US 20100217639A1

a2y Patent Application Publication o) Pub. No.: US 2010/0217639 A1

a9 United States

WAYNE et al.

43) Pub. Date: Aug. 26, 2010

(54) AUTOMATED SOLAR COLLECTOR
INSTALLATION DESIGN INCLUDING
EXCEPTIONAL CONDITION MANAGEMENT
AND DISPLAY

GARY WAYNE, BERKELEY, CA
(US); ALEXANDER FRUMKIN,
SAN RAFAEL, CA (US);
MICHAEL ZAYDMAN, SAN
RAFAEL, CA (US); SCOTT
LEHMAN, MARTINEZ, CA (US);
JULES BRENNER, NOVATO, CA
(Us)

(75) Inventors:

Correspondence Address:

KNOBBE MARTENS OLSON & BEAR LLP
2040 MAIN STREET, FOURTEENTH FLOOR
IRVINE, CA 92614 (US)

(73) Assignee: SUNPOWER CORPORATION,

SAN JOSE, CA (US)
(21) Appl. No.: 12/708,485
(22) Tiled: Feb. 18, 2010

Related U.S. Application Data

(60) Provisional application No. 61/154,341, filed on Feb.

20, 2009.

930 Start

Y

Classify objects, create
work areas and apertures

931

h 4
Lay out modules in the
intersection of the first
aperture, the work areg,
and permissible
surfaces/objects

932 —

\ 4
For all modules laid out: if
933 —— any module conflicts with
any rule, mark as illegal

Y
Repeat steps 902 and 903
for the second aperture not

Publication Classification

(51) Int.CL

G06Q 10/00 (2006.01)

GOGF 17/50 (2006.01)

GOGF 3/048 (2006.01)

GOG6N 5/02 (2006.01)
(52) US.Cl .coooooomnn.. 705/7; 703/1; 715/810; 706/47
(57) ABSTRACT

Embodiments may include systems and methods to create
and edit a representation of a worksite, to create various data
objects, to classify such objects as various types of pre-de-
fined “features” with attendant properties and layout con-
straints. As part of or in addition to classification, an embodi-
ment may include systems and methods to create, associate,
and edit intrinsic and extrinsic properties to these objects. A
design engine may apply of design rules to the features
described above to generate one or more solar collectors
installation design alternatives, including generation of on-
screen and/or paper representations of the physical layout or
arrangement of the one or more design alternatives. In some
embodiments, metadata about the design process, including
the process of classifying features and providing user input,
generating layouts, and then modifying those layouts, may be
generated. The metadata may include information about
exceptional conditions in the project state information or
design. A list of exceptions corresponding to exceptional
conditions may be generated, and the designer may interact
with these exceptions in a variety of ways, such as by com-
plying with rules to remove an item from the exceptions list or
overriding the application of the rules. The exceptions may be
non-blocking relative to other user actions.

Repeat steps 902 and 903 for

| the third aperture not placing 935

934 placing any modules that

conflict with first aperture

any modules that conflict with
first or second aperture

y
Repeat steps 902 and 903 for
the nth aperture not placing any | 036
modules that conflict with first,
second, ... ,n-1th apertures

y

Allow user to modify
module placement

— 937

Y

Patent Application Publication Aug. 26,2010 Sheet 1 of 25 US 2010/0217639 A1

106

102

103

Fig.

105

104

105

101
100 —»

Patent Application Publication Aug. 26,2010 Sheet 2 of 25 US 2010/0217639 A1

USER INTERFACE

Fig.

203 —]

201
202

-
«
a
)
&
=~
-
o
4
S
m r-- - " " ---"-"--"-"-"-"=—-"—"—"=-"=-"-"=~-"~"”~”"”=-"=/- =7 T
o | I 1
A ! i !
= " °©
[i
] i
< ! " | <oz
S w t i
= b '
S ! _ \
b I 1
>
2] |
[90] . //
< SR TN FINY ! i
S .
K JO0d| < Aysse|n " “ ¢0¢
- | 1
o i 1
) I
ob - 11| =dAL Buping 0L€ ! “ 102
Ann., - 3| =dAL sinsodx3 b o e e 4
0 58| paads pui
g Zle b > e ybiey
1 E
= & 0096~ 2eq39S ~
w @ | -esie joos Buip|ng v uonduisag ™~ v0Z
Dn.... J00y 35817
g e —» ~oenep | suey
£
S 30VIUILINI 935N
lm T~ 002
: ‘3
~N—
: ¢ ol
2 °
=
A

US 2010/0217639 Al

Aug. 26,2010 Sheet 4 of 25

Patent Application Publication

61€
L€

Gle
Le

uononnsqo

MR < AjlSse|D

|_— €0¢

¥ "SI

yd S - > z0z
oLe fo
. L0<C
00T Hreqes
3 > e Jsneyxy adAygng
L
= > OYAH adAl
L 0098 Y BIeH
w p
m U0 UOIRNISA0 Uy uonduaszq 4//
o » UDIPNISAO ssE|D v0c
Canep S aweN
JOVAHILNI 43SN
o0z

US 2010/0217639 Al

Aug. 26,2010 Sheet 5 of 25

Patent Application Publication

0cs

¥0G
€0g
Gog
c0§

JnNoAeT

sy @MM

904G
> GTET L AP 80S Julod Buiyles
> 0 uoleIuRLI O
o - ondl | TurAluQinodeq
_._FIL ap O I2MO4UNS adAl onpoy
o |[= OTL | "sAs Buigunoly
wum Tainpady swep Aepdsiqg
o TTOM JO BRlE-NS Y uonidiiass g
anpady SSE|D

Ssnjep EYUIT=EY

/A

|_— €0¢

c0c

10C

JOV4HILNI 438N

VS Sl

002

US 2010/0217639 Al

Aug. 26,2010 Sheet 6 of 25

Patent Application Publication

Geg

PROPERTIES

TRTEZL PT80S

ulod Buipels

o0 uocnejusuo

A anll | “rurAjuganoden

A SOL 12Mmodquns adh] snpow

- OTL| "sAs Bupunoly

T=inpady swep Aejdsiq

UOM JO BalR-ONS uolzdiassg
ainpady

SSE|D

S Bnjep

_— €0¢

c0¢

10C

JOV4HILNI 43SN

dg Sl

~002

US 2010/0217639 Al

Aug. 26,2010 Sheet 7 of 25

Patent Application Publication

V9 —

GE9 ——

0€9 —

pud

s)ndino eyeisusew)

seaJe YIom
Uo 1N0AE| 8|NpoW 8)elaust)

A

A

sooualejold ubissep 198

SJOI[JU0D
aAj0Sal pue ajepdn

A

A

(leuondo)
seale Mlom Uoljdxe sulsq

A

wsweoe|d sjnpow
Aypow 0} Jash Mo||y

saoualeleid g sselledoud
188 pue sy08lqo Alisse|D

A

A

GC9 —

‘leBa||l se ajnpow JJew ‘s|nl
AUB Upm S)oI[JU00 ale alayy i
a|npow Jad

s108(qo pue uolejusssidal
2)ISyIoM BulBQg

V9 "SI

029

Gl9

¢l9

019

G09

009

US 2010/0217639 Al

Aug. 26,2010 Sheet 8 of 25

Patent Application Publication

PROPERTIES

TBTET AL 80FS

julod Bunieys

OD

uoleuslg

anl]

rutAluoInode]

GOE Jamodunsg

adA] s|npop

OTL | *rshs Buunopy
Tainjady swey Aejdsig
TOM 10 B3IB-(NS uondiisaqg
ainpedy sse|s
o anep owen

/A

_— €0¢

¢0c¢

(4014

JOV4H3LNI H3SN

d9 'Si4

=002

US 2010/0217639 Al

Aug. 26,2010 Sheet 9 of 25

Patent Application Publication

PROPERTIES

v/ "SI

o |_
_ i
_ :
m ° Lo F--- 10
: !
g ! |
_ \v4 _ | €02
i |
m |
_ T~ |
! “ 20z
_ |
_ :
m _ L0Z
: !
_ :
i |
TeRPpHOW | SeN Aeidsig -
PO Ad 04 pRieUBiSp eale Uy uondusaq ™~ oz
B2 L ssep)
S enpA Cauey
30VA4IINI¥3SN
T~ 00z

Patent Application Publication Aug. 26,2010 Sheet 10 of 25 US 2010/0217639 A1

PROPERTIES AT
B
=
o
ks
S| |
= <
Ry
|3 4 3
A | B &5
e
12152
. o
gl |15|=
2,15z 0
eI
1o |&|a

USER INTERFACE

Fig. 7B

200 ~y
204 ~_|

US 2010/0217639 Al

Aug. 26,2010 Sheet 11 of 25

Patent Application Publication

¥0.
€0.
Go.
c0s

Go8

3InU_dY [5ieal)

> GTET L AE.8 80FS Julod Bunies
> 0 uonejusLI o
o~ » 2nl] | ~urAlupinoden
__.FIL A COL IZMO4JUNS adAl snpoy
5 (|- 0TL| "shs bununoly
W T2injlady awen Aejdsiq
o TOM JO BRIR-ONS Y uondiiasaqg
ainjlady sse[D)

anjep - , SWep.

¢0¢

L0C

JOV4HILNI ¥3SN

V8 "3l

T~ 002

US 2010/0217639 Al

Aug. 26,2010 Sheet 12 of 25

Patent Application Publication

¥0.
€0L
S04
c0.

F--- 108

| _— €0¢

c0¢

BT ETLLPLS B0FS julod Bugiels

> .0 uoleIuLI O

o~ B SNl | “UULAlUQINCAET]
_FlL A p GO I3MO4UNS adA] 3NpoRW
o[~ OTL | "shs Bununop
W 12injiady awen Aejdsia
o oM JO BBlE-NS W uoipdiiasag
ainjady SSED

ST ,,m:;__m> T T suwey ;

L0C

JOV4HILNI ¥3SN

dg "3l

T~ 002

US 2010/0217639 Al

Aug. 26,2010 Sheet 13 of 25

Patent Application Publication

pu3g

Wwawaoe|d sjnpoul
Allpow 0} Jesh Moy

A

Alessaoau
se sa|npow Bulrowal
‘S101|4UCD BA|0S8I 0)
so|nJ Allold aunuade asn

1

wswaoe|d Bunoijjuod
10} 9|NpPoW yoes azAleuy

A

aJnyade yoes ul
se|npow jo Jnoke| syeal)

1

salnuade pue seale 3iom
a)ealo ‘sjoelgo Aysse|n

A

Blep alisyiom Induj

uels

V6 ‘S

cl6

016

806

906

¥06

c06

106

006

US 2010/0217639 Al

Aug. 26,2010 Sheet 14 of 25

Patent Application Publication

8¢€6 { _on_

Jusweoe|d s|npouw
Aypow 0} Jash Mo||y

A

LE6 —

salnuade yj|-u‘' " ‘puocoes
841} YHM JOI[3U0D Jeyy ss|npow
9€6 — 4ue Buioe|d Jou ainpade yju sy
10} €06 pue zos sdajs 1eaday

A

alnuade puodas Jo 181l
UHM JOI|JUOD JByY) seinpowl Aue
9€6 — Buioe|d Jou ainuade paiyz ayi
10} €06 pue z0s sdajs 1eadoy

A

d6 'S4

alnyade 181} Yiim 101]JU0D
1ey) ss|npow Aue Buioe|d
J0U 8inuede puodas ay) Jo}
£06 PUE 206 sdals jeaday

A

[eBa||l sk yiew ‘ains Aue
UM SIDIHU0D 9Inpow Aue
4 1IN0 plg| S9Npow ||e 104

A

sjoolqo/seceuns

s|qissiwlad pue
‘eale ylom ay) ‘einyade
3841} 8U} JO UonoBsIAYUI
8y Ul sa|npouw o Ae

A

salnuade pue seale YIom
a1ealo 'sjoslqo Ausse|)

Ue)S

— V&6

€eo6

AN

1€6

0¢6

US 2010/0217639 Al

Aug. 26,2010 Sheet 15 of 25

Patent Application Publication

uymoor

10129]|0D 10123]|0D 10103||0D 10129]|0D J0129||0D H“Y Ggcol
A A A Y A
guuig gunig gung ur 0c0l
9 9 A
Aesse-qng Aeuse-gng uv Glol
A Y,
2inpuady ainuady HT 0LOlL
A A »
21n1ea 24n}ea uYNoo_‘ B3y YJOM ealy .vto>>
A / A A
001 S9Ny < 9USHIOM 1001
Pelold 0001

VOT 'S4

Patent Application Publication Aug. 26,2010 Sheet 16 of 25 US 2010/0217639 A1

Cell String

—>| T
()
N o
c
=
o | 2
O =
ﬁ o HCD
. ()
o]
L (s
O |=
©
o s ()
L &
£ BN
To) -
N —»| & ©
o =
~ (D)
()]
5| T
()

1030 { Cell String

1035 { Cell

US 2010/0217639 Al

Aug. 26,2010 Sheet 17 of 25

Patent Application Publication

[0 UDISIBA] UCISIBA 1500 MO| Yid

1500 13MO] B SeU UOISIaA ajeulalje Y (uonewour

158jjeq 9oNpay

pPapaaIXa peol Jooy Buiiep

2U0Z JBUI0D WoU] S3|NPOW sAOWDY

$3|NJ JO UORLJOIA Ul Pajgeus sle Sa|npow b 110413

Gcll
ocll

UOoNI3sqo Wwodl ssjnpowl sADWDY

UDIPNISYO 19A0 paoeld Seinpot 1iodig

127"

[1 :2poo diz Jagu3

payads Jou st apod di7 (Buluiem

oLLL

LU0y

Coogor il

/ I

T~35011

JIOV4HILINI H3ISN

TT 'S

0011

US 2010/0217639 Al

Aug. 26,2010 Sheet 18 of 25

Patent Application Publication

pud

suolldeox] Uodxg

Ggeel

A

suo1dooxa SSaIppE O} Josh Moj|e pue
‘indur Jasn Buipnjoul ‘eiep 10slcid aieplien

18| suondeoxs

]y A%

A

indul pue JnoAe| Ajpowl 0] Jesh MO||yY

Gecl

A

INoAeT syeplieA

A

A

Uo sslljus 9oe|d

181| suondaoxa

0ccl

A

INoAeT sjelsusn)

174"

A

suoljdeoxe ssalppe 0} Jasn MOje pue
“andul Jesh Buipnjoul ‘eyep 108loid syepiiep

uo salljue aoe|d

18| suondeoxs

A

0lcl

A

elep seinuade Jo/pue seale
yJom ‘uoneoiisseo 10algo ‘susyiom indy

AVARNIVANRVAVAR

Gocl

¢T '3

uo sslus 208e|d

/

[AYA*

US 2010/0217639 Al

Aug. 26,2010 Sheet 19 of 25

Patent Application Publication

)

| aunuady | 0101

_ RV YJOM G001

\

SToN mvmoﬁ

A A A A
“ _ _ _
E 8:tma< _ E:tm.o_< _ _ E:tmo_< _
_ 221y YIOM _ _ RV NIOM _ 2y JOM _
7)) 7 7 7
) UOISI9A _ g UOISIIA v uo
A A
[el | [1elo uvmoor
Y
_ ainjead _ _ 2.nyea MTNooF
y J
pool[_samy e | SUSHIOM | LooL
7
_ »3loid | 0001

€T '3

US 2010/0217639 Al

Aug. 26,2010 Sheet 20 of 25

Patent Application Publication

ettt . UOSIBA

: _ € UOISIIA -+

_ “ b 2oy YoM

I :) € By HIOM -+

_ _"| _ Z UOISJRA =

_ _ _ _ ¢ ainpady =

_ | _ | 7 odnuady =

| | “ _ 1 2unpady =

| i m | z 2RIy o =

| e o ; ! Z ainyady =
_ ! 7 Aedie-gng = :
: " T Aelle-gng =
! m T aunyedy =
! _ T e2ly YoM =
! : T UOISIOA =

MDD >

oLyl

GGvl 0Gvl

Govl

™S o0vl

JOV4H3LNI 43SN

T "Si4

98+'6ST | Sbv 'SS | 88°E4C'95H$ LETS PeC £0'94¢ | S06 7 aamJady

US 2010/0217639 Al

6EL'9CC | 2949 | L0'pT8'ErLS v91$ 6bT Ce'9/T | 876 T 2urpady -

165807 | ¥68'T0T | 00°766'L14% 89°T$ 1213 SECSh | £€81 g BaIy oM -

6SE'CH6 | ¥6T'Sh | b /88'P9SS ST'Z$ {61 61°CEC | €49 7 2imJady

95201¢ | ¥86°SE 0£°769°cSH% s PEl 96'89T | 89/ T aurmuady - —
827’509 | 59£'z8 £0°£S58'166% 65°7$ 843 ST'TOF | THPT V Bl YoM -
pEeo88 | STT'08T | ZE6HH'TIE TS | 10T Y44 6b'€58 | £/2¢ T UOISIOA = 0LGl
ABisua | 1ubispp 150D dm/asod | ey da S3NPOIA
] Y /
\ 0061

Aug. 26,2010 Sheet 21 of 25

Patent Application Publication

Ev\\\\\ NN\

vl G8¥lL 6.¥lL G/vl 0Z¥L GO¥lL 09¢vlL G9o9vl 0S¥l

GT ‘S

‘000070 ZEea 8 1B Bak L

tasuioas ajtcoddo Ay-aadg
1asugon =31soddo Azzaosds

: premmog
: puEmo g

US 2010/0217639 Al

7091

— 0291

Aug. 26,2010 Sheet 22 of 25

W0000°+Z
wied
aai]

,0000°00g

PegEs
addgng
addy
Wby

Uendinsag

Patent Application Publication

0091

US 2010/0217639 Al

Aug. 26,2010 Sheet 23 of 25

Patent Application Publication

9191

Glol

719l

‘alnueade paulsp ay)
Ul S8|npoW JO INOAe|
ajeal) 3nohke

‘palealo aq ||IM JN0AR|

8y} UoIym Ul eale
ay1 suleq aJnyiady

‘Alowoab 0} yoeq
syo9lqo paljisse|o ysedAd
UaAuo) Ajissejoag

1191

"BalR HJOM
e se s}oalqo payold
AlsSSE|D Baly YIOM

‘Aejdsip 0} sjuswg|d

aoBUBIUI UYdIYym
109|183 Aeydsiq

Gcol

‘adid Jo Aemyied se

UoNs UoIjoNJisqo Jeaul| se
100lgo poyos|as Alsse|D
‘uononasqQ Jeaul

€9l

"898} 10 s}un DYAH
SE |JONS SUoI}oNJIsqo pljos
se sjosalqo paxoid Aysse|D

-uonodonasqQ plios

¢cl9l

d9T "SI

"JOOI E SE
Joalqo paxoid
Aisse|) Jooy

0191

US 2010/0217639 Al

Aug. 26,2010 Sheet 24 of 25

Patent Application Publication

II

adi Bupyng

ABIILINS UISASF, | o~ |

4

3S00CT | .

=
=

o adi)ainsodvgy | 2

. H -

=) paadcpULy, W

W00 00E Moy B
L0000 96 yoegyes m_.
m

W

anjed | x

9091

a9t 'S4

SAUOZPUIG,

syoalgd payisses | »

u:nhmJ

A

e

ainjsadyg

(N aTiul Wi En N W 1= 2=TH g

}L_mmm_uuﬂ ,,

TRl Wl g
E S A0,
Joory

15Edid Jnody
sadUalE]ald

*+apnyifuo pue apnjeT Jaon

2)JE] AJELINS 28340
sajaed

SpIH oS

(s)anpaly webuuo s)Bbo
(sianpaly] 2660

0JUT dAogsno Jp3

S wody Jaadug

=N==N

AJIsER[D

US 2010/0217639 Al

Aug. 26,2010 Sheet 25 of 25

Patent Application Publication

c091

0c9l

m“,;T:mL;

00000172269 BE L 408 BabL

1aauaca satscddo AFraoads jpusamos

*peanIos

13ouacs 37Tscddo AFTasds jpuEamng
AY
— 0291
—

#0000 2 AR
wed adAjgns
aad] adi)
0000 00s 31
— uopdursan
ssep)

SUIER

US 2010/0217639 Al

AUTOMATED SOLAR COLLECTOR
INSTALLATION DESIGN INCLUDING
EXCEPTIONAL CONDITION MANAGEMENT
AND DISPLAY

RELATED APPLICATIONS

[0001] This application claims the benefit of priority under
35 U.S.C. §119(e) of U.S. Provisional Application No.
61/154,341, filed on Feb. 20, 2009, and entitled “AUTO-
MATED SOLAR COLLECTOR INSTALLATION DESIGN
INCLUDING EXCEPTIONAL CONDITION MANAGE-
MENT AND DISPLAY™, which is hereby incorporated
herein by reference in its entirety.

STATEMENT OF GOVERNMENT SUPPORT

[0002] The invention described herein was made with gov-
ernmental support under contract number DE-FC36-
07G017043 awarded by the United States Department of
Energy. The United States Government may have certain
rights in the invention.

BACKGROUND OF THE INVENTION

[0003] Inrecent years, solar power has become an increas-
ingly important source of energy. Solar energy may be col-
lected and harnessed in numerous ways, including through
the use of solar collectors such as photovoltaic (PV) modules
and solar-thermal heat and power collectors and converters.
The size of these projects may vary tremendously—from
single-family residential rooftops to sites exceeding one mil-
lion PV modules.

[0004] The cost, useful lifetime, energy generation and
economic value of solar power plants is highly dependent on
many complex and interrelated parameters including but not
limited to: 1) location, ii) weather, iii) physical obstructions
that interfere with layout, such as a skylight, iv) non-physical
site features such as property line set-backs or utility right-
of-ways, v) physical obstructions that may cast shade on the
system, vi) local building codes that set weight limits and fire
safety protection, vii) environmental conditions such as
design wind speed tolerance, viii) available mounting sur-
face, such as the ground, a roof-top or a framework above a
parking lot, ix) local, state and federal law, x) utility electrical
interconnection requirements, xi) existing electrical equip-
ment at a customer’s worksite and xii) the customer’s cost of
electricity or energy. The task of designing and analyzing an
efficient system that comports with these requirements can be
complex, time consuming, and error prone, and may consti-
tute a major cost of solar energy project development.

SUMMARY OF THE INVENTION

[0005] A method of generating a solar collector installation
design on a computer is disclosed. The method may include
providing a representation of an installation worksite,
wherein the representation may include user-defined project
state information. The method may include applying rules to
the user-defined project state information, so as to determine
at least some metadata about, e.g., the solar collector instal-
lation design. The metadata may also be used to generate a set
of'one or more design exceptions. Each design exception may
encode one or more exceptional conditions. Exceptional con-
ditions may be due to many causes, including to a violation of
a software-encoded rule by the user-defined project state
information, the design, a layout, etc. A representation of the

Aug. 26,2010

set of design exceptions may be provided to the user. An
option may be included to the user, and the option may
include ignoring the exception or complying with the design
exception. The user may or may not be required to address, as
by complying with, any of the corresponding exceptional
conditions before performing another action in the user inter-
face.

[0006] A method of generating terms to a contract for a
solar collector installation project is also disclosed. The
method includes providing a representation of an installation
worksite in a computing device. The representation may
include at least one geometric object, project state informa-
tion, etc. The method may include applying one or more rules
to the one or more geometric objects and/or the project state
information so as to determine metadata about the installation
design. The metadata may be used to generate a set of one or
more exceptions where exception may encode an exceptional
condition arising from a violation of a rule encoded in soft-
ware and regarding the installation design. The exceptions
may provide information sufficient to identify a term for
inclusion in a contract, e.g., a downstream agreement. The
method may include using the information to generate a list of
the terms for inclusion in a contract or document, where the
terms may correspond to one or more contract exclusions.
[0007] A computer-based user interface for designing a
solar collector installation design is disclosed. The method
may include a computer user-interface representation of a
solar collector installation design. The representation may
include solar collectors arranged on a surface substantially
according to project state information, e.g., feature proper-
ties. A representation of a list of design exceptions may be
provided. One or more of the design exceptions may corre-
spond to an exceptional condition that may be related to a
violation of a software-encoded design rule by the solar col-
lector installation design. The interface may include a control
operable to allow a user to address the exceptional condition
by interacting with the design exception. Interaction with the
exception may include complying with the exception, over-
riding the design exception, and so forth. In some embodi-
ments, the user may perform other actions in the user inter-
face before addressing the exceptional condition.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] FIG. 1 is a schematic isometric view of an example
worksite for a solar collector installation containing roof,
exhaust fan, and conduit features;

[0009] FIG. 2 schematically illustrates a user interface con-
taining a visual representation of the installation worksite of
FIG. 1, including geometric objects corresponding to the
roof, exhaust fan, and conduit features;

[0010] FIG. 3 illustrates the user interface of FIG. 2, in
which a first geometric object in the visual representation is
being classified as a “roof” and thereby associated with a first
set of feature properties and corresponding layout con-
straints;

[0011] FIG. 4 illustrates the user interface of FIG. 3, in
which a second geometric object is being classified as a
“obstruction” with sub-type “exhaust fan” and thereby asso-
ciated with a second set of feature properties and correspond-
ing layout constraints;

[0012] FIG. 5A illustrates the user interface of FIG. 4, in
which an example set of design preferences for the generation
of a layout, including a PV module type, orientation, and
starting point, are being input;

US 2010/0217639 Al

[0013] FIG. 5B illustrates the user interface of FIG. 5A, in
which a PV module layout has been generated by a layout
engine in accordance with the inputs (e.g., feature properties,
project properties and design preferences) and layout rules
(e.g., layout constraints, environmental factors, local building
codes, etc.);

[0014] FIG. 6A is a flowchart illustrating a process by
which a PV module layout, such as that illustrated in FIG. 5B,
may be created using the software of an embodiment;
[0015] FIG. 6B illustrates the user interface of FIG. 5A, in
which a PV module layout has been tiled across a rooftop, in
accordance with an embodiment of the first pass of the pro-
cess of FIG. 6A;

[0016] FIG. 7A illustrates the user interface of FIG. 5A, in
which a user has created a “work area,” one or more contigu-
ous sub-area(s) within the worksite, a graphical representa-
tion indicating the owner’s preference for where modules
may be placed upon the worksite. This may occur, for
example, if the worksite contains both undeveloped land and
a building but the owner is only interested in placing modules
on the building;

[0017] FIG. 7B illustrates the user interface of FIG. 7A, in
which a PV module layout has been generated according to
the work area properties, feature properties, layout con-
straints, design preferences, and other layout rules;

[0018] FIG. 8A illustrates the user interface of FIG. 5A, in
which two user-created apertures and corresponding user-
defined aperture design preferences have been defined;
[0019] FIG. 8B illustrates the user interface of FIG. 8A, in
which a PV module layout has been generated according to
the aperture design preferences for each aperture, and in
accordance with the project properties, feature properties,
layout constraints, and other layout rules;

[0020] FIGS. 9A and 9B are flow charts illustrating pro-
cesses by which PV module layouts may be created by a
layout engine in accordance with multiple user-defined aper-
tures, each of which may contain differing aperture design
preferences;

[0021] FIGS. 10A and 10B schematically illustrate a partial
hierarchy of data representing worksite features and solar
collectors to be arranged in a software application in accor-
dance with the teachings herein;

[0022] FIG. 11 schematically illustrates a user interface
containing a list of exceptions, including warnings, errors,
and contract exclusions, and various mechanisms by which a
designer may address such exceptions;

[0023] FIG. 12 is a flow chart illustrating a process by
which user inputs and resultant layouts may be validated and
exceptions may be generated;

[0024] FIG. 13 illustrates the hierarchy of project elements
of FIG. 10A, expanded to include partial depictions of mul-
tiple versions of layouts generated by the software, as may be
created in response to user selections of alternative design
preferences, aperture locations, etc.;

[0025] FIG. 14 schematically illustrates a user interface
including a list of versions for the project design and controls
for operating upon versions;

[0026] FIG. 15 schematically illustrates a portion of a ver-
sion summary;
[0027] FIG. 16A provides a screenshot of another illustra-

tive user interface in which a user may classify geometric
objects and in a which to display PV module layout, which
may be generated according to feature properties, project
properties, layout rules, and design preferences;

Aug. 26,2010

[0028] FIG. 16B provides a screenshot of an illustrative
user interface providing toolbar controls for some functions
related to classification and layout of PV modules;

[0029] FIG. 16C provides a screenshot of an illustrative
user interface providing menu controls for some functions
related to classification and layout of PV modules;

[0030] FIG. 16D provides a screenshot of an illustrative
user interface providing a palette control for access and modi-
fication of feature properties, design preferences, and other
user input; and

[0031] FIG. 16E provides a screenshot of the illustrative
user interface of FIG. 10A in which a PV module layout has
been generated according to, user inputs (e.g., feature prop-
erties, project properties, design preferences), and layout
rules (e.g., layout constraints, environmental factors, local
building codes, etc.).

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

[0032] Computer aided design systems (CAD)have been in
commercial use for many decades. CAD systems provide
efficient methods to automate the creation, editing, presenta-
tion, and retrieval of design information. The power of CAD
systems has been enhanced through the use of “knowledge-
based” programming techniques whereby engineering and/or
design rules can be formalized, encoded and executed to
automate portions of the design process or to detect potential
design errors. A common example of a knowledge-based
system is the grammar checking function found in most com-
mercial word processors whereby many rules of English
grammar have been encoded and are automatically applied to
text documents to highlight potential errors and suggest cor-
rective action.

[0033] The systems and methods described herein involve
the application of knowledge-based CAD techniques for the
automatic layout, evaluation, and optimization of solar
energy system designs consistent with a large number of
design constraints, such as the local site conditions, engineer-
ing rules, and building codes. A preferred embodiment is
implemented as an integrated set of software customizations
to an existing CAD system, such as AutoCAD®. Alterna-
tively, the systems and methods described herein may be
implemented as completely new standalone software pro-
gram(s).

[0034] A preferred embodiment of the invention described
herein provides a system and method for designing solar
collector layouts suitable for installation at a given worksite.
The embodiment may include systems and methods to create
and edit various data “objects” and to classify such objects as
various types of pre-defined “features” with attendant prop-
erties and layout constraints. The classes or categories of
features may include (i) physical worksite features such as
walls, roofs and exhaust fans; (ii) intangible, non-physical
worksite features such property boundaries, zoning bound-
aries, utility right-of-ways, flood plains, environmentally-
sensitive areas, special seismic zones, and utility easements;
and (iii) solar energy system components and arrangements.
As part of or in addition to classification, the embodiment
may include systems and methods to create, assign, and edit
intrinsic and extrinsic properties to these objects. Intrinsic
feature properties include those that are inherent to the object
itself, such as height, weight and cost. Extrinsic properties
include definitions of how objects interact with other objects.
An example of an extrinsic property includes a “setback”

US 2010/0217639 Al

provision that establishes the minimum distance (setback)
between an object and any adjacent objects.

[0035] Forexample, ina particular legal jurisdiction, it may
be impermissible for a structure to be placed within 30 feet of
aproperty boundary. Using a system according to an embodi-
ment, a user may first create a “Property Boundary” feature
type as follows: The user may (i) create a new type of feature
class named “Property Boundary,” (ii) set the visual repre-
sentation of the Property Boundary feature class to be a
dashed black line; (iii) define a property called “Set Back”
and assign it to the “Property Boundary” feature class, (iv)
assign a default value, such as 30 feet, to this feature type; and
(v) store this feature class definition within a feature class
database for use in a particular design or for general use in any
project design.

[0036] Subsequently, a designer may use the pre-defined
feature type “Property Boundary” as follows: The designer
may (i) create or import a representation of an installation
worksite into an embodiment, (ii) assign the pre-defined type
“Property Boundary” to one or more geometric elements in
the worksite representation (such as a line), (iii) subsequently
change the value of the object’s “Set Back™ property as nec-
essary, e.g., to 20 feet, and (iv) command the embodiment to
generate a solar system design, including a layout of solar
collectors, that complies with the setback provisions of the
objects marked as “Property Boundaries.”

[0037] As part of the process of generating a solar collector
layout, a preferred embodiment of the invention may provide
methods and systems for the (i) creation of design rules, (ii)
application of these design rules to the objects described
above to generate one or more solar energy system design
alternatives, (iii) generation of on-screen and/or paper repre-
sentations of the physical layout or arrangement of the one or
more design alternatives, (iv) generation of summaries of one
or more versions of one or more designs, such as part count,
capacity, cost and energy production, (v) tracking of excep-
tions to software-encoded design rules for user compliance or
the manual modification or override of such design rules as a
mechanism to provide both flexibility to the user and assur-
ance that customer, engineering, legal, and manufacturer
requirements are addressed, and (vi) generation of visual
information for the designer to enable them to assess, in
real-time, the relative benefit of design alternatives and
design modifications to assist in design optimization.

[0038] A method of operation according to a preferred
embodiment includes: (i) importing information describing
the worksite into the knowledge-based solar CAD system or
the creation of this geometric description using the CAD
system; (ii) associating, as by classifying or categorizing,
each of the relevant graphical elements that describe the
worksite as one or more instances of pre-defined data object
types and adjusting their respective properties; (iii) designat-
ing “work areas,” e.g., areas of the worksite where project
layout may be intended; (iv) choosing design preferences,
such as solar collector type and installation size; (v) auto-
matic design generation according to the feature classifica-
tions defined in the data representation of the worksite and
their attendant properties; (vi) evaluation of the design
according to one or more metrics; (vii) generation and com-
parison of design alternatives; (viii) optimization of a design
through design modification and selection of alternatives; and
(ix) generation of a list of design exceptions, such as contrac-
tual exclusions.

Aug. 26,2010

[0039] Association may be performed by classifying par-
ticular geometric object(s) in a representation of a worksite as
an instance of a type of feature, such as “roof” or “exhaust
fan” Such classifications may operate to associate the geo-
metric objects with specific properties and layout constraints
used to perform the automatic solar energy system design.
Additional design rules and properties relating to worksite
properties and layout constraints, design preferences, module
properties and constraints, performance targets, and so forth,
may also be defined. All of this encoded information may be
used by the tool to automatically generate a design for the
solar module installation that is consistent with designer pref-
erences, project constraints, engineering practice, building
codes, etc., and to produce associated information, such as
wiring schema, bills of material, presentations, contracts,
summaries, auditing reports, other deliverables or outputs
according to Table I, etc.

[0040] As mentioned above, a tool may also provide con-
trol over layout generation by providing a designer with the
ability to define one or more particular boundaries for layout
generation. Users may define one or more work areas that
may correspond to boundaries within which solar collectors
may be placed (consistent with other properties and rules,
e.g., the properties of classified objects). In this way, a user
may use a work area, e.g., to limit solar collector module
layout to a portion of the worksite, such as the south facing
portion of a roof. Users may also define one or more layout
apertures, each of which may correspond to boundaries in
which layouts should comply with a distinct set of user-
defined design preferences. The use of apertures with distinct
design preferences may allow a user, e.g., to place one type of
module in one region of a roof and another type of module in
another region of a roof.

[0041] In some embodiments, as a designer goes through
the process of classifying features, generating layouts, and
then modifying those layouts, as discussed above, metadata
about the design process may be generated. This metadata
may take many forms, and may include information about
actions the designer has taken, actions the designer should
take, and design information that may be useful to supervi-
sors, co-designers, and downstream users and recipients of
the design.

[0042] Insome embodiments, a user interface may be pro-
vided such that some or all of this metadata may be presented
to the designer in the form of exceptions to encoded rules in
the software. Such rules may originate from customer
requirements, governmental laws and regulations, engineer-
ing constraints, solar collector manufacturer guidelines, etc.
Exceptions can include the failure to provide properties, such
as a project work area location. The designer may interact
with these exceptions in a variety of ways, such as by com-
plying with rules to remove an item from the exceptions list or
overriding the application of the rules. Some or all of the
metadata may be associated with the design, such as by com-
mon storage or reference. Thereafter, downstream users and
processors of the design, including automated systems, may
access the information. The information may also be summa-
rized, exported, translated, or otherwise operated upon by the
system. The list of exceptions may serve as a ““To Do list (and
may be named as such in a user interface) for the user, afford-
ing the user flexibility in the manner and sequence in which
the software rules are addressed while at the same time pro-
viding assurances that they do get addressed. The exceptions
and how they were handled can also be maintained in a history

US 2010/0217639 Al

for later review, and can aid in ensuring that contract docu-
ments reflect unusual or non-standard choices.

[0043] Some embodiments may provide a system and user
interface for viewing, creating, and manipulating multiple
versions of a solar collector layout design for a particular
installation worksite. The use of versions may allow, for
example, a designer to quickly and easily change inputs (e.g.,
design preferences and/or feature or project properties) and
view the resultant outputs (e.g., alternative layouts, cost and
performance data) that correspond to the alternative design
choices (e.g., the cost impact of using various types of PV
modules) for the same project. These versions may provide
the designer with the ability to rapidly model different layouts
based on changes in user inputs and evaluate the results. Some
embodiments may allow the designer to quickly move from
one version to another, while others may allow a designer to
affect multiple versions with one action. Versions may share
one or more sets of elements, properties, or design rules, such
that changes made to one version apply to related versions.
For example, generic changes to a worksite, such as the addi-
tion of a newly discovered site feature, may affect multiple
design versions. The versions may share information, by, for
example, being located in a single, e.g., composite, file.

1. INTRODUCTION

[0044] Concepts described herein are applicable to solar
energy collector installations generally. Various types of solar
energy collectors, such as panels, absorbers and reflectors,
and other energy conversion technologies, such as photovol-
taic (PV) modules, solar-thermal absorbers, and concentrat-
ing solar power (CSP) solar systems, may be used. Solar
collectors may be self-mounted or placed on mounting sys-
tems of various types, including tilted, fixed, and tracking
systems. Systems may be designed for on-grid connection to
public utilities and/or for oft-grid systems. Solar collectors
and mounting systems may be attached to or located on vari-
ously the ground, rooftops, walls, parking structures, and so
forth. For ease of exposition, embodiments are herein largely
discussed in connection with PV module installations. It will
be understood, however, the embodiments are applicable to
solar collectors generally and as described above.

[0045] The task of designing a PV installation typically
includes several non-trivial and co-dependent processes.
These processes include, for example, (1) selection of par-
ticular PV modules based on, e.g., availability, cost, effi-
ciency, power requirements, etc.; (2) generation of a place-
ment (layout) of PV modules at an installation worksite; (3)
generation of a wiring (routing) scheme for the placed PV
modules; (4) estimation of project outputs, including power
production, power conversion efficiency, etc., based upon
complex and project-specific inputs; (5) generation of down-
stream documents, such as project bills of material (BOMs),
contracts, etc. Of course, all of the foregoing must be done in
compliance with local regulations, national regulations, etc.
A sequence of typical steps performed in a large-scale solar
project is provided in Table II.

[0046] As the size of an installation increases, as measured,
e.g., by module count, the difficulty of performing the above
processes increases. Even ostensibly trivial changes, such as
adding a module in a given a row, can have far-reaching
impacts on wiring topology and/or the placement of other
modules, and, therefore on the resultant system design and
outputs of the system (such as power output). Moreover,
because of such complexity, the optimization or modification

Aug. 26,2010

oflayouts, including re-arranging, adding, or removing mod-
ules, can be difficult and, especially for large projects, can
begin to resemble a process of trial-and-error. By the time a
project is designed, which can often take ten to twenty weeks,
or a contract finalized, which may take many more months,
the originally-contemplated components used in the layout
might not be available and significant redesign may be
required.

[0047] Some of the tedium and complexity of creating a
design for a worksite can be reduced through the use of
automated tools. In particular, software or otherwise com-
puter-implemented tools are described herein that may auto-
matically generate a design for a worksite based upon
encoded information corresponding to engineering practice,
designer preference, and worksite conditions. Some such
tools will use as a starting point a CAD representation of an
installation worksite, e.g., an AutoCAD .DWG file. This file
may include a vector or bitmap representation of a worksite,
which may typically be represented as a collection of geo-
metric objects, such as lines, polylines, curves, squares, rect-
angles, splines, symbols, polygons, other 2D or 3D shapes,
surfaces, solids, image data, etc. This representation may
typically not have much or any semantic information attached
to the geometric objects; in particular, the information in this
representation may be limited to shapes and dimensions cor-
responding to features of the physical worksite. So, for
example, a 2D plan view representation of a roof with an
exhaust fan might consist of a set of four lines forming a large
rectangle (the roof) and another set of four lines forming a
smaller square (the exhaust fan) where the smaller square is
contained within the large rectangle. Conventional tools for
CAD, as well as some embodiments, may provide the ability
for the user to create this initial representation of geometric
objects. Alternatively, the user may import it from a storage
location, such as a computer file.

[0048] Some embodiments may provide a mechanism by
which objects in the representation may be classified (e.g.,
categorized or tagged) so as to associate the object with
semantic information relevant to generating a module layout,
such as feature type. For example, a set of lines may be
classified by a user as an instance of the pre-existing feature
class of “roof”. The system may use this classification to
associate the objects with a set of semantic information cor-
responding to the relationship between a roof and a module
layout. This information may be related to the intrinsic physi-
cal properties of a roof, such as “pitch=17 degrees” and
“height=30.0 feet,” and/or extrinsic properties of a roof (such
as “edge setback=1.0 foot”). Such properties typically may be
editable by the user and may vary across different instances of
the same general type and by legal jurisdiction (zoning laws,
etc.). An example list of feature classes is provided in Table
IIT; an example list of feature properties is shown in Table IV.

[0049] Similarly, another object (or set of objects) in the
worksite representation may be classified by the user as an
instance of the feature type “exhaust fan.” The system may
thereafter associate the object with feature properties corre-
sponding to a exhaust fan, such as “height=3 feet.” In some
embodiments, a virtually unlimited number of objects may be
classified as different types of features with different proper-
ties. For some of these various features, feature properties
may be categorically pre-determined (and thus applicable and
invariant to each instance of a particular class or type) while
other feature properties may merely have default, instance-
specific values. Many feature properties, such as height, may

US 2010/0217639 Al

be adjusted by a user as necessary and/or expedient, while
other types of feature properties, such as those that are rel-
evant to the entire feature class, may or may not be editable by
auser. As such, each classified object may have feature prop-
erties shared with and/or distinct from those of other classi-
fied objects.

[0050] The semantic information associated with a particu-
lar object may also correspond to generalized design rules
that may typically be invariant for all instances of the particu-
lar feature class. For example, objects classified as roofs may
generally be associated by the system with appropriate fea-
ture layout constraints, such as “collector layout
allowable=yes,” and other design rules relating to how mod-
ules may be placed on or around a roof. As discussed below,
in some embodiments, design rules may be overridden at least
during initial use of the software, but a list of exceptions
maintained to track any variances from the rules’ require-
ments.

[0051] In this way, through the classification actions of the
user, the original, simple geometric representations of objects
may be assigned additional, e.g., higher-level, feature infor-
mation to be used by the automatic design system. In addition,
the system may provide a mechanism by which objects are
automatically classified as instances of features and by which
values are assigned to feature properties and design proper-
ties. A shape-recognition algorithm, learning algorithm, or
other expert system may be used to classify objects and assign
values. In addition, geometric objects may be modified, e.g.,
repaired, as by a pre-processing stage, to place the objects in
abetter condition or position for classification, feature assign-
ment, or layout processing. A repair engine may also use input
from adesigner, e.g., an attempted classification, as a basis for
repairing objects. For example, if a designer attempts to clas-
sify four lines as a “roof,” but the lines do not form a fully-
closed shape, a software repair engine may attempt to repair
the objects, as by making the appropriate lines co-terminal.
[0052] Some embodiments may provide a layout compo-
nent, such as a layout engine software module, that uses the
classified objects, their classifications and encoded informa-
tion, e.g., the set of feature properties, and possibly other
information as described below, to create a module installa-
tion design. So, for example, because an object classified as a
“roof” may be associated with the layout rule of “layout
allowable=yes,” a layout engine may know that it may con-
sider placing solar collectors in the bounded area between the
classified objects marked as forming a “roof” Similarly, the
layout engine may know not to allow placement modules in
the area corresponding to objects marked as “exhaust fan,”
because exhaust fans, as a class or as a particular instance,
may be associated with the layout rule of “layout
allowable=no.” As such, objects that potentially allow place-
ment of modules within them, such as roofs, may be referred
to as creating implicit “work areas” in which modules may be
placed (consistent with other layout rules), such that separate
user definitions of a work area may not be needed.

[0053] A user may also be provided with mechanisms to
assert even greater control over the layout process. For
example, a user may be allowed to refine the boundaries of
acceptable module placement by, e.g., explicitly defining one
or more user-created work areas. A user-created work area
may be a geometric object created by the user and associated
with a particular set of layout rules, including, for example,
“layout allowable=yes.” A layout engine software module
thus may be configured to consider placing solar collectors

Aug. 26,2010

only in locations that are contained within an explicit, e.g.,
user-created, work area, an implicit work area, either, or both.
This may be useful, for example, if a designer wished to limit
solar collector layout to only a portion of a roof, which could
be accomplished by creating a work area over only the desired
portion of the roof.

[0054] A user may also be allowed to specify different
design preferences, such as module type or orientation for the
solar collector layout, and, moreover, different choices can be
made to apply to different areas of the representation. Table V
provides an illustrative list of sample design preferences. So,
for example, a user may be allowed to define a boundary
wherein a particular set of design preferences is applied e.g.,
by defining one or more apertures. An aperture may be a
boundary or frame represented by a geometric object created
by the user. The system may associate the aperture with a set
of design preferences, including, for example “PV
module=SD305” and/or “tilt=45 degrees.” A layout engine
may be configured to place solar collectors, e.g., PV modules,
within the boundaries of a given aperture consistently with
the aperture’s assigned design preferences and the relevant
feature properties, layout rules, and other applicable proper-
ties and design rules. In some cases, a user may define more
than one aperture, and, thus, the layout engine may use vary-
ing sets of design preferences for layouts in different areas of
the worksite. Distinct apertures may be useful, for example, if
a designer wished to place one type of module, e.g., SD305s
oriented north-south, in one area of a roof and another mod-
ule, e.g., SP225s oriented east-west, in another area of the
roof. As another example, multiple apertures may provide
heterogeneous layouts for the purpose of defining different
spacings between rows of modules in different regions of a
work area. According to some embodiments, a layout of solar
collectors may be generated in any allowable solar collector
installation region within (e.g., only within) a work area and
within a layout aperture according to the aperture’s design
preferences regarding placement of solar collectors and the
properties of any objects and features, and the layout rules or
constraints associated therewith. The layout may take into
account collector modules and other objects and features that
are outside a work area or aperture if, for example, the design
preferences and properties of the objects are such that set-
backs call for it. For example, an object such as an exhaust
vent may be wholly or partially outside an aperture, but if the
application of design preferences restricts the layout of mod-
ules within a meter of the vent, and the exhaust vent is suffi-
ciently proximate to the aperture or work area, then that
exhaust vent may be taken into account.

[0055] Insome cases, apertures as defined by the user might
overlap or otherwise interrelate with each other. In such a
case, aperture conflict resolution rules may be utilized. For
example, a conflict resolution rule may define Aperture 1 as
taking priority over Aperture 2. A layout engine may thus give
modules placed in accordance with Aperture 1 priority over
those placed in accordance with Aperture 2. This may be
useful, for example, if the designer defines apertures with
overlapping boundaries, or if a designer wished to place solar
collectors, e.g., PV modules, on both sections of a concave
roof (i.e., the facing walls of an inverted or “V”’-shaped roof).
Because collectors and their mounting structures may have
significant height, there may be a conflict in module place-
ment at the intersection of the two roof section (i.e., the
bottom of the V). If one roof section receives more sunlight
than the other, the designer may wish to define an aperture for

US 2010/0217639 Al

the sunny section, and an aperture for the shady section. The
user may be allowed to assign priorities to the two apertures,
such that, in the event of conflict, the layout engine will place
modules according to the design preferences of the sunny
aperture over the design preferences of the shady aperture.
This may result in a net increase in the average per-module
power generation for the installation. A default priority may
be assigned to apertures, for example, in accordance with the
sequence in which the user defines the apertures or an explicit
priority.

[0056] The results of a design, including layout, may be
displayed, saved, printed, transmitted, or otherwise utilized.
Additional information pertaining to the layout, such as bill of
materials, a rendering, a financial analysis, a contract, a con-
tract term, an energy projection, a cost analysis, a parts list, a
simulation, a project schedule, an avoided cost analysis, a
presentation, a term sheet, and so forth, may be generated
based on the encoded information and generated layout.
[0057] Software controls to perform the foregoing actions
may be included as part of CAD software. Alternatively or
additionally, a specialized engine, library, or plugin may be
loaded into the CAD software at startup or on demand. Alter-
natively, a specialized or new software program may be writ-
ten dedicated to the implementation of embodiments of the
invention. Many mechanisms for creating, selecting, and
operating upon objects in a CAD software environment are
well-known in the art; such mechanisms include, for
example, click-select, drag-select, shift-select, clicking and
right-clicking on icons, toolbars, popups, objects, and so
forth. Joe Sutphin’s “AutoCAD 2006 VBA: A Programmer’s
Reference,” 101 Productions (2005), ISBN 9781590595794,
which discloses many such methods, is hereby incorporated
by reference in its entirety.

2. SYSTEM OPERATION AND USER
INTERFACE

[0058] FIG.1 provides a schematic illustration of an instal-
lation worksite for which a solar collector layout will be
designed. For convenience, the embodiments discussed
herein use photovoltaic (PV) modules as examples of solar
collectors. PV modules are to be placed on the roof 101 of a
building 100. The roof 101 may have a set of physical fea-
tures, such as exhaust fans 102, conduits 103, walkways,
pipes 105, large HVAC appliances 104, skylights, elevator
machinery, stairwells, and so forth. When projected geo-
metrically onto the roof 101 (as in a top-down birds-eye
view), features may appear solid/two-dimensional (such as
exhaust fans 102) or linear/one-dimensional (such as conduit
103) relative to the roof. A given feature may have a regular
footprint on a roof, such as the rectangular footprint arising
from an exhaust fan; alternatively, features may have an
irregular footprint. Features of a roof may also be intangible,
such as areas 106 of high wind or updraft. The roof 101 and
each feature upon it or relating to it may have a set of char-
acteristics relevant to solar collector installation design. For
example, PV modules are not typically placed on an exhaust
fan or within a prescribed setback from an exhaust fan 102,
where the setback may be determined by regulation, customer
policy or design choice. Similarly, PV modules typically are
not placed in areas of high wind 106, or within a certain
distance of an edge or corner of the roof 101.

[0059] The features of a roof may also determine the rela-
tive performance of PV modules placed on the roof 101. For
example, presuming that the roof 101 is most typically

Aug. 26,2010

exposed to sunlight from the South (indicated as 105), a PV
module placed at a location A is likely to generate more
power, on average, than a PV module placed at location B
(which is at least partially obscured by a large HVAC appli-
ance 104).

[0060] FIG. 2 illustrates the installation worksite of FIG. 1
as represented in an example user interface of a computer-
aided design (CAD) system 200. The CAD system 200 may
include a 2D or 3D visual representation of the installation
worksite. Typically, the representation includes three-dimen-
sional information about the features of the worksite. For
convenience, the embodiments are described with reference
to a 2D plan view 204. The visual representation may be
constructed of geometric entities, such as lines, line seg-
ments, polylines, arcs, curves, circles, square, rectangles,
polygons, etc. These geometric entities may be closed, mean-
ing they define a bounded area, open, or self-intersecting,
may be planar or non-planar, and may include holes, complex
surfaces, and geographic topography. These geometric
objects may correspond to physical or non-physical features
at the physical worksite. For example, the representation 204
provides two polygons each defining bounded areas refer-
enced by numeral 202 corresponding to the exhaust fan fea-
tures 102 from FIG. 1. A set of line segments and curves 203
corresponds to the conduit feature 103 from FIG. 1. The
visual representation may first be loaded into the CAD soft-
ware through the use of a particular file format, such as
AutoCAD .DWG. Alternatively, the visual representation
may be created in the CAD software through the use of
standard CAD drawing tools. The visual representation 204
in the CAD software may represent only a portion of a work-
site or representing areas beyond the worksite.

[0061] At this point, the representation of the worksite in
the CAD software may have very little semantic information
attached to it. For example, other than mere geometry, the
four line segments that form each of the bounded areas 202
may not be associated semantically with, or otherwise have
meaning in relation to, the corresponding exhaust fan features
102. Characteristics of an exhaust fan feature relevant to PV
module design, such as typical setback or the shadows it may
cast (e.g., is expected to cast) at different times of day or year,
might not be incorporated in the representation. Similarly, the
lines 201 corresponding to the outline of the roof might not be
associated semantically in the CAD software with the roof
101 of the worksite. Rather, from the perspective of the CAD
software, the visual representation may simply be a collection
of geometric objects with dimension information only,
removed from semantic relation to each other, the external
worksite, or solar collector installation design. Alternatively,
the representation may have some semantic information
attached to objects, such as, for example GPS data. This data
may be used in subsequent steps in the process.

[0062] FIG. 3 illustrates a process by which the visual
representation and the geometric objects within it may be
given semantic meaning. A classification component of an
embodiment may perform this action by allowing a “dumb”
geometric object, e.g., one having dimensional information
only, to be classified, automatically or by the user, as an
instance of a particular type of feature. As part of classifica-
tion as an instance of a class of feature, an object may be
associated with a set of additional feature properties, which
may include properties of the feature that may pertain to solar
collector installation design, such as height, setback, etc. The
classification and properties may be used by the system to

US 2010/0217639 Al

associate the object with layout rules corresponding to poten-
tial interactions between the classified object and other
objects and impact on a resulting solar collector design. These
feature properties may be recognized, utilized, and operated
upon by software, such as a layout engine that applies layout
rules to objects.

[0063] So, for example, polyline 201 may be associated
with a type of feature, such as “roof” This classification may
implicate layout rules relating to the placement of PV mod-
ules on roofs. These rules, when invoked by a layout engine,
may operate on feature properties of the particular roof (e.g.,
avertical height oftf the ground and roofpitch). The properties
associated with an object may be determined by correspon-
dence or interrelation with other object properties. So, for
example the height of an exhaust fan relative to a roof (which
may be useful for calculating the shadow cast by the exhaust
fan on the roof) may be determined from feature properties
describing the absolute maximal altitude of the exhaust fan
and the absolute height of the roof at the point of the exhaust
fan (which itself may be determinable by the roofs properties
of height and pitch). In this way, the encoded information,
including object classifications and feature properties, may
form (or be associated with) a complete or partial specifica-
tion of the characteristics of the physical features of the instal-
lation worksite as they relate to PV module layout design. In
particular, the characteristics of the physical feature related to
solar collector layout design may include or form at least a
partial set of information for the automatic placement of solar
collectors within or around that physical feature. Pre-defined
feature classifications and classes may include physical fea-
tures and non-physical features, such as a property boundary,
a real-estate parcel boundary, a zoning designation, a utility
right-of-way, a flood plain, an environmentally-sensitive
area, or a special seismic zone.

[0064] In particular, some geometric objects may be clas-
sified as instances of features types that provide allowance for
placement of PV modules, e.g., a geometric object classified
as a roof may be associated with a layout rule that generally
allows placement of PV modules on its surface. As such, the
classification of an object as a “roof” may cause that object to
be treated as an implicit work area. Similarly, some geometric
objects may be classified as features that prohibit, or other-
wise do not generally allow, placement of PV modules, e.g.,
a geometric object classified as a pond or an air conditioning
unit may be associated with a layout rule that generally does
not allow placement of PV modules on the obstruction or
within a prescribed boundary, e.g., distance, of the obstruc-
tion. Other layout rules to be imposed on the placement of PV
modules may be defined, including constraints embodying
the application of construction regulations and codes, wind
conditions, temperature conditions, power and heat genera-
tion limitations to module placement on or nearby a given
feature.

[0065] The form and content of the feature properties asso-
ciated with a given type of feature may precede or pre-exist
the creation of a corresponding object. Classes of physical
features, and the encoded information corresponding thereto,
may be predefined. So, for example, the set of properties and
default values corresponding to a roof or other surface, and
the design rules that apply to them, may be stored in a data-
base and/or as part of a class definition. (See Tables I1I-1V.)
When a particular object is classified as a roof, the class
definition may be instantiated and associated with the par-
ticular object. Of course, the software may provide a mecha-

Aug. 26,2010

nism whereby additional types of features may be defined by
the designer and used for classification. Similarly, the default
or pre-existing encoded information, including default values
for properties and layout constraints, for a given type of object
may be modified by designers or administrators. Modifica-
tion of the encoded information may take place before gen-
eration of a layout and/or after generation of a layout. Modi-
fication of certain encoded information, such as feature
properties, after generation of a layout may trigger automatic
regeneration of the layout based upon the new set of data.
Some implementations may allow the creation or modifica-
tion of feature classes at the time of categorization. For
example, the user interface may present the above-described
capabilities integrated into or accessible from the classifica-
tion interface components.

[0066] The mechanisms oruser interface controls by which
objects are classified, modified, or otherwise associated with
properties may vary. For example, as shown in FIG. 3, a user
may select the polyline 201 corresponding to the roof 101.
The user may then click upon a “Roof” or “Classify As .. .”
toolbar button or icon, or select similar commands from a
menu. The user may also right-click with a pointer tool on the
polyline 201 to simultaneously select the polyline 201 and
open a context menu 310 that allows classification as a roof.
During selection and classification, the representation of the
object may be changed to indicate its selection or classifica-
tion. For example, its color may be modified, its line weight or
style may be changed (as indicated here by the dashed
polyline 201). Many types of controls for performing actions
upon objects in a user interface are well-known in the art.
Multiple objects may be classified as instances of the same
type of feature, such as a “roof,” which may allow the system
to create layouts for worksites containing multiple roofs.
Different types, or subtypes, of features may be represented
differently, such as being placed on distinct drawing layers in
the user interface and/or may be given different colors or line
weights. A control to declassify an object may be provided.

[0067] Mechanisms for automatically repairing invalid or
deficient worksite geometry may be employed. For example,
suppose that, in one embodiment, the design rules require that
a “roof” be represented by a closed polygon. Suppose further
that the geometric information corresponding to a roof in a
worksite representation is composed of four line segments
whose common endpoints are in close proximity but are not
coincident (i.e., not forming a closed shape). This geometri-
cal representation may cause a processing error or produce
incorrect results if the line endpoints are left non-coincident.
In one embodiment, a mechanism may be provided to pre-
process geometric elements during classification, for
instance, to transform line segments with non-coincidental
endpoints that are within a specified degree of closeness to
each other into line segments with shared end-points. Geo-
metric algorithms for repair of non-semantic geometric data
exist.

[0068] The software may also provide controls to allow a
user to see and/or modify some or all of the encoded infor-
mation, such as editable properties, associated with a given
object. So, for example, the user interface may include a
properties roll-up, toolbar, or palette 311 that shows repre-
sentations of some or all of the feature properties associated
with that object. Some feature properties, such as vertical
height 312 for a roof, may be adjusted by the user. Other
feature properties, such as the resulting area, e.g., in square
meters, of the roof that may be used to place PV modules may

US 2010/0217639 Al

be calculated by the software, e.g., dictated by the interaction
of layout constraints, feature properties, and so forth. Other
information, such as an indication of the layout rules appli-
cable to a given object, e.g. a indication that a particular object
is suitable for placement of PV modules, might not be dis-
played or visible to the user. Many types of controls for
modifying the properties of objects in a user interface exist.

[0069] Some embodiments may include a hierarchy of fea-
ture classes. For example, features may be divided into three
main categories: placeable surfaces, solid obstructions, and
linear obstructions. Each category may include several types
of feature. For example, placeable surfaces may include
roofs, fields, walls, etc. Solid obstructions may include
exhaust fans, poles, HVAC units, depressions, trees, roof
hatches, antennas, satellites, stairs, drains, penthouses, roof
shot, skylights, sleepers, survey points, vents, valves, etc.
Linear-type obstructions include walkways, equipment,
expansion joints, walls, conduits, pipes, etc. Each type of
feature may also contain subtypes, e.g., an antenna obstruc-
tion may be sub-typed as an outline antenna, a point antenna,
etc., and a conduit may be sub-typed as an electrical, water,
support, vertical, etc. conduit. Some obstructions may be
classified as either solid or linear, depending on the specific
geometry (e.g., a set of stairs).

[0070] Similarly, FIG. 4 illustrates a process by which a
second object may be classified to associate it with semantic
meaning. Here, the set of lines or polyline 202 corresponding
to an exhaust fan on the roof is being classified as a solid
obstruction, viz., an “HVAC unit” of subtype “Exhaust Fan,”
through the use of a context menu 310 and properties palate
311. Here, the dashing of the line is used as a visual cue to the
user that this particular object has been selected. Properties
palate 311 shows sample relevant feature properties and their
current values for the exhaust fan, including height, setback,
subtype, etc. The palate 311 shows that the object 202 in FIG.
4 has been classified as a feature of category (or class) solid
obstruction 315, type HVAC 317, and subtype Exhaust Fan
319. In this way, multiple objects corresponding to the physi-
cal installation worksite may be classified. In some arrange-
ments, rather than requiring a user manually to classify
objects as illustrated above, a system initially may attempt to
auto-classify objects based upon, e.g., heuristics and analysis
of the representation of the worksite or metadata already
available, e.g., objects in a pre-made CAD drawing layer
named “skylights” may be auto-classified as skylights. A
system may allow or require later modification or verification
by a user. A system may use any information related to the
geometric objects, such as GPS data, to auto-classify objects.

[0071] Not all properties need be associated with a particu-
lar feature or geometric object in the representation. For
example, the software may allow the use and setting of global
project properties, such as worksite location (zip code), ori-
entation of the worksite (north arrow), drawing scale, units of
measure, country location, customer information (customer
name, address, etc.). Project properties may include customer
properties, including contact information, legal status, finan-
cial condition, utility information, utility rate, and energy
consumption, and may be pre-defined. Other project proper-
ties may include soil type, weather conditions, design tem-
perature, design seismic load, operating characteristics, load
limits, and electrical interconnection requirements, and so
forth. This information may be input manually by the
designer or may be accessed through a link to an external data
source such as a Customer Relationship Management

Aug. 26,2010

(“CRM”) system used to hold the customer account informa-
tion. Table VI provides an exemplary list of project properties.
Similarly, some design rules, such as project design rules,
e.g., global layout rules, may operate independently of any
particular feature, such as electric power interconnection
standards that regulate the interconnection of any PV system
to a public utility. Pre-defined project design rules may form
a specification of an electrical code regulation, a property
setback requirement, a safety requirement, a interconnection
requirement, an engineering rule or best practice, a fusing
requirement, etc. Such regulatory rules may be adapted to
produce a layout that may be connected to a public utility
grid, a private electrical grid, or another specification.

[0072] The type(s) of module used in a design may also
affect how the layout engine operates, because module types
may be associated with particular module-specific informa-
tion, such as module properties, e.g., inter-module spacing,
voltage, wiring requirements, weight, etc. Some module-spe-
cific information may be associated with particular types of
modules, mounting systems, inverter types, and so forth. Dif-
ferent module design rules may operate on a per-module,
per-module-string, and/or per-module-sub-array basis. So,
for example, a particular module may require a minimum
inter-module spacing and operating temperature or a particu-
lar wiring configuration, such as the number of modules per
string as a function of temperature. Table VII provides an
example list of module properties.

[0073] AsshowninFIG. 5A, design preferences, including
the type(s) of modules 502 and/or mounting systems to be
used, the orientation 503 in which to lay out rows and col-
umns of the modules, the start point 504 (or origin) of the
tiling layout, inverter type (where there are options), etc., may
also be specified. The user may be provided with the ability to
modify one or more of the operative global properties, design
preferences, and/or module properties. For example, orienta-
tion of modules with respect to true north, may be entered
numerically into an appropriate control, as shown at 503.
Alternatively, orientation may be set by selecting an existing
line, such as the edge of a roof top, and indicating module
orientation should equal the selected line. A start point for
layout may be set by, e.g., entering coordinates into an appro-
priate control 504 and/or selecting a point in the visual rep-
resentation with a pointing device like a mouse or touch
screen, as shown at 506. A control, such as a context menu
520, may be provided to invoke a solar collector installation
layout engine. At the time of specifying design preferences, it
may also be possible to define new types of those preferences
which consist of enumerated types, such as solar collector
modules, mounting systems, or inverter systems. These
newly defined types are advantageously added to the store of
defined types and are available for use during specification.

[0074] As shown in FIG. 5B, the layout engine may be
invoked so as to generate a solar collector design based upon,
and consistent with, the relevant encoded information, such
as feature classifications, feature properties, work areas,
design preferences, global properties, module properties, lay-
out and design rules, etc. In the case of PV modules, this
layout may include a physical arrangement of PV modules, as
displayed in the representation, and an attendant arrangement
of' wiring systems, mounting systems and hardware, electrical
components for the proper operation ofthe installation, etc. In
some cases, PV modules may be placed in such a way as to be
consistent with all (or substantially all) the rules and con-
straints for all the objects. A number of different methods and

US 2010/0217639 Al

systems may be used to create such a PV module layout. In
particular, a layout engine component of a system may create
a layout using a tiling algorithm.

[0075] Under one such algorithm, as illustrated by the flow-
chart of FIG. 6 A, a representation of a worksite, including any
geometric objects, may first be defined (605) by gathering
data on physical features (particularly dimension) at the
worksite. This may be done at the worksite through the use of
a GPS based surveying device, or, alternatively, CAD soft-
ware may be used to create representative geometric objects.
This step may be interleaved with step 610. At step 610, the
objects in the representation may be classified as features and
appropriate values may be set for feature properties. This may
be done either manually by a user or automatically by the
system through automated feature recognition. The user may
classify one or more objects as features that provide regions in
which layout of PV modules is allowed or preferred, such as
fields or rooftops. At step 612, the user may specify one or
more work areas, e.g., regions where PV module layout is
preferred a priori, as by instructions from the owner. Explicit
definitions of work areas are optional and are discussed fur-
ther below. At 615, design preferences, project properties, and
other encoded information, may be set or modified.

[0076] At 620, PV modules may first be tiled across one or
more work areas, e.g., objects that are known to be “allow-
able” for placement, such as rooftop surfaces, without regard
to obstructions or other interfering features (like exhaust
fans). This may be operationalized, for instance, by placing
PV modules across implicit work areas, e.g., across objects
classified as features that support PV modules. The tiling may
be performed by creating a grid or array in the defined space
according to the relevant module design rules and properties.
The tiling may be parametrically varied to include spacing
between rows, or the amount of offset between adjacent rows
or along regular or irregular edges such as a curving road or a
property line. Additionally, the tiling may correspond to indi-
vidual modules (with various individually-specified lengths
or widths) or may represent collections of modules in arbi-
trary arrangements (e.g. as modules connected to the same
mounting structure or tracking mechanism). Additionally,
periodic interruption of tiling to accommodate service roads,
mandatory fire access, or other types of design rules may be
specified. In some embodiments, geometric objects corre-
sponding to the module objects of the layout may be actually
created and placed in the visual representation, as shown in
FIG. 6B. Alternatively or additionally, the layout may be
logical, in that modules are represented in a data structure. In
either case, the geometric objects may be classified as
instances of the relevant module type, with the particular
feature properties and layout constraints associated there-
with.

[0077] Returning to FIG. 6A, at 625, the system may then
make a second pass over the tiled modules, marking as illegal
any module whose placement conflicts with one or more
design rules as applied to properties. So, for example, as
shown in FIG. 6B, the entire surface of roof 201 may be tiled
with modules. A second pass may then consider each module
in turn and mark any modules that are placed illegally (i.e.,
not according to the rules of the representation and objects).
This may be operationalized, for instance, by looping through
each placed module, and, for each placed module, looping
through all design rules, and applying relevant ones to find
any conflicts. Thus, for example, any modules that are within
the physical footprint of an exhaust fan 202, or within the

Aug. 26,2010

setback footprint from the exhaust fan 202, may be marked
illegal. Similarly, any modules within a certain distance of a
high wind zone, e.g., FIG. 1 at 106, may be marked illegal.
Illegal modules may be grayed out, automatically removed,
moved to another layer, or otherwise changed relative to
“legal” modules in the data structure. Marking may be
explicit, as in an “illegal?” field or property in a software data
structure, or may be implicit in the operation of the process.
Illegal modules may or may not be left accessible to the user.
Different levels of illegality may be maintained: for example,
some modules may be strictly illegal, such that a designer
cannot override their removal while other modules may be
“softly” illegal or disfavored, such that a designer may be
allowed to restore their placement. Different levels of legality
may be maintained through the use of distinct colors, layers,
and so forth. The result of the layout process is a PV module
layout consistent with the design rules and properties for the
worksite. As shown in FIG. 5B, the modules laid out at 530,
illustrated in solid hatching, are legally placed. There are no
modules located in the area referenced by 533, since that
associated area is within the physical boundaries of an
obstruction. The system may include the ability to select one
or more otherwise-illegal modules and restore them to regular
placement. In some cases, this may be performed in contra-
vention of at least one of the rules as applied to the feature
properties. The modules laid out at 535, and illustrated in
grayed hatching, may be softly illegal, as they may violate an
optional setback requirement. As discussed below, a designer
may be allowed to “turn on” or reinstate such softly-illegal
modules.

[0078] Some module placements may be illegal regardless
of relationship with any other modules, such as where a
module is placed too close to an exhaust fan. However, some
illegal configurations may only be apparent relative to other
modules and may therefore be identified recursively. For
example, most grid-connected PV installations call for a pre-
determined number of modules to be wired in electrical
series. For example, when SunPower™ 305 modules are used
in Northern California and connected to a 600 VDC inverter,
exactly 12 modules must be connected in each series string.

[0079] As such, after eliminating “strictly” illegal modules,
the system may perform additional “passes” of the remaining
modules to perform a recursive or regressive check for addi-
tional modules that may fail design rules, such as inter-mod-
ule connection rules. Such modules may be grayed out as in
FIG. 5B.

[0080] Returning to FIG. 6A, at 630, after automatic gen-
eration of a layout, the user may be presented with an option
to modify at least one of the objects or the project generally.
User-interface controls to allow a user to modify placement
are varied: [llegal modules may be placed on a separate layer
of'the representation and/or colored or styled differently, as in
FIG. 5B. A user may change the layer of an illegal module to
make it legal, or vice-versa. A user may right-click or other-
wise select a module to change its status. A control may be
provided to allow deletion of a legally-placed module, which
may include absolute deletion or moving the module to a
“deleted” layer. A deleted module may subsequently be
restored if necessary. Controls to undo an action, or to redo an
undone action, such as reinstatement of a module, may be
provided. Undo and redo are discussed further below.

[0081] Controls may be provided to include the ability to
change rules or categorizations and re-do the automatic lay-
out. A modification component of a system may provide a

US 2010/0217639 Al

user interface, or other mechanism, that allows replacement
of a tile that had been placed but subsequently removed (e.g.,
according to a rule violation). Similarly, a mechanism may be
provided to allow a placed module to be removed from a
layout.

[0082] As shown at 635, user modification of the layout
may cause the modified layout to be in an inconsistent state
with respect to the relevant design rules and properties, or to
otherwise have conflicts. For example, manual addition of a
module by a user at a particular point may violate a design
rule regarding setback. As such, modifications of a layout,
such as addition, replacement, or removal, may cause re-
calculation of a layout, recalculation of the routing/wiring
scheme for a layout, etc. Modifications of the layout, or any
inconsistencies with layout rules, may be noted on an excep-
tions list as discussed below in more detail. Some implemen-
tations may allow a user to disable any automatic re-calcula-
tion, and some implementations may allow re-calculation to
be invoked by a user.

[0083] At 640, user interface controls may be provided so
as to allow a user to perform additional actions with or upon
a generated layout. For example, a layout may be saved,
printed, and/or transmitted. Additionally, layout information,
as well as rules and categorizations of objects, may be used to
generate additional materials. For example, the performance,
e.g., power output, of a particular module layout may be
simulated using encoded information related to features in the
representation, e.g., the efficiency of the user-selected model
of solar collector and an energy-predication simulation rule
relating to the amount of sunlight received by aroofarea, such
as latitude and/or height. Such results, e.g., simulation results,
may be displayed or otherwise made available to a designer.
As another example, the number and cost of modules and
associated components (such as wiring and electrical invert-
ers) may be tallied and used to generate a bill of material, cost
estimates, invoices, etc. Multiple types of documents or deliv-
erables, such as those noted in connection with typical layout
design processes, may be automatically generated by some
embodiments as a downstream output.

3. USER-DEFINED WORK AREAS

[0084] The systems as described thus far have largely pro-
vided for layout of solar collectors, and particularly PV mod-
ules, over allowable surfaces or objects, such as roofs,
through the use of implicit work areas defined by feature
classifications. Additionally or alternatively, a system may
provide a user interface to allow more fine-grained control
over the layout process by giving the user explicit control over
the definition and use of work areas as regions in which
modules are allowed to be placed (notwithstanding violations
of other design rules).

[0085] Inparticular, as illustrated in FIG. 7A, a system may
allow a user to define one or more user-created boundaries for
constraining or expanding module layout, e.g., explicit work
areas. A work area may represent a boundary, extent, or set of
allowable module installation regions corresponding to loca-
tions atthe physical installation worksite. A work area may be
coextensive with an object or set of objects corresponding to
the physical installation worksite. Alternatively, a work area,
such as that at 701, may cover only a portion of an otherwise-
layout-allowable object. A work area may also span over
multiple objects, and multiple work areas may be defined. An
explicit work area 701 may be created by selecting a “work
area” toolbar icon with a pointing device (e.g., mouse, touch-

Aug. 26,2010

pad, joystick or touch screen) or keyboard shortcut and sub-
sequently drawing a rectangle, polyline, or other object. A
user may define a work area by any method of defining a
geometric object, including dragging a rectangle and clicking
a “work area” toolbar icon or using a context menu. In the
illustrated embodiment, objects may be marked (or otherwise
associated) by a user as explicit work areas. A user-created
work area may, but need not, be coextensive with any object,
e.g., building surface or field, or the visual representation
entirely. User-created work areas may be used in addition to,
or in replacement of, implicit work areas.

[0086] Insome cases, alayoutengine may be configured to
place PV modules only in the intersection between an implicit
work area, such as a roof or field and an explicit work area. In
other cases, an explicit work area may define allowable place-
ment areas without regard to (or in addition to) other place-
able objects or implicit work areas. Explicit work areas may
be used to override default placement rules for objects. This
allows a designer to have greater control over where to place
modules, such as whether to place modules on only a portion
of a roof. For example, as shown in FIG. 7A, if a designer
wished to consider placing objects only in western section of
the roof 201, the designer could create a work area 701. In
some cases, in the resulting layout, modules would be placed
only in the intersection of the roof 201 and the work area 701.
Thus, modules may be placed at location A (as consistent with
other rules, such as those for conduit 203), but not at location
B. One such layout is depicted in FIG. 7B.

[0087] One algorithm for implementing explicit work areas
in the context of a layout engine is as follows: With reference
to FIG. 6A, at 620, preferably modules are tiled only in
locations that are contained within both a placeable object
(such as a roof or a field) and an explicit work area. The
method may then proceed as described previously. An alter-
native algorithm is to tile modules on all allowable surfaces
and, at 625, subsequently mark or remove them if they fall
partially or completely outside the boundaries of all explicit
work areas.

[0088] Work areas may be modified by the user, such as by
moving or otherwise adjusting a boundary of the work area.
Modification of a work area may or may not cause automatic
recalculation or regeneration of a previously generated lay-
out.

4. APERTURES

[0089] In addition or alternatively to work areas, a system
may provide a user with the ability to define one or more
boundaries for application of one or more localized sets of
design preferences, e.g. layout apertures. Apertures allow a
designer to create heterogeneous zones for the desired layout
and may be used to provide another layer of control to the
layout process. A layout engine as previously described may
use a single set of design preferences (e.g., module type,
orientation, start point, etc.) for laying out modules. Alterna-
tively, a user interface may be provided with controls to allow
a user to define one or more apertures, each of which may
include a boundary. Multiple apertures may be associated
with independent and heterogeneous sets of design prefer-
ences. Different apertures may have different extents; layout
of PV modules within the boundary of an aperture may typi-
cally (with exceptions) be determined at least in part by the
user-defined design preferences associated with the aperture.
[0090] Assuch, and as shown in FIG. 8 A, a user may define
a first aperture 801. The aperture boundary 801 may be coex-

US 2010/0217639 Al

tensive with an object, such as aroof 201, and/or an explicit or
implicit work area; or, as shown in FIG. 8A, the aperture
boundary 801 may cover only a part of a placeable object,
such as the roof 201. The aperture boundary 801 may also
cover more than one work area and/or object onto which
modules may be placed. The first aperture 801 may have a set
of'design preferences associated with it, as shown at 702-705.
Aperture design preferences may include PV module type or
model, module orientation to true north, inter-row and col-
lector spacing, tilt angle, mounting method, string output
voltage, inter-row offset and aperture size and shape, tile
starting point, and other properties. (See Table V for addi-
tional examples.) In some embodiments, a user may modify
some or all of the design preferences or may continue with the
defaults. As mentioned above, a user may also define new
module types or models and possibly other enumerated prop-
erties such as mounting methods while specifying an aper-
ture’s design preferences. These newly defined entities are
advantageously available for subsequent use in the same
manner as previously defined entities. A second aperture 802
may be created, and may similarly cover all or some portion
of'a work area and/or placeable object, such as roof 201. The
second aperture 802 may have a different set of design pref-
erences associated with it. Apertures may be created by the
user, or may be automatically defined or pre-defined. For
example, a general default aperture, covering the entirety of a
particular work area or the entire representation of the work-
site, may be initially defined as a default. Alternatively, the
software may require a user to define at least one aperture
before operation of the layout engine. An aperture may be
created, for example, by selecting a geometric object and
clicking a toolbox icon or using a context menu, as shown at
805. Multiple controls for adjusting aperture rules may be
provided; for example, a user may be allowed to pick a linear
reference object to be used as orientation of the module layout
in the aperture.

[0091] Insome cases, the arrangement of modules placed in
an intersection or overlap between an aperture and a work
area will depend on the aperture’s design preferences. So, for
example, with reference to FIG. 8A, assume a work area
coextensive with the roof 201 has been created (either implic-
itly or explicitly). When a layout engine is invoked, modules
may be placed in location A according to the design prefer-
ences of the first aperture 801; modules may be placed in
location B according to the design preferences associated
with the second aperture 802; it may be that modules may not
be placed in location C because C is not within an aperture (or
they may be placed and marked as illegal). In some cases,
apertures may overlap, as at location D, which means that two
or more sets of aperture design preferences may apply to
location D. In these situations, some systems will apply aper-
ture conflict resolution rules, described in more detail further
below in connection with FIG. 9. Modules may not be placed
in Location E because Location E is not within a work area.
FIG. 8B depicts an illustrative layout according to the fore-
going, wherein the layout conflict in region D has been
resolved in favor of the first aperture 801. Aperture conflict
resolution rules are discussed in further detail below.

[0092] Apertures may be useful, for example, because they
may allow a designer to specify one set of design preferences
and properties for a first portion of a work area or object, such
as a roof, and a second set of design preferences and proper-
ties for a second portion of the same work area or object, as
shown in FIGS. 8A and 8B. So, for example, if solar collec-

Aug. 26,2010

tors are to be placed on two sections of the same rooftop, but
one section is flat while the other is sloped, a designer may
choose two different mounting angles to the vertical, orien-
tations relative to south, PV module models, and/or mounting
systems appropriate to the two roof types. Similarly, if one
side of a roof is particularly windy relative to another side, a
user may create a first aperture for the windy side, using
design preferences that include wind-tolerant modules and
mounting systems, and a second aperture, using less-tolerant
modules and mounting systems, for the less-windy portion of
the roof. Apertures may also be moved or adjusted by a user
(as with a user-defined work area), and this is one way such a
system may provide the ability for a designer to quickly
visualize alternative layouts.

[0093] Because apertures may provide differing sets of
design preferences for module placement, overlapping or
adjacent apertures may cause conflicts in placement. This
overlap may be substantial. Aperture conflict resolution rules
may be used to resolve inconsistencies in module placement.
One simple form of conflict resolution rule is to rank aper-
tures in creation-order, with either first- or last-created aper-
ture having highest priority. Lexicographic order may also be
used. A user may be provided with a control to explicitly
change the aperture priority order. One method of doing this
is to associate each aperture with a user-editable design pref-
erence defining its priority, e.g., “priority=2. A default aper-
ture, if any, may have the lowest priority.

[0094] Numerous methods may be used to create modules
layouts in accordance with the aperture conflict resolution
rules. As an example, apertures may be given a priority as
described above, and, in the case of a conflict in placement,
priority is given to placement according to the higher-priority
aperture.

[0095] For example, independent, partial layouts may be
generated for all defined apertures, regardless of priority,
according to the methods described above as applied prima-
rily to objects and features falling at least partially within each
aperture boundary. This computation may be performed in
parallel. If no apertures overlap, the union of the two partial
layouts may be taken as the ‘final’ layout and may be saved,
stored, or rendered on an output device. If there is overlap,
however, the conflicts between placed modules may be rec-
onciled based on conflict resolution rules. In some cases, of
the conflicting modules, those from the lower-priority aper-
ture may be removed, thus modifying or adjusting the partial
installation layout corresponding to the lower-priority aper-
ture. As shown in FIG. 9A, one method of laying out involves,
upon starting 900 the process, first inputting worksite data
(e.g., physical dimensions of boundaries and structures) at
901; classifying objects and creating work area(s) and aper-
ture(s) at 902; creating layouts of modules in each aperture at
904; analyzing each module in each aperture for conflicting
placement with respect to other modules and/or other aper-
tures at 906; using aperture priority rules to resolve any con-
flicts at 908, and allowing the user to modify module place-
ment made according to the foregoing at 910. The process
ends at 912, although it will be understood that numerous
additional intervening processes and repetition of similar
steps to the above can be conducted.

[0096] Another method of accomplishing this is to analyze
each aperture in order of priority, from highest to lowest, and
place modules as possible (according to the above) in that
aperture, provided such placement is not inconsistent with
modules that have already been placed as part of higher-

US 2010/0217639 Al

priority apertures. Placement of PV modules will typically
take place within the boundaries of a given aperture according
to the design preferences of that aperture as applied to the
features that intersect (or contain or are contained) within that
aperture (as well as those that are outside that aperture but
have, for example, setback rules), feature properties, module
properties, and project properties. This method produces a set
of successive installation layouts, where each successive lay-
out is consistent with the design preferences of the present
and all higher-priority apertures. Each of the successive
installation layouts may be rendered or stored on a device or
medium.

[0097] FIG. 9B illustrates another example process for lay-
ing out modules in accordance with classified objects, work
areas, and conflicting apertures. After the start 930 of the
process, at 931 a user may first classify objects and create one
or more work areas and/or apertures (or default or implicit
work areas and apertures may be used). In some embodi-
ments, apertures may be associated with a relative sequence
of creation that may determine their priority in subsequent
conflict resolution.

[0098] At 932, modules may be placed according to the
rules of the first aperture, where “first” may be determined by
relative priority rules described above. Modules may be
placed only within the boundaries of the first aperture and a
work area, whether implicit or explicit. If explicit work areas
are defined, modules may be placed only in the intersection(s)
between an aperture, a placeable surface, and an explicit work
area. If explicit work areas are not defined or not used, mod-
ules may be placed in the intersection of an aperture and a
work area defined by a placeable object, such as a roof. At
933, modules that conflict with one or more design rules, such
as violating setback requirements for exhaust fans, are
marked illegal, and thereafter removed or otherwise taken out
of the active layout.

[0099] At 934, the steps 932 and 933 may be repeated for a
second-highest-priority aperture (if any). However, in some
cases, in addition to the usual requirements of intersection
with a work area, modules may only be placed in the second
aperture if they do not conflict with modules already placed in
the first aperture. This may be accomplished in the equivalent
to the placement stage (932), e.g., never placing modules that
conflict with the first aperture. Alternatively, modules may be
placed across the second aperture without regard to the first
aperture’s modules or design preferences, and subsequently
removed (during the equivalent of step 933) if found to be
conflicting with the modules placed in the first aperture (or the
design preferences pertaining thereto).

[0100] At 935, steps 932 and 933 may be repeated for a
third-highest-priority aperture (if any). Modules may be
placed in the third aperture, and according to the rules of the
third aperture, but only if they do not conflict with modules
placed in the first or second apertures or design preferences
thereof. This process can be repeated optionally, as shown at
936, for all remaining apertures in turn. At 937, or at an earlier
time, a user may be allowed to modify module placement,
which may lead to regeneration of all or part of alayout, based
upon the steps described above. As noted above, additional
intervening steps may be taken, and any of the above steps
repeated as desired before the process ends at 938. The final
layout may be displayed on a computing device or otherwise
rendered or stored.

5. PROJECT HIERARCHY AND STORAGE

[0101] A solar installation project design, including a rep-
resentation of a project worksite, features and their classifi-

Aug. 26,2010

cations, and a layout of solar collectors, may be characterized
by project state information. Project state information
includes, generally speaking, the information that can be used
to re-create, without more, a particular solar collector instal-
lation design. So, for example a typical use of project state
information is to allow a design to be saved in a non-volatile
memory. Invoking a “save” function or control on a particular
design may cause project state information to be written to a
hard disk. The software program may then be terminated
(clearing all of its working memory) and restarted. A user
may then select an “open” function or control and point the
software to the saved project state information. The software
may then load and operate upon the project state information
to re-create the solar installation project.

[0102] In some cases, the entire contents of the software’s
working memory when displaying a particular design can be
recognized as “project state information,” since such is
enough to fully specify a particular design. However, one
advantage of using project state information is that one may
use only a subset of the working memory (or even other data),
thus reducing both the size and the complexity of the project
state information. For example, a given design may include a
layout of one million collectors, all of which are of the T10
module type, and laid out in a 1000x1000 sub-array. One way
of storing such a design is, e.g., to allocate and store one
million “collector” data structures, each with their own copies
of relevant properties (such as “Module Type=T10,” location,
orientation, etc.) Alternatively, a system might simply store
state information along the lines of “1000x1000 sub-array of
T10 modules, oriented 0 degrees.” This more compact repre-
sentation of project state information may be more conve-
nient to store and easier to modify. For example, if a designer
were to change the module type for all the modules from T10
to something else, performing that change may call for a scan
and change to one million data structures under the first
example. Under the second, however, only a single change to
the state information may accomplish the modification.
[0103] Insomeembodiments, project state information for
a given design will include all of the design inputs, e.g., the
data used to regenerate the design. So, for example, project
state information may include input information such as the
representation of a worksite including geometric objects,
classifications of these geometric objects as features, feature
properties for each of the classified objects, design prefer-
ences, work area definitions, aperture definitions and atten-
dant design preferences, project properties, etc. Project state
information may also include other types of inputs, such as
user modifications to generated layout information. For
example, when a user manually adds a module to a generated
layout, such as when the user changes the status ofa particular
module from “illegal” to “legal,” that module’s status may be
reflected in project state information.

[0104] Project state information may also include output
information, such as generated layouts, performance and cost
characteristics of same, etc. For example, a bill of materials
for a particular design is an output of the design, since it is a
function of the inputs of the design, e.g., design preferences.
This may allow, for example, caching of output information
to reduce computational demands.

[0105] Efficient management of project state information
can be difficult. In particular, in some embodiments, project
state information may provide for “conflicting” information,
such as when a user places a PowerGuard module within an
aperture boundary designated as T10. If the system is to give

US 2010/0217639 Al

effect to both of these actions by the user, it may be useful to
have an efficient and powerful representation of project state
information.

[0106] Accordingly, in some embodiments, the project
state information may be recognized as an arrangement of
hierarchical elements, which may be represented in a data
structure. In some situations, the hierarchy may approach a
tree-like structure, in which sub-elements are assigned a
unique parent object. In other cases, the hierarchy may be an
instance of a more general graph, such as when a particular
object has more than one parent object in the hierarchy.
[0107] FIGS. 10A-B provide an illustration of a project
state information hierarchy that may be used by a solar col-
lector layout design tool. In particular, as shown in FIG. 10A,
an overall project 1000 may contain a worksite representation
1001, which may include one or more features 1002. Each of
the features 1002 themselves may contain feature properties.
[0108] A worksite representation may also include work
areas 1005, such as the two work areas illustrated in FIG.
10A. Each work area 1005 may contain one or more apertures
1010; e.g., the first work area 1005 may contain two apertures
at 1010. This may be the case if, in a worksite representation,
an aperture 1010 falls within the boundaries of a given work
area 1005. In the case of a single aperture that overlaps mul-
tiple work areas, the aperture object 1010 may be shared
between or duplicated among the work areas. Alternatively,
the hierarchy may be adjusted to use work area-aperture
intersections (rather than entire apertures) as the child object
for work areas 1005.

[0109] As discussed above, according to some embodi-
ments, solar collectors will be placed in the intersections
between aperture 1010 and work area 1005. As such, each
aperture or work area-aperture intersection may include one
or more sub-arrays 1015 of collectors within the apertures
1010. The number and composition of sub-arrays 1015 in a
given aperture 1010 may be a function of multiple variables,
including obstruction features located within or around (in
the proximity of) the boundaries of the apertures. For
example, a linear obstruction (such as a wall) that bisects an
aperture may cause the layout of collectors within the aper-
ture 1010 to be divided between two sub-arrays 1015, one on
each side of the wall. Some embodiments may cause sub-
arrays 1015 to have rectangular shapes, other embodiments
may create a sub-array 1015 out of each contiguous group of
collectors in an aperture 1010, regardless of shape. Still other
embodiments may utilize other rules 1004, such as wiring or
output requirements, to form sub-arrays 1015.

[0110] A given sub-array 1015 may be further divided into
strings 1020 of collectors 1025. In some situations, as may be
the case with PV modules and as discussed above, depending
on the selected model, a given number of collectors may need
to be wired together in a particular fashion, e.g., in series, in
order to produce a required output voltage. So, for example, if
the required output voltage of a given sub-array is 150V at
peak power, and if the particular modules being used to form
the sub-array each put out 15V at peak, then the modules may
be grouped into strings of 10 modules each for installation.
The collectors of each string may be wired in series, and each
string of a sub-array may be wired in parallel to the other
strings of the sub-array. Accordingly, a given sub-array 1010
may be composed of multiple strings 1020. Each of these
strings 1020 may be composed of collectors 1025.

[0111] As shown in FIG. 10B, a given solar collector may
be itself be composed of a hierarchy of elements. For

Aug. 26,2010

example, a PV module may be composed of cell strings 1030,
each of which includes a series of cells 1035 (just as an
sub-array 1015 may be composed of strings 1020 of modules
1025 as shown in FIG. 10A). For example, a 15V module may
be composed of three cell strings wired in parallel, where
each cell string contains ten 1.5V cells wired in series.
[0112] Each of the elements at each level of the hierarchy
may be associated with a set of properties. For example, the
properties of a given string may include module count, string
location, etc. Some of the possible properties that may be
associated with particular work areas, apertures, projects, and
features have been illustrated above. The properties of an
element may be represented absolutely or with reference to
another set of properties. For example, default values for
properties may be inherited from parent elements in a data
structure representing the hierarchy, and those default values
may be overridden by values for properties stored with a
given child.

[0113] Like properties, design rules such as feature layout
rules employed by the layout engine may be associated with
the respective elements in the hierarchy. Design rules that are
not specific to particular instances of features may be associ-
ated with the project or worksite generally, as shown in FIG.
10A at 1004. Design rules may also be inherent to a particular
layout or design engine or otherwise not represented in the
project state information hierarchy. Similarly, design prefer-
ences may also be associated with respective elements in the
hierarchy: Project design preferences may be associated with
a project element. The hierarchical data structure also pro-
vides flexibility in the categorization of properties, design
preference, and rules: E.g., collectors placed or modified by a
user may be classified as features 1002 with attendant prop-
erties, may be maintained at a separate level of the hierarchy
(as shown at 1025) or both.

[0114] Insomeembodiments, the data structure used by the
software to represent project state information, for example,
to use for storing and retrieving projects, may be represented
as a hierarchical relationship among a collection of elements,
the properties, and the design rules associated therewith. For
example, project state information may be represented in an
XML-type format, wherein a top-level worksite node may
contain a listing of features and their classifications. The
worksite node may also contain a number of work area nodes,
which may, in turn, contain a number of aperture nodes. Each
aperture mode may contain sub-array nodes, and so forth. A
project hierarchy data structure may represent the state of a
design project, in the sense that sufficient information to
regenerate a layout may be contained within the data struc-
ture.

6. PROJECT EXCEPTIONS

[0115] In some embodiments, as a designer goes through
the process of classifying features, generating layouts, and
then modifying those layouts, as discussed above, metadata
about the design process may be generated. Metadata may be
determined from the rules that are applied to project state
information, such as feature properties, design preferences,
version information, etc. This metadata may take many
forms, and may include information about actions the
designer has taken, actions the designer should take, and
design information that may be useful to supervisors, co-
designers, and downstream users and recipients of the design.
The metadata, and other data, may be used by a system to
generate a list of “exceptions” that may encode one or more

US 2010/0217639 Al

exceptional conditions in the metadata, e.g., a violation of a
rule by the project state information per se, the project state
information as reflected in a design output, or some other
condition. Exceptional conditions, and corresponding excep-
tions, may be related to omissions by the user, violations of
regulations, violations of solar collector manufacturer speci-
fications, violations of client requirements, violations of engi-
neering principles, violations of physical space constraints,
violations of company engineering policy, etc.

[0116] Such a list may allow a designer to have more flex-
ibility in the sequence of actions to perform when generating
an installation design while still ensuring that the proper
actions will be performed eventually and that exceptional
conditions, such as design flaws, are not overlooked. In par-
ticular, rather than being forced to perform workflow in a
certain order, an exceptions list may allow a designer to
perform actions in an order of his or her choosing. The excep-
tions list may be presented to a user without requiring the user
to address any of the exceptions (or exceptional conditions)
before performing another action. An exceptions list may also
provide the ability for a designer to decide whether (or not) to
address a particular exception An exceptions list may also
provide a simple interface to important information about a
design, such as questionable module placement, etc. Thus, a
user is allowed to effectively ignore (at least temporarily) an
exception, to be dealt with at the user’s schedule as part of a
“To Do” list. An embodiment may provide an option to a user
to ignore a given exception by, for example, making the
exception or exception list non-blocking in the user interface.
The user is also given the options to comply with the soft-
ware’s expectations for the exceptional condition, such as by
providing missing information or removing illegal modules
from a generated or user-modified layout. Metadata and
exceptions may also be useful for maintaining and generating
downstream documents, such as contract exclusions.

[0117] Insome embodiments, some or all of this metadata,
including exceptions, may be associated with the design, such
as by common storage or reference with the data structure
hierarchy discussed above. Thereafter, downstream users and
processors of the design, including automated systems, may
use the metadata. The metadata may also be summarized,
exported, translated, or otherwise operated upon by the sys-
tem. Metadata, and exceptions generated therefrom, may
include, among other things, information about contractual
exclusions, warnings to the designer, and errors in the work-
site representation or layout.

[0118] As illustrated in FIG. 11, a user interface 1100 may
be provided such that some or all of the metadata about the
design may be presented to the designer in the form of a list
1105 of exceptions. The representation may include a layout,
a list of design exceptions, and controls operable to interact
with the exceptions. An exception may indicate that some
action on the part of the designer is called for. In some cases
and for some exceptions, although an exception may be gen-
erated, the designer might not be impeded in the design pro-
cess for failure to supply the requested information. For
example, in some embodiments, the location of the worksite,
perhaps as approximated by zip code, is a worksite property
that impacts layout. This may be the case where different zip
codes imply different regulatory regimes, e.g., different
requirements for rooftop loading, setbacks, and so forth.
Accordingly, the design rules may request the supply of a zip
code. In such a case, if a designer has failed to specify a zip
code for the worksite, that failure may be noted as metadata

Aug. 26,2010

about the design and a zip code exception 1110 may be
generated. During the pendency of the zip code exception
1110, the designer may still be allowed to classify objects and
generate a layout or downstream documents, perhaps using a
default zip code or regulatory regime supplied by the system

[0119] Alternatively, the system may allow the designer to
perform some non-related actions while an exception exists,
but may require that the designer address the exception before
a particular action, such as layout generation, simulation, or
downstream document generation is allowed. For example,
the designer may be allowed to continue classifying objects
before entering a zip code, but may be precluded from gen-
erating a layout. As another example, other metadata may
indicate fatal conditions, in that continuation with the design
is not an option. For example, if a designer places a module
over an exhaust fan, the system may generate an error excep-
tion 1115. The designer may address the exception 1115
before a finalized design may be created. If the user has not
addressed an exception (i.e., ignored it), it may remain in the
exceptions list 1105 for supervisor review. Some types of
addressing by the user, e.g., compliance with the requested or
change, can remove the item from the exceptions list. Other
types of addressing by the user, e.g., overriding or otherwise
explicit refusal to comply with the requested information or
change, results in modification of the exception and mainte-
nance of the exception and the user override input in an
exceptions history, which will be useful for future modifica-
tion, supervisor review, contract generations, etc. Other types
of exceptions are discussed below.

[0120] A designer may interact with exceptions that call for
designer action in a variety of ways. For example, the
designer may choose to address the zip code exception 1110
by entering a zip code for the worksite. This may be done in
several ways, including through the mechanisms described
above for entering project properties. Alternatively, the
exception 1110 itself may be associated with a mechanism for
addressing it. For example, a zip code exception 1110 may
include a field into which a zip code may be entered and
thereby associated with the project. When the user addresses
an exception, it may cause the system to recalculate or regen-
erate information. For example, when the user enters a value
into the zip code exception, the system may validate the zip
code and may, for example, regenerate a layout with the new
location information. In response to an exception, a user may
provide compliance information sufficient to remedy the
exceptional condition or rule violation, which information
may include, for example, a project property, a customer
property, a feature property, a design preference, a work area
boundary, or an aperture boundary. Some embodiments may
recognize the compliance information and use the informa-
tion to modify project sate information or other design infor-
mation. After receiving the compliance information, the sys-
tem may remove the corresponding exception

[0121] A system may include also exceptions that reflect
information or metadata about a design that may be useful for
downstream users and processes. For example, if a designer
places a module in a configuration that overlaps with a feature
classified as an “illegal wind zone” (as may have been deter-
mined by an on-site inspector), an exclusion exception 1120
may be generated. These exclusion exceptions may be pre-
sented to the designer, as discussed above, and the designer
may operate upon a control to comply with, e.g., remove or
ameliorate, the exception (by, for example, removing the
particular module in question). Alternatively or additionally,

US 2010/0217639 Al

some exceptions, including some exclusion exceptions, may
be maintained with or associated with the design and, thereby,
made available to subsequent processes that use the design.
For example, another software program may use the exclu-
sion exception information to generate a list of contractual
exceptions that may be listed as part of the terms of a contract
between a designer and a client. So, for example, the excep-
tion 1120 corresponding to the module placed in the leaky
roof region may be used by a downstream process to generate
a specific term for a contract that limits the designer’s war-
ranty for the module placed in the leaky roof region or dis-
claims liability for certain ensuing damage. Exceptions may
also trigger the inclusion of terms relating to price, as exem-
plified by an exception that may be raised when the total cost
of the project exceeds the budgeted cost and a term to that
effectis added to the contract. Exceptions may also trigger the
inclusion of terms relating to the scope of work, as when
modules are laid out on or in proximity to an obstruction and
the response to the exception is to indicate that the customer
is responsible for removing or modifying the source of the
obstruction so as to make the design acceptable.

[0122] Some exceptions may also be designed to require
review and additional authorization from a person or author-
ity other than the designer. For example, an exception 1125
related to having a roof loaded to 95% of its maximum
designed weight capacity may require approval of a design-
er’s supervisor. The exception may require approval by the
supervisor or other second user before the designer may con-
tinue, at least with respect to certain designated actions. Alter-
natively, the system may produce a listing corresponding to
all such approval-entailing exceptions, and such a listing may
be used as part of the downstream process for the design, thus
allowing the user to proceed with at least some tasks despite
the exception. Later compliance, overriding, or authorization
of overriding of the exception (e.g., by a supervisor) may
regenerate an associated solar collector layout, such that the
intervening work by the user is not wasted.

[0123] Someembodiments may implement some or all of a
combination of the above exceptions and actions. For
example, depending on the exception, legitimate actions
made available to the designer by the system may include
variations on “ignore exception,” “automatically fix layout,”
“override exception,” “delete collector(s),” “regenerate lay-
out,” “enter value and recalculate,” “flag for supervisor,”
“comply with exception,” and so forth. For example, a user
may issue a command, as by software control, for a system to
takes steps to automatically attempt to rectify an exceptional
condition, as by modifying project state information or a
design in accordance with removing the exception condition.
[0124] Some embodiments may make a record of user
actions, including those taken as part of addressing an excep-
tion, including user authorizations. Records of actions may be
associated with exceptions, stored with a given project,
exported to a downstream user, and so forth. Other embodi-
ments may be configured to re-evaluate the presence of
exceptional conditions, with or without user input or impetus;
as such, if an exceptional condition is no longer present, the
system may remove the exception.

[0125] FIG. 12 illustrates a process for implementing
exceptions. At 1205-10, the system may enter an input-vali-
dation loop. At 1205, a designer may input worksite informa-
tion, classify objects as features, and enter feature properties
and other design properties and preferences. At 1210, the
system may analyze and validate the designer’s input, as by

Aug. 26,2010

applying rules to the geometric objects and other input infor-
mation in the project state information. A validation engine
may use validation rules that are specific to the type of project
or may be generalized. Such validation rules may be stored
with the project hierarchy or may be external to the project. As
any variances are noted by the validation engine, they may be
placed in a list of exceptions, e.g., in a data structure in
computer memory, at 1212. These exceptions may be dis-
played to the user as described above. The user may choose to
address exceptions that have been placed on the exceptions
list; alternatively, the user may input more properties, classi-
fications, and other information.

[0126] The input-validation loop 1205-10 may continue
until the user causes a layout to be generated, as at 1215. This
may cause the system to enter a layout-validate-modify loop
1215-20-25-30. As shown at 1220, the resulting layout may
be analyzed and validated for conformance to the design
preferences, feature and project properties, layout rules,
desired outputs, and other encoded information criteria. Any
variations or deviations arising from the generated layout
may again be noted as exceptions and placed on an exceptions
list, at 1222. At 1225, the user may be presented with the
ability to modify the layout as discussed above. This may
include changing properties or preferences, addressing
exceptions (which may cause a change in properties or in the
layout), adding or deleting modules, and so forth.

[0127] As shown at 1230, the user’s actions may be vali-
dated by the validation engine. At 1232, exceptions caused by
the user’s actions may again be added to a list of exceptions.
In some cases, changes made by the user may trigger regen-
eration of the layout. For example, if the user increases a
setback property, the layout may be regenerated to be consis-
tent with that increased setback. Depending on the type of
exception, the 1225-30 loop (where user entries are validated
and exceptions generated without a regeneration of a layout)
or the 1215-20-25-30 loop (where user entries cause a regen-
eration of the layout) may be repeated as necessary or desired
by the designer.

[0128] At 1235, some or all of the metadata generated
through this process, including exceptions and the actions
taken to address them, if any, may be stored or otherwise
made available for downstream users. For example, a list of
contract terms may be generated from all of the contract
exclusion exceptions and a list of all of the approval-required
exceptions may be generated and forwarded to the appropri-
ate approval entity. A user interface may provide a list of
contract exceptions corresponding to exceptional conditions
related to violation of a design rule by the solar collector
installation design, where the contract exceptions or condi-
tions provide information sufficient to identify a term for
inclusion in a contract. In general, any metadata, exception, or
action by the user may be included as part of the project state
information.

7. PROJECT VERSIONS

[0129] Some embodiments may provide a system and user
interface for viewing, creating, and manipulating multiple
versions of a solar collector layout design for a particular
installation worksite. The use of versions may allow, for
example, a designer to view layouts and other outputs from
selecting alternative modules, alternative feature classifica-
tions, alternative work area and/or aperture boundaries, and
other types of alternative inputs or design preferences quickly
and easily. These versions provide the designer with the abil-

US 2010/0217639 Al

ity to view output changes from various input changes inter-
actively. Some embodiments may allow the designer to
quickly move from one version to another, while others may
allow a designer to affect multiple versions with one action. A
given version may include user-defined project state informa-
tion that provides a unique set of user-defined design prefer-
ences, feature properties, and project properties. Different
versions with different sets of this input information may
correspond to alternative solar collector installation layouts,
where the alternative layout for each version results from
differences between the unique sets of data. The unique sets
of'data may also include work area state information, aperture
state information, geometric object information, etc.

[0130] Insome embodiments, different versions of a given
installation project will share worksite and/or feature infor-
mation, including properties. Such versions may define pos-
sibly-differing work areas, apertures, and layouts. In other
embodiments, versions might not share all feature informa-
tion and, therefore, differing versions may have different
features, classifications, or feature properties. Versions may
share input project state information of various types, includ-
ing geometric objects, object classifications, and feature
properties, project properties, among others. Versions may
share data by maintaining coherency between separate data
sets. This may be accomplished by having multiple versions
reference the same copy of shared project state information,
as by referencing the same location in memory, as by a
pointer. Each type of input data, such as design preferences,
feature properties, project properties, etc., may be bifurcated,
where one or more of the individual data are shared and/or one
or more are not shared.

[0131] Related versions may share information at one or
more levels of the hierarchy described above in connection
with FIGS. 10A-B. For example, a set of related versions may
share a common description of a worksite, its physical char-
acteristics, including features, and classifications of features.
Versions may branch off from each other at any point in the
hierarchy. In the case of a tree-like hierarchy, elements above
the branch point may be shared among the versions, such that
changes to an above-branch datum may be applicable to both
versions. Alternatively, two or more copies of below-branch
data may be maintained, one for each version, such that
change to a below-branch datum in one version may not
impact the corresponding datum in the other version (if any).

[0132] In some embodiments the branch point among ver-
sions may be at the work area level. For example, FIG. 13
illustrates three versions at 1305. The versions 1305 are illus-
trated as depending from, and thereby sharing, a worksite
and, thus, the versions may share several sets of encoded
information, including design rules 1004, some or all features
1002 and their classifications and properties, etc. In such a
situation, a single change made to the worksite 1001 or fea-
tures 1002, such as a re-classification of a geometric object to
another type of feature, a change in a feature property, etc.,
will be applicable to, inherently part of, and thereby reflected
in, all three versions 1305. In another example, each version
1305 may contain distinct and independent work areas 1005,
apertures 1010, and related sub-elements generated by the
layout engine (such as sub-arrays, etc., which are not shown).
In this case, changes made to a work area, aperture, or sub-
element (such as a manual placement of a particular module,
or a change in the wiring pattern of a string), may be appli-
cable only to the version in which the change is made. This
may be useful because a designer may wish the project

Aug. 26,2010

description, such as feature classifications, to be invariant
across all versions. Rather than forcing a designer to manu-
ally update multiple versions manually with a single change
in a feature property, a system that provides shared classifi-
cations among versions is arranged to “automatically” update
all related versions.

[0133] In this way, a project data structure may include
alternative versions of the design, where each alternative
version includes independent (non-shared) project state
information and shared project state information as described
above. The (non-shared) independent project state informa-
tion differs for each version. As such, when taken in combi-
nation with shared project state information, the state infor-
mation may define an installation design that differs among
the differing versions.

[0134] Some embodiments may allow branching between
versions at higher or lower levels of a hierarchy. For instance,
versions may branch at the highest level of the hierarchy,
whereby versions do not share any common features, includ-
ing feature classifications. Alternatively, versions may branch
atalow level, e.g., at the string level for a particular sub-array,
e.g., if one version has modules grouped in strings in north-
south rows, while the alternative version has modules
grouped primarily into east-west rows. In such a case, the two
versions may share elements above the branch points (such as
general aperture design preferences), such that a change in the
aperture settings of one version will affect the other version.
[0135] As shown in FIG. 14, systems in accordance with
some embodiments may provide a user interface for viewing,
creating, modifying, and operating with different versions. In
particular, a listing 1400 of one or more versions may be
provided. The listing 1400 may reflect one or more levels of
hierarchy particular to a given version, as illustrated here with
respect to “Version 1.” The interface may provide a mecha-
nism, such as a toolbox control 1450, whereby a version may
be activated (or selected) for display or other operation in the
user interface. If levels of hierarchy are displayed, as shown
for Version 1 at 1405, a control may be provided to allow a
user to select a sub-element, such as the first aperture 1410 of
Version 1 1405 and thereby to cause an operation upon that
sub-element, such as highlighting in the visual representa-
tion, display of a properties box (not shown), summary infor-
mation and so forth. The listing 1400 may reflect or illustrate
the branch points of various versions.

[0136] When a version is activated, the contents of the
version may be displayed in a visual representation. For
example, when a version is activated, the aperture, work area,
features properties, module layout, exceptions, and so forth
corresponding to that version may be displayed. Activation of
a version may cause the layout engine to recalculate the
layout corresponding to the version (consistent with the ver-
sion’s properties). Activation may also cause information
about the version, such as summary information, to be dis-
played, such as in a status line or field. As worksite features
are created and classified, and as layouts, exceptions, and so
forth are generated, those properties and exceptions may be
associated with the presently activated version.

[0137] When a change is made to the activated version, if
that change is made to an element that is shared with other
versions, that change may be reflected in the other versions as
well. So, for example, if two versions share feature classifi-
cation information as described above, then re-classification
of'a given feature of the worksite or modification of its prop-
erties may impact both versions. A change that is reflected in

US 2010/0217639 Al

a non-activated version may cause recalculation of a layout
associated with that version. For information that is not
shared between versions, changes made to an activated ver-
sion may not affect other versions.

[0138] A mechanism, suchas anew version toolbox control
1455, may be provided whereby a new version may be cre-
ated. A new version may be created from scratch (and subse-
quently filled with worksite properties). This may the case
when an initial version is created by default as the first (and,
at that point, only) version of a new project. Alternatively or
additionally, a new version may inherit some solar installa-
tion project properties, such as project properties and feature
classifications (if any exist) from a previous version. So, for
example, if a set of features have been defined and classified,
a newly-created version may inherit these features and clas-
sifications

[0139] A mechanism, such as a version-copy toolbox con-
trol 1460, may also be provided whereby a version may be
copied or duplicated. A new version may be created by being
copied (e.g., branched off or duplicated) from a pre-existing
layout or version. The currently-activated version may be
used as the version from which the new version will be
branched off. The new-copied version may start with all or
most of the properties of its sibling version, e.g. same work-
site properties, apertures and aperture properties, exceptions,
and so forth, as when the duplicate version is initially popu-
lated with at least some of the same state information as the
original version. Subsequent modifications to the newly-cop-
ied version may or may not be reflected in the original ver-
sion, depending (as shown in FIG. 13) on whether the changes
are to elements shared by the versions. In some embodiments,
the user may make changes to the unique set of user-defined
design preferences and feature properties corresponding to a
new or duplicated version that are not reflected in the unique
set of user-defined design preferences and feature properties
corresponding to any version created before the new or dupli-
cated version.

[0140] A mechanism, such as a version-delete toolbox con-
trol 1465, may be provided whereby a version may be deleted,
e.g.,removed from the display and, potentially, removed from
storage associated with the version. A similar mechanism,
e.g., version-rename toolbox control 1470, may be provided
to rename versions.

[0141] Mechanisms may be provided to generate informa-
tion particular to a version, or otherwise operate upon a ver-
sion, such as parts-summary toolbox control 1475 to generate
a parts summary (as in a .CSV file) of a version; a version-
export toolbox control 1479 to save version information to
another format, such as a database record or set of records; a
version-simulate toolbox control 1485 to perform and/or gen-
erate simulation data regarding a version; a version-simula-
tion-export toolbox control 1490 to store or export version
simulation information, such as in a .CSV file; and so forth.
Each of the foregoing may be applied to a currently activated
version, a selected version or set of versions, or to all versions.
[0142] A control 1477 may also be used to generate a sum-
mary of the various versions of a project. This version sum-
mary may include a variety of types of comparative informa-
tion about each of the versions, including layout information,
such as solar collector count, cost, weight, etc.; simulation
data, such as expected performance, peak power, cost per
kilowatt-hr generated, minimum energy productions, etc.;
and other types of information, such as exception count and
types, etc. Information about illegal and deficient or other-

Aug. 26,2010

wise poorly-placed modules in a version may be noted in a
version summary. Version summary information may also be
generated about information for each version such as pro-
jected performance, simulation information, electrical power,
power efficiency, cost, materials, physical size, part count,
and exceptions. This information may also be generated and
displayed for sub-elements of a particular version, such as
work area, apertures, sub-array, modules, strings, and so
forth. FIG. 15 illustrates a sample version summary 1500 in
which several versions 1510 have been summarized. A
designer may use version summary information for many
purposes, including to select among various versions and/or
to identify errors or inefficiencies in versions. Version sum-
mary information may be exported to an external file or
storage. A user may select which types of version summary
information to display or export.

[0143] The various versions of an installation project may
be stored in multiple files, or advantageously, in a single file.
As with the single-version installation projects discussed
above, a project with multiple versions may be represented in
an XML-type format, wherein a top-level worksite node may
contain a listing of features and their classifications. The
worksite node may also contain a number of version nodes,
which may, in turn, contain a number of work area and aper-
ture nodes. Each aperture mode may contain sub-array nodes,
and so forth. Data associated with a version, such as version
summary information, name, and so forth, may be stored with
the version. In particular, design output information that may
vary from version to version, such as solar collector layout
information, version summary information, simulation data,
contract information, bill of material information, exception
information, etc., may be cached or stored or co-located with
a version.

[0144] In some embodiments, an “undo” control, such as
toolbar icon or keyboard shortcut, may be provided to allow a
designer to undo one or more changes to a project and/or to a
version. In some embodiments, when a designer makes a
change to a version, whether it be a modification of a layout,
aclassification of an object, etc., that change may be recorded
by the embodiment. A control may then allow the user to
“undo” the change by reversing its effect. In some embodi-
ments, the change may be recorded by taking a snapshot of the
state of the project or version. The embodiment may undo the
change by reverting back to the snapshot. Alternatively, an
embodiment may record the state transition embodied by a
change (or its inverse). Performing an “undo” may then be
accomplished by reversing the state transition. In this way,
multiple levels of undo may be maintained, as by the use of'a
snapshot or transition stack. Similarly, a redo function may be
implemented, wherein an “undo” action causes a snapshot or
transition for the inverse (“redo”) action, such as by pushing
the inverse of the “undo” onto a redo stack.

8. ILLUSTRATIVE EXAMPLES

[0145] FIGS. 16A-E illustrate examples of screen shots
from layout software in accordance with embodiment of
some of the systems and methods described herein. FIG. 16 A
illustrates a user interface 1600 in which a visual representa-
tion 1601 of a worksite with geometric objects corresponding
to two sloped roof surfaces meeting at a roof ridge 1602
contains a number of solid obstructions (vents 1603) and
linear obstructions (pipes 1604). The user interface 1600 also
includes toolbars 1605 and a properties palette 1606. The
interface may include a version display (not shown), a version

US 2010/0217639 Al

summary (1620), an exceptions list (not shown), fields 1630
for user input and system output, and may display the fore-
going simultaneously.

[0146] As illustrated in FIG. 16B, controls in the form of a
toolbar 1605 may provide a user with the ability to classify
objects as features (here illustrated as a roof control 1610,
solid obstruction control 1612, and linear obstruction control
1613) and to create work area boundaries 1611 in the visual
representation, the work areas defining an extent into which
solar modules may be placed. A control to declassify 1614 an
object may be provided. A control to create layout apertures
1615 may be provided, along with a control to generate 1616
an actual layout. A display control 1625 may be provided to
select which interface elements to display, such as an excep-
tions list, properties palate, version summary, version list, etc.
The layout may be substantially limited to the intersection of
the work areas’ boundaries and the apertures’ boundaries and
the layout may be generated at least in part according to the
sets of design preferences associated with the apertures. As
shown, helpful (but non-limiting) text may be provided with
controls in the form of popups, rollovers, etc. As shown in
FIG. 16C, a menu containing controls to accomplish many of
the same functions may also be provided. As illustrated in
FIG. 16D, a properties palette may allow a user to see and/or
adjust the properties relating to a particular feature.

[0147] FIG. 16E illustrates the result of generating a layout
for PV modules on a visual representation containing two
roof objects 1602, two work area boundaries largely co-ex-
tensive with each roof surface, and three aperture boundaries
(two of which are rectangular-shaped apertures 1650 extend-
ing over only a portion of one roof'and one work area, and one
of which is an irregular-shaped aperture 1650A extending
over a portion of two roofs and work areas). As shown, each
aperture has a set of modules placed within, consistent with
the layout rules regarding the respective roof, work area, and
obstructions contained within.

9. CONCLUSION

[0148] Those of skill in the art will recognize that the fore-
going descriptions of categorization and rules are merely
indicative of some methods of practicing the inventions as
defined by the appended claims. Other methods of laying out
PV modules within and around geometric objects based on
layout requirements associated with a worksite may be used
to accomplish similar ends, such as tables, scripts, data struc-
tures, etc. Rules may be explicit and/or comprise declarative
statements, as described above or as used in a rule-centric
language, such as LISP; alternatively, one or more “rules”
may be expressed implicitly in data structures, imperative
statements, program flow, program constructs, placement and
arrangement algorithms, etc. Rules are used herein as one
way of illustrating the general method by which a tool may
use information associated with arbitrary objects to create a
PV module layout. A particular rule, such as a layout con-
straint, may be explicitly associated with a particular object or
feature and/or a particular type or class of feature; such a rule
may be defined as part of a layout engine and implicitly linked
to objects or classes.

[0149] The systems, methods, and techniques described
here may be implemented in computer hardware, firmware,
software, or in combinations of them. A system embodying
these techniques may include appropriate input and output
components, a computer processor, and a computer program
product tangibly embodied in a machine-readable storage

Aug. 26,2010

component or medium for execution by a programmable pro-
cessor. A process embodying these techniques may be per-
formed by a programmable processor executing a program of
instructions to perform desired functions by operating on
input data and generating appropriate output. The techniques
may advantageously be implemented in one or more com-
puter programs that are executable on a programmable sys-
tem including at least one programmable processor coupled
to receive data and instructions from, and to transmit data and
instructions to, a data storage system, at least one input com-
ponent, and at least one output component. Each computer
program may be implemented in a high-level procedural or
object-oriented programming language, or in assembly or
machine language if desired; and in any case, the language
may be a compiled or interpreted language. Suitable proces-
sors include, by way of example, both general and special
purpose microprocessors. Generally, a processor will receive
instructions and data from a read-only memory and/or a ran-
dom access memory. Storage components suitable for tangi-
bly embodying computer program instructions and data
include all forms of non-volatile memory, including by way
of example semiconductor memory components, such as
Erasable Programmable Read-Only Memory (EPROM),
Electrically Erasable Programmable Read-Only Memory
(EEPROM), and flash memory components; magnetic disks
such as internal hard disks and removable disks; magneto-
optical disks; and Compact Disc Read-Only Memory (CD-
ROM disks). Any of the foregoing may be supplemented by,
or incorporated in, specially-designed ASICs (application-
specific integrated circuits). A representation of each of the
various data structures and steps of methods described herein
may be advantageously rendered, e.g., displayed or printed,
on a device, e.g., a screen, monitor, or printer.

[0150] Although this disclosure describes certain embodi-
ments and applications, other embodiments and applications
that are apparent to those of ordinary skill in the art, including
embodiments and applications which do not provide all of the
features and advantages set forth herein, are also within the
scope of the disclosure. Moreover, all lists and descriptions of
options and alternatives are to be construed as exemplary and
not limiting; lists have been used to aid explanation and are
not an attempt to name all possible alternatives. The scope of
the present invention is intended to be defined only by refer-
ence to the claims.

TABLE I

Sample of Information Output Dependent on Project Design

Outputs # Typical Solar Project Development Steps

1 Site Conditions
2 Design Schematics
3 Construction Drawings and Details
4 Part List
5 Bill of Materials
6 Construction Project Schedule
7 Costs Estimate
8 Financial Analysis
9 Energy Simulation

10 Proposal

11 Quote

12 Presentation

13 Contracts

14 Subcontracts

15 Sales Order

16 Rendering

17 Statement of Values

US 2010/0217639 Al
19

TABLE I-continued

Aug. 26,2010

TABLE Ill-continued

Sample of Information Output Dependent on Project Design

Outputs # Typical Solar Project Development Steps
18 Rebate Application
19 Permit Application
22 ‘Warranty
23 O&M Manuals
TABLE II
Sample Steps In Solar Project Design
Step # Step
1 Gather customer information
2 Perform site audit
3 Select mounting system types
4 Select module type
5 Layout modules
6 Design electrical system
7 Generate bill of materials
8 Estimate system cost
9 Simulate energy output
10 Perform financial analysis
11 Create schedule
12 Generate proposal
13 Negotiate contract terms
14 Create final design
15 Create final drawing set
16 Create final bill of materials
17 Procure materials
18 Award subcontracts
19 Finance projects
20 Obtain permits
21 Mobilize & stage project
22 Monitor project
23 Operate & maintain project
TABLE III
Sample Feature Classes
Class
Object Can inherit from . ..
Solid Obstruction Object
Linear Obstruction Object
Roof Object
Antenna Solid Obstruction
Conduit Linear Obstruction
Drain Solid Obstruction
Equipment Pad Solid Obstruction
Expansion Joint Linear Obstruction
General Object
Guy Line Linear Obstruction
HVAC Solid Obstruction
Parapet Wall Linear Obstruction
Penthouse Solid Obstruction
Pole Solid Obstruction
Roof Hatch Solid Obstruction
Roof Shot Solid Obstruction
Satellite Solid Obstruction
Skylight Solid Obstruction
Sleepers Linear Obstruction
Stairs Solid Obstruction or
Linear Obstruction
Survey Point Object
Tree Solid Obstruction
Vent Solid Obstruction
Walkway Linear Obstruction

Sample Feature Classes

Class
Object Can inherit from . ..
Wall Linear Obstruction
Water Valve Solid Obstruction
TABLE 1V
Sample Feature Properties
Class Properties
Object Name
Description
Solid Obstruction Height
Setback
Type
Subtype
Coordinates
Area
Linear Obstruction Width
Height
Setback
Type
Subtype
Coordinates
Area
Roof Height
Setback
Wind Speed
Building Type
Exposure Type
Max Roof Load
Pitch
Coordinates
Area
Antenna Height
Conduit Diameter
Drain Diameter
Equipment Pad Height
Expansion Joint Material
Guy Line Angle
HVAC Height
Parapet Wall Height
Penthouse Height
Pole Height
Roof Hatch Height
Satellite Height
Skylight Height
Sleepers Height and Width
Stairs Width
Survey Point Coordinates
Tree Growth Rate
Vent Height
Walkway Width
Wall Height
Water Valve Coordinates
TABLEV
Sample Design Preferences
Name
Module Type

Mounting System Type
Inter Row Spacing
Orientation

Starting Point

Off Set

US 2010/0217639 Al
20

TABLE V-continued

Sample Design Preferences
Name

Tilt

Direction
Aperture Priority
String Voltage

TABLE VI

Sample Project Design Properties
Name

Customer Name
Project Name

Project Address

Zip Code

Country

Zip Code

Country

Latitude

Longitude

Date

Opportunity Reference
Site Orientation (North angle)
Utility

Electric Tariff

Energy Usage
Maximum Demand
Entity Type

Tax Status

Tax Liability

TABLE VII

Sample Module Properties
Name

Manufacturer

Model

Peak Power

Rated Voltage

Rated Current

Open Circuit Voltage
Short Circuit Current
Maximum System Voltage
Temperature Coefficients
CEC PTC Rating

Height

Width

Length

Weight

Frame Type

Voltage

Current

Allowable Mounting Types
Interconnect

Cost

Front Glass

‘Warranty

Junction Box

Output Cables

Rated Temperature

Max Load

Impact Resistance
Certifications

What is claimed is:
1. A method of generating a solar collector installation
design on a computer, comprising:

Aug. 26,2010

providing a representation of an installation worksite, the
representation comprising user-defined project state
information;

applying rules to the user-defined project state information

to determine metadata about the solar collector installa-
tion design;
using the metadata to generate a set of design exceptions,
wherein each design exception encodes an exceptional
condition due to a violation of a software-encoded rule
by the user-defined project state information;

providing a representation of the set of design exceptions to
the user; and

for each design exception, presenting options to the user to

ignore the design exception or comply with the design
exception.

2. The method of claim 1, wherein at least one of the
exceptional conditions relates to one of the group of omis-
sions by the user, violations of regulations, violations of solar
collector manufacturer specifications, violations of client
requirements, violations of physical space constraints, viola-
tions of engineering principles, and violations of company
engineering policy.

3. The method of claim 1, further comprising displaying at
least some members of the set of design exceptions in a
computer-based user interface.

4. The method of claim 1, further comprising maintaining
arecord of actions taken by the user in relation to each design
exception.

5. The method of claim 1, wherein an action taken by the
user in relation to a first design exception may be subse-
quently authorized.

6. The method of claim 1, wherein ignoring a first design
exception may be subsequently authorized.

7. The method of claim 1, wherein the options available to
the user further include explicitly overriding a first design
exception to allow the user to indicate that the exceptional
condition is permissible.

8. The method of claim 7, wherein explicitly overriding by
the user in relation to the first design exception may be sub-
sequently authorized.

9. The method of claim 8, further comprising maintaining
a record of the authorization.

10. The method of claim 1, further comprising receiving
from the user compliance information sufficient to remedy a
first exceptional condition and using the compliance infor-
mation to modify at least one of the geometric objects or the
project state information.

11. The method of claim 10, further comprising removing
a first design exception corresponding to the first exceptional
condition from the list after receipt of user compliance infor-
mation.

12. The method of claim 10, further comprising recording
the receipt of user compliance information in a history.

13. The method of claim 10, wherein the user compliance
information comprises at least one item selected from the
group of a project property, a customer property, a design
preference, a work area boundary, and an aperture boundary.

14. The method of claim 10, wherein the user compliance
information comprises a command by the user for the system
to automatically address a first design exception, and wherein
the method further comprises modifying the project state
information in accordance with removing a first exceptional
condition relating to the installation design.

US 2010/0217639 Al

15. The method of claim 1, further comprising receiving an
authorization of the design exception from a second user and
recording that authorization as part of the set of design excep-
tions.

16. The method of claim 1, further comprising receiving an
authorization of the design exception from a second user and
recording that authorization as part of the project state infor-
mation.

17. The method of claim 16, further comprising removing
a first design exception from the set of design exceptions.

18. The method of claim 1, further comprising, in order,
receiving a user modification to the project state information,
re-applying the rules to determine metadata about the instal-
lation design, detecting that a first exceptional condition cor-
responding to a first design exception no longer exists, and
removing the representation of the design exception from the
user.

19. The method of claim 1, wherein applying rules to
determine metadata further comprises generating a layout of
solar collectors corresponding to the installation worksite.

20. The method of claim 19, wherein the project state
information contains classifications of geometric objects as
features of the installation worksite, and wherein applying the
rules to determine metadata further comprises generating a
layout of solar collectors corresponding to properties of the
features of the installation worksite.

21. The method of claim 1, wherein applying rules to
determine metadata further comprises generating metadata
from at least one of the group of energy simulation data and
project summary data.

22. The method of claim 1, wherein the project state infor-
mation comprises project version information reflecting dif-
fering versions of solar collector installation designs.

23. The method of claim 1, wherein the project state infor-
mation comprises design preferences to be applied when
generating a solar collector installation design.

24. The method of claim 1, wherein the project state infor-
mation comprises classifications of geometric objects as
instances of feature classes and associated feature properties
of the classified objects.

25. A method of generating terms to a contract for a solar
collector installation project, comprising:

providing a representation of an installation worksite in a

computing device, the representation comprising geo-
metric objects, and project state information;

applying software-encoded rules to the geometric objects

and the project state information to determine metadata
about the installation design;

using the metadata to generate a set of exceptions, the

exceptions each encoding an exceptional condition aris-
ing from a violation of a rule encoded in software and
regarding the installation design, the exceptions provid-
ing information sufficient to identify a term for inclusion
in the contract; and

generating a list of the terms for inclusion in the contract,

where the terms correspond to one or more contract
exclusions.

26. The method of claim 25, wherein the term for inclusion
relates to a limited warranty.

27. The method of claim 25, wherein the term for inclusion
relates to a disclaimer.

28. The method of claim 25, wherein the term for inclusion
relates to a scope of work.

Aug. 26,2010

29. The method of claim 25, wherein the term for inclusion
relates to a price.

30. A computer-based user interface for designing a solar
collector installation design, comprising:

a user interface representation of a solar collector installa-
tion design, the representation comprising solar collec-
tors arranged on a surface substantially according to
project state information;

a representation of a list of design exceptions, wherein at
least one of the design exceptions corresponds to an
exceptional condition related to a violation of a soft-
ware-encoded design rule by the solar collector instal-
lation design; and

a user interface control operable to allow a user to address
the exceptional condition by interacting with the design
exception, wherein interacting with the exception com-
prises performing at least one of the group of complying
with and overriding the design exception;

wherein the user may perform other actions in the user
interface before addressing the exceptional condition.

31. The user interface of claim 30, wherein the exceptional
conditions relates to one of the group of omissions by the user,
violations of regulations, violations of solar collector manu-
facturer specifications, violations of client requirements, vio-
lations of engineering principles, and violations of company
engineering policy.

32. The user interface of claim 30, further comprising a
control operable to allow a second user to address the excep-
tional condition by authorizing the exception.

33. The user interface of claim 30, wherein interacting with
the design exception comprises supplying data into a field of
the design exception, the data being used to modify the
project state information.

34. The user interface of claim 30, wherein interacting with
the design exception comprises selection of a control to auto-
matically adjust the project state information so as to remove
the exceptional condition.

35. The user interface of claim 30, wherein at least a portion
of the interaction is recorded.

36. The user interface of claim 35, wherein the portion of
the interaction that is recorded is recorded as part of the solar
collector installation design.

37. The user interface of claim 30, further comprising a
control operable to receive an authorization of the design
exception and record that authorization as part of the project
state information.

38. The user interface of claim 30, further comprising a
control operable to generate a list of authorizations of design
exceptions.

39. The user interface of claim 30, further comprising a
control operable to generate a list of contract exceptions
corresponding to exceptional conditions related to violation
of'a design rule by the solar collector installation design, the
contract exceptions providing information sufficient to iden-
tify a term for inclusion in a contract.

40. The user interface of claim 30, where the representation
of the solar collector installation design and the representa-
tion of design exceptions are displayed simultaneously on a
display device.

41. The user interface of claim 30, wherein the solar col-
lectors comprise photovoltaic modules.

sk sk sk sk sk

