two or more electrosprays,
three or more electrosprays or four or more electrosprays. Such electrosprays can originate

from a single or multiple microfluidic devices.

[0062] In another embodiment of the invention, the detection system utilized allows for the
capture and measurement of most or all of the metabolic products introduced into the
detection device. In another embodiment of the invention, the detection system allows for the
detection of change in a defined combination (“profile,” “panel,” “ensemble, or “composite”)

of metabolic products.
WORKING EXAMPLES

[0063] In the Examples, a combination of NMR and 2D GCxGC-MS methods were used to
analyze the metabolite profiles of 257 retrospective serial serum samples from 56 previously
diagnosed and surgically treated breast cancer patients. 116 of the serial serum samples were
from 20 patients with recurrent breast cancer and 141 serum samples were from 36 patients
with no clinical evidence of the disease during the sample collection period. NMR and
GCxGC-MS data were analyzed by multivariate statistical methods to compare identified
metabolite signals between the recurrence and no evidence of disease samples. Eleven
metabolite markers (7 from NMR and 4 from GCxGC-MS) were selected from an analysis of
all patient samples by logistic regression model using 5-fold cross validation. A PLS-DA
model built using these markers with leave one out cross validation provided a sensitivity of
86% and a specificity of 84% (AUROC >0.85). Strikingly, over 60% of the patients could be
correctly predicted to have recurrence 10 months (on average) before the recurrence was
diagnosed clinically, representing a large improvement over the current breast cancer
monitoring assay CA 27.29. To the best of our knowledge, this is the first study to develop
and pre-validate a prediction model for early detection of recurrent breast cancer based on a
metabolic profile. In particular, the combination of two advanced analytical methods, NMR

and MS, provides a powerful approach for the early detection of recurrent breast cancer.

Sample collection.

[0064] Two-hundred fifty-seven serum samples (each ~ 400 microliter (ul) from 56 breast

cancer patients were obtained from the M.D. Anderson Cancer Center (Houston, TX). These
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banked serum samples were collected between 1997 and 2003 with an average of 5 serial
time-course samples per patient from female volunteers (ages 40-75) who were breast cancer
patients enrolled at M.D. Anderson Cancer Center (Houston, TX). Follow-up investigations
by oncologists at the M.D. Anderson for breast cancer recurrence were based on a
combination of factors including CA 27.29, CEA, and/or CA125 IVD results, patient
symptoms, initial breast cancer stage, hormone receptor and lymph node status. Of the 56
patients, breast cancer recurred in 20, either locally or in a distant organ, and the remaining
36 had no evidence of disease (NED) recurrence during the sampling period as well as 2

years afterward.

[0065] A total of 116 serum samples were obtained from recurrent breast cancer patients,
which constituted 67 samples collected earlier than 3 months before the recurrence was
clinically diagnosed (Pre), 18 samples collected within +3 months of recurrence (Within), and
31 collected later than 3 months after diagnosed recurrence (Post). The remaining 141
samples represented the cases in which the patient remained NED for at least 2 years beyond
their sample collection period. Nearly all samples were evaluated for CA 27.29 values at the
time of collection and therefore could be used for comparison. Study samples were
maintained at —80°C from collection until their transfer over dry ice to the evaluation
laboratory at Purdue University where they were again stored frozen at —80°C until this study
was conducted. Serum samples and accompanying clinical data were appropriately de-
identified before transfer into this study. Table 1 summarizes the clinical parameters and

demographic characteristics of the cancer patients.
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Table 1
Summary of Clinical and Demographic Characteristics of the
Patients Whose Samples Were Used in this Study
Clinical Diagnosis Control RecurrenFe
Samples (Patients) | Samples (Patients)
No evidence of disease (NED) 141 (36)
Pre recurrence (Pre) - 67 (20)
Within recurrence (Within) - 18 (18)
Post recurrence (Post) - 31(20)
Age, mean (range) 53 (37-75) 53 (36-66)
Breast cancer stage
I 47 (11) 7(11)
II 59 (16) 21 (6)
I 10 (6) 34 (6)
Unknown 26 (6) 54 (8)
ER status
ER+ 65 (15) 67 (11)
ER- 64 (18) 33(7)
Unknown 12 (3) 16 (2)
PR status
PR+ 52 (13) 71 (11)
PR- 77 (20) 29 (7)
Unknown 12 (3) 16 (2)
CA 27.29 140 (36) 92 (19)
Site of recurrence
Bone 37 (6)
Breast 13 (2)
Liver 11 (2)
Lung 10 (6)
Skin 6(2)
Brain 15 (2)
Lymph 6 (1)
Multiple sites 18 (3)
'H NMR Spectroscopy

[0066] After thawing, 200 microliter (“pL”) serum was mixed with 330 uL DO and 5 pL

sodium azide (12.3 nmol). Sample solutions were vortexed for 60 seconds (sec.) and

centrifuged for 5 minutes (min.) at 8000 revolutions per minute (RPM). Thereafter, 530 pL

aliquots were transferred into standard 5 millimeters (mm) NMR tubes for NMR

measurements. An external capillary tube (a glass stem coaxial insert, OD 2 mm) containing
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60 uL 0.012% 3-(trimethylsilyl) propionic-(2,2,3,3-d4) acid sodium salt (“TSP”) solution in
D,0 was used as a chemical shift frequency standard (6=0.00 ppm) and for locking purposes.
All NMR experiments were carried out at 25°C on a Bruker DRX 500 Megahertz (“MHz”)
spectrometer equipped with a cryogenic probe and triple-axis magnetic field gradients. Two
"H NMR spectra were measured for each sample, a standard 1D NOESY (Nuclear
Overhauser Effect Spectroscopy) and CPMG (Carr-Purcell-Meiboom-Gill) pulse sequences
coupled with water pre-saturation. For each spectrum, 32 transients were collected using 32k
data points and a spectral width of 6000 Hz. An exponential weighting function
corresponding to 0.3 Hz line broadening was applied to the free induction decay (FID) before
applying Fourier transformation. Each peak was integrated and then normalized using the
value of the total NMR spectral intensity (total sum) excluding the water and urea peaks.
After phasing and baseline correction using Bruker XWINNMR software version 3.5, the

processed data were saved in ASCII format for further analysis.

GCxGC-MS

[0067] Protein precipitation was performed for each sample by mixing 200 uL serum with
400 uL methanol in a 1.5 mL Eppendorf tube. The mixture was briefly vortexed, and then
held at -20 °C for 30 min. The samples were centrifuged while still cold at 14,000 RPM for
10 min. The upper layer (supernatant) was transferred into another Eppendorf tube for
further use. Chloroform (200 pL) was mixed with the protein pellet and centrifuged at 14,000
RPM for another 10 min. After centrifugation, the aliquot was transferred and combined with
the methanol supernatant solution from the previous step. The resultant mixture was
lyophilized to remove the solvents for 5 hrs using a Speed Vac (Savant AES2010). Each
dried sample was then dissolved in 50 pL of anhydrous pyridine and after a brief vortexing
was sonicated for approximately 20 min. Twenty pL of this solution was mixed with 20 pL
of the derivatizing reagent MTBSTFA (N-methyl-N-(tert-butyldimethylsilyl,
trifluoroacetamide) (Regis, Morton Grove, IL). Addition of this derivatizing agent containing
an active tert-butyldimethylsilyl group to the mixture activates functional groups such as the
hydroxyl, amines or carboxylic acid of the metabolites present in the biological sample. The
samples were then incubated at 60 °C for 1 hr to affect the reaction. After derivatization, the

solution contents were transferred to a glass GC (auto sampler) vial for the analysis.
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[0068] Two dimensional GCxGC-MS analysis was performed using a Pegasus 4D system
(LECO, St. Joseph, MI) consisting of an Agilent 6890 gas chromatograph (Agilent
Technologies, Palo Alto, CA) coupled to a Pegasus time of flight mass spectrometer. The
first dimension chromatographic separation was performed on a DB-5 capillary column (30

m x 0.25 mm inner diameter 0.25 pm film thickness). At the end of the first column the
eluted samples were frozen by cryotrapping for a period of 4 s and then quickly heated and
sent to the second dimension chromatographic column (DB-17, I m x 0.1 mm inner diameter,
0.10 pm film thickness). The first column temperature ramp began at 50 °C with a hold time
of 0.2 min, which was then increased to 300 °C at a rate of 10 °C /min and held at this .
temperature for S min. The second column temperature ramp was 20 °C higher than the
corresponding first column temperature ramp with the same rate and hold time. The second
dimension separation time was set for 4 sec. High purity helium was used as a carrier gas at a
flow rate of 1.0 mL/min. The temperatures for the inlet and transfer line were set at 280 °C,
and the ion source was set a 200 °C. The detection and filament bias voltages were set to

1600 V and -70 V, respectively.

[0069] Mass spectra ranging from 50 to 600 m/z were collected at a rate of 50 Hz. LECO
ChromaTOF software (version 4.10) was used for automatic peak detection and mass
spectrum deconvolution. The NIST MS database (NIST MS Search 2.0, NIST/EPA/NIH
Mass Spectral Library; NIST 2002) was used for data processing and peak matching. Mass
spectra of all identified compounds were compared with standard mass spectra in the NIST .
database (NIST MS Search 2.0, NIST/EPA/NIH Mass Spectral Library; NIST 2002). Further,
the identified biomarker candidates were confirmed from the mass spectra and retention times

of authentic commercial samples purchased and run under identical eéxperimental conditions.

Metabolite identification and selection

[0070] The NMR spectrum from each sample was aligned with reference to the 3-
(trimethylsilyl) propionic-(2,2,3,3-d4) (“TSP”) acid sodium salt signal at 0 ppm. Spectral
regions within the range of 0.5 to 9.0 ppm were analyzed after excluding the region between
4.5 and 6.0 ppm that contained the residual water peak and urea signal. Twenty-two spectral
regions, corresponding to biomarkers, initially identified in a study on early breast cancer

detection, were selected as biomarker candidates for further analysis. The statistical
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significance of each metabolite in the selected regions was determined by calculating the P-
values using Student’s ¢-test in the training set. To further enhance the pool of metabolites, 18
additional metabolites were identified for targeted MS analysis based on highest difference in
intensity of the peaks between recurrence and NED samples. (Table 2). A software program
was developed in-house to extract these metabolite signals from the GCxGC-MS datasets.
Based on the input value of m/z and a retention time range, the program integrates
chromatography peaks for each metabolite after the metabolite’s spectrum was matched to
the characteristic experimental mass spectrum from the standard NIST library available in the

LECO Chroma TOF software package (v1.61).

[0071] The complete set of biomarkers identified using the present method consists of
3-hydroxybutyrate, acetoacetate, alanine, arginine, asparagine, choline, creatinine, glucose,
glutamic acid, glutamine, glycine, formate, histidine, isobutyrate, isoleucine, lactate, lysine,
methionine, N-acetylaspartate, proline, threonine, tyrosine, valine, 2-hydroxy butanoic acid,
hexadecanoic acid, aspartic acid, 3-methyl-2-hydroxy-2-pentenoic acid, dodecanoic acid,
1,2,3, trihydroxypropane, beta-alanine, alanine, phenylalanine, 3-hydroxy-2-methyl-butanoic
acid, 9,12-octadecadienoic acid, acetic acid, N-acetylglycine, glycine, nonanedioic acid,

nonanoic acid, and pentadecanoic acid (Table 2).

[0072] Further analysis was performed on a subset of the biomarkers, as illustrated in the box
and whisker plots of Figures 4A-4K and Figures SA-5R. This subset of biomarkers consists
of 3-hydroxybutyrafe, acetoacetate, alanine, arginine, choline, creatinine, glutamic acid,
glutamine, formate, histidine, isobutyrate, lactate, lysine, proline, threonine, tyrosine, valine,
hexadecanoic acid, aspartic acid, dodecanoic acid, alanine, phenylalanine, 3-hydroxy-2--
methyl-butanoic acid, 9,12 octadecadienoic acid, acetic acid, N-acetylglycine, nonanedioic

acid, and pentadecanoic acid.

[0073] A further subset, or panel, of biomarkers was selected for the development of
prediction models and validation of the models, consisting of the metabolites
3-hydroxybutyrate, choline, glutamic acid, formate, histidine, lactate, proline, tyrosine, 3

hydroxy-2—-methyl-butanoic acid, N-acetylglycine, and nonanedioic acid.
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ALL BIOMARKERS IDENTIFIED FROM NMR ANALYSIS [1-22]
AND GCxGC/MS ANALYSIS [23-40]

Table 2

Metabolite _Figure | KEGG ID | Pathway
1| 3-Hydroxybutyrate 4F C01089 | Synthesis and degradation of ketone bodies
2 | Acetoacetate 5K C00164 | Valine, leucine and isoleucine degradation
3 | Alanine 5C C00041 | Alanine, aspartate and glutamate metabolism
4 | Arginine 5A C00062 | Arginine and proline metabolism
5 | Asparagine C00152 | Alanine, aspartate and glutamate metabolism
6 | Choline 4D C00114 | Glycerophospholipid metabolism
7 | Creatinine 5M C00791 | Amino acid metabolism
8 | Glucose C00031 | Glycolysis and gluconeogenesis
9 | Glutamic acid 5H C00025 | D-Glutamine and D-glutamate metabolism
10 | Glutamine C00064 | D-Glutamine and D-glutamate metabolism
11 | Glycine C00037 | Glycine, serine and threonine metabolism
12 | Formate 4A C00058 | Glycoxylate and dicarboxylate metabolism
13 | Histidine 4B C00135 | Histidine metabolism
13a | Isobutyrate 5N C02632 | Protein digestion and absorption
14 | Isoleucine C00407 | Valine, leucine and isoleucine degradation
15 | Lactate 4G C00186 | Glycolysis
16 | Lysine 5L C00047 | Lysine biosynthesis
17 | Methionine €00073 | Cysteine and methionine metabolism
18 | N-Acetylaspartate C01042 | Alanine, aspartate and glutamate metabolism
19 | Proline 4C C00148 | Arginine and proline metabolism
20 | Threonine 51 C00188 | Glycine, serine and threonine metabolism
21 | Tyrosine 4E C00082 | Tyrosine metabolism
22 | Valine 5J C00183 | Valine, leucine and isoleucine degradation
23 | 2-hydroxy butanoic acid C05984 | Propanoate metabolism
24 | Hexadecanoic acid 50 C00249 | Fatty acid metabolism
25 | Aspartic acid 5G C00049 | Pantothenate and CoA biosynthesis
% 3-9(11ethyl-2-hydroxy-2-pentenoic Unknown
aci
27 | Dodecanoic acid 5B C02679 | Fatty acid metabolism
28 | L-glutamic acid 4H C00025 | D-glutamine and glutamate metabolism
29 | 1,2,3, trihydroxypropane C00116 | Galactose metabolism
30 | Beta-alanine C00099 | Beta-alanine metabolism
31 | Alanine 5D | CC00041 | Alanine, aspartate and glutamate metabolism
32 | Phenylalanine 5E,5F | C00079 | Phenylalanine metabolism
33 | 3-hydroxy-2 methyl-butanoic acid 4J - Unknown
34 | 9,12-octadecadienoic acid 5P C01595 | Linoleic acid metabolism
35 | Acetic acid 5R C00033 | Citrate cycle, Pyruvate metabolism
36 | N-acetylglycine 4l - Unknown
37| Glycine C00037 | Glycine serine and threonine metabolism
38 | Nonanedioic acid 4K C08261 | Fatty acid metabolism
39 | Nonanoic acid C01601 | Unknown
40 | Pentadecanoic acid 5Q C16537 | Unknown
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[0074] Alternatively, a subset, or panel, of eight biomarkers was selected, consisting of the
metabolites choline, glutamic acid, formate, histidine, proline, 3 hydroxy-2—-methyl-butanoic

acid, N-acetylglycine, and nonanedioic acid.

[0075] In other embodiments, a subset, or panel, of seven biomarkers was selected,
consisting of the metabolites 3-hydroxybutyrate, choline, formate, histidine, lactate, proline,

and tyrosine.

Development of prediction model and validation

[0076] In order to select the metabolites with highest scores for developing the prediction
model, samples from NED, post and within recurrence groups were used. Pre-recurrence
samples were omitted to avoid any ambiguity in determining the correct disease status prior
to clinical diagnosis. Post and within recurrence vs. NED samples were divided into five
cross validation (CV) groups. Multivariate analysis using logistic regression model of the 22
NMR and 18 GCxGC/MS detected metabolite signals was applied to 4 CV groups and the
resulting model was used to predict the class membership of the 5™ CV group. The output of
the logistic regression procedure is a ranked set of markers. The best combination of NMR
and GC markers that resulted to a model with lowest misclassification error rate and the
highest predictive power was retained and used to build final prediction model using all

samples.

[0077] Figure 1A is a flow chart describing one embodiment of a method 100 of biomarker
selection, model development, and validation. A total of 257 serum samples (116 samples
from recurrence patients, 141 samples from NED patients were provided, 110. The samples
were split into a training set consisting of NED (n=141) and recurrence samples (n=49) near
the time of diagnosis and post diagnosis, 112, and a testing set of samples consisting of pre-
diagnosis recurrence samples, 114. The training set of samples were divided into 5 cross
validation groups of patients, 130 and 132. Logistic regression was used for biomarker
selection using 5 fold cross validation. Model building used partial least squares discriminant
analysis (PLS-DA) modeling with leave one out internal cross validation 140. Validation
was performed by applying the model 150 to the pre-diagnosis samples 114, providing a
prediction using leave one patient out cross validation, 160, and yielding prediction scores,

170.
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[0.078] Figure 1B is a flow chart describing another embodiment of biomarker selection,
model development, and validation, 200. A total of 257 serum samples (116 samples from
recurrence patients, 141 samples from NED patients were provided, 110. The samples were
randomly split into a training set (n=140, 66 recurrence samples and 74 NED samples), 212,
and a testing set (n=117 samples, 50 recurrence samples and 50 NED samples), 214.

Variable selection was performed using logistic regression, 230, and a predictive model was
constructed based on 7 biomarkers identified in NMR studies and 4 biomarkers identified in
GC studies, 240. Validation was performed by applying the model 250 to the testing set, 214,

providing a class prediction, 260, and yielding prediction scores 270.

[0079] Based on their performance, eleven metabolite markers (7 from NMR and 4 GCxGC-
MS) were selected for model building. NMR and MS data for these markers were imported
into Matlab software (Mathworks, MA) installed with the PLS toolbox (Eigenvector
Research, Inc, version 4.0) for PLS-DA modeling. Leave one out cross validation was chosen
and the number of latent variables (LV) were selected according to the root mean square error
of the cross validation (RMSECYV). The R statistical package (version 2.8.0) was used to
generate the receiver operating characteristics (ROC) curves. The sensitivity, specificity and
the area under the receiver operating characteristic curve (AUROC) of the model was

calculated and compared.

[0080] The performance of these markers was also assessed Based on the time of sample
collection, before or after the clinical diagnosis of the recurrence (post recurrence vs. NED,
within recurrence vs. NED and pre-recurrence vs. NED). The class membership of each
sample was determined and compared to the patient’s status. The ROC curve was generated
and AUROC, sensitivity, and specificity were calculated. The scores from the model were
scaled to yield a range of 0-100, and the cutoff value for recurrence status was determined by
a judicious choice between sensitivity and specificity. The performance of the model with
reference to the initial stage of the breast cancer, ER/PR status, and the site of recurrence was

also assessed.

[0081] Finally, the performance of the NMR and MS metabolite markers was also tested by
splitting the samples randomly into two parts, training (141 samples) and testing (116

samples) sets and analyzed as illustrated in Figure 1B. Multivariate logistic regression of the
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22 NMR and 18 GCxGC/MS detected metabolites was applied to the training data set to
optimize variable selection. Ten-fold cross validation was used during this procedure. The
derived model was then validated on the “testing set” of samples, all from different patients

than were used for variable selection and model building.

Analysis of '"H NMR and GCxGC/MS spectra

[0082] NMR spectra of breast cancer serum samples obtained using the CPMG sequence
were devoid of signals from macromolecules and clearly showed signals for a large number
of small molecules including sugars, amino acids and carboxylic acids. A representative
NMR spectrum from a post recurrence patient is shown in Figure 2A. Individual metabolites
were identified using NMR databases taking into consideration minor shifts arising from the
slight differences in the sample conditions. In the present study, we focused on 22
metabolites detected by NMR in a previous study of breast cancer. Owing to the high
sensitivity of MS, each GCxGC-MS spectrum showed peaks for nearly 300 metabolites that
were identified by similarity to known metabolites in the NIST database Figure 2B shows a
typical GCxGC-MS spectrum for the same recurrent breast cancer patient as shown in Figure
2A. To augment the panel of metabolites detected by NMR, 18 additional metabolites were
targeted in the analysis of the GCxGC-MS data based on the difference in peak intensity
between recurrence and NED samples. Identification of the metabolites in the GCxGC-MS
spectra was based on the comparison of the experimental mass spectrum with that in the
NIST database and, the assignments were further confirmed by comparing with the GCxGC-
MS spectrum of the authentic commercial sample. An example of this validation procedure
for glutamic acid is illustrated in Figures 3A-3F. The list of the 22 NMR and 18 GC-MS

metabolites thus identified is included in the Table 2, above.

Biomarker selection and validation

[0083] Initial data analysis was focused on testing the performance of the 22 NMR and 18
MS metabolites, and from these data, selecting the markers with highest rank to maximize
diagnostic accuracy. Making use of variable selection protocol, and from logistic regression
analysis, a subset of 11 metabolites (7 identified by NMR and 4 identified by MS) were
selected based on their highest ranking and predictive accuracy to form a test panel of

biomarkers. Table 3, below, shows the list of 11 biomarkers and their P-values for Pre vs.
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NED, and Within and Post (= “Recurrence”) vs. NED comparisons using all samples. In
general, the individual P-values of these markers for the Within and Post (= “Recurrence”)
vs. NED comparisons were quite low, although there were four exceptions that were
nevertheless highly ranked by logistic regression. In two of these four cases, the identified
metabolites showed low P values for either Within versus NED or Post versus NED, but not

both.

Table 3

P values for all markers, seven NMR (Nos. 1-7) and four GCxGC-MS markers
(Nos. 8-11) for different groups using all samples

. P, P,
Metabolites Within and Post vs. NED | Pre vs NED

1 Formate 0.0022 0.2
2 Histidine 0.000041 0.18
3 Proline 0.018 0.9
4 Choline 0.000022 0.77
5 Tyrosine 0.25 0.1
6 3-Hydroxybutyrate 0.86 0.96
7 Lactate 0.96 0.54
8 Glutamic acid 0.000018 0.74
9 N-acetyl-glycine 0.01 0.96
10 | 3-Hydroxy-2-methyl-butanoic acid 0.0004 0.35
11 | Nonanedioic acid 0.4 0.089

NOTE: P values determined by univariate Student's t test.

[0084] Subsequent analysis was based on the 11 NMR/MS biomarkers listed in Table 3,
above. The performance of the metabolite markers in classifying the recurrence of breast
cancer was tested both individually and collectively. Box and whisker plots for the

individual biomarkers are shown in Figure 4A-4K and Figures 5A-5R.

[0085] Figures 4A-4K show box and whisker plots illustrating the discrimination between
post plus within recurrence (“Recurrence”) versus NED patient for all samples for the 7 NMR
and the 4 GCxGC/MS markers, expressed as relative peak integrals. The harizontal line in
the mid portion of the box represents the mean while the bottom and top boundaries of the
boxes represents 25™ and 75" percentiles respectively. The lower and upper whiskers

represent the minimum and maximum values respectively, while the open circles represent
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outliers. The y-axis provides relative peak integrals as described in the Methods section.
Figure 4A is based on NMR data for formate. Figure 4B is based on NMR data for histidine.
Figure 4C is based on NMR data for proline. Figure 4D is based on NMR data for choline.
Figure 4E is based on NMR data for tyrosine. Figure 4F is based on NMR data for 3-
hydroxybutyrate. Figure 4G is based on NMR data for lactate. Figure 4H is based on
GCxGC/MS data for glutamate. Figure 41 is based on GCxGC/MS data for N-acetyl-glycine.
Figure 4] is based on GCxGC/MS data for 3-hydroxy-2-methyl-butanoic acid. Figure 4K is
based on GCxGC/MS data for nonanedioic acid.

[0086] Figures SA-R show box and whisker plots illustrating the discrimination between post
plus within recurrence (“Recurrence”) versus NED patient for all samples for additional
markers, expressed as relative peak integrals. The horizontal line in the mid portion of the
box represents the mean while the bottom and top boundaries of the boxes represents 25" and
75™ percentiles respectively. The lower and upper whiskers represent the minimum and
maximum values respectively, while the open circles represent outliers. The y-axis provides
relative peak integrals as described in the Methods section. Figure 5A is based on NMR data
for arginine. Figure 5B is based on GCxGC/MS data for dodecanoic acid. Figure 5C is
based on NMR data for alanine. Figure 5D is based on GCxGC/MS data for alanine. Figure
SE is based on NMR data for phenylalanine. Figure SF is based on GCxGC/MS data for
phenylalanine. Figure 5G is based on GCxGC/MS data for aspartic acid. Figure 5H is based
on NMR data for glutamate. Figure 51 is based on NMR data for threonine. Figure 5J-is
based on NMR data for valine. Figure 5K is based on NMR data for acetoacetate. Figure SL
is based on NMR data for lysine. Figure 5M is based on NMR data for Creatinine. Figure SN
is based on NMR data for isobutyrate. Figure 50 is based on GCxGC/MS data for
hexadecanoic acid. Figure 5P is based on GCxGC/MS data for 9,12-octadecadienoic acid.
Figure 5Q is based on GCxGC/MS data for pentadecanoic acid. Figure SR is based on
GCxGC/MS data for acetic acid.

[0087] Figure 6A shows a ROC curve generated from the PLS-DA model illustrated in
Figure 1A and described below, using data from Post and Within (=”Recurrence”) samples
versus data from NED samples, and the performance of CA 27.29 on the same samples.
Figure 6B shows box-and-whisker plots for the two sample classes, showing discrimination

of recurrence samples from the samples from the NED patients by using the model-predicted
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scores. The ROC curve for the predictive model derived from PLS-DA analysis using post
and within recurrence vs. NED samples is very good, with an AUROC of 0.88, a sensitivity
of 86%, and specificity of 84% at the selected cutoff value (Figure 6A). Further comparison
of the discrimination power of the model between recurrent breast cancer and NED is shown
in the box and whisker plots in Figure 6B drawn using the scores of the model for all post and

within recurrence vs. NED samples.

[0088] Figure 6C shows a ROC curve generated from the PLS-DA prediction model by using
the testing sample set based on the second statistical approach illustrated in Figure 1B.

Figure 6D shows box-and-whisker plots for the two sample classes, showing discrimination
of recurrence samples from the samples from the NED patients by using the predicted scores
from the testing set. The same 11 biomarkers were top ranked by logistic regression, with the
exception of nonanedioic acid, which was ranked 13™ overall. However, it was included as
part of the 11-marker model in this second analysis for consistency and comparison purposes.
As shown in Figure 6C, the testing set of samples yielded an AUROC of 0.84 with a
sensitivity of 78% and specificity of 85%. The ROC plot for the testing set thus obtained was
also comparable with that obtained by the first statistical analysis (Figure 6A). Moreover, the
average scores for both recurrent breast cancer and NED (Figure 6D) compared well with
those shown in Figure 6B. The difference between the scores for recurrence and NED were
highly statistically significant for both training (P = 1.40 x 10”) and testing (P = 2.25 x 10
sets. The results of this second statistical analysis provide evidence that the data set of

samples and the metabolite profile derived from our statistical analysis are quite consistent.

[0089] A comparison of the metabolite profiling results with the CA 27.29 data that had been
obtained for the same samples is shown in Table 4, below, showing a large improvement in
sensitivity that is provided by a preferred embodiment of the present invention over the

currently available in vitro diagnostic (“IVD”) test, CA 27.29.
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Table 4
Comparison of the Diagnostic Performance of the Present Embodiment of a
Breast Cancer Recurrence Metabolite Profile (BCR Profile 1), at Cutoff
Values of 48 and 54, and the Currently Available Diagnostic Test, CA 27.29

Sensitivity (%) Specificity (%)
BCR Profile 1 (48) 86 84
BCR Profile 1 (54) 63 94
CA 27.29 35 96

[0090] Subsequently, the predictive power of the model for early detection of breast cancer
recurrence was evaluated. All samples from the recurrent breast cancer patients were
grouped together with respect to the time of diagnosis (t=0) for each patient. Samples within
5 months of one another were grouped, and an average value in months was assigned to each
group. The number of months and sign represent the average time at which the samples were
collected before (i.e., negative time) or after (positive time) the clinical diagnosis. The
percentage of patients for which the recurrence was correctly diagnosed was calculated using
the model. Figure 7A shows a plot of the percentage of patients as a function of the blood
sample collection time. For comparison, the results for the conventional cancer antigen
marker, CA27.29, which were obtained at the time of sample collection, are also shown in
Figure 7A. Here, the recommended cut-off value for CA27.29 of 37.7 U/mL was used for the
calculation of the clinical sensitivity and clinical specificity for the same set of samples. As
seen in the Figure, for both the BCR biomarker profile 1 and CA27.29, the number of
patients correctly diagnosed increases at a later period of time. However, at the time of
clinical diagnosis, our model based on the BCR biomarker profile 1 detects 75% of the
recurring patients, while the CA27.29 marker detects only 16%. In addition, 55% of the
recurrence patients were identified using the BCR biomarker profile 1 about 13 months
before they were clinically diagnosed, compared to about 5% for CA27.29. Similar
comparison of the results for NED patients indicate that nearly 90% of the patients were
correctly diagnosed as true negatives throughout the period of sample collection and the
performance of the metabolite profiling model were comparable to those of CA27.29 (Figure

6), although there was some falling off of the specificity with time.
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[0091] Increasing the threshold value to 54 led to an increase in specificity to ~94%, and
concomitantly, a decrease in sensitivity to 68%. The threshold value for 98% specificity was
65 and for 94% sensitivity, 41. Figure 7A shows the percentage of recurrence patients
correctly identified using the 11 marker model (filled squares) as a function of time for all
recurrence patients using a cutoff threshold of 48, compared to the percentage of recurrence
patients correctly identified using the CA 27.29 test (filled triangles). Figure 7B shows the
percentage of NED patients correctly identified using the 11 marker model (filled squares) as
a function of time using a cutoff threshold of 48, compared to the percentage of NED patients
correctly identified using the CA 27.29 test (filled triangles). Figure 7C shows the percentage
of recurrence patients correctly identified using the 11 marker model (filled squares) as a
function of time for all recurrence patients using a cutoff threshold of 54, compared to the
percentage of recurrence patients correctly identified using the CA 27.29 test (filled
triangles). Figure 7D shows the percentage of NED patients correctly identified using the 11
marker model (filled squares) as a function of time using a cutoff threshold of 54, compared
to the percentage of NED patients correctly identified using the CA 27.29 test (filled

triangles).

[0092] Separately, the model was also tested on the recurrent breast cancer patients based on
the stage of the cancer at the initial diagnosis, the type of recurrence, estrogen (ER, Figure
8A) and progesterone (PR, Figure 8B) receptors status. Figures 8A and 8B show the
percentage of recurrence patients correctly identified as recurrence based on their estrogen
receptor (ER) status (Figure 8A) and progesterone receptor (PR) status (Figure 8B) as a
function of time using same 11 biomarker model and a cutoff threshold of 48. In Figure 8A,
ER minus status is indicated by the filled triangles and ER plus status is indicated by the
filled squares. In Figure 8B, PR minus status is indicated by the filled triangles and PR plus
status is indicated by the filled squares. Notably, the results showed significant difference
between ER positive and ER negative patients and between PR positive and PR negative
patients. While the model for ER positive and PR positive patients was comparable to that
when all the samples were tested together nearly 40% of the ER negative and PR negative
patients were detected as early as 28 months before the clinical diagnosis. However, the
percentage of ER negative and PR negative patients detected at a later period remained 10%

to 20% lower compared to ER and PR positive patients.
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[0093] Additional analysis based on the prediction model was derived from variable selection
using a training sample set (Figure 1B) and predicting the class membership of the samples
from an independent sample set (testing set) also provided good performance. Figures 9A-9D
show ROC curves generated from the prediction model using the training set (Figure 9A) and
the testing set (Figure 9B) using the statistical approach illustrated in Figure 1B. Box and
whisker plots for the two sample classes showing discrimination between Recurrence
samples from NED samples using the predicted scores from the training set (Figure 9C) and

testing set (Figure 9D).

[0094] As shown in Figure 9B, the testing set of samples yielded an AUROC of 0.84 with a
sensitivity of 78% and specificity of 85%. The ROC plot for the testing test was comparable
to that of the training set (Figure 9A). Even the average scores for both recurrent breast

cancer and NED compared well with those from the training set (Figures 9C and 9D).

[0095] Figure 10 is a summary of the altered metabolism pathways for metabolites that
showed significant statistical differences between breast cancer patient who recurred and
those with no evidence of disease. The metabolites shown outlined with a solid line were
down-regulated in recurrence patients while those shown outlined with a dashed line were
up- regulated. In addition to the 11 metabolites used in the metabolite profile, a number of the

other, related metabolites from Table 2 are also shown in Figure 10.

[0096] This study illustrates an embodiment of a metabolomics based method for the early
detection of breast cancer recurrence. The investigation makes use of a combination of
analytical techniques, NMR and MS, and advanced statistics to identify a group of
metabolites that are sensitive to the recurrence of breast cancer. We have shown that the new
method distinguishes recurrence from no evidence of disease with significantly improved
sensitivity and specificity. Using the predictive model, the recurrence in nearly 60% of the
patients was detected as early as 10 to 18 months before the recurrence was diagnosed based

on the conventional methods.

[0097] Although perturbation in the metabolite levels was detected for all the 40 metabolites
that were used in the initial analysis (Table 2, above), several groups of small number of
metabolites chosen based on the highest ranking and different cut-off levels provided

improved models. Particularly, the panel of 11 metabolites (7 from NMR and 4 from GC;
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Table 3, above) contributed significantly to distinguishing recurrence from NED. Further, the
predictive model derived from these 11 metabolites performed significantly better in terms of
both sensitivity and specificity when compared to those derived using individual metabolites
or a group of metabolites derived from a single analytical method, NMR or MS,. With regard
to early detection of the recurrence (Figure 7A-7D), the model based on the panel of 11
metabolites outperformed the diagnostics methods used for the patients, including the tumor
marker, CA27.29 and can provide significant improvement for early detection and treatment

options for the recurrence compared to the currently available test based on a single marker.

[0098] Evaluation of other models with panels of fewer metabolites indicated that these
embodiments could also provide useful results. The AUROC for an eight biomarker panel
consisting of the metabolites choline, glutamic acid, formate, histidine, proline, 3 hydroxy-
2—-methyl-butanoic acid, N-acetylglycine, and nonanedioic acid (four metabolites detected
by NMR and four metabolites detected by GCxGC-MS) was 0.86, whereas a seven
biomarker panel consisting of the metabolites 3-hydroxybutyrate, choline, formate, histidine,
lactate, proline, and tyrosine (using seven metabolites detected by NMR alone) had an
AUROC of 0.80. These results demonstrate that individual biomarkers within a panel that is
useful for detecting the recurrence of breast cancer may be deleted or substituted by other

compounds of Table 2 and still retain utility for detecting the recurrence of breast cancer.

[0099] The embodiment of the panel of eleven selected biomarkers represents sharp changes
in metabolic activity of several pathways associated with breast cancer, including amino
acids metabolism (histidine, proline, tyrosine and threonine), phospholipid metabolism
(choline) and fatty acid metabolism (nonanedioic acid). Numerous investigations of
metabolic aspects of tumorigenesis have shown the association of a majority of these
metabolites with breast cancer. As shown in Fig. 4, the recurrence of breast cancer is
associated with, and, as disclosed above in the working examples, is indicated by, decreases
in the mean concentration for a number of metabolites including formate (Figure 4A),
histidine (Figure 4B), proline (Figure 4C), choline (Figure 4D) nonanedioic acid (Figure 4K),
N-acetyl-glycine (Figure 4I) and 3-hydroxy-2-methylbutanoic acid (Figure 4J), while that of
tyrosine (Figure 4E) and lactate (Figure 4F) increases. Similarly, Table 2 and Figure 5 shows

changes associated with beast cancer recurrence for metabolites in pathways of amino acid
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metabolism: alanine (Figures 5C, 5D), arginine (Figure SA), creatinine (Figure SM), lysine

(Figure 5L), threonine (Figure SI), phenylalanine (Figures SE and 5F), and valine (Figure 5J).

[00100] While an exemplary embodiment incorporating the principles of the present
disclosure has been disclosed hereinabove, the present disclosure is not limited to the
disclosed embodiments. Instead, this application is intended to cover any variations, uses, or
adaptations of the disclosure using its general principles. Further, this application is intended
to cover such departures from the present disclosure as come within known or customary
practice in the art to which this disclosure pertains and which fall within the limits of the

appended claims.
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CLAIMS

1. A method for detecting a panel of a multiplicity of predetermined
metabolic biomarkers that are indicative of the recurrence of breast cancer in a subject,
comprising:

obtaining a sample of a biofluid from the subject, wherein the biofluid is blood,
plasma, serum, sweat, saliva, sputum, or urine;

analyzing the sample to determine the presence and the amount of each of the
metabolic biomarkers in the panel, wherein the panel consists of at least seven
compounds selected from the group consisting of 3-hydroxybutyrate, acetoacetate,
alanine, arginine, asparagine, choline, creatinine, glucose, glutamic acid, glutamine,
glycine, formate, histidine, isobutyrate, isoleucine, lactate, lysine, methionine, N-
acetylaspartate, proline, threonine, tyrosine, valine, 2-hydroxy butanoic acid,
hexadecanoic acid, aspartic acid, 3-methyl-2-hydroxy-2-pentenoic acid, dodecanoic acid,
1,2,3, trihydroxypropane, beta-alanine, phenylalanine, 3-hydroxy-2-methyl-butanoic acid,
9,12-octadecadienoic acid, acetic acid, N-acetylglycine, glycine, nonanedioic acid,
nonanoic acid, and pentadecanoic acid;

wherein the presence and the amount of each of the metabolic biomarkers in the

panel as a whole are indicative of the recurrence of breast cancer in a subject.

2. The method of claim 1 wherein the panel consists of 3-hydroxybutyrate,
acetoacetate, alanine, arginine, choline, creatinine, glutamic acid, glutamine, formate,
histidine, isobutyrate, lactate, lysine, proline, threonine, tyrosine, valine, hexadecanoic
acid, aspartic acid, dodecanoic acid, phenylalanine, 3-hydroxy-2-methyl-butanoic acid,
9,12 octadecadienoic acid, acetic acid, N-acetylglycine, nonanedioic acid, and

pentadecanoic acid.

3. The method of claim 1 wherein the panel consists of 3-hydroxybutyrate,
choline, glutamic acid, formate, histidine, lactate, proline, tyrosine, 3-hydroxy-2-methyl-

butanoic acid, N-acetylglycine, and nonanedioic acid.
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4. The method of claim 1 wherein the panel consists of choline, glutamic
acid, formate, histidine, proline, 3-hydroxy-2-methyl-butanoic acid, N-acetylglycine, and

nonanedioic acid.

S. The method of claim 1 wherein the panel consists of 3-hydroxybutyrate,

choline, formate, histidine, lactate, proline, and tyrosine.

6. A method of detecting secondary tumor cell proliferation in a mammalian
subject comprising:

obtaining a sample of a biofluid from the subject, wherein the biofluid is blood,
plasma, serum, sweat, saliva, sputum, or urine;

analyzing the sample to determine the presence and the amount of each of the
metabolic biomarkers in a panel of predetermined biomarkers, wherein the panel consists
of at least seven compounds selected from the group consisting of 3-hydroxybutyrate,
acetoacetate, alanine, arginine, asparagine, choline, creatinine, glucose, glutamic acid,
glutamine, glycine, formate, histidine, isobutyrate, isoleucine, lactate, lysine, methionine,
N-acetylaspartate, proline, threonine, tyrosine, valine, 2-hydroxy butanoic acid,
hexadecanoic acid, aspartic acid, 3-methyl-2-hydroxy-2-pentenoic acid, dodecanoic acid,
1,2,3, trihydroxypropane, beta-alanine, phenylalanine, 3-hydroxy-2-methyl-butanoic acid,
9,12-octadecadienoic acid, acetic acid, N-acetylglycine, glycine, nonanedioic acid,
nonanoic acid, and pentadecanoic acid;

wherein the presence and the amount of each of the metabolic biomarkers in the
panel as a whole are indicative of secondary tumor cell proliferation in a mammalian

subject.

7. The method of claim 6 wherein the panel consists of 3-hydroxybutyrate,
acetoacetate, alanine, arginine, choline, creatinine, glutamic acid, glutamine, formate,
histidine, isobutyrate, lactate, lysine, proline, threonine, tyrosine, valine, hexadecanoic
acid, aspartic acid, dodecanoic acid, phenylalanine, 3-hydroxy-2-methyl-butanoic acid,
9,12 octadecadienoic acid, acetic acid, N-acetylglycine, nonanedioic acid, and

pentadecanoic acid.
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8. The method of claim 6 wherein the panel consists of 3-hydroxybutyrate,
choline, glutamic acid, formate, histidine, lactate, proline, tyrosine, 3-hydroxy-2-methyl-

butanoic acid, N-acetylglycine, and nonanedioic acid.

9. The method of claim 6 wherein the panel consists of choline, glutamic
acid, formate, histidine, proline, 3-hydroxy-2-methyl-butanoic acid, N-acetylglycine, and

nonanedioic acid.

10.  The method of claim 6 wherein the panel consists of 3-hydroxybutyrate,

choline, formate, histidine, lactate, proline, and tyrosine.
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