METHOD AND APPARATUS FOR INSTALLING SOFTWARE IN MOBILE COMMUNICATION TERMINAL

Inventors: Eul-Ji Moon, Suwon-si (KR); Hyuk Oh, Suwon-si (KR)

Correspondence Address:
DILWORTH & BARRESE, LLP
333 EARLE OVINGTON BLVD.
UNIONDALE, NY 11553 (US)

Assignee: SAMSUNG ELECTRONICS CO., LTD., Suwon-si (KR)

Filed: Nov. 21, 2005

Foreign Application Priority Data
Nov. 20, 2004 (KR).......................... 10-2004-009561

Publication Classification

Int. Cl. G06F 9/445 (2006.01)
U.S. Cl. ... 717/174

ABSTRACT

Disclosed is a method and an apparatus for installing software in a mobile communication terminal. The apparatus for installing software in a mobile communication terminal, includes an external memory having software to be installed, a detector of the mobile communication terminal for; if an external memory is plugged in the mobile communication terminal, detecting a plugging state of the external memory, a memory being embedded in the mobile communication terminal, and a controller of the mobile communication terminal for reading the software to be installed from the external memory and storing the software in the memory if connection with the external memory is detected.

![Flowchart of the method and apparatus for installing software in a mobile communication terminal.](image-url)
FIG. 1
START

START BOOTING 212

'0' KEY INPUT? NO

EXTERNAL MEMORY IS PLUGGED IN? YES 216

NO

BATTERY POWER IS INSUFFICIENT? YES 218

DISPLAY "IN UPGRADE" 222

INITIALIZE EXTERNAL MEMORY 224

MAKE FIRST MEMORY CLEAR 226

START DISPLAY OF PROGRESS BAR AND DISPLAY OF FORBIDDING POWER OFF 228

READ DATA FROM EXTERNAL MEMORY 230

STORE DATA IN FIRST MEMORY 232

COMPLETION? NO 234

DISPLAY UPGRADE COMPLETION MESSAGE AND PROGRESS BAR AND STOP DISPLAY OF FORBIDDING POWER OFF 236

START Resetting AND REBOOTING 238

END

NORMAL BOOTING 242

DISPLAY THAT POWER IS INSUFFICIENT 220

END

FIG. 2
START

SET UP CPU AND CLOCK

INITIALIZE SECOND MEMORY

EXTERNAL MEMORY IS PLUGGED IN?

YES

INITIALIZE EXTERNAL MEMORY

NO

BOOLEAN PROGRAM IS FOUND IN EXTERNAL MEMORY?

YES

REPORT THAT BOOT PROGRAM IS BEING RESTORED

NO

NORMAL BOOTING

MAKE BOOTING AREA OF FIRST MEMORY CLEAR

READ DATA FROM EXTERNAL MEMORY

STORE DATA IN FIRST MEMORY

COMPLETION?

YES

REPORT BOOT PROGRAM RESTORATION

NO

END

FIG. 3
METHOD AND APPARATUS FOR INSTALLING SOFTWARE IN MOBILE COMMUNICATION TERMINAL

[0001] This application claims priority to an application entitled “Method and Apparatus for Installing Software in Mobile Communication Terminal” filed in the Korean Intellectual Property Office on Nov. 20, 2004 and assigned Serial No. 2004-95561, the contents of which are incorporated herein by reference.

BACKGROUND OF THE INVENTION

[0002] 1. Field of the Invention

[0003] The present invention relates to an apparatus and a method for installing software in a mobile communication terminal, and more particularly to an apparatus and a method to upgrade or restore software to a mobile communication terminal using an external memory.

[0004] 2. Description of the Related Art

[0005] Generally, in order to update application programs of a mobile communication terminal (e.g., a portable telephone), a user connects a USB cable to a mobile communication terminal, so that the application programs can be downloaded to the mobile communication terminal from a personal computer (PC) through the USB cable.

[0006] However, because the USB cable and a PC program are conventionally the only manner for downloading such application programs, it is inconvenient and cumbersome for the user.

[0007] In the meantime, when power is applied to the mobile communication terminal, a booting program must be executed prior to application programs and booting must be successfully achieved in order to enable the execution of the application programs. In a typical booting procedure, the typical booting procedure sets up a central processing unit (CPU) and a clock, initializes a memory (e.g., SDRAM) for an operation, reads a boot program stored in a non-volatile memory into the initialized memory, and then executes the boot program in the initialized memory.

[0008] However, if errors have occurred in the boot program, high-priced equipment, such as the Joint Test Access Group (JTAG), is required in order to repair the erroneous boot program.

[0009] Herein, the term “boot program” denotes a program performing operations required before application programs are executed. For example, the boot program performs operations required when an application program for upgrading software is downloaded. Accordingly, if errors have occurred in the boot program, it is difficult to perform operations required when an application program for upgrading software is downloaded. In addition, the boot program initializes hardware before application programs are executed and reads and loads the application programs to a random access memory (RAM) from a non-volatile memory such that the application programs can be executed. Therefore, an erroneous boot program may cause serious problems.

[0010] In the meantime, equipment such as the JTAG is required in order to repair the erroneous boot program. In addition, the JTAG requires only skilled developers as well as a high price, so general users rarely repair the erroneous boot program using the JTAG. In addition, it is difficult for a service center to obtain the JTAG. Furthermore, the hardware of a mobile communication terminal must be modified in most cases in order to connect the JTAG thereto. For this reason, some times, the repair of the erroneous boot program may be abandoned, and the mobile communication terminal may no longer be used.

SUMMARY OF THE INVENTION

[0011] Accordingly, the present invention has been made to solve the above-mentioned problems occurring in the prior art, and an object of the present invention is to provide an apparatus and a method for installing software in a mobile communication terminal using an external memory without additional equipment or additional programs.

[0012] To accomplish the above objects, according to a first aspect of the present invention, there is provided an apparatus for installing software in a mobile communication terminal, the apparatus including an external memory having software to be installed, a detector of the mobile communication terminal for, if an external memory is plugged in the mobile communication terminal, detecting a plugged state of the external memory, a memory being embedded in the mobile communication terminal, and a controller of the mobile communication terminal for reading the software to be installed from the external memory and storing the software in the memory if connection with the external memory is detected.

[0013] According to a second aspect of the present invention, there is provided a method for installing software in a mobile communication terminal using an external memory having the software, the method including the steps of determining if the external memory is plugged in the mobile communication terminal and if software installation is requested, and if so, repeating an operation of reading data from the external memory by a predetermined size and storing the data in a corresponding block of a memory embedded in the mobile communication terminal until all data stored in the external memory are read and stored in the embedded memory.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The above and other objects, features and advantages of the present invention will be more apparent from the following detailed description taken in conjunction with the accompanying drawings, in which:

[0015] FIG. 1 is a block diagram illustrating the structure of an apparatus for installing software in a mobile communication terminal using an external memory according to one embodiment of the present invention;

[0016] FIG. 2 is a flowchart illustrating a method for upgrading an application program of a mobile communication terminal using an external memory according to one embodiment of the present invention; and

[0017] FIG. 3 is a flowchart illustrating a method for restoring a boot program to a mobile communication terminal using the external memory according to one embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0018] Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the
accompanying drawings. Note that the same or similar components in drawings are designated by the same reference numerals as far as possible although they are shown in different drawings. In the following description of the present invention, detailed description of known functions and configurations incorporated herein will be omitted when it may make the subject matter of the present invention unclear.

[0019] FIG. 1 is a block diagram illustrating the structure of an apparatus for installing software in a mobile communication terminal by using an external memory according to one embodiment of the present invention.

[0020] A dotted part having reference numeral 100 indicates the mobile communication terminal, and reference numeral 200 indicates the external memory. The mobile communication terminal 100 can detect the plugging state of the external memory 200 through the state of a GPIO (general purpose input/output) pin. The GPIO pin is positioned at a control module 20 of the mobile communication terminal 100. The control module 20 may be realized by using a QualComm MSM (mobile station modem) chip.

[0021] The control module 20 controls the overall operation of the mobile communication terminal and controls the installation of software according to the present invention. A first memory 35 may be realized using a ROM, a flash RAM, etc. In addition, the first memory 35 is used for storing software (e.g., application programs or a boot program). A second memory 40 may be realized using an SDRAM, an SRAM, etc. In addition, the second memory 40 is used for installing software. Software may be installed in order to upgrade an application program or recover a boot program.

[0022] An RF processing module 15 includes an RF transmitter for up-converting and amplifying a frequency of a signal to be transmitted and an RF receiver for low-noise amplifying a received signal and down-converting a frequency of the received signal. The RF processing module 15 receives a baseband signal from the control module 20, converts the signal into a middle-frequency signal, converts the middle-frequency signal into a high-frequency signal, and transmits the high-frequency signal to a base station through an antenna. In contrast, a high-frequency signal received from the base station through the antenna is converted into a middle-frequency signal and then a baseband signal to be provided to the control module 20.

[0023] A key input module 25 and a display module 30 are used for user interface. The key input module 25 includes a plurality of keys enabling a user to input data or a command for installing software. If the key input module 25 detects the pressing of a predetermined key, the key input module 25 delivers input data corresponding to the key to the control module 20. The display module 30 may be realized using a liquid crystal display (LCD), and displays the current state of the mobile communication terminal, a menu, and a message input by a user under the control of the control module 20. The display module 30 may also include a touch screen. Although it is not shown, the mobile communication terminal further includes a vibration module in order to display a specific state. The key input module 25 may include a light emitting diode.

[0024] The above-described structure is only an example and may be variously changed. For example, an exclusive input/output pin assigned to an external memory can be applied to the operation in which case it may be unnecessary to employ the GPIO pin as a unit by which the mobile communication terminal 100 determines the plugging state of the external memory 200.

[0025] FIG. 2 is a flowchart illustrating a method for upgrading an application program of the mobile communication terminal using the external memory according to one embodiment of the present invention.

[0026] A user copies software binary to be downloaded in the external memory. Then, the user plugs the external memory into the mobile communication terminal and then powers the mobile communication terminal on while pressing a specific key (it is assumed that the specific key is a zero key according to the present invention). In this state, the control module 20 commences a booting operation in step 212. In step 214, the control module 20 determines if the zero key is pressed. At this time, if the zero key is pressed, the control module 20 determines in step 216 if the external memory 200 is plugged in the mobile communication terminal.

[0027] If the zero key is not pressed or if the external memory 200 is not plugged in the mobile communication terminal, the control module 20 normally performs the booting operation in step 214. In contrast, if the zero key is pressed and if the external memory 200 is plugged in the mobile communication terminal, the control module 20 recognizes that the user intends to upgrade an application program.

[0028] In step 218, the control module 20 determines if the power of a battery is insufficient. If the power of the battery has a strength less than a predetermined value, the control module 20 controls the display module 30 to display a message reporting the shortage of the power (e.g., “It is impossible to perform the upgrade due to shortage of power. Please retry the upgrade procedure after charging battery.”) in step 220 and terminates the upgrade of the application program.

[0029] In contrast, if the control module 20 determines in step 218 that the power of the battery is not insufficient, the control module 20 controls the display module 30 to display a message reporting the progress of the upgrade (e.g., “An application program is being upgraded”) in step 222. Then, in step 224, the control module 20 initializes the external memory 200.

[0030] In step 226, the control module 20 clears a corresponding block of the first memory 35 in which software binary is downloaded. At this time, the control module 20 may clear the whole block of the first memory 35. In addition, the control module 20 obtains the size of software binary in the external memory 200 through a file system and then may clear a block corresponding to the size.

[0031] In step 228, the control module 20 controls the display module 30 to start the display of the progress bar and display a message forbidding power off (e.g., “Please don’t turn power off because software is in the process of upgrade”). Herein, the display of the progress bar is necessary in order to inform the user of the downloading progress state.

[0032] In step 230, the control module 20 reads data (software binary) from the external memory 200 by a
In step 232, the control module 20 stores the read data in a corresponding block of the first memory 35. The control module 20 then determines in step 234 if all data have been read from the external memory 200 and are stored. If all data have not been read, the control module 20 returns to step 230.

If the upgrade of the software is completed, the control module 20 controls the display module 30 to display an upgrade completion message (e.g., “The upgrade of the software is completed!”) and stop the display of the progress bar and stop the display of a message of forbidding power off in step 236. In step 238, the control module 20 starts rebooting by resetting the mobile communication terminal.

The steps are performed on the premise that the upgrade operation of the application program is executed in the second memory 40. If the upgrade operation of the application program is executed in the first memory 35 (e.g., a ROM or a NOR flash memory) and a corresponding block of the first memory 35 is cleared in step 226, the upgrade operation of the program is not executed any more because all programs are deleted. Therefore, the duplication of programs necessary for the download are made in the second memory 40 before step 226 such that the programs are executed in the second memory 40.

FIG. 3 is a flowchart illustrating a method for restoring a boot program to the mobile communication terminal using the external memory. The steps shown in FIG. 3 are included in a program performed before a boot program is executed. As described above, the program performed before the boot program is executed is called IPL (initial program loader) for the purpose of description. The IPL may be stored in a ROM embedded in the control module 20 or in an external processor. The IPL is a well-known technique frequently used when the boot program is stored in a NAND flash memory. Therefore, a description about the operation of the IPL will be omitted in order to prevent the subject matter of the present invention from being unclear.

In step 311, the control module 20 sets up a CPU and a clock. In step 313, the control module 20 initializes the second memory 40. In step 315, the control module 20 determines if the external memory 200 is plugged in the mobile communication terminal. If the external memory 200 is plugged in, the control module 20 initializes the external memory 200 in step 317. If not, normal booting is performed in step 333.

In step 319, the control module 20 determines if the boot program is found in the external memory 200. This is achieved by inserting a specific code value into a specific block of a boot program and confirming only the code value. If the boot program is found in the external memory 200 in step 319, the control module 20 determines the current mode as a mode for restoring the boot program and informs the user of the fact “A boot program is in the middle of restoration” in step 321. For example, the control module 20 can control a light emitting diode of the key input module 25 to blink. If the boot program is not found, normal booting is performed in step 333.

In step 323, the control module 20 clears all boot program blocks of the first memory 35. In step 325, the control module 20 reads boot program data from the external memory 200 by a predetermined size (e.g., 512 bytes). In step 327, the control module 20 stores the boot program in the first memory 35. In step 329, the control module 20 determines if all boot program data have been completely read and stored. If the all boot program data has not been completely read and stored, the control module 20 returns to step 325. If the control module 20 completely stores all boot program data in step 329, the control module 20 informs the user of “Boot program restoration”. For example, the control module 20 turns a light emitting diode of the key input module 25 on or generates vibration by driving a vibration module (not shown).

If it is determined the external memory 200 is not plugged in the mobile communication terminal in step 315 or if it is determined that the boot program is not found in step 319, the control module 20 performs normal booting in step 333. In other words, the control module 20 reads the boot program to be executed in the second memory 40 from the first memory 35 and then stores the boot program in the second memory 40.

There are two methods for storing a boot program in the external memory 200 according to the present invention.

The first method employs a file system. In this case, it is enough for a personal computer to copy boot program binary in the external memory 200 using a File Allocation Table (FAT) file system. However, the IPL of a mobile communication terminal must have a file system software. Generally, it is difficult for the IPL of the mobile communication terminal to have a file system because the size of the IPL is restricted. However, the size of the IPL is not greatly expanded because the method does not require the whole file system, but only a function of reading a file by analyzing a boot sector and a FAT table.

The second method does not employ a file system. In order to copy boot program binary in the external memory, a special method must be used. In other words, it is enough to sequentially store the boot program binary from a specific sector (e.g., 0th sector) by directly using an external memory driver software. However, since this method can be realized only by system developers, it is difficult for the general users to realize this method as compared with the first method. In contrast, it is easy to realize IPL because a file system is not required in the IPL of the mobile communication terminal.

As described above, according to the present invention, anyone who has an external memory can easily install software. It is unnecessary to employ a download program used in a personal computer and equipment such as a cable. Anyone who has an external memory card including software binary can easily upgrade programs. In addition, program download through an external memory is achieved even faster than remote program download through cable. For this reason, it is easy for users to upgrade software for themselves by bringing soft binary uploaded on the web by a mobile communication terminal provider without visiting a service center.

In addition, according to the present invention, the boot program can be automatically restored only by turning on the mobile communication terminal after copying boot program binary into an external memory card and then
plugging the external memory card in the mobile communication terminal. Therefore, according to the present invention, it is easy for a service center, etc. to restore the boot program without the use of high-priced equipment such as the JTAG or a modification of the hardware of the mobile communication terminal.

[0045] While the invention has been shown and described with reference to certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention. Consequently, the scope of the invention should not be limited to the embodiments, but should be defined by the appended claims and equivalents thereof.

What is claimed is:

1. An apparatus for installing software in a mobile communication terminal, the apparatus comprising:
 an external memory having software to be installed;
 a detector of the mobile communication terminal for, if an external memory is plugged in to the mobile communication terminal, detecting a plugging state of the external memory;
 a memory being embedded in the mobile communication terminal;
 and
 a controller of the mobile communication terminal for reading the software to be installed from the external memory and storing the software in the memory if connection with the external memory is detected.

2. The apparatus as claimed in claim 1, further comprising a connection module through which the external memory is connected to the mobile communication terminal, the connection module including a general purpose input/output (GPIO) pin.

3. The apparatus as claimed in claim 1, wherein the memory includes a first memory and a second memory, the first memory in which the software is finally installed, the second memory being used for executing the software to be installed.

4. The apparatus as claimed in claim 3, further comprising:
 a key input module including a plurality of keys used for inputting data or commands for software installation by a user, and if input of a predetermined key is detected, the key input module providing corresponding key input data to the controller; and
 a display module for displaying a state change of the mobile communication terminal according to the software installation.

5. The apparatus as claimed in claim 1, wherein the software to be installed is an application program to be upgraded.

6. The apparatus as claimed in claim 1, wherein the software to be installed is a boot program to be restored.

7. The apparatus as claimed in claim 1, wherein the first memory is a non-volatile memory.

8. A method for installing software in a mobile communication terminal using an external memory having the software, the method comprising the steps of:
 determining if the external memory is plugged in the mobile communication terminal and if software installation is requested; and
 if the external memory is plugged in the mobile communication terminal and software installation is requested, reading data from the external memory by a predetermined size and storing the data in a corresponding block of a memory embedded in the mobile communication terminal until all data stored in the external memory are read and stored in the embedded memory.

9. The method as claimed in claim 8, wherein the software installation includes upgrade of an application program.

10. The method as claimed in claim 9, further comprising the step of starting rebooting the mobile communication terminal if the upgrade of the application program is completed.

11. The method as claimed in claim 9, further comprising the step of displaying an upgrade completion message if the upgrade of the application program is completed.

12. The method as claimed in claim 9, further comprising the step of previously clearing a corresponding block of the embedded memory in order to upgrade the application program.

13. The method as claimed in claim 9, further comprising the step of displaying a message reporting that the application program is being upgraded.

14. The method as claimed in claim 9, further comprising the step of, before data from the external memory are read and stored, displaying a message reporting that battery power is insufficient if the battery power is checked and it is determined that the battery power is insufficient.

15. The method as claimed in claim 9, further comprising the step of, if data from the external memory starts to be read and stored, displaying a message forbidding a power off while starting to display a progress bar.

16. The method as claimed in claim 15, further comprising the step of, if the upgrade of the application program is completed, displaying an upgrade completion message and stopping display of the progress bar and stopping display of the message forbidding power off.

17. The method as claimed in claim 8, wherein the software installation includes restoration of a boot program.

18. The method as claimed in claim 17, further comprising the step of, if restoration of a boot program is completed by reading and storing all data from the external memory, displaying a message reporting the restoration of the boot program.

19. The method as claimed in claim 17, further comprising the step of previously clearing a corresponding block of the embedded memory in order to restore the boot program.

20. The method as claimed in claim 17, further comprising the step of displaying a message reporting that the boot program is being restored.

21. The method as claimed in claim 17, further comprising the step of determining if the boot program is found in the external memory according to a detection state of a specific code value from the external memory.