PCT
WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(11) International Publication Number: WO 99/57282
(43) International Publication Date: 11 November 1999 (11.11.99)

(21) International Application Number: PCT/US99/09997
(22) International Filing Date: 6 May 1999 (06.05.99)
(30) Priority Data:
09/073,898 6 May 1998 (06.05.98) US

(71) Applicant: MYCOGEN CORPORATION [US/US]; 5501 Oberlin Drive, San Diego, CA 92121 (US).

Published
Without international search report and to be republished upon receipt of that report.
With an indication in relation to deposited biological material furnished under Rule 15bis separately from the description.

(54) Title: PESTICIDAL TOXINS AND NUCLEOTIDE SEQUENCES WHICH ENCODE THESE TOXINS

(57) Abstract

Disclosed and claimed are novel *Bacillus thuringiensis* isolates, pesticidal toxins, genes, and nucleotide probes and primers for the identification of genes encoding toxins active against pests. The primers are useful in PCR techniques to produce gene fragments which are characteristic of genes encoding these toxins. The subject invention provides entirely new families of toxins which can be obtained from the supernatants of *Bacillus* cultures.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

<table>
<thead>
<tr>
<th>AL</th>
<th>Albania</th>
<th>ES</th>
<th>Spain</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Armenia</td>
<td>FI</td>
<td>Finland</td>
</tr>
<tr>
<td>AT</td>
<td>Austria</td>
<td>FR</td>
<td>France</td>
</tr>
<tr>
<td>AU</td>
<td>Australia</td>
<td>GA</td>
<td>Gabon</td>
</tr>
<tr>
<td>AZ</td>
<td>Azerbaijan</td>
<td>GB</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>BA</td>
<td>Bosnia and Herzegovina</td>
<td>GE</td>
<td>Georgia</td>
</tr>
<tr>
<td>BB</td>
<td>Barbados</td>
<td>GH</td>
<td>Ghana</td>
</tr>
<tr>
<td>BE</td>
<td>Belgium</td>
<td>GN</td>
<td>Guinea</td>
</tr>
<tr>
<td>BF</td>
<td>Burkina Faso</td>
<td>GR</td>
<td>Greece</td>
</tr>
<tr>
<td>BG</td>
<td>Bulgaria</td>
<td>HU</td>
<td>Hungary</td>
</tr>
<tr>
<td>BJ</td>
<td>Benin</td>
<td>IE</td>
<td>Ireland</td>
</tr>
<tr>
<td>BR</td>
<td>Brazil</td>
<td>IL</td>
<td>Israel</td>
</tr>
<tr>
<td>BY</td>
<td>Belarus</td>
<td>IS</td>
<td>Iceland</td>
</tr>
<tr>
<td>CA</td>
<td>Canada</td>
<td>IT</td>
<td>Italy</td>
</tr>
<tr>
<td>CF</td>
<td>Central African Republic</td>
<td>JP</td>
<td>Japan</td>
</tr>
<tr>
<td>CG</td>
<td>Congo</td>
<td>KE</td>
<td>Kenya</td>
</tr>
<tr>
<td>CH</td>
<td>Switzerland</td>
<td>KG</td>
<td>Kyrgyzstan</td>
</tr>
<tr>
<td>CI</td>
<td>Côte d'Ivoire</td>
<td>KP</td>
<td>Democratic People's Republic of Korea</td>
</tr>
<tr>
<td>CM</td>
<td>Cameroun</td>
<td>KR</td>
<td>Republic of Korea</td>
</tr>
<tr>
<td>CN</td>
<td>China</td>
<td>KZ</td>
<td>Kazakhstan</td>
</tr>
<tr>
<td>CU</td>
<td>Cuba</td>
<td>LC</td>
<td>Saint Lucia</td>
</tr>
<tr>
<td>CZ</td>
<td>Czech Republic</td>
<td>LI</td>
<td>Liechtenstein</td>
</tr>
<tr>
<td>DE</td>
<td>Germany</td>
<td>LK</td>
<td>Sri Lanka</td>
</tr>
<tr>
<td>DK</td>
<td>Denmark</td>
<td>LR</td>
<td>Liberia</td>
</tr>
<tr>
<td>EE</td>
<td>Estonia</td>
<td>LS</td>
<td>Lesotho</td>
</tr>
<tr>
<td>LT</td>
<td>Lithuania</td>
<td>LU</td>
<td>Luxembourg</td>
</tr>
<tr>
<td>LV</td>
<td>Latvia</td>
<td>MC</td>
<td>Monaco</td>
</tr>
<tr>
<td>MD</td>
<td>Republic of Moldova</td>
<td>MG</td>
<td>Madagascar</td>
</tr>
<tr>
<td>MK</td>
<td>The former Yugoslavia</td>
<td>ML</td>
<td>Mali</td>
</tr>
<tr>
<td>MN</td>
<td>Mongolia</td>
<td>MR</td>
<td>Mauritania</td>
</tr>
<tr>
<td>MW</td>
<td>Malawi</td>
<td>MX</td>
<td>Mexico</td>
</tr>
<tr>
<td>NE</td>
<td>Niger</td>
<td>NL</td>
<td>Netherlands</td>
</tr>
<tr>
<td>NO</td>
<td>Norway</td>
<td>NZ</td>
<td>New Zealand</td>
</tr>
<tr>
<td>PL</td>
<td>Poland</td>
<td>PT</td>
<td>Portugal</td>
</tr>
<tr>
<td>RO</td>
<td>Romania</td>
<td>RU</td>
<td>Russian Federation</td>
</tr>
<tr>
<td>SD</td>
<td>Sudan</td>
<td>SE</td>
<td>Sweden</td>
</tr>
<tr>
<td>SG</td>
<td>Singapore</td>
<td>SI</td>
<td>Slovenia</td>
</tr>
<tr>
<td>SK</td>
<td>Slovakia</td>
<td>SN</td>
<td>Senegal</td>
</tr>
<tr>
<td>SZ</td>
<td>Swaziland</td>
<td>TD</td>
<td>Chad</td>
</tr>
<tr>
<td>TG</td>
<td>Togo</td>
<td>TJ</td>
<td>Tajikistan</td>
</tr>
<tr>
<td>TM</td>
<td>Turkmenistan</td>
<td>TR</td>
<td>Turkey</td>
</tr>
<tr>
<td>TT</td>
<td>Trinidad and Tobago</td>
<td>UA</td>
<td>Ukraine</td>
</tr>
<tr>
<td>UG</td>
<td>Uganda</td>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UZ</td>
<td>Uzbekistan</td>
<td>VN</td>
<td>Viet Nam</td>
</tr>
<tr>
<td>YU</td>
<td>Yugoslavia</td>
<td>ZW</td>
<td>Zimbabwe</td>
</tr>
</tbody>
</table>
DESCRIPTION

PESTICIDAL TOXINS AND NUCLEOTIDE SEQUENCES WHICH ENCODE THESE TOXINS

Background of the Invention

Insects and other pests cost farmers billions of dollars annually in crop losses and in the expense of keeping these pests under control. The losses caused by insect pests in agricultural production environments include decrease in crop yield, reduced crop quality, and increased harvesting costs.

Cultivation methods, such as crop rotation and the application of high nitrogen levels to stimulate the growth of an adventitious root system, has partially addressed problems caused by agricultural pests. Economic demands on the utilization of farmland restrict the use of crop rotation. In addition, overwintering traits of some insects are disrupting crop rotations in some areas. Thus, chemical insecticides are relied upon most heavily to guarantee the desired level of control. Insecticides are either banded onto or incorporated into the soil.

The use of chemical insecticides has several drawbacks. Continual use of insecticides has allowed resistant insects to evolve. Situations such as extremely high populations of larvae, heavy rains, and improper calibration of insecticide application equipment can result in poor control. The use of insecticides often raises environmental concerns such as contamination of soil and of both surface and underground water supplies. The public has also become concerned about the amount of residual, synthetic chemicals which might be found on food. Working with insecticides may also pose hazards to the persons applying them. Therefore, synthetic chemical pesticides are being increasingly scrutinized, and correctly so, for their potential toxic environmental consequences. Examples of widely used synthetic chemical pesticides include the organochlorines, e.g., DDT, mirex, kepone, lindane, aldrin, chlordane, aldicarb, and dieldrin; the organophosphates, e.g., chlorpyrifos, parathion, malathion, and diazinon; and carbamates. Stringent new restrictions on the use of pesticides and the elimination of some effective pesticides from the market place could limit economical and effective options for controlling damaging and costly pests.
Because of the problems associated with the use of organic synthetic chemical pesticides, there exists a clear need to limit the use of these agents and a need to identify alternative control agents. The replacement of synthetic chemical pesticides, or combination of these agents with biological pesticides, could reduce the levels of toxic chemicals in the environment.

A biological pesticidal agent that is enjoying increasing popularity is the soil microbe *Bacillus thuringiensis* (B.t.). The soil microbe *Bacillus thuringiensis* (B.t.) is a Gram-positive, spore-forming bacterium. Most strains of B.t. do not exhibit pesticidal activity. Some B.t. strains produce, and can be characterized by, parasporal crystalline protein inclusions. These inclusions often appear microscopically as distinctively shaped crystals. Some B.t. proteins are highly toxic to pests, such as insects, and are specific in their toxic activity. Certain insecticidal B.t. proteins are associated with the inclusions. These "δ-endotoxins," are different from exotoxins, which have a non-specific host range. Other species of *Bacillus* also produce pesticidal proteins.

Certain *Bacillus* toxin genes have been isolated and sequenced, and recombinant DNA-based products have been produced and approved for use. In addition, with the use of genetic engineering techniques, new approaches for delivering these toxins to agricultural environments are under development. These include the use of plants genetically engineered with toxin genes for insect resistance and the use of stabilized intact microbial cells as toxin delivery vehicles. Thus, isolated *Bacillus* toxin genes are becoming commercially valuable.

Until the last fifteen years, commercial use of B.t. pesticides has been largely restricted to targeting a narrow range of lepidopteran (caterpillar) pests. Preparations of the spores and crystals of *B. thuringiensis* subsp. *kurstaki* have been used for many years as commercial insecticides for lepidopteran pests. For example, *B. thuringiensis* var. *kurstaki* HD-1 produces a crystalline δ-endotoxin which is toxic to the larvae of a number of lepidopteran insects.

In recent years, however, investigators have discovered B.t. pesticides with specificities for a much broader range of pests. For example, other species of B.t., namely *israelensis* and *morrisoni* (a.k.a. *tenebrionis*, a.k.a. B.t. M-7, a.k.a. B.t. san diego), have been used commercially to control insects of the orders Diptera and Coleoptera, respectively. *Bacillus thuringiensis* var. *tenebrionis* has been reported to be
active against two beetles in the order Coleoptera (Colorado potato beetle, *Leptinotarsa decemlineata*, and *Agelastica alni*).

More recently, new subspecies of *B.t.* have been identified, and genes responsible for active δ-endotoxin proteins have been isolated. Höfte and Whiteley classified *B.t.* crystal protein genes into four major classes (Höfte, H., H.R. Whiteley [1989] *Microbiological Reviews* 52(2):242-255). The classes were CryI (Lepidoptera-specific), CryII (Lepidoptera- and Diptera-specific), CryIII (Coleoptera-specific), and CryIV (Diptera-specific). The discovery of strains specifically toxic to other pests has been reported. For example, CryV and CryVI have been proposed to designate a class of toxin genes that are nematode-specific.

The 1989 nomenclature and classification scheme of Höfte and Whiteley for crystal proteins was based on both the deduced amino acid sequence and the host range of the toxin. That system was adapted to cover 14 different types of toxin genes which were divided into five major classes. The number of sequenced *Bacillus thuringiensis* crystal protein genes currently stands at more than 50. A revised nomenclature scheme has been proposed which is based solely on amino acid identity (Crickmore *et al.* [1996] Society for Invertebrate Pathology, 29th Annual Meeting, IIIrd International Colloquium on *Bacillus thuringiensis*, University of Cordoba, Cordoba, Spain, September 1-6, 1996, abstract). The mnemonic "cry" has been retained for all of the toxin genes except cytA and cytB, which remain a separate class. Roman numerals have been exchanged for Arabic numerals in the primary rank, and the parentheses in the tertiary rank have been removed. Many of the original names have been retained, with the noted exceptions, although a number have been reclassified.

Many other *B.t.* genes have now been identified. WO 94/21795, WO 96/10083, WO 98/44137, and Estruch, J.J. *et al.* (1996) *PNAS* 93:5389-5394 describe Vip1A(a), Vip1A(b), Vip2A(a), Vip2A(b), Vip3A(a), and Vip3A(b) toxins obtained from *Bacillus* microbes. Those toxins are reported to be produced during vegetative cell growth and were thus termed vegetative insecticidal proteins (VIP). Activity of these toxins against certain lepidopteran and certain coleopteran pests was reported. WO 98/18932 discloses new classes of pesticidal toxins.

Obstacles to the successful agricultural use of *Bacillus* toxins include the development of resistance to *B.t.* toxins by insects. In addition, certain insects can be
refractory to the effects of Bacillus toxins. The latter includes insects such as boll weevil and black cutworm as well as adult insects of most species which heretofore have demonstrated no apparent significant sensitivity to B.t. δ-endotoxins. While resistance management strategies in B.t. transgene plant technology have become of great interest, there remains a great need for developing additional genes that can be expressed in plants in order to effectively control various insects.

The subject application provides new classes of toxins and genes, in addition to those described in WO98/18932, and which are distinct from those disclosed in WO 94/21795, WO 96/10083, WO 98/44137, and Estruch et al..

Brief Summary of the Invention

The subject invention concerns materials and methods useful in the control of non-mammalian pests and, particularly, plant pests. In one embodiment, the subject invention provides novel Bacillus isolates having advantageous activity against non-mammalian pests. In a further embodiment, the subject invention provides new toxins useful for the control of non-mammalian pests. In a preferred embodiment, these pests are lepidopterans and/or coleopterans. The toxins of the subject invention include δ-endotoxins as well as soluble toxins which can be obtained from the supernatant of Bacillus cultures.

The subject invention further provides nucleotide sequences which encode the toxins of the subject invention. The subject invention further provides nucleotide sequences and methods useful in the identification and characterization of genes which encode pesticidal toxins.

In one embodiments, the subject invention concerns unique nucleotide sequences which are useful as hybridization probes and/or primers in PCR techniques. The primers produce characteristic gene fragments which can be used in the identification, characterization, and/or isolation of specific toxin genes. The nucleotide sequences of the subject invention encode toxins which are distinct from previously-described toxins.

In a specific embodiment, the subject invention provides new classes of toxins having advantageous pesticidal activities. These classes of toxins can be encoded by polynucleotide sequences which are characterized by their ability to hybridize with
certain exemplified sequences and/or by their ability to be amplified by PCR using certain exemplified primers.

One aspect of the subject invention pertains to the identification and characterization of entirely new families of *Bacillus* toxins having advantageous pesticidal properties. The subject invention includes new classes of genes and toxins referred to herein as MIS-7 and MIS-8. Genes and toxins of novel WAR- and SUP-classes are also disclosed. Certain MIS-1 and MIS-2 toxins and genes are also further characterized herein.

These families of toxins, and the genes which encode them, can be characterized in terms of, for example, the size of the toxin or gene, the DNA or amino acid sequence, pesticidal activity, and/or antibody reactivity. With regard to the genes encoding the novel toxin families of the subject invention, the current disclosure provides unique hybridization probes and PCR primers which can be used to identify and characterize DNA within each of the exemplified families.

In one embodiment of the subject invention, *Bacillus* isolates can be cultivated under conditions resulting in high multiplication of the microbe. After treating the microbe to provide single-stranded genomic nucleic acid, the DNA can be contacted with the primers of the invention and subjected to PCR amplification. Characteristic fragments of toxin-encoding genes will be amplified by the procedure, thus identifying the presence of the toxin-encoding gene(s).

A further aspect of the subject invention is the use of the disclosed nucleotide sequences as probes to detect genes encoding *Bacillus* toxins which are active against pests.

Further aspects of the subject invention include the genes and isolates identified using the methods and nucleotide sequences disclosed herein. The genes thus identified encode toxins active against pests. Similarly, the isolates will have activity against these pests. In a preferred embodiment, these pests are lepidopteran or coleopteran pests.

In a preferred embodiment, the subject invention concerns plants cells transformed with at least one polynucleotide sequence of the subject invention such that the transformed plant cells express pesticidal toxins in tissues consumed by target pests. As described herein, the toxins useful according to the subject invention may be chimeric
toxins produced by combining portions of multiple toxins. In addition, mixtures and/or combinations of toxins can be used according to the subject invention.

Transformation of plants with the genetic constructs disclosed herein can be accomplished using techniques well known to those skilled in the art and would typically involve modification of the gene to optimize expression of the toxin in plants.

Alternatively, the Bacillus isolates of the subject invention, or recombinant microbes expressing the toxins described herein, can be used to control pests. In this regard, the invention includes the treatment of substantially intact Bacillus cells, and/or recombinant cells containing the expressed toxins of the invention, treated to prolong the pesticidal activity when the substantially intact cells are applied to the environment of a target pest. The treated cell acts as a protective coating for the pesticidal toxin. The toxin becomes active upon ingestion by a target insect.

Brief Description of the Sequences

SEQ ID NO. 1 is a nucleotide sequence encoding a toxin from B.t. strain Javelin 1990.

SEQ ID NO. 2 is an amino acid sequence for the Javelin 1990 toxin.

SEQ ID NO. 3 is a forward primer used according to the subject invention.

SEQ ID NO. 4 is a reverse primer used according to the subject invention.

SEQ ID NO. 5 is a nucleotide sequence of a toxin gene from B.t. strain PS66D3.

SEQ ID NO. 6 is an amino acid sequence from the 66D3 toxin.

SEQ ID NO. 7 is a nucleotide sequence of a MIS toxin gene from B.t. strain PS177C8.

SEQ ID NO. 8 is an amino acid sequence from the 177C8-MIS toxin.

SEQ ID NO. 9 is a nucleotide sequence of a toxin gene from B.t. strain PS177I8.

SEQ ID NO. 10 is an amino acid sequence from the 177I8 toxin.

SEQ ID NO. 11 is a nucleotide sequence encoding a 177C8-WAR toxin gene from B.t. strain PS177C8.

SEQ ID NO. 12 is an amino acid sequence of a 177C8-WAR toxin from B.t. strain PS177C8.

SEQ ID NOS. 13-21 are primers used according to the subject invention.

SEQ ID NO. 22 is the reverse complement of the primer of SEQ ID NO. 14.
SEQ ID NO. 23 is the reverse complement of the primer of SEQ ID NO. 15.
SEQ ID NO. 24 is the reverse complement of the primer of SEQ ID NO. 17.
SEQ ID NO. 25 is the reverse complement of the primer of SEQ ID NO. 18.
SEQ ID NO. 26 is the reverse complement of the primer of SEQ ID NO. 19.
SEQ ID NO. 27 is the reverse complement of the primer of SEQ ID NO. 20.
SEQ ID NO. 28 is the reverse complement of the primer of SEQ ID NO. 21.
SEQ ID NO. 29 is a MIS-7 forward primer.
SEQ ID NO. 30 is a MIS-7 reverse primer.
SEQ ID NO. 31 is a MIS-8 forward primer.
SEQ ID NO. 32 is a MIS-8 reverse primer.
SEQ ID NO. 33 is a nucleotide sequence of a MIS-7 toxin gene designated 157C1-A from B.t. strain PS157C1.
SEQ ID NO. 34 is an amino acid sequence of a MIS-7 toxin designated 157C1-A from B.t. strain PS157C1.
SEQ ID NO. 35 is a nucleotide sequence of a MIS-7 toxin gene from B.t. strain PS201Z.
SEQ ID NO. 36 is a nucleotide sequence of a MIS-8 toxin gene from B.t. strain PS31F2.
SEQ ID NO. 37 is a nucleotide sequence of a MIS-8 toxin gene from B.t. strain PS185Y2.
SEQ ID NO. 38 is a nucleotide sequence of a MIS-1 toxin gene from B.t. strain PS33F1.
SEQ ID NO. 39 is a MIS primer for use according to the subject invention.
SEQ ID NO. 40 is a MIS primer for use according to the subject invention.
SEQ ID NO. 41 is a WAR primer for use according to the subject invention.
SEQ ID NO. 42 is a WAR primer for use according to the subject invention.
SEQ ID NO. 43 is a partial nucleotide sequence for a MIS-7 gene from PS205C.
SEQ ID NO. 44 is a partial amino acid sequence for a MIS-7 toxin from PS205C.
SEQ ID NO. 45 is a partial nucleotide sequence for a WAR gene from PS205C.
SEQ ID NO. 46 is a partial amino acid sequence for a WAR toxin from PS205C.
SEQ ID NO. 47 is a nucleotide sequence for a MIS-8 gene from PS31F2.
SEQ ID NO. 48 is an amino acid sequence for a MIS-8 toxin from PS31F2.
SEQ ID NO. 49 is a nucleotide sequence for a WAR gene from PS31F2.
SEQ ID NO. 50 is an amino acid sequence for a WAR toxin from PS31F2.
SEQ ID NO. 51 is a SUP primer for use according to the subject invention.
SEQ ID NO. 52 is a SUP primer for use according to the subject invention.
SEQ ID NO. 53 is a nucleotide sequence for a SUP gene from KB59A4-6.
SEQ ID NO. 54 is an amino acid sequence for a SUP toxin from KB59A4-6.

Detailed Disclosure of the Invention

The subject invention concerns materials and methods for the control of non-mammalian pests. In specific embodiments, the subject invention pertains to new *Bacillus thuringiensis* isolates and toxins which have activity against lepidopterans and/or coleopterans. The subject invention further concerns novel genes which encode pesticidal toxins and novel methods for identifying and characterizing *Bacillus* genes which encode toxins with useful properties. The subject invention concerns not only the polynucleotide sequences which encode these toxins, but also the use of these polynucleotide sequences to produce recombinant hosts which express the toxins. The proteins of the subject invention are distinct from protein toxins which have previously been isolated from *Bacillus thuringiensis*.

B.t. isolates useful according to the subject invention have been deposited in the permanent collection of the Agricultural Research Service Patent Culture Collection (NRRL), Northern Regional Research Center, 1815 North University Street, Peoria, Illinois 61604, USA. The culture repository numbers of the *B.t.* strains are as follows:

<table>
<thead>
<tr>
<th>Culture</th>
<th>Repository No.</th>
<th>Deposit Date</th>
<th>Patent No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.t. PS157C1 (MT104)</td>
<td>NRRL B-18240</td>
<td>July 17, 1987</td>
<td>5,262,159</td>
</tr>
<tr>
<td>B.t. PS31F2</td>
<td>NRRL B-21876</td>
<td>October 24, 1997</td>
<td></td>
</tr>
<tr>
<td>B.t. PS66D3</td>
<td>NRRL B-21858</td>
<td>October 24, 1997</td>
<td></td>
</tr>
<tr>
<td>B.t. PS177C8a</td>
<td>NRRL B-21867</td>
<td>October 24, 1997</td>
<td></td>
</tr>
<tr>
<td>B.t. PS177L8</td>
<td>NRRL B-21868</td>
<td>October 24, 1997</td>
<td></td>
</tr>
<tr>
<td>KB53A49-4</td>
<td>NRRL B-21879</td>
<td>October 24, 1997</td>
<td></td>
</tr>
<tr>
<td>KB68B46-2</td>
<td>NRRL B-21877</td>
<td>October 24, 1997</td>
<td></td>
</tr>
<tr>
<td>KB68B51-2</td>
<td>NRRL B-21880</td>
<td>October 24, 1997</td>
<td></td>
</tr>
</tbody>
</table>
Table 1.

<table>
<thead>
<tr>
<th>Culture</th>
<th>Repository No.</th>
<th>Deposit Date</th>
<th>Patent No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>KB63B55-2</td>
<td>NRRL B-21878</td>
<td>October 24, 1997</td>
<td></td>
</tr>
<tr>
<td>PS33F1</td>
<td>NRRL B-21977</td>
<td>April 24, 1998</td>
<td></td>
</tr>
<tr>
<td>PS71G4</td>
<td>NRRL B-21978</td>
<td>April 24, 1998</td>
<td></td>
</tr>
<tr>
<td>PS86D1</td>
<td>NRRL B-21979</td>
<td>April 24, 1998</td>
<td></td>
</tr>
<tr>
<td>PS185V2</td>
<td>NRRL B-21980</td>
<td>April 24, 1998</td>
<td></td>
</tr>
<tr>
<td>PS191A21</td>
<td>NRRL B-21981</td>
<td>April 24, 1998</td>
<td></td>
</tr>
<tr>
<td>PS201Z</td>
<td>NRRL B-21982</td>
<td>April 24, 1998</td>
<td></td>
</tr>
<tr>
<td>PS205A3</td>
<td>NRRL B-21983</td>
<td>April 24, 1998</td>
<td></td>
</tr>
<tr>
<td>PS205C</td>
<td>NRRL B-21984</td>
<td>April 24, 1998</td>
<td></td>
</tr>
<tr>
<td>PS234E1</td>
<td>NRRL B-21985</td>
<td>April 24, 1998</td>
<td></td>
</tr>
<tr>
<td>PS248N10</td>
<td>NRRL B-21986</td>
<td>April 24, 1998</td>
<td></td>
</tr>
<tr>
<td>KB63B19-13</td>
<td>NRRL B-21990</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB63B19-7</td>
<td>NRRL B-21989</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB68B62-7</td>
<td>NRRL B-21991</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB68B63-2</td>
<td>NRRL B-21992</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB69A125-1</td>
<td>NRRL B-21993</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB69A125-3</td>
<td>NRRL B-21994</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB69A125-5</td>
<td>NRRL B-21995</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB69A127-7</td>
<td>NRRL B-21996</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB69A132-1</td>
<td>NRRL B-21997</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB69B2-1</td>
<td>NRRL B-21998</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB70B5-3</td>
<td>NRRL B-21999</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB71A125-15</td>
<td>NRRL B-30001</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB71A35-6</td>
<td>NRRL B-30000</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB71A72-1</td>
<td>NRRL B-21987</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>KB71A134-2</td>
<td>NRRL B-21988</td>
<td>April 29, 1998</td>
<td></td>
</tr>
<tr>
<td>PS185Y2</td>
<td>NRRL B-30121</td>
<td>May 4, 1999</td>
<td></td>
</tr>
<tr>
<td>KB59A4-6</td>
<td>NRRL B-30122</td>
<td>May 4, 1999</td>
<td></td>
</tr>
<tr>
<td>MR992</td>
<td>NRRL B-30124</td>
<td>May 4, 1999</td>
<td></td>
</tr>
<tr>
<td>MR983</td>
<td>NRRL B-30123</td>
<td>May 4, 1999</td>
<td></td>
</tr>
<tr>
<td>MR993</td>
<td>NRRL B-30125</td>
<td>May 4, 1999</td>
<td></td>
</tr>
<tr>
<td>MR951</td>
<td>NRRL B-30122</td>
<td>May 4, 1999</td>
<td></td>
</tr>
</tbody>
</table>

Cultures which have been deposited for the purposes of this patent application were deposited under conditions that assure that access to the cultures is available during
the pendency of this patent application to one determined by the Commissioner of Patents and Trademarks to be entitled thereto under 37 CFR 1.14 and 35 U.S.C. 122. The deposits will be available as required by foreign patent laws in countries wherein counterparts of the subject application, or its progeny, are filed. However, it should be understood that the availability of a deposit does not constitute a license to practice the subject invention in derogation of patent rights granted by governmental action.

Further, the subject culture deposits will be stored and made available to the public in accord with the provisions of the Budapest Treaty for the Deposit of Microorganisms, i.e., they will be stored with all the care necessary to keep them viable and uncontaminated for a period of at least five years after the most recent request for the furnishing of a sample of the deposit, and in any case, for a period of at least thirty (30) years after the date of deposit or for the enforceable life of any patent which may issue disclosing the culture(s). The depositor acknowledges the duty to replace the deposit(s) should the depository be unable to furnish a sample when requested, due to the condition of a deposit. All restrictions on the availability to the public of the subject culture deposits will be irrevocably removed upon the granting of a patent disclosing them.

Many of the strains useful according to the subject invention are readily available by virtue of the issuance of patents disclosing these strains or by their deposit in public collections or by their inclusion in commercial products. For example, the B.t. strain used in the commercial product, Javelin, and the HD isolates are all publicly available.

Mutants of the isolates referred to herein can be made by procedures well known in the art. For example, an asporogenous mutant can be obtained through ethylmethane sulfonate (EMS) mutagenesis of an isolate. The mutants can be made using ultraviolet light and nitrosoguanidine by procedures well known in the art.

In one embodiment, the subject invention concerns materials and methods including nucleotide primers and probes for isolating, characterizing, and identifying Bacillus genes encoding protein toxins which are active against non-mammalian pests. The nucleotide sequences described herein can also be used to identify new pesticidal Bacillus isolates. The invention further concerns the genes, isolates, and toxins identified using the methods and materials disclosed herein.

The new toxins and polynucleotide sequences provided here are defined according to several parameters. One characteristic of the toxins described herein is
pesticidal activity. In a specific embodiment, these toxins have activity against coleopteran and/or lepidopteran pests. The toxins and genes of the subject invention can be further defined by their amino acid and nucleotide sequences. The sequences of the molecules can be defined in terms of homology to certain exemplified sequences as well as in terms of the ability to hybridize with, or be amplified by, certain exemplified probes and primers. The toxins provided herein can also be identified based on their immunoreactivity with certain antibodies.

An important aspect of the subject invention is the identification and characterization of new families of *Bacillus* toxins, and genes which encode these toxins. These families have been designated MIS-7 and MIS-8. New WAR- and SUP-type toxin families are also disclosed herein. Toxins within these families, as well as genes encoding toxins within these families, can readily be identified as described herein by, for example, size, amino acid or DNA sequence, and antibody reactivity. Amino acid and DNA sequence characteristics include homology with exemplified sequences, ability to hybridize with DNA probes, and ability to be amplified with specific primers.

A gene and toxin (which are obtainable from PS33F1) of the MIS-1 family and a gene and toxin (which are obtainable from PS66D3) of the MIS-2 family are also further characterized herein.

A novel family of toxins identified herein is the MIS-7 family. This family includes toxins which can be obtained from *B.t.* isolates PS157C1, PS205C, and PS201Z. The subject invention further provides probes and primers for identification of the MIS-7 genes and toxins.

A further, novel family of toxins identified herein is the MIS-8 family. This family includes toxins which can be obtained from *B.t.* isolates PS31F2 and PS185Y2. The subject invention further provides probes and primers for identification of the MIS-8 genes and toxins.

In a preferred embodiment, the genes of the MIS family encode toxins having a molecular weight of about 70 to about 100 kDa and, most preferably, the toxins have a size of about 80 kDa. Typically, these toxins are soluble and can be obtained from the supernatant of *Bacillus* cultures as described herein. These toxins have toxicity against non-mammalian pests. In a preferred embodiment, these toxins have activity against coleopteran pests. The MIS proteins are further useful due to their ability to form pores
in cells. These proteins can be used with second entities including, for example, other proteins. When used with a second entity, the MIS protein will facilitate entry of the second agent into a target cell. In a preferred embodiment, the MIS protein interacts with MIS receptors in a target cell and causes pore formation in the target cell. The second entity may be a toxin or another molecule whose entry into the cell is desired.

The subject invention further concerns a family of toxins designated WAR-type toxins. The WAR toxins typically have a size of about 30-50 kDa and, most typically, have a size of about 40 kDa. Typically, these toxins are soluble and can be obtained from the supernatant of *Bacillus* cultures as described herein. The WAR toxins can be identified with primers described herein as well as with antibodies.

An additional family of toxins provided according to the subject invention are the toxins designated SUP-type toxins. Typically, these toxins are soluble and can be obtained from the supernatant of *Bacillus* cultures as described herein. In a preferred embodiment, the SUP toxins are active against lepidopteran pests. The SUP toxins typically have a size of about 70-100 kDa and, preferably, about 80 kDa. The SUP family is exemplified herein by toxins from isolate KB59A4-6. The subject invention provides probes and primers useful for the identification of toxins and genes in the SUP family.

The subject invention also provides additional *Bacillus* toxins and genes, including additional MIS, WAR, and SUP toxins and genes.

Toxins in the MIS, WAR, and SUP families are all soluble and can be obtained as described herein from the supernatant of *Bacillus* cultures. These toxins can be used alone or in combination with other toxins to control pests. For example, toxins from the MIS families may be used in conjunction with WAR-type toxins to achieve control of pests, particularly coleopteran pests. These toxins may be used, for example, with δ-endotoxins which are obtained from *Bacillus* isolates.

Table 2 provides a summary of the novel families of toxins and genes of the subject invention. Certain MIS families are specifically exemplified herein by toxins which can be obtained from particular *B.t.* isolates as shown in Table 2. Genes encoding toxins in each of these families can be identified by a variety of highly specific parameters, including the ability to hybridize with the particular probes set forth in Table 2. Sequence identity in excess of about 80% with the probes set forth in Table 2 can also
be used to identify the genes of the various families. Also exemplified are particular primer pairs which can be used to amplify the genes of the subject invention. A portion of a gene within the indicated families would typically be amplifiable with at least one of the enumerated primer pairs. In a preferred embodiment, the amplified portion would be of approximately the indicated fragment size. Primers shown in Table 2 consist of polynucleotide sequences which encode peptides as shown in the sequence listing attached hereto. Additional primers and probes can readily be constructed by those skilled in the art such that alternate polynucleotide sequences encoding the same amino acid sequences can be used to identify and/or characterize additional genes encoding pesticidal toxins. In a preferred embodiment, these additional toxins, and their genes, could be obtained from *Bacillus* isolates.

| Table 2. |
|------------------|------------------|------------------|------------------|
| Family | Isolates | Probes (SEQ ID NO.) | Primer Pairs (SEQ ID NOS.) | Fragment size (nt) |
| MIS-1 | PS33F1 | 37 | 13 and 22 | 69 |
| | | | 13 and 23 | 506 |
| | | | 14 and 23 | 458 |
| MIS-2 | PS66D3 | 5 | 16 and 24 | 160 |
| | | | 16 and 25 | 239 |
| | | | 16 and 26 | 400 |
| | | | 16 and 27 | 509 |
| | | | 16 and 28 | 703 |
| | | | 17 and 25 | 102 |
| | | | 17 and 26 | 263 |
| | | | 17 and 27 | 372 |
| | | | 17 and 28 | 566 |
| | | | 18 and 26 | 191 |
| | | | 18 and 27 | 300 |
| | | | 18 and 28 | 494 |
| | | | 19 and 27 | 131 |
| | | | 19 and 28 | 325 |
| | | | 20 and 28 | 213 |
| MIS-7 | PS205C, PS157C1 (157C1-A), PS201Z | 33, 35 | 29 and 30 | 598 |
| MIS-8 | PS31F2, PS185Y2 | 36, 37 | 31 and 32 | 585 |
| SUP | KB59A4-6 | 1 | 51 and 52 | |

Furthermore, chimeric toxins may be used according to the subject invention. Methods have been developed for making useful chimeric toxins by combining portions

With the teachings provided herein, one skilled in the art could readily produce and use the various toxins and polynucleotide sequences described herein.

Genes and toxins. The genes and toxins useful according to the subject invention include not only the full length sequences but also fragments of these sequences, variants, mutants, and fusion proteins which retain the characteristic pesticidal activity of the toxins specifically exemplified herein. Chimeric genes and toxins, produced by combining portions from more than one Bacillus toxin or gene, may also be utilized according to the teachings of the subject invention. As used herein, the terms “variants” or “variations” of genes refer to nucleotide sequences which encode the same toxins or which encode equivalent toxins having pesticidal activity. As used herein, the term “equivalent toxins” refers to toxins having the same or essentially the same biological activity against the target pests as the exemplified toxins. For example, U.S. Patent No. 5,605,793 describes methods for generating additional molecular diversity by using DNA reassembly after random fragmentation.

It is apparent to a person skilled in this art that genes encoding active toxins can be identified and obtained through several means. The specific genes exemplified herein may be obtained from the isolates deposited at a culture depository as described above.
These genes, or portions or variants thereof, may also be constructed synthetically, for example, by use of a gene synthesizer. Variations of genes may be readily constructed using standard techniques for making point mutations. Also, fragments of these genes can be made using commercially available exonucleases or endonucleases according to standard procedures. For example, enzymes such as Bal31 or site-directed mutagenesis can be used to systematically cut off nucleotides from the ends of these genes. Also, genes which encode active fragments may be obtained using a variety of restriction enzymes. Proteases may be used to directly obtain active fragments of these toxins.

Equivalent toxins and/or genes encoding these equivalent toxins can be derived from Bacillus isolates and/or DNA libraries using the teachings provided herein. There are a number of methods for obtaining the pesticidal toxins of the instant invention. For example, antibodies to the pesticidal toxins disclosed and claimed herein can be used to identify and isolate toxins from a mixture of proteins. Specifically, antibodies may be raised to the portions of the toxins which are most constant and most distinct from other Bacillus toxins. These antibodies can then be used to specifically identify equivalent toxins with the characteristic activity by immunoprecipitation, enzyme linked immunosorbent assay (ELISA), or Western blotting. Antibodies to the toxins disclosed herein, or to equivalent toxins, or fragments of these toxins, can readily be prepared using standard procedures in this art. The genes which encode these toxins can then be obtained from the microorganism.

Fragments and equivalents which retain the pesticidal activity of the exemplified toxins are within the scope of the subject invention. Also, because of the redundancy of the genetic code, a variety of different DNA sequences can encode the amino acid sequences disclosed herein. It is well within the skill of a person trained in the art to create these alternative DNA sequences encoding the same, or essentially the same, toxins. These variant DNA sequences are within the scope of the subject invention. As used herein, reference to "essentially the same" sequence refers to sequences which have amino acid substitutions, deletions, additions, or insertions which do not materially affect pesticidal activity. Fragments retaining pesticidal activity are also included in this definition.

A further method for identifying the toxins and genes of the subject invention is through the use of oligonucleotide probes. These probes are detectable nucleotide
sequences. Probes provide a rapid method for identifying toxin-encoding genes of the subject invention. The nucleotide segments which are used as probes according to the invention can be synthesized using a DNA synthesizer and standard procedures.

Certain toxins of the subject invention have been specifically exemplified herein. Since these toxins are merely exemplary of the toxins of the subject invention, it should be readily apparent that the subject invention comprises variant or equivalent toxins (and nucleotide sequences coding for equivalent toxins) having the same or similar pesticidal activity of the exemplified toxin. Equivalent toxins will have amino acid homology with an exemplified toxin. This amino acid identity will typically be greater than 60%, preferably be greater than 75%, more preferably greater than 80%, more preferably greater than 90%, and can be greater than 95%. These identities are as determined using standard alignment techniques. The amino acid homology will be highest in critical regions of the toxin which account for biological activity or are involved in the determination of three-dimensional configuration which ultimately is responsible for the biological activity. In this regard, certain amino acid substitutions are acceptable and can be expected if these substitutions are in regions which are not critical to activity or are conservative amino acid substitutions which do not affect the three-dimensional configuration of the molecule. For example, amino acids may be placed in the following classes: non-polar, uncharged polar, basic, and acidic. Conservative substitutions whereby an amino acid of one class is replaced with another amino acid of the same type fall within the scope of the subject invention so long as the substitution does not materially alter the biological activity of the compound. Table 3 provides a listing of examples of amino acids belonging to each class.
Table 3.

<table>
<thead>
<tr>
<th>Class of Amino Acid</th>
<th>Examples of Amino Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonpolar</td>
<td>Ala, Val, Leu, Ile, Pro, Met, Phe, Trp</td>
</tr>
<tr>
<td>Uncharged Polar</td>
<td>Gly, Ser, Thr, Cys, Tyr, Asn, Gln</td>
</tr>
<tr>
<td>Acidic</td>
<td>Asp, Glu</td>
</tr>
<tr>
<td>Basic</td>
<td>Lys, Arg, His</td>
</tr>
</tbody>
</table>

In some instances, non-conservative substitutions can also be made. The critical factor is that these substitutions must not significantly detract from the biological activity of the toxin.

The δ-endotoxins of the subject invention can also be characterized in terms of the shape and location of toxin inclusions, which are described above.

As used herein, reference to “isolated” polynucleotides and/or “purified” toxins refers to these molecules when they are not associated with the other molecules with which they would be found in nature. Thus, reference to “isolated and purified” signifies the involvement of the “hand of man” as described herein. Chimeric toxins and genes also involve the “hand of man.”

Recombinant hosts. The toxin-encoding genes of the subject invention can be introduced into a wide variety of microbial or plant hosts. Expression of the toxin gene results, directly or indirectly, in the production and maintenance of the pesticide. With suitable microbial hosts, *e.g.*, *Pseudomonas*, the microbes can be applied to the situs of the pest, where they will proliferate and be ingested. The result is a control of the pest. Alternatively, the microbe hosting the toxin gene can be killed and treated under conditions that prolong the activity of the toxin and stabilize the cell. The treated cell, which retains the toxic activity, then can be applied to the environment of the target pest.

Where the *Bacillus* toxin gene is introduced via a suitable vector into a microbial host, and said host is applied to the environment in a living state, it is essential that certain host microbes be used. Microorganism hosts are selected which are known to occupy the “phytosphere” (phylloplane, phyllosphere, rhizosphere, and/or rhizoplane) of one or more crops of interest. These microorganisms are selected so as to be capable of
successfully competing in the particular environment (crop and other insect habitats) with
the wild-type microorganisms, provide for stable maintenance and expression of the gene
expressing the polypeptide pesticide, and, desirably, provide for improved protection of
the pesticide from environmental degradation and inactivation.

A large number of microorganisms are known to inhabit the phylloplane (the
surface of the plant leaves) and/or the rhizosphere (the soil surrounding plant roots) of
a wide variety of important crops. These microorganisms include bacteria, algae, and
fungi. Of particular interest are microorganisms, such as bacteria, e.g., genera
Pseudomonas, Erwinia, Serratia, Klebsiella, Xanthomonas, Streptomyces, Rhizobium,
Rhodopseudomonas, Methylophilus, Agrobacterium, Acetobacter, Lactobacillus,
Arthrobacter, Azotobacter, Leuconostoc, and Alcaligenes; fungi, particularly yeast, e.g.,
genera Saccharomyces, Cryptococcus, Klyveromyces, Sporobolomyces, Rhodotorula,
and Aureobasidium. Of particular interest are such phytosphere bacterial species as
Pseudomonas syringae, Pseudomonas fluorescens, Serratia marcescens, Acetobacter
xylinum, Agrobacterium tumefaciens, Rhodopseudomonas spheroides, Xanthomonas
campestris, Rhizobium melioti, Alcaligenes entrophus, and Azotobacter vinlandii; and
phytosphere yeast species such as Rhodotorula rubra, R. glutinis, R. marina, R.
aurantiaca, Cryptococcus albidus, C. diffluens, C. laurentii, Saccharomyces rosei, S.
pretoriensis, S. cerevisiae, Sporobolomyces roseus, S. odorus, Klyveromyces veronae,
and Aureobasidium pullulans. Of particular interest are the pigmented microorganisms.

A wide variety of ways are available for introducing a Bacillus gene encoding a
toxin into a microorganism host under conditions which allow for stable maintenance and
expression of the gene. These methods are well known to those skilled in the art and are
described, for example, in United States Patent No. 5,135,867, which is incorporated
herein by reference.

Synthetic genes which are functionally equivalent to the toxins of the subject
invention can also be used to transform hosts. Methods for the production of synthetic
genes can be found in, for example, U.S. Patent No. 5,380,831.

Treatment of cells. As mentioned above, Bacillus or recombinant cells expressing
a Bacillus toxin can be treated to prolong the toxin activity and stabilize the cell. The
pesticide microcapsule that is formed comprises the Bacillus toxin within a cellular
structure that has been stabilized and will protect the toxin when the microcapsule is
applied to the environment of the target pest. Suitable host cells may include either prokaryotes or eukaryotes. As hosts, of particular interest will be the prokaryotes and the lower eukaryotes, such as fungi. The cell will usually be intact and be substantially in the proliferative form when treated, rather than in a spore form.

Treatment of the microbial cell, e.g., a microbe containing the *Bacillus* toxin gene, can be by chemical or physical means, or by a combination of chemical and/or physical means, so long as the technique does not deleteriously affect the properties of the toxin, nor diminish the cellular capability of protecting the toxin. Methods for treatment of microbial cells are disclosed in United States Patent Nos. 4,695,455 and 4,695,462, which are incorporated herein by reference.

Methods and formulations for control of pests. Control of pests using the isolates, toxins, and genes of the subject invention can be accomplished by a variety of methods known to those skilled in the art. These methods include, for example, the application of *Bacillus* isolates to the pests (or their location), the application of recombinant microbes to the pests (or their locations), and the transformation of plants with genes which encode the pesticidal toxins of the subject invention. Transformations can be made by those skilled in the art using standard techniques. Materials necessary for these transformations are disclosed herein or are otherwise readily available to the skilled artisan.

Formulated bait granules containing an attractant and the toxins of the *Bacillus* isolates, or recombinant microbes comprising the genes obtainable from the *Bacillus* isolates disclosed herein, can be applied to the soil. Formulated product can also be applied as a seed-coating or root treatment or total plant treatment at later stages of the crop cycle. Plant and soil treatments of *Bacillus* cells may be employed as wettable powders, granules or dusts, by mixing with various inert materials, such as inorganic minerals (phyllosilicates, carbonates, sulfates, phosphates, and the like) or botanical materials (powdered corncobs, rice hulls, walnut shells, and the like). The formulations may include spreader-sticker adjuvants, stabilizing agents, other pesticidal additives, or surfactants. Liquid formulations may be aqueous-based or non-aqueous and employed as foams, gels, suspensions, emulsifiable concentrates, or the like. The ingredients may include rheological agents, surfactants, emulsifiers, dispersants, or polymers.
As would be appreciated by a person skilled in the art, the pesticidal concentration will vary widely depending upon the nature of the particular formulation, particularly whether it is a concentrate or to be used directly. The pesticide will be present in at least 1% by weight and may be 100% by weight. The dry formulations will have from about 1-95% by weight of the pesticide while the liquid formulations will generally be from about 1-60% by weight of the solids in the liquid phase. The formulations that contain cells will generally have from about 10^2 to about 10^4 cells/mg. These formulations will be administered at about 50 mg (liquid or dry) to 1 kg or more per hectare.

The formulations can be applied to the environment of the pest, e.g., soil and foliage, by spraying, dusting, sprinkling, or the like.

Polynucleotide probes. It is well known that DNA possesses a fundamental property called base complementarity. In nature, DNA ordinarily exists in the form of pairs of anti-parallel strands, the bases on each strand projecting from that strand toward the opposite strand. The base adenine (A) on one strand will always be opposed to the base thymine (T) on the other strand, and the base guanine (G) will be opposed to the base cytosine (C). The bases are held in apposition by their ability to hydrogen bond in this specific way. Though each individual bond is relatively weak, the net effect of many adjacent hydrogen bonded bases, together with base stacking effects, is a stable joining of the two complementary strands. These bonds can be broken by treatments such as high pH or high temperature, and these conditions result in the dissociation, or “denaturation,” of the two strands. If the DNA is then placed in conditions which make hydrogen bonding of the bases thermodynamically favorable, the DNA strands will anneal, or “hybridize,” and reform the original double stranded DNA. If carried out under appropriate conditions, this hybridization can be highly specific. That is, only strands with a high degree of base complementarity will be able to form stable double stranded structures. The relationship of the specificity of hybridization to reaction conditions is well known. Thus, hybridization may be used to test whether two pieces of DNA are complementary in their base sequences. It is this hybridization mechanism which facilitates the use of probes of the subject invention to readily detect and characterize DNA sequences of interest.
The probes may be RNA, DNA, or PNA (peptide nucleic acid). The probe will normally have at least about 10 bases, more usually at least about 17 bases, and may have up to about 100 bases or more. Longer probes can readily be utilized, and such probes can be, for example, several kilobases in length. The probe sequence is designed to be at least substantially complementary to a portion of a gene encoding a toxin of interest. The probe need not have perfect complementarity to the sequence to which it hybridizes. The probes may be labelled utilizing techniques which are well known to those skilled in this art.

One approach for the use of the subject invention as probes entails first identifying by Southern blot analysis of a gene bank of the *Bacillus* isolate all DNA segments homologous with the disclosed nucleotide sequences. Thus, it is possible, without the aid of biological analysis, to know in advance the probable activity of many new *Bacillus* isolates, and of the individual gene products expressed by a given *Bacillus* isolate. Such a probe analysis provides a rapid method for identifying potentially commercially valuable insecticidal toxin genes within the multifarious subspecies of *B.t.*

One hybridization procedure useful according to the subject invention typically includes the initial steps of isolating the DNA sample of interest and purifying it chemically. Either lysed bacteria or total fractionated nucleic acid isolated from bacteria can be used. Cells can be treated using known techniques to liberate their DNA (and/or RNA). The DNA sample can be cut into pieces with an appropriate restriction enzyme. The pieces can be separated by size through electrophoresis in a gel, usually agarose or acrylamide. The pieces of interest can be transferred to an immobilizing membrane.

The particular hybridization technique is not essential to the subject invention. As improvements are made in hybridization techniques, they can be readily applied.

The probe and sample can then be combined in a hybridization buffer solution and held at an appropriate temperature until annealing occurs. Thereafter, the membrane is washed free of extraneous materials, leaving the sample and bound probe molecules typically detected and quantified by autoradiography and/or liquid scintillation counting. As is well known in the art, if the probe molecule and nucleic acid sample hybridize by forming a strong non-covalent bond between the two molecules, it can be reasonably assumed that the probe and sample are essentially identical. The probe's detectable label
provides a means for determining in a known manner whether hybridization has occurred.

In the use of the nucleotide segments as probes, the particular probe is labeled with any suitable label known to those skilled in the art, including radioactive and non-radioactive labels. Typical radioactive labels include 32P, 35S, or the like. Non-radioactive labels include, for example, ligands such as biotin or thyroxine, as well as enzymes such as hydrolases or peroxidases, or the various chemiluminescers such as luciferin, or fluorescent compounds like fluorescein and its derivatives. The probes may be made inherently fluorescent as described in International Application No. WO 93/16094.

Various degrees of stringency of hybridization can be employed. The more severe the conditions, the greater the complementarity that is required for duplex formation. Severity can be controlled by temperature, probe concentration, probe length, ionic strength, time, and the like. Preferably, hybridization is conducted under moderate to high stringency conditions by techniques well known in the art, as described, for example, in Keller, G.H., M.M. Manak (1987) DNA Probes, Stockton Press, New York, NY., pp. 169-170.

As used herein “moderate to high stringency” conditions for hybridization refers to conditions which achieve the same, or about the same, degree of specificity of hybridization as the conditions employed by the current applicants. Examples of moderate and high stringency conditions are provided herein. Specifically, hybridization of immobilized DNA on Southern blots with 32P-labeled gene-specific probes was performed by standard methods (Maniatis et al.). In general, hybridization and subsequent washes were carried out under moderate to high stringency conditions that allowed for detection of target sequences with homology to the exemplified toxin genes. For double-stranded DNA gene probes, hybridization was carried out overnight at 20-25° C below the melting temperature (Tm) of the DNA hybrid in 6X SSPE, 5X Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA. The melting temperature is described by the following formula (Beltz, G.A., K.A. Jacobs, T.H. Eickbush, P.T. Cherbas, and F.C. Kafatos [1983] Methods of Enzymology, R. Wu, L. Grossman and K. Moldave [eds.] Academic Press, New York 100:266-285).
Tm=81.5°C+16.6 \log[Na^+]+0.41(\%G+C)-0.61(\%formamide)-600/length of duplex in base pairs.

Washes are typically carried out as follows:

1. Twice at room temperature for 15 minutes in 1X SSPE, 0.1% SDS (low stringency wash).
2. Once at Tm-20°C for 15 minutes in 0.2X SSPE, 0.1% SDS (moderate stringency wash).

For oligonucleotide probes, hybridization was carried out overnight at 10-20°C below the melting temperature (Tm) of the hybrid in 6X SSPE, 5X Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA. Tm for oligonucleotide probes was determined by the following formula:

Washes were typically carried out as follows:

1. Twice at room temperature for 15 minutes 1X SSPE, 0.1% SDS (low stringency wash).
2. Once at the hybridization temperature for 15 minutes in 1X SSPE, 0.1% SDS (moderate stringency wash).

In general, salt and/or temperature can be altered to change stringency. With a labeled DNA fragment >70 or so bases in length, the following conditions can be used:

- **Low:** 1 or 2X SSPE, room temperature
- **Low:** 1 or 2X SSPE, 42°C
- **Moderate:** 0.2X or 1X SSPE, 65°C
- **High:** 0.1X SSPE, 65°C.

Duplex formation and stability depend on substantial complementarity between the two strands of a hybrid, and, as noted above, a certain degree of mismatch can be tolerated. Therefore, the probe sequences of the subject invention include mutations (both single and multiple), deletions, insertions of the described sequences, and combinations thereof, wherein said mutations, insertions and deletions permit formation of stable hybrids with the target polynucleotide of interest. Mutations, insertions, and
deletions can be produced in a given polynucleotide sequence in many ways, and these methods are known to an ordinarily skilled artisan. Other methods may become known in the future.

Thus, mutational, insertional, and deletional variants of the disclosed nucleotide sequences can be readily prepared by methods which are well known to those skilled in the art. These variants can be used in the same manner as the exemplified primer sequences so long as the variants have substantial sequence homology with the original sequence. As used herein, substantial sequence homology refers to homology which is sufficient to enable the variant probe to function in the same capacity as the original probe. Preferably, this homology is greater than 50%; more preferably, this homology is greater than 75%; and most preferably, this homology is greater than 90%. The degree of homology needed for the variant to function in its intended capacity will depend upon the intended use of the sequence. It is well within the skill of a person trained in this art to make mutational, insertional, and deletional mutations which are designed to improve the function of the sequence or otherwise provide a methodological advantage.

PCR technology. Polymerase Chain Reaction (PCR) is a repetitive, enzymatic, primed synthesis of a nucleic acid sequence. This procedure is well known and commonly used by those skilled in this art (see Mullis, U.S. Patent Nos. 4,683,195, 4,683,202, and 4,800,159; Saiki, Randall K., Stephen Scharf, Fred Faloona, Kary B. Mullis, Glenn T. Horn, Henry A. Erlich, Norman Arneheim [1985] “Enzymatic Amplification of β-Globin Genomic Sequences and Restriction Site Analysis for Diagnosis of Sickle Cell Anemia,” Science 230:1350-1354.). PCR is based on the enzymatic amplification of a DNA fragment of interest that is flanked by two oligonucleotide primers that hybridize to opposite strands of the target sequence. The primers are oriented with the 3′ ends pointing towards each other. Repeated cycles of heat denaturation of the template, annealing of the primers to their complementary sequences, and extension of the annealed primers with a DNA polymerase result in the amplification of the segment defined by the 5′ ends of the PCR primers. Since the extension product of each primer can serve as a template for the other primer, each cycle essentially doubles the amount of DNA fragment produced in the previous cycle. This results in the exponential accumulation of the specific target fragment, up to several million-fold in a few hours. By using a thermostable DNA polymerase such as Taq
polymerase, which is isolated from the thermophilic bacterium *Thermus aquaticus*, the amplification process can be completely automated. Other enzymes which can be used are known to those skilled in the art.

The DNA sequences of the subject invention can be used as primers for PCR amplification. In performing PCR amplification, a certain degree of mismatch can be tolerated between primer and template. Therefore, mutations, deletions, and insertions (especially additions of nucleotides to the 5' end) of the exemplified primers fall within the scope of the subject invention. Mutations, insertions and deletions can be produced in a given primer by methods known to an ordinarily skilled artisan.

All of the references cited herein are hereby incorporated by reference.

Following are examples which illustrate procedures for practicing the invention. These examples should not be construed as limiting. All percentages are by weight and all solvent mixture proportions are by volume unless otherwise noted.

Example 1 – Culturing of *Bacillus* Isolates Useful According to the Invention

The cellular host containing the *Bacillus* insecticidal gene may be grown in any convenient nutrient medium. These cells may then be harvested in accordance with conventional ways. Alternatively, the cells can be treated prior to harvesting.

The *Bacillus* cells of the invention can be cultured using standard art media and fermentation techniques. During the fermentation cycle, the bacteria can be harvested by first separating the *Bacillus* vegetative cells, spores, crystals, and lysed cellular debris from the fermentation broth by means well known in the art. Any *Bacillus* spores or crystal δ-endotoxins formed can be recovered employing well-known techniques and used as a conventional δ-endotoxin *B.t.* preparation. The supernatant from the fermentation process contains toxins of the present invention. The toxins are isolated and purified employing well-known techniques.

A subculture of *Bacillus* isolates, or mutants thereof, can be used to inoculate the following medium, known as TB broth:

<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tryptone</td>
<td>12 g/l</td>
</tr>
<tr>
<td>Yeast Extract</td>
<td>24 g/l</td>
</tr>
<tr>
<td>Glycerol</td>
<td>4 g/l</td>
</tr>
</tbody>
</table>
KH₂PO₄ 2.1 g/l
K₂HPO₄ 14.7 g/l
pH 7.4

The potassium phosphate was added to the autoclaved broth after cooling. Flasks were incubated at 30°C on a rotary shaker at 250 rpm for 24-36 hours.

The above procedure can be readily scaled up to large fermentors by procedures well known in the art.

The Bacillus obtained in the above fermentation, can be isolated by procedures well known in the art. A frequently-used procedure is to subject the harvested fermentation broth to separation techniques, e.g., centrifugation. In a specific embodiment, Bacillus proteins useful according the present invention can be obtained from the supernatant. The culture supernatant containing the active protein(s) can be used in bioassays.

Alternatively, a subculture of Bacillus isolates, or mutants thereof, can be used to inoculate the following peptone, glucose, salts medium:

Bacto Peptone 7.5 g/l
Glucose 1.0 g/l
KH₂PO₄ 3.4 g/l
K₂HPO₄ 4.35 g/l
Salt Solution 5.0 ml/l
CaCl₂ Solution 5.0 ml/l
pH 7.2

Salts Solution (100 ml)

MgSO₄·7H₂O 2.46 g
MnSO₄·H₂O 0.04 g
ZnSO₄·7H₂O 0.28 g
FeSO₄·7H₂O 0.40 g

CaCl₂ Solution (100 ml)

CaCl₂·2H₂O 3.66 g
The salts solution and CaCl₂ solution are filter-sterilized and added to the autoclaved and cooked broth at the time of inoculation. Flasks are incubated at 30°C on a rotary shaker at 200 rpm for 64 hr.

The above procedure can be readily scaled up to large fermentors by procedures well known in the art.

The Bacillus spores and/or crystals, obtained in the above fermentation, can be isolated by procedures well known in the art. A frequently-used procedure is to subject the harvested fermentation broth to separation techniques, e.g., centrifugation.

Example 2 – Isolation and Preparation of Cellular DNA for PCR

DNA can be prepared from cells grown on Spizizen's agar, or other minimal or enriched agar known to those skilled in the art, for approximately 16 hours. Spizizen's casamino acid agar comprises 23.2 g/l Spizizen's minimal salts [(NH₄)₂SO₄, 120 g; K₂HPO₄, 840 g; KH₂PO₄, 360 g; sodium citrate, 60 g; MgSO₄·7H₂O, 12 g. Total: 1392 g]; 1.0 g/l vitamin-free casamino acids; 15.0 g/l Difco agar. In preparing the agar, the mixture was autoclaved for 30 minutes, then a sterile, 50% glucose solution can be added to a final concentration of 0.5% (1/100 vol). Once the cells are grown for about 16 hours, an approximately 1 cm² patch of cells can be scraped from the agar into 300 µl of 10 mM Tris-HCl (pH 8.0)-1 mM EDTA. Proteinase K was added to 50 µg/ml and incubated at 55°C for 15 minutes. Other suitable proteases lacking nuclease activity can be used. The samples were then placed in a boiling water bath for 15 minutes to inactivate the proteinase and denature the DNA. This also precipitates unwanted components. The samples are then centrifuged at 14,000 x g in an Eppendorf microfuge at room temperature for 5 minutes to remove cellular debris. The supernatants containing crude DNA were transferred to fresh tubes and frozen at -20°C until used in PCR reactions.

Alternatively, total cellular DNA may be prepared from plate-grown cells using the QIAamp Tissue Kit from Qiagen (Santa Clarita, CA) following instructions from the manufacturer.

Example 3 – Primers Useful for Characterizing and/or Identifying Toxin Genes

The following set of PCR primers can be used to identify and/or characterize genes of the subject invention, which encode pesticidal toxins:
GGRTTAMTTGGRTAYTATTT (SEQ ID NO. 3)
ATATCKWAYATTKGCATTTA (SEQ ID NO. 4)

Redundant nucleotide codes used throughout the subject disclosure are in accordance with the IUPAC convention and include:

\[R = A \text{ or } G \]
\[M = A \text{ or } C \]
\[Y = C \text{ or } T \]
\[K = G \text{ or } T \]
\[W = A \text{ or } T \]

Example 4 – Identification and Sequencing of Genes Encoding Novel Soluble Protein Toxins from Bacillus Strains

PCR using primers SEQ ID NO. 3 and SEQ ID NO. 4 was performed on total cellular genomic DNA isolated from a broad range of B.t. strains. Those samples yielding an approximately 1 kb band were selected for characterization by DNA sequencing. Amplified DNA fragments were first cloned into the PCR DNA TA-cloning plasmid vector, pCR2.1, as described by the supplier (Invitrogen, San Diego, CA). Plasmids were isolated from recombinant clones and tested for the presence of an approximately 1 kbp insert by PCR using the plasmid vector primers, T3 and T7.

The following strains yielded the expected band of approximately 1000 bp, thus indicating the presence of a MIS-type toxin gene: PS66D3, PS177C8, PS177I8, PS33F1, PS157C1 (157C1-A), PS201Z, PS31F2, and PS185Y2.

Plasmids were then isolated for use as sequencing templates using QIAGEN (Santa Clarita, CA) miniprep kits as described by the supplier. Sequencing reactions were performed using the Dye Terminator Cycle Sequencing Ready Reaction Kit from PE Applied Biosystems. Sequencing reactions were run on a ABI PRISM 377 Automated Sequencer. Sequence data was collected, edited, and assembled using the ABI PRISM 377 Collection, Factura, and AutoAssembler software from PE ABI.

DNA sequences were determined for portions of novel toxin genes from the following isolates: PS66D3, PS177C8, PS177I8, PS33F1, PS157C1 (157C1-A), PS201Z, PS31F2, and PS185Y2. These nucleotide sequences are shown in SEQ ID NOS. 5, 7, 9, 38, 33, 35, 36, and 37, respectively. Polypeptide sequences were deduced for portions
of the encoded, novel soluble toxins from the following isolates: PS66D3, PS177C8, PS177I8, and PS157C1 (toxin 157C1-A). These nucleotide sequences are shown in SEQ ID NOS. 6, 8, 10, and 34, respectively.

Example 5 — Restriction Fragment Length Polymorphism (RFLP) of Toxins from *Bacillus thuringiensis* Strains

Total cellular DNA was prepared from various *Bacillus thuringiensis* (B.t.) strains grown to an optical density of 0.5-0.8 at 600 nm visible light. DNA was extracted using the Qiagen Genomic-tip 500/G kit and Genomic DNA Buffer Set according to protocol for Gram positive bacteria (Qiagen Inc.; Valencia, CA).

Standard Southern hybridizations using 32P-labeled probes were used to identify and characterize novel toxin genes within the total genomic DNA preparations. Prepared total genomic DNA was digested with various restriction enzymes, electrophoresed on a 1% agarose gel, and immobilized on a supported nylon membrane using standard methods (Maniatis et al.).

PCR-amplified DNA fragments 1.0-1.1 kb in length were gel purified for use as probes. Approximately 25 ng of each DNA fragment was used as a template for priming nascent DNA synthesis using DNA polymerase I Klenow fragment (New England Biolabs), random hexanucleotide primers (Boehringer Mannheim) and 32PdCTP.

Each 32P-labeled fragment served as a specific probe to its corresponding genomic DNA blot. Hybridizations of immobilized DNA with randomly labeled 32P probes were performed in standard aqueous buffer consisting of 5X SSPE, 5X Denhardt’s solution, 0.5% SDS, 0.1 mg/ml at 65°C overnight. Blots were washed under moderate stringency in 0.2X SSC, 0.1% SDS at 65°C and exposed to film. RFLP data showing specific hybridization bands containing all or part of the novel gene of interest was obtained for each strain.

<table>
<thead>
<tr>
<th>(Strain) / Gene Name</th>
<th>Probe Seq I.D. Number</th>
<th>RFLP Data (approximate band sizes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PS)66D3</td>
<td>24</td>
<td>BamHI: 4.5 kbp, HindIII: >23 kbp, KpnI: 23 kbp, PstI: 15 kbp, XbaI: >23 kbp</td>
</tr>
</tbody>
</table>
In separate experiments, alternative probes for MIS and WAR genes were used to detect novel toxin genes on Southern blots of genomic DNA by 32P autoradiography or by non-radioactive methods using the DIG nucleic acid labeling and detection system (Boehringer Mannheim; Indianapolis, IN). DNA fragments approximately 2.6 kbp (PS177C8 MIS toxin gene; SEQ ID NO. 7) and 1.3 kbp (PS177C8 WAR toxin gene; SEQ ID NO. 11) in length were PCR amplified from plasmid pMYC2450 using primers homologous to the 5' and 3' ends of each respective gene. pMYC2450 is a recombinant plasmid containing the PS177C8 MIS and WAR genes on an approximately 14 kbp ClaI fragment in pHTBlueII (an *E. coli* / *B. thuringiensis* shuttle vector comprised of pBluescript S/K [Stratagene, La Jolla, CA] and the replication origin from a resident *B.t.* plasmid [D. Lereclus *et al*. 1989; FEMS Microbiology Letters 60:211-218]). These DNA fragments were used as probes for MIS RFLP classes A through N and WAR RFLP classes A through L. RFLP data in Table 4 for class O was generated using MIS fragments approximately 1636 bp amplified with primers S1-633F (CACTCAAAAAATGAAAAAGGGAAA; SEQ ID NO. 39) and S1-2269R (CCGTTTTATTGATGCTAC; SEQ ID NO. 40). RFLP data in Table 5 for class M was generated using WAR fragments approximately 495 bp amplified with primers S2-501F (AGAACAATTITTTAGATAGGG; SEQ ID NO. 41) and S2-995R (TCCCTAAAGCATCAGAAATA; SEQ ID NO 42).

Fragments were gel purified and approximately 25 ng of each DNA fragment was randomly labeled with 32P for radioactive detection or approximately 300 ng of each DNA fragment was randomly labeled with the DIG High Prime kit for nonradioactive detection. Hybridization of immobilized DNA with randomly labeled 32P probes were performed in standard formamide conditions: 50% formamide, 5X SSPE, 5X Denhardt’s solution, 2% SDS, 0.1 mg/ml sonicated sperm DNA at 42°C overnight. Blots were washed under low stringency in 2X SSC, 0.1% SDS at 42°C and exposed to film. RFLP

<table>
<thead>
<tr>
<th>(Strain) / Gene Name</th>
<th>Probe Seq I.D. Number</th>
<th>RFLP Data (approximate band sizes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(PS)17718</td>
<td>33</td>
<td>BamHI: >23 kbp, EcoRI: 10 kbp, HindIII: 2 kbp, SalI: >23 kbp, XbaI: 3.5 kbp</td>
</tr>
</tbody>
</table>

Table 3
data showing DNA bands containing all or part of the novel gene of interest was obtained for each strain.

RFLP data using MIS probes as discussed above were as follows:

<table>
<thead>
<tr>
<th>RFLP Class</th>
<th>Strain Name(s)</th>
<th>RFLP Data (approximate band size in base pairs)</th>
</tr>
</thead>
</table>
| A | 177C8, 74H3, 66D3 | **HindIII:** 2,454 ; 1,645
XbaI: 14,820; 9,612; 8,138; 5,642; 1,440 |
| B | 177I8 | **HindIII:** 2,454
XbaI: 3,500 (very faint 7,000) |
| C | 66D3 | **HindIII:** 2,454 (faint 20,000)
XbaI: 3,500 (faint 7,000) |
| D | 28M, 31F2, 71G5, 71G7, 71I1, 71N1, 146F, 185Y2, 201J7, KB73, KB68B46-2, KB71A35-4, KB71A116-1 | **HindIII:** 11,738; 7,614
XbaI: 10,622; 6,030 |
| D1 | 70B2, 71C2 | **HindIII:** 11,738; 8,698; 7,614
XbaI: 11,354; 10,622; 6,030 |
| E | KB68B51-2, KB68B55-2 | **HindIII:** 6,975; 2,527
XbaI: 10,000; 6,144 |
| F | KB53A49-4 | **HindIII:** 5,766
XbaI: 6,757 |
| G | 86D1 | **HindIII:** 4,920
XbaI: 11,961 |
| H | HD573B, 33F1, 67B3 | **HindIII:** 6,558; 1,978
XbaI: 7,815; 6,558 |
| I | 205C, 40C1 | **HindIII:** 6,752
XbaI: 4,618 |
| J | 130A3, 143A2, 157C1 | **HindIII:** 9,639; 3,943, 1,954; 1,210
XbaI: 7,005; 6,165; 4,480; 3,699 |
| K | 201Z | **HindIII:** 9,639; 4,339
XbaI: 7,232; 6,365 |
| L | 71G4 | **HindIII:** 7,005
XbaI: 9,639 |
| M | KB42A33-8, KB71A72-1, KB71A133-11 | **HindIII:** 3,721
XbaI: 3,274 |
Table 4

<table>
<thead>
<tr>
<th>RFLP Class</th>
<th>Strain Name(s)</th>
<th>RFLP Data (approximate band size in base pairs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>KB71A134-2</td>
<td>HindIII: 7,523</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XbaI: 10,360; 3,490</td>
</tr>
<tr>
<td>O</td>
<td>KB69A125-3, KB69A127-7,</td>
<td>HindIII: 6,360; 3,726; 1,874; 1,098</td>
</tr>
<tr>
<td></td>
<td>KB69A136-2, KB71A20-4</td>
<td>XbaI: 6,360; 5,893; 5,058; 3,726</td>
</tr>
</tbody>
</table>

RFLP data using WAR probes as discussed above were as follows:

Table 5

<table>
<thead>
<tr>
<th>RFLP Class</th>
<th>Strain Name(s)</th>
<th>RFLP Data (approximate band size in base pairs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>177C8, 74H3</td>
<td>HindIII: 3,659, 2,454, 606</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XbaI: 5,457, 4,469, 1,440, 966</td>
</tr>
<tr>
<td>B</td>
<td>177I8, 66D3</td>
<td>data unavailable</td>
</tr>
<tr>
<td>C</td>
<td>28M, 31F2, 71G5, 71G7,</td>
<td>HindIII: 7,614</td>
</tr>
<tr>
<td></td>
<td>7111, 71N1, 146F, 185Y2,</td>
<td>XbaI: 10,982, 6,235</td>
</tr>
<tr>
<td></td>
<td>201JJ7, KB73, KB68B46-2,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KB71A35-4, KB71A116-1</td>
<td></td>
</tr>
<tr>
<td>C₁</td>
<td>70B2, 71C2</td>
<td>HindIII: 8,698, 7,614</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XbaI: 11,354, 6,235</td>
</tr>
<tr>
<td>D</td>
<td>KB68B51-2, KB68B55-2</td>
<td>HindIII: 7,200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XbaI: 6,342 (and 11,225 for 51-2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(and 9,888 for 55-2)</td>
</tr>
<tr>
<td>E</td>
<td>KB53A49-4</td>
<td>HindIII: 5,766</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XbaI: 6,757</td>
</tr>
<tr>
<td>F</td>
<td>HD573B, 33F1, 67B3</td>
<td>HindIII: 3,348, 2,037 (and 6,558</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for HD573B only)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XbaI: 6,953 (and 7,815, 6,185</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for HD573B only)</td>
</tr>
<tr>
<td>G</td>
<td>205C, 40C1</td>
<td>HindIII: 3,158</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XbaI: 6,558, 2,809</td>
</tr>
<tr>
<td>H</td>
<td>130A3, 143A2, 157C1</td>
<td>HindIII: 4,339, 3,361, 1,954, 660, 349</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XbaI: 9,043, 4,203, 3,583, 2,958, 581, 464</td>
</tr>
<tr>
<td>I</td>
<td>201Z</td>
<td>HindIII: 4,480, 3,819, 703</td>
</tr>
<tr>
<td></td>
<td></td>
<td>XbaI: 9,336, 3,256, 495</td>
</tr>
</tbody>
</table>
Table 5

<table>
<thead>
<tr>
<th>RFLP Class</th>
<th>Strain Name(s)</th>
<th>RFLP Data (approximate band size in base pairs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>71G4</td>
<td>HindIII: 7,005 XbaI: 9,639</td>
</tr>
<tr>
<td>K</td>
<td>KB42A33-8, KB71A72-1, KB71A133-11</td>
<td>no hybridization signal</td>
</tr>
<tr>
<td>L</td>
<td>KB71A134-2</td>
<td>HindIII: 7,523 XbaI: 10,360</td>
</tr>
<tr>
<td>M</td>
<td>KB69A125-3, KB69A127-7, KB69A136-2, KB71A20-4</td>
<td>HindIII: 5,058; 3,726; 3,198; 2,745; 257 XbaI: 5,255; 4,341; 3,452; 1,490; 474</td>
</tr>
</tbody>
</table>

Example 6 - Characterization and/or Identification of WAR Toxins

In a further embodiment of the subject invention, pesticidal toxins can be characterized and/or identified by their level of reactivity with antibodies to pesticidal toxins exemplified herein. In a specific embodiment, antibodies can be raised to WAR toxins such as the toxin obtainable from PS177C8a. Other WAR toxins can then be identified and/or characterized by their reactivity with the antibodies. In a preferred embodiment, the antibodies are polyclonal antibodies. In this example, toxins with the greatest similarity to the 177C8a-WAR toxin would have the greatest reactivity with the polyclonal antibodies. WAR toxins with greater diversity react with the 177C8a polyclonal antibodies, but to a lesser extent. Toxins which immunoreact with polyclonal antibodies raised to the 177C8a WAR toxin can be obtained from, for example, the isolates designated PS177C8a, PS177I8, PS66D3, KB68B55-2, PS185Y2, KB53A49-4, KB68B51-2, PS31F2, PS74H3, PS28M, PS71G6, PS71G7, PS71I1, PS71N1, PS201J7, KB73, KB68B46-2, KB71A35-4, KB71A116-1, PS70B2, PS71C2, PS86D1, HD573B, PS33F1, PS67B3, PS205C, PS40C1, PS130A3, PS143A2, PS157C1, PS201Z, PS71G4, KB42A33-8, KB71A72-1, KB71A133-11, KB71A134-2, KB69A125-3, KB69A127-7, KB69A136-2, and KB71A20-4. Isolates PS31F2 and KB68B46-2 show very weak antibody reactivity, suggesting advantageous diversity.

Example 7 - Molecular Cloning and DNA Sequence Analysis of Soluble Insecticidal Protein (MIS and WAR) Genes from Bacillus thuringiensis Strain PS205C
Total cellular DNA was prepared from *Bacillus thuringiensis* strain PS205C grown to an optical density of 0.5-0.8 at 600nm visible light in Luria Bertani (LB) broth. DNA was extracted using the Qiagen Genomic-tip 500/G kit and Genomic DNA Buffer Set according to the protocol for Gram positive bacteria (Qiagen Inc.; Valencia, CA). A PS205C cosmid library was constructed in the SuperCos vector (Stratagene) using inserts of PS205C total cellular DNA partially digested with Nde II. XL1-Blue cells (Stratagene) were transfected with packaged cosmids to obtain clones resistant to carbenicillin and kanamycin. 576 cosmid colonies were grown in 96-well blocks in 1 ml LB + carbenicillin (100 μg/ml) + kanamycin (50 μg/ml) at 37°C for 18 hours and replica plated onto nylon filters for screening by hybridization.

A PCR amplicon containing approximately 1000 bp of the PS205C MIS gene was amplified from PS205 genomic DNA using primers SEQ ID NO. 3 and SEQ ID NO. 4 as described in Example 4. The DNA fragment was gel purified using QiaexII extraction (Qiagen). The probe was radiolabeled with 32P-dCTP using the Prime-It II kit (Stratagene) and used in aqueous hybridization solution (6X SSPE, 5X Denhardt's solution, 0.1% SDS, 0.1 mg/ml denatured DNA) with the colony lift filters at 65°C for 16 hours. The colony lift filters were briefly washed 1X in 2XSSC/0.1%SDS at room temperature followed by two additional washes for 10 minutes in 0.5XSSC/0.1%SDS. The filters were then exposed to X-ray film for 5.5 hours. One cosmid clone that hybridized strongly to the probe was selected for further analysis. This cosmid clone was confirmed to contain the MIS gene by PCR amplification with primers SEQ ID NO. 3 and SEQ ID NO. 4. This cosmid clone was designated as pMYC3105; recombinant *E. coli* XL-1Blue MR cells containing pMYC3105 are designated MR992.

A subculture of MR992 was deposited in the permanent collection of the Patent Culture Collection (NRRL), Regional Research Center, 1815 North University Street, Peoria, Illinois 61604 USA on May 4, 1999. The accession number is NRRL B-30124. A truncated plasmid clone for PS205C was also deposited on May 4, 1999. The accession number is NRRL B-30122.

To sequence the PS205C MIS and WAR genes, random transposon insertions into pMYC3105 were generated using the GPS-1 Genome Priming System and protocols (New England Biolabs). The GPS2 trasposition vector encoding chloramphenicol resistance was chosen for selection of cosmids containing insertions. pMYC3105
cosmids that acquired transposons were identified by transformation and selection of *E. coli* XL1-Blue MR on media containing ampicillin, kanamycin and chloramphenicol. Cosmid templates were prepared from individual colonies for use as sequencing templates using the Multiscreen 96-well plasmid prep (Millipore). The MIS and WAR toxin genes encoded by pMYC3105 were sequenced with GPS2 primers using the ABI377 automated sequencing system and associated software. The MIS and WAR genes were found to be located next to one another in an apparent transcriptional operon. The nucleotide and deduced polypeptide sequences are designated as new SEQ ID NOS. 43-46.

Example 8 - Molecular Cloning and DNA Sequence Analysis of Soluble Insecticidal Protein (MIS and WAR) Genes from *Bacillus thuringiensis* Strain PS31F2

a. Preparation and Cloning of Genomic DNA

Total cellular DNA was prepared from the *Bacillus thuringiensis* strain PS31F2 grown to an optical density of 0.5-0.8 at 600nm visible light in Luria Bertani (LB) broth. DNA was extracted using the Qiagen Genomic-tip 500/G kit or Genomic-Tip 20/G and Genomic DNA Buffer Set (Qiagen Inc.; Valencia, CA) according to the protocol for Gram positive bacteria.

Lambda libraries containing total genomic DNA from *Bacillus thuringiensis* strain PS31F2 were prepared from DNA partially digested with *Nde*I. Partial *Nde*II restriction digests were electrophoresed on a 0.7% agarose gel and the region of the gel containing DNA fragments within the size range of 9 - 20kbp was excised from the gel. DNA was electroeluted from the gel fragment in 0.1X TAE buffer at approximately 30 V for one hour and purified using Elutip-d columns (Schleicher and Schuell; Keene, NH).

Purified, fractionated DNA was ligated into *Bam*HI-digested Lambda-GEM-11 arms (Promega Corp., Madison, WI). Ligated DNA was then packaged into lambda phage using Gigapack III Gold packaging extract (Stratagene Corp., La Jolla, CA). *E. coli* strain KW251 was infected with recombinant phage and plated onto LB plates in LB top agarose. Plaques were lifted onto nitrocellulose filters and prepared for hybridization using standard methods (Maniatis, et al.). DNA fragments approximately 1.1 kb (PS177C8 MIS) or 700 bp (PS177C8 WAR) in length were PCR amplified from plasmid pMYC2450 and used as the probes. Fragments were gel purified and approximately 25
ng of each DNA fragment was randomly labeled with 32P-dCTP. Hybridization of immobilized DNA with randomly 32P-labeled PS177C8 probes was performed in standard formamide conditions: 50% formamide, 5X SSPE, 5X Denhardt’s solution, 2% SDS, 0.1 mg/ml at 42°C overnight. Blots were washed under low stringency in 2X SSC, 0.1% SDS at 42°C and exposed to film. Hybridizing plaques were isolated from the plates and suspended in SM buffer. Phage DNA was prepared using LambdaSorb phage adsorbent (Promega, Madison, WI). PCR using the oligonucleotide primers SEQ ID NO. 3 and SEQ ID NO. 4 was performed using phage DNA templates to verify the presence of the target gene. The PCR reactions yielded the expected 1 kb band in both DNA samples confirming that those phage clones contain the gene of interest. For subcloning, phage DNA was digested with various enzymes, fractionated on a 1% agarose gel and blotted for Southern analysis. Southern analysis was performed as described above. A HindIII fragment approximately 8 kb in size was identified that contained the PS31F2 toxin genes. This fragment was gel purified and cloned into the HindIII site of pBluescriptII (SK+); this plasmid clone is designated pMYC2610. The recombinant E. coli XL10Gold [pMYC2610] strain was designated MR983.

A subculture of MR983 was deposited in the permanent collection of the Patent Culture Collection (NRRL), Regional Research Center, 1815 North University Street, Peoria, Illinois 61604 USA on May 4, 1999. The accession number is NRRL B-30123.

b. DNA sequencing

The pMYC2610 HindIII fragment containing the PS31F2 toxin genes was isolated by restriction digestion, fractionation on a 0.7% agarose gel and purification from the gel matrix using the QiaexII kit (Qiagen Inc.; Valencia, CA). Gel purified insert DNA was then digested separately with restriction enzymes AluI, Msel, or RsaI and fractionated on a 1% agarose gel. DNA fragments between 0.5 and 1.5 kb were excised from the gel and purified using the QiaexII kit. Recovered fragments were ligated into EcoRV digested pBluescriptII and transformed into E. coli XL10 Gold cells. Plasmid DNA was prepared from randomly chosen transformants, digested with NotI and Apal to verify insert size and used as sequencing templates with primers homologous to plasmid vector sequences. Primer walking was used to complete the sequence.
Sequencing reactions were performed using dRhodamine or BigDye Sequencing kit (ABI Prism/Perkin Elmer Applied Biosystems) and run on ABI 373 or 377 automated sequencers. Data was analyzed using Factura, Autoassembler (ABI Prism) and Gentsics Computer Group (Madison, WI) programs. The MIS and WAR genes were found to be located next to one another in an apparent transcriptional operon. The WAR gene is 5' to the MIS gene, and the two genes are separated by 4 nucleotide bases.

The nucleotide sequences and deduced peptide sequences for the novel MIS and WAR genes from PS31F2 are reported as new SEQ ID NOS. 47-50.

c. Subcloning and transformation of B. thuringiensis

The PS31F2 toxin genes were subcloned on the 8 kbp HindIII fragment from pMYC2610 into the E. coli /B.t. shuttle vector, pH7370 (O. Arantes and D. Lereclus. 1991. Gene 108: 115-119), for expression from the native Bacillus promoter. The resulting plasmid construct was designated pMYC2615. pMYC2415 plasmid DNA was prepared from recombinant E.coli XL10Gold for transformation into the acrystallierous (Cry-) B.t. host, CryB (A. Aronson, Purdue University, West Lafayette, IN), by electroporation. The recombinant CryB [pMYC2615] strain was designated MR558.
Example 9 - Molecular Cloning and DNA Sequence Analysis of a Novel SUP Toxin Gene from *Bacillus thuringiensis* strain KB59A4-6

Total cellular DNA was prepared from the *Bacillus thuringiensis* strain KB59A4-6 grown to an optical density of 0.5-0.8 at 600nm visible light in Luria Bertani (LB) broth. DNA was extracted using the Qiagen Genomic-tip 500/G kit and Genomic DNA Buffer Set according to the protocol for Gram positive bacteria (Qiagen Inc.; Valencia, CA). DNA was digested with *Hind*III and run on 0.7% agarose gels for Southern blot analysis by standard methods (Maniatis et al.). A PCR amplicon containing the SUP-like gene (SEQ ID NO. 1) from Javelin-90 genomic DNA was obtained by using the oligos “3A-atg (GCTCTAGAGGGGTACTTATGAACAAAGAATAATTAAATAGC) (SEQ ID NO. 51) and “3A-taa” (GGGGTACCTTTAATAGAGCATCG) (SEQ ID NO. 52). This DNA fragment was gel purified and labeled with radioactive 32P-dCTP using Prime-It II Random Primer Labeling Kit (Stratagene) for use as a probe. Hybridization of Southern blot filters was carried out in a solution of 6X SSPE, 5X Denhardt’s solution, 0.1% SDS, 0.1 mg/ml denatured DNA at 42°C overnight in a shaking water bath. The filters were subsequently washed in 1X SSPE and 0.1% SDS once at 25°C followed by two additional washes at 37°C. Hybridized filters were then exposed to X-ray film at –80°C. An approximately 1 kbp *Hind*III fragment of KB59A4-6 genomic DNA was identified that hybridized to the Javelin 90 SUP probe.

A lambda library of KB59A4-6 genomic DNA was constructed as follows. DNA was partially digested with *Sau*3A and size-fractionated on agarose gels. The region of the gel containing fragments between 9.0 and 23 kbp was excised and DNA was isolated by electroelution in 0.1X TAE buffer followed by purification over Elutip-d columns (Schleicher and Schuell, Keene, NH). Size-fractionated DNA inserts were ligated into *Bam*HI-digested Lambda-Gem 11 (Promega) and recombinant phage were packaged using GigapackIII XL Packing Extract (Stratagene). Phage were plated on *E. coli* VCS257 cells for screening by hybridization. Plaques were transferred to nylon filters and dried under vacuum at 80°C. Hybridization was then performed with the Javelin 90 Sup gene probe as described above. One plaque that gave a positive signal was selected using a Pasteur pipette to obtain a plug. The plug was soaked over-night at room temperature in 1mL SM buffer + 10uL CHCl₃. Large-scale phage DNA preparations
(Maniatis et al.) were obtained from liquid lysates of *E. coli* KW251 infected with this phage.

The KB59A4-6 toxin gene was subcloned into the *E. coli*/*B. thuringiensis* shuttle vector, pHT370 (O. Arantes and D. Lereclus. 1991. Gene 108: 115-119), on an approximately 5.5 kbp SacI/XbaI fragment identified by Southern hybridization. This plasmid subclone was designated pMYC2473. Recombinant *E. coli* XL10-Gold cells (Stratagene) containing this construct are designated MR993. The insecticidal toxin gene was sequenced by primer walking using pMYC2473 plasmid and PCR amplicons as DNA templates. Sequencing reactions were performed using the Dye Terminator Cycle Sequencing Ready Reaction Kit from PE Applied Biosystems and run on an ABI PRISM 377 Automated Sequencer. Sequence data was analyzed using the PE ABI PRISM 377 Collection, Factura, and AutoAssembler software. The DNA sequence and deduced peptide sequence of the KB59A4-6 toxin are reported as new SEQ ID NOS. 53 and 54, respectively.

A subculture of MR993 was deposited in the permanent collection of the Patent Culture Collection (NRRL), Regional Research Center, 1815 North University Street, Peoria, Illinois 61604 USA on May 4, 1999. The accession number is NRRL B-30125.

Example 10 – Bioassays for Activity Against Lepidopterans and Coleopterans

Biological activity of the toxins and isolates of the subject invention can be confirmed using standard bioassay procedures. One such assay is the budworm-bollworm (*Heliothis virescens* [Fabricius] and *Helicoverpa zea* [Boddie]) assay. Lepidoptera bioassays were conducted with either surface application to artificial insect diet or diet incorporation of samples. All Lepidopteran insects were tested from the neonate stage to the second instar. All assays were conducted with either toasted soy flour artificial diet or black cutworm artificial diet (BioServ, Frenchtown, NJ).

Diet incorporation can be conducted by mixing the samples with artificial diet at a rate of 6 mL suspension plus 54 mL diet. After vortexing, this mixture is poured into plastic trays with compartmentalized 3-ml wells (Nutrend Container Corporation, Jacksonville, FL). A water blank containing no *B.t.* serves as the control. First instar larvae (USDA-ARS, Stoneville, MS) are placed onto the diet mixture. Wells are then sealed with Mylar sheeting (ClearLam Packaging, IL) using a tacking iron, and several
pinholes are made in each well to provide gas exchange. Larvae were held at 25°C for 6 days in a 14:10 (light:dark) holding room. Mortality and stunting are recorded after six days.

Bioassay by the top load method utilizes the same sample and diet preparations as listed above. The samples are applied to the surface of the insect diet. In a specific embodiment, surface area ranged from 0.3 to approximately 0.8 cm² depending on the tray size, 96 well tissue culture plates were used in addition to the format listed above. Following application, samples are allowed to air dry before insect infestation. A water blank containing no B.t. can serve as the control. Eggs are applied to each treated well and were then sealed with Mylar sheeting (ClearLam Packaging, IL) using a tacking iron, and pinholes are made in each well to provide gas exchange. Bioassays are held at 25°C for 7 days in a 14:10 (light:dark) or 28°C for 4 days in a 14:10 (light:dark) holding room. Mortality and insect stunting are recorded at the end of each bioassay.

Another assay useful according to the subject invention is the Western corn rootworm assay. Samples can be bioassayed against neonate western corn rootworm larvae (Diabrotica virgifera virgifera) via top-loading of sample onto an agar-based artificial diet at a rate of 160 ml/cm². Artificial diet can be dispensed into 0.78 cm² wells in 48-well tissue culture or similar plates and allowed to harden. After the diet solidifies, samples are dispensed by pipette onto the diet surface. Excess liquid is then evaporated from the surface prior to transferring approximately three neonate larvae per well onto the diet surface by camel's hair brush. To prevent insect escape while allowing gas exchange, wells are heat-sealed with 2-mil punched polyester film with 27HT adhesive (Oliver Products Company, Grand Rapids, Michigan). Bioassays are held in darkness at 25°C, and mortality scored after four days.

Analogous bioassays can be performed by those skilled in the art to assess activity against other pests, such as the black cutworm (Agrotis ipsilon).

Results are shown in Table 6.
<table>
<thead>
<tr>
<th>Strain</th>
<th>Approx. Total Protein (mg/cm²)</th>
<th>H. virescens</th>
<th>H. armigera</th>
<th>Diaphania</th>
<th>% mortality</th>
<th>% mortality</th>
<th>% mortality</th>
<th>% mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS157C1 (40)</td>
<td>24</td>
<td>93</td>
<td>35</td>
<td>++</td>
<td>4.3</td>
<td>85.0</td>
<td>1.0</td>
<td>95.0</td>
</tr>
<tr>
<td>PS157C1 (45)</td>
<td>93</td>
<td>35</td>
<td>6.3</td>
<td>++</td>
<td>13.0</td>
<td>8.0</td>
<td>1.0</td>
<td>95.0</td>
</tr>
<tr>
<td>Javelin 1999</td>
<td>35</td>
<td>35</td>
<td>35.6</td>
<td>++</td>
<td>43.2</td>
<td>100</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Javelin 1999</td>
<td>43.2</td>
<td>35</td>
<td>3.6</td>
<td>++</td>
<td>0.4</td>
<td>0.8</td>
<td>12.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>
Example 11 - Results of Western Corn Rootworm Bioassays and Further Characterization of the Toxins

Concentrated liquid supernatant solutions, obtained according to the subject invention, were tested for activity against Western corn rootworm (WCRW). Supernatants from the following isolates were found to cause mortality against WCRW: PS31F2, PS66D3, PS177I8, KB53A49-4, KB68B46-2, KB68B51-2, KB68B55-2, and PS177C8.

Supernatants from the following isolates were also found to cause mortality against WCRW: PS205A3, PS185V2, PS234E1, PS71G4, PS248N10, PS191A21, KB63B19-13, KB63B19-7, KB68B62-7, KB68B63-2, KB69A125-1, KB69A125-3, KB69A125-5, KB69A127-7, KB69A132-1, KB69B2-1, KB70B5-3, KB71A125-15, and KB71A35-6; it was confirmed that this activity was heat labile. Furthermore, it was determined that the supernatants of the following isolates did not react (yielded negative test results) with the WAR antibody (see Example 12), and did not react with the MIS (SEQ ID NO. 31) and WAR (SEQ ID NO. 51) probes: PS205A3, PS185V2, PS234E1, PS71G4, PS248N10, PS191A21, KB63B19-13, KB63B19-7, KB68B62-7, KB68B63-2, KB69A125-1, KB69A125-5, KB69A132-1, KB69B2-1, KB70B5-3, KB71A125-15, and KB71A35-6; the supernatants of isolates KB69A125-3 and KB69A127-7 yielded positive test results.

Example 12 - Culturing of 31F2 Clones and Bioassay of 31F2 Toxins on Western Corn Rootworm (wCRW)

E. coli MR983 and the negative control strain MR948 (E. coli XL1-Blue [pSupercos]; vector control) were grown in 250 ml bottom baffled flasks containing 50 ml of DIFCO Terrific Broth medium. Cultures were incubated in New Brunswick shaker agitating at 250 RPM, 30°C for ~23 hours. After 23 hours of incubation samples were aseptically taken to examine the cultures under the microscope to check for presence of contaminants. 30 ml of culture were dispensed into a 50ml centrifuge tube and centrifuged in a Sorvall centrifuge at 15,000rpm for 20 minutes. The 1X supernatant was saved and submitted for bioassay against wCRW. The pellet was resuspended 5X with 10mM TRIS buffer, and was sonicated prior to submission for bioassay against wCRW.

B. t. strain MR558 and the negative control MR539 (B.t. cry B[pHT Blue II];
vector control) were grown in the same manner except for the omission of glycerol from the Terrific Broth medium. *B.t.* cell pellets were resuspended in water rather than buffer prior to sonication.

Assays for the *E. coli* clone MR983 and *B. thuringiensis* clone MR558 containing the 31F2 toxin genes were conducted using the same experimental design as in Example 10 for western corn rootworm with the following exceptions: Supernatant samples were top-loaded onto diet at a dose of ~160 ul/cm². *B.t.* cellular pellet samples at a 5X concentration were top-loaded onto the diet at a dose of ~150 ul/cm² for both clones, and at ~75, and at doses of ~35 ul/cm² for the MR558 *B. thuringiensis* clone (quantity of active toxin unknown for either clone). Approximately 6-8 larvae were transferred onto the diet immediately after the sample had evaporated. The bioassay plate was sealed with mylar sheeting using a tacking iron and pinholes were made above each well to provide gas exchange. Both the MR983 and MR558 clones demonstrated degrees of bioactivity (greater mortality) against western corn rootworm as compared to the toxin-negative clones MR948 and MR539.

Table 7 presents the results showing the bioactivity of cloned PS31F2 toxins against western corn rootworm.
Table 7

<table>
<thead>
<tr>
<th>Strain</th>
<th>Toxin genes</th>
<th>Rate</th>
<th>Supernatant 160 ul/cm²</th>
<th>Pellet 5X 150 ul/cm²</th>
<th>Pellet 5X 75 ul/cm²</th>
<th>Pellet 5X 35 ul/cm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>MR983</td>
<td>31F2</td>
<td>7% (4/56)</td>
<td>19% (5/27)</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>MR948</td>
<td>none</td>
<td>4% (1/24)</td>
<td>26% (6/23)</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>MR983</td>
<td>31F2</td>
<td>3% (5/147)</td>
<td>--</td>
<td>20% (49/245)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR948</td>
<td>none</td>
<td>27% (19/70)</td>
<td>--</td>
<td>51% (79/154)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR983</td>
<td>31F2</td>
<td>13% (32/243)</td>
<td>--</td>
<td>33% (85/259)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR948</td>
<td>none</td>
<td>9% (14/155)</td>
<td>--</td>
<td>20% (55/273)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MR558</td>
<td>31F2</td>
<td>35% (41/118)</td>
<td>88% (43/49)</td>
<td>9% (9/100)</td>
<td>13% (13/97)</td>
<td></td>
</tr>
<tr>
<td>MR539</td>
<td>none</td>
<td>10% (14/134)</td>
<td>14% (3/21)</td>
<td>15% (17/111)</td>
<td>17% (19/111)</td>
<td></td>
</tr>
<tr>
<td>MR558</td>
<td>31F2</td>
<td>3% (1/29)</td>
<td>35% (17/48)</td>
<td>29% (15/52)</td>
<td>13% (7/55)</td>
<td></td>
</tr>
<tr>
<td>MR539</td>
<td>none</td>
<td>19% (5/27)</td>
<td>20% (9/46)</td>
<td>31% (18/57)</td>
<td>18% (9/49)</td>
<td></td>
</tr>
<tr>
<td>MR558</td>
<td>31F2</td>
<td>13% (9/69)</td>
<td>38% (19/50)</td>
<td>18% (15/85)</td>
<td>15% (10/65)</td>
<td></td>
</tr>
<tr>
<td>MR539</td>
<td>none</td>
<td>29% (16/55)</td>
<td>24% (14/58)</td>
<td>14% (13/91)</td>
<td>28% (18/64)</td>
<td></td>
</tr>
<tr>
<td>MR558</td>
<td>31F2</td>
<td>7% (5/74)</td>
<td>14% (9/66)</td>
<td>17% (14/83)</td>
<td>11% (6/57)</td>
<td></td>
</tr>
<tr>
<td>MR539</td>
<td>none</td>
<td>11% (9/79)</td>
<td>32% (19/59)</td>
<td>9% (7/78)</td>
<td>15% (10/67)</td>
<td></td>
</tr>
</tbody>
</table>

Example 13 — Target Pests

Toxins of the subject invention can be used, alone or in combination with other toxins, to control one or more non-mammalian pests. These pests may be, for
example, those listed in Table 8. Activity can readily be confirmed using the
bioassays provided herein, adaptations of these bioassays, and/or other bioassays well
known to those skilled in the art.

<table>
<thead>
<tr>
<th>ORDER/Common Name</th>
<th>Latin Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEPIDOPTERA</td>
<td></td>
</tr>
<tr>
<td>European Corn Borer</td>
<td>Ostrinia nubilalis</td>
</tr>
<tr>
<td>European Corn Borer resistant to Cry1A-class of toxins</td>
<td>Ostrinia nubilalis</td>
</tr>
<tr>
<td>Black Cutworm</td>
<td>Agrotis ipsilon</td>
</tr>
<tr>
<td>Fall Armyworm</td>
<td>Spodoptera frugiperda</td>
</tr>
<tr>
<td>Southwestern Corn Borer</td>
<td>Diatraea grandiosella</td>
</tr>
<tr>
<td>Corn Earworm/Bollworm</td>
<td>Helicoverpa zea</td>
</tr>
<tr>
<td>Tobacco Budworm</td>
<td>Heliothis virescens</td>
</tr>
<tr>
<td>Tobacco Budworm resistant to Cry1A-class of toxins</td>
<td>Heliothis virescens</td>
</tr>
<tr>
<td>Sunflower Head Moth</td>
<td>Homeosoma ellectellum</td>
</tr>
<tr>
<td>Banded Sunflower Moth</td>
<td>Cochylis hospes</td>
</tr>
<tr>
<td>Argentine Looper</td>
<td>Rachiplusia nu</td>
</tr>
<tr>
<td>Spilosoma</td>
<td>Spilosoma virginica</td>
</tr>
<tr>
<td>Bertha Armyworm</td>
<td>Mamestra configurata</td>
</tr>
<tr>
<td>DIPTERA</td>
<td></td>
</tr>
<tr>
<td>Red Sunflower Seed Weevil</td>
<td>Smicronyx fulvus</td>
</tr>
<tr>
<td>Sunflower Stem Weevil</td>
<td>Cylindrocopturus adspersus</td>
</tr>
<tr>
<td>Sunflower Beetle</td>
<td>Zygoramna exclamationis</td>
</tr>
<tr>
<td>Canola Flea Beetle</td>
<td>Phyllotreta cruciferae</td>
</tr>
<tr>
<td>Western Corn Rootworm</td>
<td>Diabrotica virgifera virgifera</td>
</tr>
<tr>
<td>HEMIPTERA</td>
<td></td>
</tr>
<tr>
<td>Hessian Fly</td>
<td>Mayetiola destructor</td>
</tr>
<tr>
<td>DIPTERA</td>
<td></td>
</tr>
<tr>
<td>Greenbug</td>
<td>Schizaphis graminum</td>
</tr>
</tbody>
</table>
Table 8. Target pest species

<table>
<thead>
<tr>
<th>ORDER/Common Name</th>
<th>Latin Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lygus Bug</td>
<td>Lygus lineolaris</td>
</tr>
<tr>
<td>NEMATODA</td>
<td>Heterodera glycines</td>
</tr>
</tbody>
</table>

Example 14 — Insertion of Toxin Genes Into Plants

One aspect of the subject invention is the transformation of plants with genes encoding the insecticidal toxin of the present invention. The transformed plants are resistant to attack by the target pest.

Genes encoding pesticidal toxins, as disclosed herein, can be inserted into plant cells using a variety of techniques which are well known in the art. For example, a large number of cloning vectors comprising a replication system in E. coli and a marker that permits selection of the transformed cells are available for preparation for the insertion of foreign genes into higher plants. The vectors comprise, for example, pBR322, pUC series, M13mp series, pACYC184, etc. Accordingly, the sequence encoding the Bacillus toxin can be inserted into the vector at a suitable restriction site. The resulting plasmid is used for transformation into E. coli. The E. coli cells are cultivated in a suitable nutrient medium, then harvested and lysed. The plasmid is recovered. Sequence analysis, restriction analysis, electrophoresis, and other biochemical-molecular biological methods are generally carried out as methods of analysis. After each manipulation, the DNA sequence used can be cleaved and joined to the next DNA sequence. Each plasmid sequence can be cloned in the same or other plasmids. Depending on the method of inserting desired genes into the plant, other DNA sequences may be necessary. If, for example, the Ti or Ri plasmid is used for the transformation of the plant cell, then at least the right border, but often the right and the left border of the Ti or Ri plasmid T-DNA, has to be joined as the flanking region of the genes to be inserted.

Once the inserted DNA has been integrated in the genome, it is relatively stable there and, as a rule, does not come out again. It normally contains a selection marker that confers on the transformed plant cells resistance to a biocide or an antibiotic, such as kanamycin, G 418, bleomycin, hygromycin, or chloramphenicol, \textit{inter alia}. The individually employed marker should accordingly permit the selection of transformed cells rather than cells that do not contain the inserted DNA.

A large number of techniques are available for inserting DNA into a plant host cell. Those techniques include transformation with T-DNA using \textit{Agrobacterium tumefaciens} or \textit{Agrobacterium rhizogenes} as transformation agent, fusion, injection, biolistics (microparticle bombardment), or electroporation as well as other possible methods. If Agrobacteria are used for the transformation, the DNA to be inserted has to be cloned into special plasmids, namely either into an intermediate vector or into a binary vector. The intermediate vectors can be integrated into the Ti or Ri plasmid by homologous recombination owing to sequences that are homologous to sequences in the T-DNA. The Ti or Ri plasmid also comprises the vir region necessary for the transfer of the T-DNA. Intermediate vectors cannot replicate themselves in Agrobacteria. The intermediate vector can be transferred into \textit{Agrobacterium tumefaciens} by means of a helper plasmid (conjugation). Binary vectors can replicate themselves both in \textit{E. coli} and in Agrobacteria. They comprise a selection marker gene and a linker or polylinker which are framed by the right and left T-DNA border regions. They can be transformed directly into Agrobacteria (Holsters \textit{et al.} [1978] \textit{Mol. Gen. Genet.} 163:181-187). The \textit{Agrobacterium} used as host cell is to comprise a plasmid carrying a vir region. The vir region is necessary for the transfer of the T-DNA into the plant cell. Additional T-DNA may be contained. The bacterium so transformed is used for the transformation of plant cells. Plant explants can advantageously be cultivated with \textit{Agrobacterium tumefaciens} or \textit{Agrobacterium rhizogenes} for the transfer of the DNA into the plant cell. Whole plants can then be regenerated from the infected plant material (for example, pieces of leaf, segments of stalk, roots, but also protoplasts or suspension-cultivated cells) in a suitable medium, which may contain antibiotics or biocides for selection. The plants so obtained can then be tested for the presence of the inserted DNA. No special demands are made of the plasmids in the case of injection and electroporation. It is possible to use ordinary
plasmids, such as, for example, pUC derivatives. In biolistic transformation, plasmid DNA or linear DNA can be employed.

The transformed cells are regenerated into morphologically normal plants in the usual manner. If a transformation event involves a germ line cell, then the inserted DNA and corresponding phenotypic trait(s) will be transmitted to progeny plants. Such plants can be grown in the normal manner and crossed with plants that have the same transformed hereditary factors or other hereditary factors. The resulting hybrid individuals have the corresponding phenotypic properties.

In a preferred embodiment of the subject invention, plants will be transformed with genes wherein the codon usage has been optimized for plants. See, for example, U.S. Patent No. 5,380,831. Also, advantageously, plants encoding a truncated toxin will be used. The truncated toxin typically will encode about 55% to about 80% of the full length toxin. Methods for creating synthetic Bacillus genes for use in plants are known in the art.

It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application and of the appended claims.
Claims

1. An isolated polynucleotide that encodes a pesticidally active protein wherein a nucleotide sequence selected from the group consisting of SEQ ID NO. 29, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32, SEQ ID NO. 33, SEQ ID NO. 35, SEQ ID NO. 36, SEQ ID NO. 37, SEQ ID NO. 38, SEQ ID NO. 39, SEQ ID NO. 40, SEQ ID NO. 41, SEQ ID NO. 42, SEQ ID NO. 43, SEQ ID NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 52, SEQ ID NO. 53, and SEQ ID NO. 54 hybridizes under stringent conditions with a nucleotide sequence which either codes for said protein or is complementary to a nucleotide sequence which codes for said protein.

2. An isolated polynucleotide that encodes at least a pesticidally active portion of an amino acid sequence selected from the group consisting of SEQ ID NO. 34, SEQ ID NO. 44, SEQ ID NO. 46, SEQ ID NO. 48, SEQ ID NO. 50, and SEQ ID NO. 54.

3. An isolated polynucleotide that encodes at least a pesticidally active portion of a protein selected from the group consisting of a MIS-1 protein produced by B.t. isolate PS33F1, a MIS-7 protein; a MIS-8 protein; and a SUP protein produced by KB59A4-6.

4. An isolated polynucleotide that encodes a pesticidally active protein produced by an isolate selected from the group consisting of PS33F1, PS71G4, PS86D1, PS185V2, PS191A21, PS201Z, PS205A3, PS205C, PS234E1, PS248N10, KB63B19-13, KB63B19-7, KB68B62-7, KB68B63-2, KB69A125-1, KB69A125-3, KB69A125-5, KB69A127-7, KB69A132-1, KB69B2-1, KB70B5-3, KB71A125-15, KB71A35-6, KB71A72-1, KB71A134-2, PS185Y2, and KB59A4-6.

5. The polynucleotide of claim 4 wherein said protein is a MIS protein produced by an isolate selected from the group consisting of PS177C8a, PS66D3, PS177I8,
The polynucleotide of claim 4 wherein said protein is a WAR protein produced by an isolate selected from the group consisting of PS177C8a, PS66D3, PS177I8, PS31F2, PS185Y2, KB68B46-2, KB68B51-2, KB68B55-2, KB53A49-4, HD573B, PS33F1, PS205C, PS157C1, PS201Z, PS71G4, KB71A72-1, KB71A134-2, KB69A125-3, and KB69A127-7.

The polynucleotide of claim 4 wherein said protein is a WAR protein produced by an isolate selected from the group consisting of KB68B46-2, PS86D1, HD573B, PS33F1, PS205C, PS157C1, PS201Z, PS71G4, KB71A72-1, KB71A134-2, KB69A125-3, KB69A127-7, PS31F2, and KB68B46-2.

The polynucleotide of claim 4 wherein said protein is active against western corn rootworms, and wherein said protein is produced by an isolate selected from the group consisting of PS205A3, PS185V2, PS234E1, PS71G4, PS248N10, PS191A21, KB63B19-13, KB63B19-7, KB68B62-7, KB68B63-2, KB69A125-1, KB69A125-3, KB69A125-5, KB69A127-7, KB69A132-1, KB69B2-1, KB70B5-3, KB71A125-15, and KB71A35-6.

The polynucleotide of claim 3 wherein said protein is a MIS-7 protein produced by *B. t.* isolate PS157C1-A.

The polynucleotide of claim 3 wherein said protein comprises at least a pesticidal portion of the amino acid sequence shown in SEQ ID NO. 34.

The polynucleotide of claim 3 wherein said polynucleotide comprises at least a portion of the nucleotide sequence shown in SEQ ID NO. 33 that is sufficient to encode a pesticidally active protein.
12. The polynucleotide of claim 3 wherein said protein is a MIS-7 protein produced by *B.t.* isolate PS201Z.

13. The polynucleotide of claim 3 wherein said polynucleotide comprises at least a portion of the nucleotide sequence shown in SEQ ID NO. 35 that is sufficient to encode a pesticidally active protein.

14. The polynucleotide of claim 3 wherein said polynucleotide comprises the nucleotide sequence shown in SEQ ID NO. 35.

15. The polynucleotide of claim 3 wherein said protein is a MIS-7 protein is produced by *B.t.* isolate PS205C.

16. The polynucleotide of claim 3 wherein said protein comprises at least a pesticidal portion of the amino acid sequence shown in SEQ ID NO. 44.

17. The polynucleotide of claim 3 wherein said polynucleotide comprises at least a portion of the nucleotide sequence shown in SEQ ID NO. 43 that is sufficient to encode a pesticidally active protein.

18. The polynucleotide of claim 3 wherein said protein is a MIS-8 protein is produced by *B.t.* isolate PS31F2.

19. The polynucleotide of claim 3 wherein said protein comprises at least a pesticidal portion of the amino acid sequence shown in SEQ ID NO. 48.

20. The polynucleotide of claim 3 wherein said polynucleotide comprises at least a portion of the nucleotide sequence shown in SEQ ID NO. 47 that is sufficient to encode a pesticidally active protein.

21. The polynucleotide of claim 3 wherein said protein is a MIS-8 protein produced by *B.t.* isolate PS185Y2.
22. The polynucleotide of claim 3 wherein said polynucleotide comprises the nucleotide sequence shown in SEQ ID NO. 37.

23. The polynucleotide of claim 3 wherein said polynucleotide comprises the nucleotide sequence shown in SEQ ID NO. 38.

24. The polynucleotide of claim 1 wherein said polynucleotide encodes a protein comprising at least a pesticidal portion of the amino acid sequence shown in SEQ ID NO. 46.

25. The polynucleotide of claim 1 wherein said polynucleotide comprises at least a portion of the nucleotide sequence shown in SEQ ID NO. 45 that is sufficient to encode a pesticidally active protein.

26. The polynucleotide of claim 1 wherein said polynucleotide encodes a protein comprising at least a pesticidal portion of the amino acid sequence shown in SEQ ID NO. 50.

27. The polynucleotide of claim 1 wherein said polynucleotide comprises at least a portion of the nucleotide sequence shown in SEQ ID NO. 49 that is sufficient to encode a pesticidally active protein.

28. The polynucleotide of claim 1 wherein said polynucleotide encodes a protein comprising at least a pesticidal portion of the amino acid sequence shown in SEQ ID NO. 54.

29. The polynucleotide of claim 1 wherein said polynucleotide comprises at least a portion of the nucleotide sequence shown in SEQ ID NO. 53 that is sufficient to encode a pesticidally active protein.

30. A recombinant host comprising at least one polynucleotide according to claim 1.
31. The recombinant host of claim 30 wherein said host is a plant cell.

32. The recombinant host of claim 30 wherein said host is a plant.

33. A recombinant host comprising at least one polynucleotide according to claim 2.

34. A recombinant host comprising at least one polynucleotide according to claim 3.

35. A recombinant host comprising at least one polynucleotide according to claim 4.

36. A pesticidally active protein encoded by a polynucleotide according to claim 1.

37. A pesticidally active protein encoded by a polynucleotide according to claim 2.

38. A pesticidally active protein encoded by a polynucleotide according to claim 3.

39. A pesticidally active protein encoded by a polynucleotide according to claim 4.

40. A method of controlling a non-mammalian pest by contacting said pest with at least one pesticidally active protein encoded by a polynucleotide according to claim 1.

41. A method of controlling a non-mammalian pest by contacting said pest with at least one pesticidally active protein encoded by a polynucleotide according to claim 2.

42. A method of controlling a non-mammalian pest by contacting said pest with at least one pesticidally active protein encoded by a polynucleotide according to claim 3.
43. A method of controlling a non-mammalian pest by contacting said pest with at least one pesticidally active protein encoded by a polynucleotide according to claim 4.

44. A method for controlling corn rootworm wherein said method comprises contacting said corn rootworm with at least one pesticidally active protein encoded by a polynucleotide according to claim 1, wherein said protein is produced by an isolate selected from the group consisting of PS205A3, PS185V2, PS234E1, PS71G4, PS248N10, PS191A21, KB63B19-13, KB63B19-7, KB68B62-7, KB68B63-2, KB69A125-1, KB69A125-3, KB69A125-5, KB69A127-7, KB69A132-1, KB69B2-1, KB70B5-3, KB71A125-15, and KB71A35-6.

45. The method according to claim 48 wherein said corn rootworm is western corn rootworm.

46. A method for controlling corn rootworm wherein said method comprises contacting said corn rootworm with at least one pesticidally active protein encoded by a polynucleotide according to claim 1, wherein said protein is produced by B.t. isolate PS31F2.

47. A biologically pure culture of a B.t. isolate that produces a pesticidally active protein encoded by a polynucleotide of claim 1, wherein said isolate is selected from the group consisting of PS33F1, PS71G4, PS86D1, PS185V2, PS191A21, PS201Z, PS205A3, PS205C, PS234E1, PS248N10, KB63B19-13, KB63B19-7, KB68B62-7, KB68B63-2, KB69A125-1, KB69A125-3, KB69A125-5, KB69A127-7, KB69A132-1, KB69B2-1, KB70B5-3, KB71A125-15, KB71A35-6, KB71A72-1, KB71A134-2, PS185Y2, and KB59A4-6.

48. A diagnostic polynucleotide for use as a probe or primer for hybridizing to a polynucleotide according to claim 1, wherein said diagnostic polynucleotide comprises a nucleotide sequence selected from the group consisting of SEQ ID
NO. 29, SEQ ID NO. 30, SEQ ID NO. 31, SEQ ID NO. 32, SEQ ID NO. 33,
SEQ ID NO. 35, SEQ ID NO. 36, SEQ ID NO. 37, SEQ ID NO. 38, SEQ ID NO.
39, SEQ ID NO. 40, SEQ ID NO. 41, SEQ ID NO. 42, SEQ ID NO. 43, SEQ ID
NO. 45, SEQ ID NO. 47, SEQ ID NO. 49, SEQ ID NO. 51, SEQ ID NO. 52,
SEQ ID NO. 53, and SEQ ID NO. 54.
(1) GENERAL INFORMATION:

(i) APPLICANTS:

Applicant Name(s): MYCOGEN CORPORATION
Street address: 5501 Oberlin Drive
City: San Diego
State/Province: California
Country: US
Postal code/Zip: 92121
Phone number: (800) 745-7475
Fax number: (619) 453-0142

(ii) TITLE OF INVENTION: Novel Pesticidal Toxins and Nucleotide Sequences Which Encode These Toxins

(iii) NUMBER OF SEQUENCES: 54

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Saliwanchik, Lloyd & Saliwanchik
(B) STREET: 2421 N.W. 41st Street, Suite A-1
(C) CITY: Gainesville
(D) STATE: FL
(E) COUNTRY: US
(F) ZIP: 32606-6669

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.30

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER:
(B) FILING DATE:
(C) CLASSIFICATION:

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 09/073,898
(B) FILING DATE: 05-MAY-1998

(viii) ATTORNEY/AGENT INFORMATION:

(A) NAME: Sanders, Jay M.
(B) REGISTRATION NUMBER: 39,355
(C) REFERENCE/DOCKET NUMBER: MA-708C2

(ix) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: 352-375-8100
(B) TELEFAX: 352-372-5800

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2375 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:
(C) INDIVIDUAL ISOLATE: Java90

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

```
ATGAACAAGA ATAATACTAA ATTAAGCACA AGAGCCTTAC CAAGTTTTAT TGATTATTTT
AATGGCATTT ATGGATTTGC CACTGGTATC AAAGACATTAA TGAACATGAT TTTAAAAACG
GATACAGGTG GTGATCTAAC CCTAGACGAA ATTTAAAAGA ATCAGCAGTT ACTAAATGAT
ATTCTCTGTA AATGGATGGG GTGGAATGGA AGCTTAAATG ATCTTATCGC ACAGGAAAC
TTAAATAACAG AATTATCTAA GGAAATATTA AAAATTTGCAA ATGAAACAAA TCAAGTTTTA
AATGATGTTA ATAACAAACT CGATGCGATA AATACGATGC TCCGCTATA TCTACCTAAA
ATTACCTCTA TGTTGAGTGA TGAATAGAAG CAAAATTATG CGCTAGTCT GCAAATAGAA
TACTTATGTA AACATGTCGA AGAGATTTCT GATAAGTGGG ATATTATTTA TGAATATTGA
CTTATTACCT CTACACTTCA TGAATATTCA CACTGGTATC AAAGAGTTAA ATATGTGAAC
GAAAAATTGG AGGAATTAAC TTTTGGTACA GAAACTAGTT CAAAAGTAAA AAAAGATGGC
TCTCTCGAG ATATTTGTA TGATTAACTTG AATTTACTG GGTATAAGCT AACTAGCGAAA AGTGATACCA
AAAAATGATG TGGATGGTTT TGAATTTTAC CTAAATACAT TCCAGATGT AATGGTAGGA
AAAAAATTATG CTGGCGG TTCAGGTTTAAA ACTGCATCGG AATTTAATTAC TAAAGAAAAT
GTGAAAACAAGT GGCGCGTTGCA GCTGCGGAAAT GTTTAAAACT CAACTATTTG TTTTATATTGA
CTGCAAGCGA AAGCTTTTCT TACTTTTACA ACATGCAGGA AATTATTAGG CTAGCAGAT
ATGATTATA CTTCTATTAT GAATGAACAT TAAATAAAGG AAAAGAGGAA ATTTAGAGTA
AACATTCCTAC ATACACTTTC TTAAATGTTT TCTAATCTCTA ATTATGCAA AGTTAAAGGA
AGTGATGAAG ATGCAAGAAGT GATTGTGGAA GCTAAACCAG GACATCGATT GTTTGGTTTT
GAAATTGTA ATGATTTCAAT TACTGATTA AAGGTATATG GGCCTAAGCT AAAACAAAAT
TATCAAGTGC ATAGAGGATT CTATATCGGAA GTTATTATTG GTGATATGGA TAAATTATTG
TGCCCCAGATCA AATCTGAACA AATTATTTAT ACAAATAACA TAGTATTCC AAATAATATAT
GTAATTATCA AAATGTAATTT CACAAAAAGAA ATGAAAACCT AAGATATGGA GTGAAAGGGC
AATTTTTATG ATTTCTTTACT AGGAGAAATTT GACTTAAATA AGAAAAAGGT AGAATCAAGT
GAGCGCGAGT ATAGAAAGCTT AAGTGCTTAAT GTGATGTTGGGT GTATATGACC GTTATGATGC
ATCAAGGAA CATTTTTGAG TCCGATTATG GGGTTTGGCC TCCAAGCTGAA TAAATTCTA
```
(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 790 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(vi) ORIGINAL SOURCE:
(C) INDIVIDUAL ISOLATE: Jav90

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Asn Lys Asn Asn Thr Lys Leu Ser Thr Arg Ala Leu Pro Ser Phe
1 5 10 15
Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp
20 25 30
Ile Met Asn Met Ile Phe Lys Thr Asp Thr Gly Gly Asp Leu Thr Leu
35 40 45
Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Leu Asp Ile Ser Gly Lys
50 55 60
Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn
 65 70 75 80
Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln
 85 90
Asn Gln Val Leu Asn Asp Val Asn Lys Leu Asp Ala Ile Asn Thr
 100 105
Met Leu Arg Val Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val
 115 120 125
Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Ile Glu Tyr Leu Ser Lys
 130 135 140
Gln Leu Gln Glu Ile Ser Asp Lys Leu Asp Ile Ile Asn Val Asn Val
 145 150 155 160
Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile
 165 170
Lys Tyr Val Asn Glu Lys Phe Glu Glu Leu Thr Phe Ala Thr Glu Thr
 180 185 190
Ser Ser Lys Val Lys Lys Asp Gly Ser Pro Ala Asp Ile Leu Asp Glu
 195 200 205
Leu Thr Glu Leu Thr Glu Leu Ala Lys Ser Val Thr Lys Asn Asp Val
 210 215 220
Asp Gly Phe Glu Phe Tyr Leu Asn Thr Phe His Asp Val Met Val Gly
 225 230 235 240
Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr Ala Ser Glu Leu Ile
 245 250 255
Thr Lys Glu Asn Val Lys Thr Ser Gly Ser Glu Val Gly Asn Val Tyr
 260 265 270
Asn Phe Leu Ile Val Leu Thr Ala Leu Gln Ala Lys Ala Phe Leu Thr
 275 280 285
Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ala Asp Ile Asp Tyr Thr
 290 295 300
Ser Ile Met Asn Glu His Leu Asn Lys Glu Glu Glu Phe Arg Val
 305 310 315 320
Asn Ile Leu Pro Thr Leu Ser Asn Thr Phe Ser Asn Pro Asn Tyr Ala
 325 330 335
Lys Val Lys Gly Ser Asp Glu Asp Ala Lys Met Ile Val Glu Ala Lys
 340 345 350
Pro Gly His Ala Leu Ile Gly Phe Glu Ile Ser Asn Asp Ser Ile Thr
 355 360 365
Val Leu Lys Val Tyr Glu Ala Lys Leu Lys Gln Asn Tyr Gln Val Asp
Lys Asp Ser Leu Ser Glu Val Ile Tyr Gly Asp Met Asp Lys Leu Leu
Cys Pro Asp Gln Ser Glu Gln Ile Tyr Tyr Thr Asn Asn Ile Val Phe
Pro Asn Glu Tyr Val Ile Thr Lys Ile Asp Phe Thr Lys Lys Met Lys
Thr Leu Arg Tyr Glu Val Thr Ala Asn Phe Tyr Asp Ser Ser Thr Gly
Glu Ile Asp Leu Asn Lys Lys Lys Glu Ser Ser Glu Ala Glu Tyr
Arg Thr Leu Ser Ala Asn Asp Asp Gly Val Tyr Met Pro Leu Gly Val
Ile Ser Glu Thr Phe Leu Thr Pro Ile Asn Gly Phe Gly Leu Gln Ala
Asp Glu Asn Ser Arg Leu Ile Thr Leu Thr Cys Lys Ser Tyr Leu Arg
Glu Leu Leu Leu Ala Thr Asp Leu Ser Asn Lys Glu Thr Lys Leu Ile
Val Pro Pro Ser Gly Phe Ile Ser Asn Ile Val Glu Asn Gly Ser Ile
Glu Glu Asn Leu Glu Pro Trp Lys Ala Asn Asn Lys Asn Ala Tyr
Val Asp His Thr Gly Gly Val Asn Gly Thr Lys Ala Leu Tyr Val His
Lys Asp Gly Gly Ile Ser Gln Phe Ile Gly Asp Lys Leu Lys Pro Lys
Thr Glu Tyr Val Ile Gln Tyr Thr Val Lys Gly Lys Pro Ser Ile His
Leu Lys Asp Glu Asn Thr Gly Tyr Ile His Tyr Glu Asp Thr Asn Asn
Asn Leu Glu Asp Tyr Glu Thr Ile Asn Lys Arg Phe Thr Thr Gly Thr
Asp Leu Lys Gly Val Tyr Leu Ile Leu Lys Ser Gln Asn Gly Asp Glu
Ala Trp Gly Asp Asn Phe Ile Ile Leu Glu Ile Ser Pro Ser Glu Lys
Leu Leu Ser Pro Glu Leu Ile Asn Thr Asn Asn Trp Thr Ser Thr Gly
Ser Thr Asn Ile Ser Gly Asn Thr Leu Thr Leu Tyr Gln Gly Gly Arg
690 695
Gly Ile Leu Lys Gln Asn Leu Gln Leu Asp Ser Phe Ser Thr Tyr Arg
705 710
Val Tyr Phe Ser Val Ser Gly Asp Ala Asn Val Arg Ile Arg Asn Ser
725 730
Arg Glu Val Leu Phe Glu Lys Arg Tyr Met Ser Gly Ala Lys Asp Val
740 745
Ser Glu Met Phe Thr Thr Lys Phe Glu Lys Asp Asn Phe Tyr Ile Glu
755 760
Leu Ser Gln Gly Asn Asn Leu Tyr Gly Gly Pro Ile Val His Phe Tyr
770 775
Asp Val Ser Ile Lys Pro
785 790

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

GGRTTAMMTT GRTAYTATT

20

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

ATAATCKWAYA TTKGCATTT

20

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1042 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:
(C) INDIVIDUAL ISOLATE: 66D3

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

TTAATTTGTT ACTATTTTTA AGGAAAAAG ATTTAATAATC TTACTATATT TGCTCCAACA 60
CGTGAGAAATA CTCTATTTTA TGAATTTGAA ACACGGAAATT CTTATTAGA TAAGCAACA 120
CAAACCTATC AACTCTATCTG GGAGTCCGGT TTAATAAAAAA GAAAAAAAGC TGGAGATTTT 180
ACCTTTCAAT TATGCGATGAT TGACGATGCT ATTATAGAAA TGATGGAAGA AGTTATTTTG 240
CAAAGAGGCG AAAAGAAAAA AGTGTTCTAG TTAGAAAAAG ATAAATTAGT TCCCATCAA 300
ATTGAATATC AACTCTGATAA AGCGTTAAAC CCAAGTAGTC AAATGTTAAA AGAATGGAAA 360
TTATTAAAAA TAAATAGCTAA AAAAACATC TACGCAATGCA AACAAGACGA ATGGAGAAAT 420
CCTGAAATTG TGAAGAAGAA AACTCAAACA TATTTAAGAA AAGCATCGAA AAGCAGCCTG 480
TTTAGCAATA AAAGTAAACG AGATATAGAT GAAGATATAG ATGAGGATAC AGATAAGAGAT 540
GGAGATCCCA TTCTCGATGT ATGGGAAAGA AATGGGTATA CCATCAAAGG AAGAGTAGCT 600
GTAAATGGG AGAAGGATT AGCTGTAAAG AGATATAAAAG AGTTGTTTTT CAATCCTTTT 660
AGACAGCACA CTGCCTGGTG GCCCTATAGT GACTATAGAA AGGCATCAAAG AGATTGGGAT 720
TTATCTAATG CAAAGAAGAC ATTTAATCCA TTGTGTTGCTG CTTTTTCAAAG TGTCATGT 780
AGCTTGAAA ATGCTCACAT ATCAAAGAT GAAAATAAAA CTGCTGAAGAT TGCCTCTACT 840
TCATCGAATA ATTTCACTTA TAAAGACAA GAGGGGCAT CTATTGGAAGC TGGAAATGGGA 900
CCAGAAAGTT TGGTCTTTT TGGAGTAAGT GCCAAATATTAC AACATTCTGA AACATTGGCC 960
AAAGAGTGAG GTACAACCTAA GGGAGACGCA ACAACATTATA ATACAGCTTC AGCAGGATAT 1020
CTAAATGCGCA ATGTACGATA TA 1042

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 347 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(vi) ORIGINAL SOURCE:
(C) INDIVIDUAL ISOLATE: 66D3

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:
Leu Ile Gly Tyr Tyr Phe Lys Gly Lys Asp Phe Asn Asn Leu Thr Ile
1 5 10 15
Phe Ala Pro Thr Arg Glu Asn Thr Leu Ile Tyr Asp Leu Glu Thr Ala
20 25 30
Asn Ser Leu Leu Asp Lys Gln Gln Gln Thr Tyr Gln Ser Ile Arg Trp
35 40 45
Ile Gly Leu Ile Lys Ser Lys Lys Ala Gly Asp Phe Thr Phe Gln Leu
50 55 60
Ser Asp Asp Glu His Ala Ile Ile Glu Ile Asp Gly Lys Val Ile Ser
65 70 75 80
Gln Lys Gly Gln Lys Lys Gln Val Val His Leu Glu Lys Asp Lys Leu
85 90 95
Val Pro Ile Lys Ile Glu Tyr Gln Ser Asp Lys Ala Leu Asn Pro Asp
100 105 110
Ser Gln Met Phe Lys Glu Leu Lys Leu Phe Lys Ile Asn Ser Gln Lys
115 120 125
Gln Ser Gln Gln Val Gln Gln Asp Glu Leu Arg Asn Pro Glu Phe Gly
130 135 140
Lys Glu Lys Thr Gln Thr Tyr Leu Lys Lys Ala Ser Lys Ser Ser Leu
145 150 155 160
Phe Ser Asn Lys Ser Lys Arg Asp Ile Asp Glu Asp Ile Asp Glu Asp
165 170 175
Thr Asp Thr Asp Gly Asp Ala Ile Pro Asp Val Trp Glu Glu Asn Gly
180 185 190
Tyr Thr Ile Lys Gly Arg Val Ala Val Lys Trp Asp Glu Gly Leu Ala
195 200 205
Asp Lys Gly Tyr Lys Lys Phe Val Ser Asn Pro Phe Arg Gln His Thr
210 215 220
Ala Gly Asp Pro Tyr Ser Asp Tyr Glu Lys Ala Ser Lys Asp Leu Asp
225 230 235 240
Leu Ser Asn Ala Lys Glu Thr Phe Asn Pro Leu Val Ala Ala Phe Pro
245 250 255
Ser Val Asn Val Ser Leu Glu Asn Val Thr Ile Ser Lys Asp Glu Asn
260 265 270
Lys Thr Ala Glu Ile Ala Ser Thr Ser Ser Asn Asn Trp Ser Tyr Thr
275 280 285
Asn Thr Glu Gly Ala Ser Ile Glu Ala Gly Ile Gly Pro Glu Gly Leu
290 295 300
Leu Ser Phe Gly Val Ser Ala Asn Tyr Gln His Ser Glu Thr Val Ala
Lys Glu Trp Gly Thr Thr Lys Gly Asp Ala Thr Gln Tyr Asn Thr Ala
325
Ser Ala Gly Tyr Leu Asn Ala Asn Val Arg Tyr
340

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2645 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:
(C) INDIVIDUAL ISOLATE: PS177C8a

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

ATGAAGAAGA AGTTCAGCAAG TGTTGTAACG TGTTAGTTAT TAGCTCCTAT GTTTTTGAAT
60
GGAAATGTGA ATGCTGTGTTA CGCAAGACGC AAAACAAATC AAATTTCTAC AACCACAGAAA
120
AATCAACAGA AAGAGATGGA CCAGAAAAGGA TTACTTGGGT ATTATTTCAA AGGAAAAGAT
180
TTTATGTCA TCCTATGTGG TGCACCGCAG CCTGATAGTA CTCTTATTTA TGATCAACAA
240
ACAGCAAAATA AACTATGGA TAAAAAACAA CAAGAAATATC AGTCTATTCC GTGGAATTGGT
300
TTGATTCAGA GTAAAGAACG GGGAGATTTC ACAATTTAAC ATATCGAGGA TGAACAGGCA
360
ATTATAGAAA TCAATTGGAA AATTATTCTT AATAAAAGGA AAGAAAGAGCA AGTTTTCTCAT
420
TTGAGAAAAG GAAAATACTG TCCAATCRAA ATAGATGTAC AATGACATAC AAAATTTAAT
480
ATTGACAGTA AAACATTAA AGAACATTTAA TATATTTAAA TAGATGACA AAAAAAGCACC
540
CAGCAAGTCC AGCAAGATGA ACTGGAATAA CCTGAATTTTA ACAAGAAAGA ATCACCAGAGA
600
TTTCAGCGGA AACCATGGA AATAATCTTT TTTCACTCAAA AAATGAAAAA GGAATATTGAT
660
GAAGACAGCG ATACGATGG GGGCTCTATG CCTGACTTTT GGAAGAAAAA TGTTGATACG
720
ATTCAAAATA GAATCGCTGT AAAGTGGGAC GATTCTYTAG CAACTAAAGG GTATACGAAA
780
TTTGTTTCAA ATCCGCTAGA AAGTCACACA GTGGTGATTC TTATACAGA TTATGAAAAG
840
GCAGCAAGAG ACCTAGATT GTCAATGATCA AAGGAACGCT TTAACCATTG GTAGCTGCT
900
TTTCCAGAGT GAAATTTAG TAGGAAAAAG GTGATATTAT CACCAATGA AAATTTATCC
960
AATTGGTAG AGCTCCTATT ATCCACGAA GTGGCTTTAT CAAATCAGAA GGGTCCTCT
1020
GTGGAAGCGG GGAATGGCACC AAAAGGTTATC TGTTGCGGAG TTACGCTAAA CTATCAACAC
1080
TCTGAAACAG TTGCACAAGA ATGGGGAACA TCTACAGGAA ATACTTCGCA ATTCAATACG 1140
GCTTCCAGCG GTATTTAAA TGCAAATTTT CATATAACA ATGTAGGAAC TGTGGCCCATC 1200
TACGATGTAA AACCTACAAC AGGTGTTGTA TAAATAACG ATACTATCGG AACTATTTCC 1260
GGCAAAATCTA ATTCTACAGC CTTAAATATA TCTTCCTGGAG AAAGTTAACC GAAAAAAAGGA 1320
CAAAATGGAA TGCAAATAAC ATCAATGGAAT GTTATTTAAT TCCATCCGAT TACATTTAAC 1380
AAAAAACAG TAGATAATCT GCTAAATAAT AAACCTATAG TGTTGGAAAC AAAAAAACAA 1440
GATGTTGTTT ATAAGATAAA AGATACACAT GGAAATATAG TAACTGCGG AGATAGGAAT 1500
GGTGTCATAC AACAATACAA GGCTAAACAG CGCTACTATA TTGTTGATGA TGGGGACGGT 1560
GTAGCAGAAA AACGTGTACG GGCAAAAGAT TATGAAAATC CAGAGATCAA AACACCGTCT 1620
TTAACCTTAA AAGATGCCCC GAAGGTTTCA TATCCAGATG AAATAAAAAA AATAGAGGGA 1680
TTATTATATT TATAAAAAAC ACCGATATAC GAATCGAGCG TTATGACTTA CTTAGATGAA 1740
AATACGCAA AAGAGGTGAC CAAAACATTT AAATGATACCA CTGGGAAAAT TAAAGATGTA 1800
AGTCATTTAT ATGATGTAAA ACTGACTCCA AAAATGAAATG TTACAATCAA ATGTCTATA 1860
CTTTATGATA ATGCTGACTC TAAATGATAA TCAATTGGTA AATGACACAA CACAAATATT 1920
GTTCAGATG GAAATAACCG AAAAACAATA TATTCCTCTA ATAAATCCGGA TGCTAATTGG 1980
ACATTAATAA CAGATGCTCA AGAAGAAATTA AATATAAAATC ATACTATTAT ATAAATTTAT 2040
ATATGAGCTC AGAAGAAAAC ACAAGATGGG AGATTACTAT AGATGAGGGG ATTTATCCGA 2100
TCATCACAAC AACAGTGAAT GTGAATAAAG ACAAATACAA AAGATAGGAT ATTATAGGTC 2160
ATAATAAAAA AAGTAATCCA ATTTCTTTAA TCTCATATAA AACGAGATGAT GAAATAACTT 2220
TATTTGGGAA TGATATTTCT ATACAGATCG TAGCATCAAT AAAACCGGA AATTTAACAG 2280
ATTCAGAATA TTAAACAGATT TTAGTATGTT AGTGTTGGAT GTTAGAAAGAT GAATCCCCGA 2340
TTGATAAAAAA AGGTGGGATT CATTATGGGT AATTATTTAA TGAAGCTAGT TTTAATATTG 2400
AACCATTGCA AATTTATGCG ACAAATATATA AAGTTTACTTA TAGTATGTGG TAGGACAAAA 2460
ACGTGAGTGA CACACTGAAA AGTGATAAAAA TTTACAGAGA TGGGACAATT AAATTGATTG 2520
TTACAAATAA TAGTRAAAAT GAACAAGGATT TATTTTATGA CAGTTGATTA AATGAGGACT 2580
TTTTATTTAA TGCTATTACT TTAGTGGTAA AAGAGATGAA TTGTTTCTAT AGATATAAATA 2640
AATAG 2645

(2) INFORMATION FORSEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 881 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(vi) ORIGINAL SOURCE:
(C) INDIVIDUAL ISOLATE: PS177C8a

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Met Lys Lys Lys Leu Ala Ser Val Val Thr Cys Thr Leu Leu Ala Pro
1 5 10 15

Met Phe Leu Asn Gly Asn Val Asn Ala Val Tyr Ala Asp Ser Lys Thr
20 25 30

Asn Gln Ile Ser Thr Thr Gln Lys Asn Gln Gln Lys Gly Met Asp Arg
35 40 45

Lys Gly Leu Leu Gly Tyr Tyr Phe Lys Gly Lys Asp Phe Ser Asn Leu
50 55 60

Thr Met Phe Ala Pro Thr Arg Asp Ser Thr Leu Ile Tyr Asp Gln Gln
65 70 75 80

Thr Ala Asn Lys Leu Leu Asp Lys Gln Gln Gln Gln Tyr Gln Ser Ile
85 90 95

Arg Trp Ile Gly Leu Ile Gln Ser Lys Glu Thr Gly Asp Phe Thr Phe
100 105 110

Asn Leu Ser Glu Asp Glu Gln Ala Ile Ile Glu Ile Asn Gly Lys Ile
115 120 125

Ile Ser Asn Lys Gly Lys Gln Gln Val Val His Leu Glu Glu Lys Gly
130 135 140

Lys Leu Val Pro Ile Lys Ile Glu Tyr Gln Ser Asp Thr Lys Phe Asn
145 150 155 160

Ile Asp Ser Lys Thr Phe Lys Glu Leu Lys Leu Phe Lys Ile Asp Ser
165 170 175

Gln Asn Gln Pro Gln Gln Val Gln Gln Asp Glu Leu Arg Asn Pro Glu
180 185 190

Phe Asn Lys Lys Glu Ser Gln Glu Phe Leu Ala Lys Pro Ser Lys Ile
195 200 205

Asn Leu Phe Thr Gln Lys Met Lys Arg Glu Ile Asp Glu Asp Thr Asp
210 215 220 225

Thr Asp Gly Asp Ser Ile Pro Asp Leu Trp Glu Glu Asn Gly Tyr Thr
225 230 235 240

Ile Gln Asn Arg Ile Ala Val Lys Trp Asp Asp Ser Leu Ala Ser Lys
245 250 255
Gly Tyr Thr Lys Phe Val Ser Asn Pro Leu Glu Ser His Thr Val Gly
 260 265 270
Asp Pro Tyr Thr Asp Tyr Glu Lys Ala Ala Arg Asp Leu Asp Leu Ser
 275 280 285
Asn Ala Lys Glu Thr Phe Asn Pro Leu Val Ala Ala Phe Pro Ser Val
 290 295 300
Asn Val Ser Met Glu Lys Val Ile Leu Ser Pro Asn Glu Asn Leu Ser
 305 310 315 320
Asn Ser Val Glu Ser His Ser Ser Thr Asn Trp Ser Tyr Thr Asn Thr
 325 330 335
Glu Gly Ala Ser Val Glu Ala Gly Ile Gly Pro Lys Gly Ile Ser Phe
 340 345 350
Gly Val Ser Val Asn Tyr Gln His Ser Glu Thr Val Ala Gln Glu Trp
 355 360 365
Gly Thr Ser Thr Gly Asn Thr Ser Gly Phe Asn Thr Ala Ser Ala Gly
 370 375 380
Tyr Leu Asn Ala Asn Val Arg Tyr Asn Val Gly Thr Gly Ala Ile
 385 390 395 400
Tyr Asp Val Lys Pro Thr Thr Ser Phe Val Leu Asn Asp Thr Ile
 405 410
Ala Thr Ile Thr Ala Lys Ser Asn Ser Thr Ala Leu Asn Ile Ser Pro
 420 425 430
Gly Glu Ser Tyr Pro Lys Lys Gly Gln Asn Gly Ile Ala Ile Thr Ser
 435 440 445
Met Asp Asp Phe Asn Ser His Pro Ile Thr Leu Asn Lys Gln Val
 450 455 460
Asp Asn Leu Leu Asn Asn Lys Pro Met Met Leu Glu Thr Asn Gln Thr
 465 470 475 480
Asp Gly Val Tyr Lys Ile Lys Asp Thr His Gly Asn Ile Val Thr Gly
 485 490
Gly Glu Trp Asn Gly Val Ile Gln Gln Ile Lys Ala Lys Thr Ala Ser
 500 505
Ile Ile Val Asp Asp Gly Glu Arg Val Ala Glu Lys Arg Val Ala Ala
 515 520
Lys Asp Tyr Glu Asn Pro Glu Asp Lys Thr Pro Ser Leu Thr Leu Lys
 530 535
 540
Asp Ala Leu Lys Leu Ser Tyr Pro Asp Glu Ile Lys Glu Ile Glu Gly
 545
 550
 555
Leu Leu Tyr Tyr Lys Asn Lys Pro Ile Tyr Glu Ser Ser Val Met Thr
<table>
<thead>
<tr>
<th></th>
<th>565</th>
<th>570</th>
<th>575</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr Leu Asp Glu Asn Thr Ala Lys Glu Val Thr Lys Gln Leu Asn Asp</td>
<td>580</td>
<td>585</td>
<td>590</td>
</tr>
<tr>
<td>Thr Thr Gly Lys Phe Lys Asp Val Ser His Leu Tyr Asp Val Lys Leu</td>
<td>595</td>
<td>600</td>
<td>605</td>
</tr>
<tr>
<td>Thr Pro Lys Met Asn Val Thr Ile Lys Leu Ser Ile Leu Tyr Asp Asn</td>
<td>610</td>
<td>615</td>
<td>620</td>
</tr>
<tr>
<td>Ala Glu Ser Asn Asp Asn Ser Ile Gly Lys Trp Thr Asn Thr Asn Ile</td>
<td>625</td>
<td>630</td>
<td>635</td>
</tr>
<tr>
<td>Val Ser Gly Gly Asn Gly Gly Lys Gln Tyr Ser Ser Asn Asn Pro</td>
<td>645</td>
<td>650</td>
<td>655</td>
</tr>
<tr>
<td>Asp Ala Asn Leu Thr Leu Asn Thr Asp Ala Gln Glu Lys Leu Asn Lys</td>
<td>660</td>
<td>665</td>
<td>670</td>
</tr>
<tr>
<td>Asn Arg Asp Tyr Tyr Ile Ser Leu Tyr Met Lys Ser Glu Lys Asn Thr</td>
<td>675</td>
<td>680</td>
<td>685</td>
</tr>
<tr>
<td>Gln Cys Glu Ile Thr Ile Asp Gly Glu Ile Tyr Pro Ile Thr Thr Lys</td>
<td>690</td>
<td>695</td>
<td>700</td>
</tr>
<tr>
<td>Thr Val Asn Val Asn Lys Asp Asn Tyr Lys Arg Leu Asp Ile Ile Ala</td>
<td>705</td>
<td>710</td>
<td>715</td>
</tr>
<tr>
<td>His Asn Ile Lys Ser Asn Pro Ile Ser Ser Ile His Ile Lys Thr Asn</td>
<td>725</td>
<td>730</td>
<td>735</td>
</tr>
<tr>
<td>Asp Glu Ile Thr Leu Phe Trp Asp Asp Ile Ser Ile Thr Asp Val Ala</td>
<td>740</td>
<td>745</td>
<td>750</td>
</tr>
<tr>
<td>Ser Ile Lys Pro Glu Asn Leu Thr Asp Ser Glu Ile Lys Gln Ile Tyr</td>
<td>755</td>
<td>760</td>
<td>765</td>
</tr>
<tr>
<td>Ser Arg Tyr Gly Ile Lys Leu Glu Asp Gly Ile Leu Ile Asp Lys Lys</td>
<td>770</td>
<td>775</td>
<td>780</td>
</tr>
<tr>
<td>Gly Gly Ile His Tyr Gly Glu Phe Ile Asn Glu Ala Ser Phe Asn Ile</td>
<td>785</td>
<td>790</td>
<td>795</td>
</tr>
<tr>
<td>Glu Pro Leu Gln Asn Tyr Val Thr Lys Tyr Val Thr Tyr Ser Ser</td>
<td>805</td>
<td>810</td>
<td>815</td>
</tr>
<tr>
<td>Glu Leu Gly Gln Asn Val Ser Asp Thr Leu Glu Ser Asp Lys Ile Tyr</td>
<td>820</td>
<td>825</td>
<td>830</td>
</tr>
<tr>
<td>Lys Asp Gly Thr Ile Lys Phe Asp Phe Thr Lys Tyr Ser Xaa Asn Glu</td>
<td>835</td>
<td>840</td>
<td>845</td>
</tr>
<tr>
<td>Glu Gly Leu Phe Tyr Asp Ser Gly Leu Asn Trp Asp Phe Lys Ile Asn</td>
<td>850</td>
<td>855</td>
<td>860</td>
</tr>
<tr>
<td>Ala Ile Thr Tyr Asp Gly Lys Glu Met Asn Val Phe His Arg Tyr Asn</td>
<td>865</td>
<td>870</td>
<td>875</td>
</tr>
</tbody>
</table>
Lys

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1022 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:
(C) INDIVIDUAL ISOLATE: 17718

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

TGGATTAATT GGATTTAATT TCAAAGGAAAG AATTTTTAAT AATCTTACTA TGTTTTCACC 60
GACACGTGAT AATACCTTTA TGATGACCAA ACAAAACAGCG AATGCATTAT TAGATAAAAA 120
ACAAACAAGAA TACAGTCCAA TTCTGTGGAT TGTTTGTATT CAGAGTAAAG AAACGCGGA 180
TTTCACATTT AACTTATCAA AGGATGAACA GGCAATTATA GAATACTGATG GGAAAATCAT 240
TTCTTAATAAA GGAAAGAAGA AGGAAGGTGT CCATTTAGAA AAAGAAAAT TAGTTTCAAT 300
CAAATTAGAG TATCATCACT ATACGAATTT TAATATTGAT AGTAAAAACAT TTAAAGAAGCT 360
TAAAATTATT AAATATGATA GTCAAAACCA ATCTCAACAA GTTCAACTGA GAAACCCCTGA 420
ATTTACAAAA AAAAATCACG AGGAATTTTT AGCAAAAGCA TCAAAAAACA ACCTTTTTAA 480
GCAAAAAATG AAAAGAGATA TGATGAAGAAA TACGGATACA GATGGAGACT CCATTCTTGA 540
TCTTTTCGAA GAAAATCGTT ACAGATTCA AAATAAGATT GCTCACAAT GGGATGTTC 600
GCTAGCAAGT AAGGGATATA CAAAATTGTG TTGCAATCCCA TTGAGACGCC AACAATGGTG 660
CGATCCCTAT ACTGATTAG AAAAGGCCGC AAGGGATTGA GATTATATCA ATGCAAAGGA 720
AACGTTCAAC CCATTGTGAG CTCGTTTTCG AAGTGATGAT GTTAGTATGG AAAAAGGTGTG 780
ATTATCACCA AATGAAGATT TATCCATATG TGTAAGACTCT CATTCATCCA CGAATTGGTC 840
TTATTACCAAT ACAAGAGGAG CTTCATTGAA AGTGGTGCGC GGTCCATTAG GCTTTCTTTT 900
TGGAGTTGAT TTATATATCA AACACTCTGA AAGAGTTGCA CAGGAATGGG GAACATCTAC 960
AGGAATTACT GCACCAATCT ATACGGCTTC AGCGGATAT TTAAATGCCA ATATACGATA 1020
TA

1022
A) LENGTH: 340 amino acids
B) TYPE: amino acid
C) STRANDEDNESS: single
D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(vi) ORIGINAL SOURCE:
(C) INDIVIDUAL ISOLATE: 17718

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Gly Leu Ile Gly Tyr Tyr Phe Lys Gly Lys Asp Phe Asn Asn Leu Thr 1 5 10 15
Met Phe Ala Pro Thr Arg Asp Asn Thr Leu Met Tyr Asp Gln Gln Thr 20 25 30
Ala Asn Ala Leu Leu Asp Lys Lys Gln Gln Glu Tyr Gln Ser Ile Arg 35 40 45
Trp Ile Gly Leu Ile Gln Ser Lys Glu Thr Gly Asp Phe Thr Phe Asn 50 55 60
Leu Ser Lys Asp Gln Ala Ile Ile Glu Ile Asp Gly Lys Ile Ile 65 70 75 80
Ser Asn Lys Gly Lys Glu Lys Gln Val Val His Leu Glu Lys Glu Lys 85 90
Leu Val Pro Ile Lys Ile Glu Tyr Gln Ser Asp Thr Lys Phe Asn Ile 100 105 110
Asp Ser Lys Thr Phe Lys Glu Leu Lys Leu Phe Lys Ile Asp Ser Gln 115 120 125
Asn Gln Ser Gln Gln Val Gln Leu Arg Asn Pro Glu Phe Asn Lys Lys 130 135 140
Glu Ser Gln Glu Phe Leu Ala Lys Ala Ser Lys Thr Asn Leu Phe Lys 145 150 155 160
Gln Lys Met Lys Arg Asp Ile Asp Glu Asp Thr Asp Thr Asp Gly Asp 165 170 175
Ser Ile Pro Asp Leu Trp Glu Asn Gly Tyr Thr Ile Gln Asn Lys 180 185
Val Ala Val Lys Trp Asp Asp Ser Leu Ala Ser Lys Gly Tyr Thr Lys 195 200
Phe Val Ser Asn Pro Leu Asp Ser His Thr Val Gly Asp Pro Tyr Thr 210 215 220
Asp Tyr Glu Lys Ala Ala Arg Asp Leu Asp Leu Ser Asn Ala Lys Glu 225 230 235 240
Thr Phe Asn Pro Leu Val Ala Ala Xaa Pro Ser Val Asn Val Ser Met
 245
 250
Glu Lys Val Ile Leu Ser Pro Asn Glu Asn Leu Ser Asn Ser Val Glu
 260
 265
 270
Ser His Ser Ser Thr Asn Trp Ser Tyr Thr Asn Thr Glu Gly Ala Ser
 275
 280
 285
Ile Glu Ala Gly Gly Gly Pro Leu Gly Leu Ser Phe Gly Val Ser Val
 290
 295
 300
Asn Tyr Gln His Ser Glu Thr Val Ala Gln Glu Trp Gly Thr Ser Thr
 305
 310
 315
 320
Gly Asn Thr Ser Gln Phe Asn Thr Ala Ser Ala Gly Tyr Leu Asn Ala
 325
 330
 335
Asn Ile Arg Tyr
 340

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1341 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(vi) ORIGINAL SOURCE:
(C) INDIVIDUAL ISOLATE: PS177C8a

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

ATGTTATGG TTCTAAAAA ATTACAAGTA GTTACTAAAAA CTGTATTGCT TAGTACAGTT
 60
TTCTCTATAT CTTTATTAAA TAATGAAGTG ATAAAAGCTG AAAAATTAAA TATAAATTCT
 120
CAAAGTAAAT ATACTAACCT CAAAATCTTA AAAATCAGCT ACAAGGTAGA GAATTAAAAA
 180
GAAGATAAGG AAAAGGGAAA AGAAATGGAAA AAGAGAAAAA AGAAAGAGTG GAAACTAATT
 240
GCTACTGAAA AAGGAAAAAT GAATAATTTT TTAGATAATA AAAATGATAT AAAGACAAAAT
 300
TATAAAGAAA TTATCTTTTC TATGCGAGGC TCATTGGAAG ATGAAATAAA AGATTTAAAAA
 360
GAAATTGATA AGATGTGTGA TAAAACCAAAT CTATCAATTT CTATTATCAC CTATAAAAAT
 420
GTGGGACCGA CAACAATGAG ATTTAAATTA TCTTTAACAG AAGAAATAC GATAATTTCT
 480
GATGCAATGG CACAGTTTAA AGAACAATTT TTATAGAGG ATATAAAGTT TGATAGTTAT
 540
CTAGATACGC ATTAAACTGC TCAACAAGGT TTCAAGTAAA AAGAGTTATTT TTGAAGGGTT
 600
ACGGTTCGGA GTGGGAAAGG TTCTACTACT CCAACAAAAG CAGGTTTCAT TTAAATAAT
 660
AGTGAATACA AAATGCTCAT TGATAATGGG TATATGGTCC ATGTAGATAA GGTATCAAAA 720
GTGGTGAAAA AACGCGTGGA GTGCTTACAA ATGGAAGGGA CTTTAAAAAA GAGTCTTGAC 780
TTTAAAAATG ATATAAAATGC TGAACCGCCT AGCTGGGCTA TGAAGAAATGA TGAAGAGTGG 840
GCTAAAGATT TAACCGATTC GCACAGGGAA GCTTTAGATG GGTATGCCTAG GCAAGATTAT 900
AAAGAAATCACA ATAAATTTTT AAGAAATCACA GGGCGGAGTG GAAATGAAAA ACTAGATGCT 960
CAATATAAAA ATATTTCTGA TGCTTTAGGG AAGAAACCAA TACCGGAAAA TATTAACGTG 1020
TATAGATGCT GTGGCATGCG GGAATTGGGT TATCAATTTA GTGATCCGTT ACCTTCTTTA 1080
AAAGATTTTG AAGAACCAATG TTTAAATACAA ATCAAAAGAG ACAAAGGATA TATGAGTACA 1140
AGCTTATCGA GTGAAACGCTC TGACGCTTTT GGAATCTGAAG AAATTATATG AAGATTACA 1200
GTTGCGAAG GAAGTACGGG TGCGTTTTA AGTGGCCATGG GTGGATTGTG AAGTAGAAA 1260
GAGATCTTAC TTGATAAAGA TAGTAATAT CATAAGATG AAAATACAGT GGTAAATTAT 1320
AAGGTGGTTAA GCGATATGTA G 1341

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 446 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(vi) ORIGINAL SOURCE:
(C) INDIVIDUAL ISOLATE: PS177C8a

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Met Phe Met Val Ser Lys Lys Leu Gln Val Val Thr Lys Thr Val Val Leu
1 5 10 15
Leu Ser Thr Val Phe Ser Ile Ser Leu Leu Asn Asn Glu Val Ile Lys
20 25 30
Ala Glu Gln Leu Asn Ile Asn Ser Gln Ser Lys Tyr Thr Asn Leu Gln
35 40 45
Asn Leu Lys Ile Thr Asp Lys Val Glu Asp Phe Lys Glu Asp Lys Glu
50 55 60
Lys Ala Lys Glu Trp Gly Lys Glu Lys Glu Glu Trp Lys Leu Thr
65 70 75 80
Ala Thr Glu Lys Gly Lys Met Asn Asn Phe Leu Asp Asn Lys Asn Asp
85 90 95
Ile Lys Thr Asn Tyr Lys Glu Ile Thr Phe Ser Met Ala Gly Ser Phe
Glu Asp Glu Ile Lys Asp Leu Lys Glu Ile Asp Lys Met Phe Asp Lys
115 120 125
Thr Asn Leu Ser Asn Ser Ile Ile Thr Tyr Lys Asn Val Glu Pro Thr
130 135 140
Thr Ile Gly Phe Asn Lys Ser Leu Thr Gly Asn Thr Ile Asn Ser
145 150 155 160
Asp Ala Met Ala Gln Phe Lys Glu Gln Phe Leu Asp Arg Asp Ile Lys
165 170 175
Phe Asp Ser Tyr Leu Asp Thr His Leu Thr Ala Glu Gln Val Ser Ser
180 185 190
Lys Glu Arg Val Ile Leu Lys Val Thr Val Pro Ser Gly Lys Gly Ser
195 200 205
Thr Thr Pro Thr Lys Ala Gly Val Ile Leu Asn Asn Ser Glu Tyr Lys
210 215 220
Met Leu Ile Asp Asn Gly Tyr Met Val His Val Asp Lys Val Ser Lys
225 230 235 240
Val Val Lys Lys Gly Val Glu Cys Leu Gln Ile Glu Gly Thr Leu Lys
245 250 255
Lys Ser Leu Asp Phe Lys Asn Asp Ile Asn Ala Glu Ala His Ser Trp
260 265 270
Gly Met Lys Asn Tyr Glu Glu Trp Ala Lys Asp Leu Thr Asp Ser Gln
275 280 285
Arg Glu Ala Leu Asp Gly Tyr Ala Arg Gln Asp Tyr Lys Glu Ile Asn
290 295 300
Asn Tyr Leu Arg Asn Gln Gly Gly Ser Gly Asn Glu Lys Leu Asp Ala
305 310 315 320
Gln Ile Lys Asn Ile Ser Asp Ala Leu Gly Lys Lys Pro Ile Pro Glu
325 330 335
Asn Ile Thr Val Tyr Arg Trp Cys Gly Met Pro Glu Phe Gly Tyr Glu
340 345 350
Ile Ser Asp Pro Leu Pro Ser Leu Lys Asp Phe Glu Gln Phe Leu
355 360 365
Asn Thr Ile Lys Glu Asp Lys Gly Tyr Met Ser Thr Ser Leu Ser Ser
370 375 380
Glu Arg Leu Ala Ala Phe Gly Ser Arg Lys Ile Ile Leu Arg Leu Gln
385 390 395 400
Val Pro Lys Gly Ser Thr Gly Ala Tyr Leu Ser Ala Ile Gly Gly Phe
405 410 415
Ala Ser Glu Lys Glu Ile Leu Leu Asp Lys Asp Ser Lys Tyr His Ile
420 425 430

Asp Lys Val Thr Glu Val Ile Ile Lys Val Leu Ser Asp Met
435 440 445

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:
GCTGATGAAC CATTTAATGC C

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:
CTCTTTAAAG TAGATACTAA GC

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:
GATGAGAACT TATCAATAG TATC

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 33 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

CGAATTCTTT ATTAGATAAG CAACAACAAA CCT

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 24 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

GTTATTTGCG AAAAGGCCA AAAG

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 31 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

GAATATCAAT CTGATAAAGC GTTAAACCCA G

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 23 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GCAGCYTGT TAGCAATAAA AGT

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 20 base pairs
 (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

CAAGGAAGA GTAGCTGTTA

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

CAATGTAGC TTGGAAAATG TCACC

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 22 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GCTTAGTATC TACTTTAAAG AG

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GATACTATTT GATAAGTCTC CATC

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 24 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

CTTTTGGCCT TTTTGCGAAA TAAC

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:
(a) LENGTH: 31 base pairs
(b) TYPE: nucleic acid
(c) STRANDEDNESS: single
(d) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

CTGGGTTTAA CGCTTTATCA GATTGATATT C

(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:
(a) LENGTH: 23 base pairs
(b) TYPE: nucleic acid
(c) STRANDEDNESS: single
(d) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

ACTTTTATG CTTAACARGC TGC

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:
(a) LENGTH: 20 base pairs
(b) TYPE: nucleic acid
(c) STRANDEDNESS: single
(d) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

TAACAGCTAC TCTTCTTTTG

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

GCTGACATTT TCCAAGCTAA CATTG

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

CCAGTCCAAT GAACCTCTTA C

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

AGGGAACAAA CCTTCCAAC C

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

CARMITKAA MTAGGGATAG

(2) INFORMATION FOR SEQ ID NO:32:
(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 22 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

AGTTTCTATC GAAGCTGGGR ST

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1035 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

GGGTAAATTG GGATTATTTC TAAAGGGAAA GATTTTAATA ATCTGACTAT GTTGCACCA

ACCATAAATA ATACGCTTAT TTATGATGG CAAACAGCAG ATACACTATT AAATAAAGCAG

CAACAAGAGT TCAATTCTAC TGATGGGATT GGTTCCTATAC AAAGTAAAGA AACAGGACGAC

TTTACATTCC AATTACAGA TGATAAAAAAT GCCATCATTG AAATAGATTG AAAAGTTGTT

TCTCGTAGAG GAGAAGATA ACAAACTATAC CATTTAGAAA AAGGAAAGAT GGTCCAAATC

AAAATTTGAG ACCAGTCCAA TGAACTCTTT ATGTAGATA GTAAAGTATT TAACGATCTT

AAACTATTTA AAATAGATGG TCATAATCAA TCACATCAA AAAACGCAA AAAAGAACCT

ATCTGGAATT TAATAAAGA GAAACGAAAG AGCTTTTATC AAAAACGCAA AAAAGAACCT

TTGCTCTTCA AAACGGGTTT GAGAAGCGAT GAGAGATGATG ATCTAGAGTACGATGTTGA

TAGCATTCTT GGATAATTGG GAAATGAATG GATATACCAT TCAACGAAA AATGGCGATGC

AAATGGGATG ATCCATTGC AGAAAAAGGA TATAAAAAAT TTGTTTCGAA TCCAATGAAA

GCCCATACAG CAGAGATTC TTATACCGAT TAGAAAAGAG CAGCAAAAAA TATTCCTTTA

TGAAACCGAA AAGAACGCTT TAATCCTCTT GTAGCTGCTT TTCCATCTGT CAATGATAGA

TTAGAAAAG TAGTAATTTT TAAATAGAG TATATGAGTC AGGGGTGATAC ATCCAGCATT

TGAAATAGTTG CCTCTAATAC AAATCCATTG GGTGTTACCG TAGATGCTGG TTGGGAAGGT

TTGTTCCCCTA AAATTTGATAT TTCAACTAAT TATCAAACA CATGAGCAC ACACAAGAAA

TGGGCTCTTT CTAAAGAAGA TTCTACCCAT ATAAATGGAG CACATCAGC CTTTTAATAT
(2) INFORMATION FOR SEQ ID NO: 34:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 345 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:

Gly Leu Ile Gly Tyr Tyr Phe Lys Gly Lys Asp Phe Asn Asn Leu Thr
1 5 10 15

Met Phe Ala Pro Thr Ile Asn Asn Thr Leu Ile Tyr Asp Arg Gln Thr
20 25 30

Ala Asp Thr Leu Leu Asn Lys Gln Gln Gln Glu Phe Asn Ser Ile Arg
35 40 45

Trp Ile Gly Leu Ile Gln Ser Lys Gly Thr Gly Asp Phe Thr Phe Gln
50 55 60

Leu Ser Asp Asp Lys Asn Ala Ile Ile Glu Ile Asp Gly Lys Val Val
65 70 75 80

Ser Arg Arg Gly Glu Asp Lys Gln Thr Ile His Leu Glu Lys Gly Lys
85 90

Met Val Pro Ile Lys Ile Glu Tyr Gln Ser Asn Glu Pro Leu Thr Val
100 105 110

Asp Ser Lys Val Phe Asn Asp Leu Lys Leu Phe Lys Ile Asp Gly His
115 120 125

Asn Gln Ser His Gln Ile Gln Gln Gln Asp Leu Lys Ile Leu Asn Leu
130 135 140

Ile Lys Arg Lys Arg Lys Ser Phe Tyr Gln Lys Gln Gln Lys Glu Pro
145 150 155 160

Phe Leu Phe Lys Thr Gly Leu Arg Ser Asp Glu Asp Asp Leu Gly
165 170

Tyr Arg Trp Xaa Xaa His Ser Trp Ile Ile Gly Lys Xaa Met Asp Ile
180 185 190

Pro Phe Lys Arg Lys Met Ala Val Lys Trp Asp Asp Ser Phe Ala Glu
195 200 205

Lys Gly Tyr Thr Lys Phe Val Ser Asn Pro Tyr Glu Ala His Thr Ala
210 215 220

Gly Asp Pro Tyr Thr Asp Tyr Glu Lys Ala Ala Lys Asp Ile Pro Leu
225 230 235 240
Ser Asn Ala Lys Ala Phe Asn Pro Leu Val Ala Ala Phe Pro Ser
245
Val Asn Val Gly Leu Glu Lys Val Val Ile Ser Lys Asn Glu Asp Met
260
265
Ser Gln Gly Val Ser Ser Ser Thr Ser Asn Ser Ala Ser Asn Thr Asn
275
280
285
Ser Ile Gly Val Thr Val Asp Ala Gly Trp Glu Gly Leu Phe Pro Lys
290
295
300
Phe Gly Ile Ser Thr Asn Tyr Gln Asn Thr Trp Thr Thr Ala Gln Glu
305
310
315
320
Trp Gly Ser Ser Lys Glu Asp Ser Thr His Ile Asn Gly Ala Gln Ser
325
330
335
Ala Phe Leu Asn Ala Asn Val Arg Tyr
340
345

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1037 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

GGTATATGG GTATTATTT TAAAGGAATA GATTATATA ATCTGACTAT GTTTGCCACCA
ACCATAATA ATAGCTTAT TTATGATCGG CAAACAGCAG ATACACTATT AAATAAGCAG
CAACACAGCT ACACTCTAT TGATGATT GGTATTAATAC AAAGTAAAGA AACAGTCCAC
TTTACATCC AATTATCAGA TGATAAAAT GCCATCATTG AAATAGATGG AAAAGTTGTT
TCTCGTAGAG GAGAAGATAA ACAAACTATC CATTAGAAA AACAGAACATG TTTCCAAAT
AAAATTGACT ACCAGCTCAA TGAACCTTTT ACTGTAGATA GTAAAGTATT TAACGATTCTT
AAACATATTT AAAAGAGGG TCAACACTCA TCGCATCAAA TACAGCAAGA TGATTTGAAA
AAATCTGGAAT TTAATAAAAG AGAAGAGAAA GAGGTTTTAT CAAAACAGC AAAAGRAAC
CTTTTCTCTT CAAAGCRRGT KGAGAAGCAG TGAGGAGATG RATCTAGAT ACAGGGTGKG
ATAGCATTCC YKGAATATTG GGGAAATGAA WGGRTATACC ATTCACGCGA AAAATGGSAG
TCAATGGGA TGATCTATTT CCGGAAAGAT GATATACAAA AATTGTTTCG AAATCCATAG
AAGCCCATAC AGCAGGAGAT CCTATACCAG ATTATGAAAA AGCAGCAAAA GATATCCTT

60
120
180
240
300
360
420
480
540
600
660
720
27

TATCGAACGC AAAAGAAGCC TTTAATCCTC TTTGAGCTGC TTTTCCATCT GTCAATGTAG 780
GATTAGAAAA AGTAGTTAAT TTCAAATAGG AGGATAGTGA TCGGGTGTCA TATCCAGCA 840
CTTGGAATAG TGGCTCTAAAT ACAAAATTCA TGGGTTTTAC GTGAGATGCT GGGGAGGAAG 900
GTTTGTTTCC TAAATTGGGT ATTCTCAACTA ATTATCAAAC CACATGGACC ACTGCAACAAG 960
AATGGGGCTC TTCTAAAGGA GATTCATCC ATATAAATGG AGCCAAATCA GCCTTTTTAA 1020
ATGCAAATGT AGCATAT 1037

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1048 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(x) SEQUENCE DESCRIPTION: SEQ ID NO:36:

TGGGTTAATT GGGTTAATT TTTAAGGGCA AGAAGTTTAT CATCTTACTT TGTTGCGACC 60
AACACGTGAT AATACCTTA TTTATGATCA ACAAACAGCG AATTCCTTAT TAGATAACAA 120
GCAAACAGAA TATCAATCTA TTGGTCTGAT TGGTTAATT CAAAGTAAAG AAAGGGGTGA 180
TTTCACATTT AACTTATCAG ATGATCAACA TGCAATTATA GAAATGATG GCAAAATCCT 240
TTTGCATAAAG GGACAGAATA AAACAGTTTT TCACCTTAGA AAAAGGAAGT TGGTCCGGAT 300
AAAAATTGAG TATCAATCAG ATCAACTATT AAATAGGGAT AGTAACATCT TAAAAGAGTT 360
TAATATTCTT AAAGTATGATA GTCAAGCAAA CGTCACCAAA GTTCACATTAG AGAATTTAAG 420
AAACCCCTGGA TTTAATAAAA AGGAAACACA ACAATCTTTAA GAATAAGGCAT CCAAAACAA 480
TCTTTTTACA CCAAGGACAT TAAAAGGGAAT AGACTGATGA TGATGATAAG GATAACAGGA 540
TGGBAGATTC TATTTCTGGA CCTTCTGGGG GAAGAAATG GGTATACCAA TCCCCAAATA 600
AAATAGCTGG TCAAGTGTTG AGTGCATCT GCACGCAAGG GTTATACAAA TTGGTTTTCTT 660
AATCCACTTG AGATGTCATA AGTGAGGAGT CCTTATACGG ATTATGAAAG AGCAGCAAGA 720
GATTITACGT TGCCCAAATG AAAGAAGAAAC ATTTAACCCA TTATGTACTG CTCTTCCAG 780
TGTTGAGTGT AGATTGGAA AAGTCAATT TACTAAAGAT GAAATCTTAT CCAAGTGTG 840
AGAGTCACA TCTCCACCA ACTGGTCTTA TACGAAATCA GAGGAGCTT CTAAGAACC 900
TGAGGCTAAA CGAGGCTGC CTACTTTTGG AGTGAATGCT ACTTATCAAC ACTGCAAAAC 960
AGTTGCAAAAA GAATGGGAAA CATCTCAGG AAATACCTCG CAATTTAATA CAGTTCAGC 1020
AGGATATTAT AATGCCTAAT TAGGATAT

(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1175 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:37:

ACCTCTAGA TGCCGCTCG GCGGCGGACT GTGTTATGCTA TAGTGTACAGA ATTCGATTA
CTTGGATATT ATTTTAAGG GAAGAGGTTT AAAATCTTTA CTTTGTTGCG ACCAACACGT
GATAATACC CTATTATGA TCAACACCC GAAGATTTCTT TATTAGATAC CAAACAACAA
GAATAATCAAT CTATTGCTTG GTTGGTTTGC ATTCACAAAT AAGAAACAGG TGATTTCAAG
TTTATACTTAT CTTGATGATCA AAATGCAATAT ATAGAAATAG ATGCAAAATAT CATTTCGAT
AAAGGACAGA ATAAACAAGT GTTGCCTTTA GAATAATCGA ATGGGCAAGA GTATTTAGG
GAATGATCC AAGTACAGAT ATTAACAGTT GGGGTAGATTA TCTGAATAGA TCTTTGGCAAG
TCAAGTGAAC TACGTACGACACA CAAATTCGCA CGTATGCAACTGAC AACCAAGAAC
CCCCAGAGCA ATAAACAGG AAAATCAGG CCAATTCGA TCTATAGGAA CGGAGAGGAA
AACCAATCCC GATTTGCTA GACAGTGAGG CCAATACTCTGACCC ACCCAAGAAC
ATACCAGGT ACCAGTTGGG GNTTCTTNTC CCTGACCTTT GGGGAAAGAA AAAAGTTGTA
CCNATCCCAA AANTTAGGCC AGCTCTCCG AGTGGGATGAT CCAATTCGCC CGGAAAAGGG
TATACAAAAA TTTTTTTTAAT CCCACTCTT AAGATCATAC AGTTGGAAGT CCCTATACGG
ATTATGAAAA AGCAAGAGA GATTAGACT TGGCCAAATGC AAAAGAAACA TTCACCCCAT
TAGTAGCTGC TTTTCCAGG GTGAATGTA ATTTGGAATGAGTAATATTA TCCCCAGATG
AGAATATATC TAAAGGTTGAGA AATCTCCTAT GCCTACAAA TGGATCCTAT ACGAATATCT
AGGAAGCTCTC TACCAGAAGT GGGGTTTGGT CATTATGTTT TCCATGGGATGTTGCTA
ATTACAACA CTCTGAAACA GGGGAAAGG AATGGGGAAC AATCTACAGGA AATACCTCGG
AATTATAATG AGCTCTAGCAC GGAATTTTAAT ATGCAATAGT TGGATTTAAG CGGAAATACCA
NCACACTGNC GCCGCTTTAGT ATGGGCCACCAG AGGCCC

(2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:
(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

GGTTTAMTTG GGTATTATT TAAAAGGAAAA GATTTTAAATGT ATCTTTACTGT ATTTGACCA 60
ACGCGGAGGA ATACTCTGTG ATATGATCAA CAACACGCAA ATACATTACT AAATCAAAAA 120
CAACAAAGACT TTCAGTCTAT TCCTCTGGAATGGGTAAATTC AAAGTAAAGA AGCGAGCGAT 180
TTTACATTTA ACATTACAGA TGATGAAACAT ACGATGATAG AAATCGATGG GAAAGTTATT 240
TCTATAAAG GGAAGAGAAAA ACAAGTGGTG CATTAGAAA AAGGAGCTGG CTTTCTTATC 300
AAAAATGAAAGTACACGTGA TGAACACATTT AATGCGGATA GTCAACCTTT TAAAAATTGTG 360
AAACTCTYTTA AAGTAGATAC TAAAGCAACAG TCCCAGCATA TTCAACTGAG TGAATTAAGAGA 420
AACCCCTGAAAT TTTAATAAAA AAGAAACACA AGAAATTCTTA AAAAAAGCAA CAAAAACAAA 480
CCTTATTACT CAAAAGTGAAGAGTACTAG GGATGAAGAG ACGGATACAG ATGGAGATTC 540
TATCCAGAC ATTTGGGAAG AAATAGGTTA TACCATCCA AATAAGATTG CGCTCAAAATG 600
GGATGATTTGA TTGGCAAGTA AAGGATATAC GAAAATTTGT TCAAACCCAC TAGTACTCA 660
CACGTTGGGA GATCGTTTATA CAGATTATGA AAGAACACGA AGGATTTTAG ATTTGTCAA 720
TGCAAAGAGAA ACATTAAACC CATTAGTGGCA GCGTTTTCCA ATGGTGAAATG TGAGTATGGAA 780
AAAGTGATA TTGTCTCCAG ATGAGAACTT ATCAAATAGT ATCGAGTCTC ATCATTCTAC 840
GAATTGGTCG TATAGAATA CAGAAGGCGC TTCTATTGAA GCTGGTGGGG GAGCAATTAGG 900
CCTACTCTTT GTGTTAGTGA CAAACATAC TAACCTGTGA ACAGTTGGGT ATGAAATGGGG 960
AACATCTACGG GGAATACCTT CGCAATTAAAT TACAGCTTCA GCGGGTGATT TAAATGGCAA 1020
TRTAMGATAT 1030

(2) INFORMATION FOR SEQ ID NO:39:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

CACTCAAAAA ATGAAAAGGG AAA

(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

CCGTTTTAT TGATGCTAC

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

AGAACAATTT TTAGATAGGG

(2) INFORMATION FOR SEQ ID NO:42:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

TCCCTAAAGC ATCAGAATA

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1170 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

ATGAAGAAAC AAATAGCAAG CGTTGTAAC TGTACGCTAT TAGCCCCATAT GCTTTTTAAT 60
GGGATATGAA AGCCTGCTTA CGCAGCTAGT CAACCACAAAC AAACACCTGCA AGCTCAGGTA 120
AAACAAAGAG AAAGAAAGTAG TCGAAAAGGA TTACTTGCGT ATTACTTTAA AGGGAAGAT 180
TTTTAATGATC TTACTGTAAT TGCAACAAAGC CGTGGGAATA CTCTTGATATA TGATCAAACA 240
ACAGCAAAATA CATTACTAAA TCAAAACAAA CAAGCCTTTG AGTCTATTCG TTGGGTGGT 300
TTAAATTACAA GAAAGAGAAC AGGCCATTTT CATATTAACT TATCAGATGA TGAAACATACG 360
ATGATAGAAA TCGATGGGAG AGTTATTCTT AATAAAGGGA AAGAAGAACAA AGTTGTCCTAT 420
TTAGAAAAAAAA GACAGTTGCT TTCTATATAA TGATTCAGCT GATGAACCAT TTAATGGCGGT 480
AGTAAGCCTT TAAAATTTTG AAACCTTCTAA AAGTAGATAC TAAGCACAAG TCCCCAGCAA 540
TTCAACTAGA TGAAATAGA AACCTGTAAT TTAATAAAAA AAGAAACAAAC CAAATTTCAA 600
CAAAAGCAAC AAAAAAACAA CTTATATCTC AAAAAAGTGAA GAGTACTAGG GATGAAGACA 660
CGGATACAGA TGGAGATCTT ATCCACAGCA TTGGGGAAGA AAATGGGTAT ACCATCCAAA 720
ATAAAATGGCC GTCAAATGGG ATGATCATTG AGCAAATGAA GGAATACAGA AAATTGTTCC 780
AAACCCACTA GATACTCAAG CGTTGGAGA TCTTATATAA GATTATGAAA AAGCAGCAAG 840
GGATTAGAT TTAGTAATAG CAAGAACAAA ATTTAACCCA TTAAGTGGCGG CTTTTCCAAG 900
TGTAATTGAG TATGGAAAAA GATTTTGTCG CAGATGAGAA TTATCAAAA AGTATCGAGT 960
TCAATCTTTC ATCAATGGGC CGATACAGAA TACAGAAAGGG GCTCTATTTG AAGCGTGGTG 1020
GGGAGCATTAG GCCTCATCTT TTGTTGTAAG TGCAACCTAT CAAATCTTGG AAACAGTTGG 1080
GGTGAAATGG GGAAAGATCTA CGGGGAATAC TGGCAATATG AATACAGCTT CAGCGGGGTA 1140
TTTAGGTAGG AATGTGGCATA CAAATAACGTG 1170

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 348 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

Met Lys Lys Gln Ile Ala Ser Val Val Thr Cys Thr Leu Leu Ala Pro 1 5 10 15
Met Leu Phe Asn Gly Asp Met Asn Ala Ala Tyr Ala Ala Ser Gln Thr 20 25 30
Lys Gln Thr Pro Ala Ala Gln Val Asn Gln Gln Lys Glu Val Asp Arg 35 40 45
Lys Gly Leu Leu Gly Tyr Tyr Phe Lys Gly Lys Asp Phe Asn Asp Leu 50 55 60
Thr Val Phe Ala Pro Thr Arg Gly Asn Thr Leu Val Tyr Asp Gln Gln 65 70 75 80
Thr Ala Asn Thr Leu Leu Asn Gln Gln Gln Asp Phe Gln Ser Ile 85 90 95
Arg Trp Val Gly Leu Ile Gln Ser Lys Ala Gly Asp Phe Thr Phe 100 105 110
Asn Leu Ser Asp Asp Glu His Thr Met Ile Glu Ile Asp Gly Lys Val 115 120 125
Ile Ser Asn Lys Gly Lys Glu Lys Gln Val Val His Leu Glu Lys Gly 130 135 140
Gln Phe Val Ser Xaa Lys Xaa Xaa Xaa Xaa Ala Asp Glu Pro Phe Asn 145 150 155 160
Ala Xaa Ser Xaa Thr Phe Lys Asn Leu Lys Leu Phe Lys Val Asp Thr 165 170 175
Lys Gln Gln Ser Gln Gln Ile Gln Leu Asp Glu Leu Arg Asn Pro Glu 180 185 190
Phe Asn Lys Lys Glu Thr Gln Glu Phe Leu Thr Lys Ala Thr Lys Thr 195 200 205
Asn Leu Ile Thr Gln Lys Val Lys Ser Thr Arg Asp Glu Asp Thr Asp 210 215 220
Thr Asp Gly Asp Ser Ile Pro Asp Ile Trp Glu Glu Asn Gly Tyr Thr 225 230 235 240
Ile Gln Asn Xaa Ile Ala Val Lys Trp Asp Asp Ser Leu Ala Ser Lys 245 250 255
Gly Tyr Thr Lys Phe Val Ser Asn Pro Leu Asp Thr His Thr Val Gly
260 265 270
Asp Pro Tyr Thr Asp Tyr Glu Lys Ala Ala Arg Asp Leu Asp Leu Ser
275 280 285
Asn Ala Lys Glu Thr Phe Asn Pro Leu Val Ala Ala Phe Pro Ser Val
290 295 300
Asn Xaa Ser Met Glu Lys Xaa Ile Leu Xaa Pro Asp Glu Asn Leu Ser
305 310 315 320
Asn Ser Ile Glu Xaa His Ser Phe Leu Xaa Ile Gly Arg Ile Arg Ile
325 330 335
Gln Lys Gly Leu Leu Leu Lys Leu Val Gly Glu His
340 345

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 3 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:45:

ATG

(2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 1 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:46:

Met

(2) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 2583 base pairs
 (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

ATGACATATA TGAAAAAAA GTTAGTTAGT GTTGTAACTT GCACGTTATT GGCTCCGATA 60
TTTTTGACTG GAAATGTACA TCCTGTAAAT GCAGACAGTA AAAAAAGTCA GCCTTCTACA 120
GCGCAGGAAA AACAAGAAA GCGGTTGAT CGAAAAGGTT TACTCGGCTA TTTTTTTAAA 180
GGGAAAGAGT TTAACTCATCT TACTTTTGTTC GCACCAACAC GTGATAATAC CTTATTTAT 240
GATCAACAAA CAGCGAATTT CTATTTAGAT ACCAAACAAC AAGAATATCA ATCTATTCGC 300
TGGATTGTTG TGGATTCAAG TAAAGAACAAG GTGATTTCAG GTTTAATCTT ATCTGATGAT 360
CAAAATGCAA TTAGAAATAG ATGATGGCAGA ATCAAATTCGG ATTAAAGCAAGA GAAATACAA 420
GGTGTCTACT TAGAAAAAGG AAAGTTGTAC CCGATAAAAA TTAGATATCA ATGATATGCG 480
ATATTAACTA GGGATAGTAA CATCTTTTTAA GAGTTTTCAAT TATTCAAGAT AGATACTCAG 540
CAACACTCTC ACCAGTCCA ACTAGAGCA TTAAGAAACC CTGATTTTAA TAAAAAGAAA 600
ACACAAACAT TCTTAAAAAG AACAGAAAA CAAAATCTTT TTACAACAGA ATGAAAAGGA 660
GATACCGGATG ATGATGATAG TACGGAATAC GATGAGATTT CTATTCTCAG CTTTTTGGGA 720
GAAAATGGGT ATACACCTCA AAATAAAGTA GCTGCTAAGT GGGAGATTTC ATCAGGCGCG 780
AAAGGGTTAA CAAATTTGGT TTCTAATCTA CTTGGAGATG ATACAGTTGG AGATCCCTAT 840
ACGGATTATG AAAAGCACGC AAGGATTTTA GACTTGGCCA ATGCAAAGA AACATTTAAC 900
CCATTTAGTG CTGTATTTCC AGGTTGTGAAG GTGAATTITGG AAAAAAGTAT ATATACCCCA 960
GATGAGAATT TATCTAAGCT TTAGAAATCT CATTGGTCATA CAAATTTGCT TTTATCGAAT 1020
ACTGAAGGAG CTTCTATCGA AGCTGGGGGT GGTCCATTTG GTATTCCATT TGGAGTGAGT 1080
GCTAATTATG AACACTCTGA AACAGTTGCA AAAGAATGGG GAACACTTAC AGGAAATTACC 1140
TCGCAATTTA ATACCAGCTTAC AGCAGAGATG TTGAATGGCA ATGTTTGGATA CAAATAATGTG 1200
GGAACAGGTG CGATTATGGA GTGGAACACT ACAACAAGTT TTGTAATAGA TAAAGATACT 1260
GTAGCAACAA TTACCGGAAA ATCAGATTCG ACAAGCTTTAA GTATATCCTG AGGAGAAAGT 1320
TATCCCCAAA AAGGACAAAA TGGATTTGCA ATTAATACAA TGGATATTG ATATCCCCAT 1380
CCGATTACAT TAAAATACCA ACAATTAGAT CAACTATTAA ATAAATAACC TCTTATGTGA 1440
GAAACAAATC AGGCCAGATG GTTTTTATAA ATAAAGGATA CAAGCCGTTAA TATTGTGACT 1500
(2) INFORMATION FOR SEQ ID NO: 48:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 860 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:

Met Thr Tyr Met Lys Lys Lys Leu Val Ser Val Val Thr Cys Thr Leu 1 5 10 15
Leu Ala Pro Ile Phe Leu Thr Gly Asn Val His Pro Val Asn Ala Asp 20 25 30
Ser Lys Lys Ser Gln Pro Ser Thr Ala Gln Glu Lys Gln Glu Lys Pro
35 40 45
Val Asp Arg Lys Gly Leu Leu Gly Tyr Phe Phe Lys Gly Lys Glu Phe
50 55 60
Asn His Leu Thr Leu Phe Ala Pro Thr Arg Asp Thr Leu Ile Tyr
65 70 75 80
Asp Gln Gln Thr Ala Asn Ser Leu Leu Asp Thr Lys Gln Gln Glu Tyr
85 90 95
Gln Ser Ile Arg Trp Ile Gly Leu Ile Gln Ser Lys Glu Thr Gly Asp
100 105 110
Phe Thr Phe Asn Leu Ser Asp Asp Gln Asn Ala Ile Ile Glu Ile Asp
115 120 125
Gly Lys Ile Ile Ser His Lys Gly Gln Asn Lys Gln Val Val His Leu
130 135 140
Glu Lys Gly Lys Leu Val Pro Ile Lys Ile Glu Tyr Gln Ser Asp Gln
145 150 155 160
Ile Leu Thr Arg Asp Ser Asn Ile Phe Lys Glu Phe Gln Leu Phe Lys
165 170 175
Val Asp Ser Gln Gln His Ser His Gln Val Gln Leu Asp Glu Leu Arg
180 185 190
Asn Pro Asp Phe Asn Lys Lys Glu Thr Gln Gln Phe Leu Glu Lys Ala
195 200 205
Ala Lys Thr Asn Leu Phe Thr Gln Asn Met Lys Arg Asp Thr Asp Asp
210 215 220
Asp Asp Thr Asp Thr Asp Gly Asp Ser Ile Pro Asp Leu Trp Glu
225 230 235 240
Glu Asn Gly Tyr Thr Ile Gln Asn Lys Val Ala Val Lys Trp Asp Asp
245 250 255
Ser Phe Ala Ala Lys Gly Tyr Thr Lys Phe Val Ser Asn Pro Leu Glu
260 265 270
Ser His Thr Val Gly Asp Pro Tyr Thr Asp Tyr Glu Lys Ala Ala Arg
275 280 285
Asp Leu Asp Leu Ala Asn Ala Lys Glu Thr Phe Asn Pro Leu Val Ala
290 295 300
Ala Phe Pro Ser Val Asn Val Leu Glu Lys Val Ile Leu Ser Pro
305 310 315 320
Asp Glu Asn Leu Ser Ser Val Glu Ser His Ser Ser Thr Asn Trp
325 330 335
Ser Tyr Thr Asn Thr Glu Gly Ala Ser Ile Glu Ala Gly Gly Gly Pro
Leu Gly Ile Ser Phe Gly Val Ser Ala Asn Tyr Gln His Ser Glu Thr
Val Ala Lys Glu Trp Gly Thr Ser Thr Gly Asn Thr Ser Gln Phe Asn
Thr Ala Ser Ala Gly Tyr Leu Asn Ala Asn Val Arg Tyr Asn Asn Val
Gly Thr Gly Ala Ile Tyr Glu Val Lys Pro Thr Thr Ser Phe Val Leu
Asp Lys Asp Thr Val Ala Thr Ile Thr Ala Lys Ser Asn Ser Thr Ala
Leu Ser Ile Ser Pro Gly Glu Ser Tyr Pro Lys Gly Gln Asn Gly
Ile Ala Ile Asn Thr Met Asp Asp Phe Asn Ser His Pro Ile Thr Leu
Asn Lys Gln Gln Leu Asp Gln Leu Leu Asn Asn Lys Pro Leu Met Leu
Glu Thr Asn Gln Ala Asp Gly Val Tyr Lys Ile Lys Asp Thr Ser Gly
Asn Ile Val Thr Gly Gly Glu Trp Asn Gly Val Ile Gln Gln Ile Gln
Ala Lys Thr Ala Ser Ile Ile Val Asp Thr Gly Glu Ser Val Ser Glu
Lys Arg Val Ala Ala Lys Asp Tyr Asn Pro Glu Asp Lys Thr Pro
Ser Leu Ser Leu Lys Glu Ala Leu Leu Gly Tyr Pro Glu Glu Ile
Lys Glu Lys Asp Gly Leu Leu Tyr Tyr Lys Asp Pro Ile Tyr Glu
Ser Ser Val Met Thr Tyr Leu Asp Glu Asn Thr Ala Lys Glu Val Glu
Lys Glu Leu Gln Asp Thr Thr Gly Ile Tyr Lys Asp Ile Asn His Leu
Tyr Asp Val Lys Leu Thr Pro Thr Met Asn Phe Thr Ile Lys Leu Ala
Ser Leu Tyr Asp Gly Ala Glu Asn Asn Asp Val Lys Asn Gly Pro Ile
Gly His Trp Tyr Tyr Thr Tyr Asn Thr Gly Gly Gly Asn Thr Gly Lys
(2) INFORMATION FOR SEQ ID NO:49:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 1356 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

ATGGTATCCA AAAAGTTACA ATTAGTCACA AAAACTTTAG TGTCTAGTAG AGTTTTGTCTA 60
ATACCGTTAT TAAATAATAG TGAGATAAAA GCCGAAACAAT TAAATAGGA TTCTCAAATT 120
AAATATCCATA ACCTCCAAAA TATAAATATC GCTGATAAGC CAGTAGATTT TAAAGAGGAT 180
AAAGAAAAAG CAGGAAATGT GGGAAAAAGA AAAAGTTAAA AGTGGAAACT AACTGCTACT 240
GAAAAGGGA AAATTAATGA TTTTTTATAT GATAAAAGATG GATTAAAAAC AAAAAACAAA 300
GAAATTAATT TTTCTAAGAA TTTGTGATAT GAAACAGAGT TAAAACAGCT TGA AAAAATT 360
AATAGGCATGC TAGATAAACG AAATCTAACA AATTCAATTT TCACCTTATAA AAACGTTGAG 420
CCTACAACAA TAGGATTTCA TCACTCCTTG ACTGATGGGA ATCAAAATTA TTCCGAGACT 480
CAACAGGAATG TCAAGGAAAAC GCTTTTAGGA AATGATATTA AATTTGATATG TTATTTTGAT 540
ATGCACCTAA CTGACAAAAA TGTTTCCCGT AAAGAAAGGG TTATTTTTAAA AGTTACAGTA 600
CTTAGTGGGA AAGGTTCTAC TCCAACAAAA GCAGGTGGTG TTTTAATAAA TAAAGAATAC 660
AAATAGTGGTATG TATGATATTTG ATATATACTA CATGTAAGAA ACATAAACGAA AGTTGGAAAA 720
AAAGGACAGG AATGTTTACAA AGTTGAAAGGA ACCTAAACAA AGAGCTTGGG CTAAAATAAT 780
GATAGTGACG GTAAGGGAGA TTCTCCGGGA AAGAAAAATT ACAAGGAATG GTCTGATTCT 840
TTAACAAAAATG ATCAGAGAAA AGACTAAAAAT GATTATGGTT CGCGAGGTTA TACCCGAATA 900
AAATAATATT TACGTGAAAG GGTTACCGGA AATACAGAGT TGGAGGGAAA AATAAAAATAAT 960
ATTTCCTGACG CACTAGAAAGA GAATCTTATC CTTGAAAAACA TACTCTTATATA TAGATTATTGC 1020
GGAATGGCGG AAATTTGTAT TCCAAATTCAA CCCGAGGCTC CCTCCGTACA AGATTTGGAA 1080
GAGAAATTTT TGGAATAAAT TAAAGGAAAG AAGGATATA TGAGTACGAG CTATACAGT 1140
GATGCGACTT CTTTTGGCCG AAGAAAAAAT ATCTTTAAGAT TGGAGATACC AAAAAAGGAAAT 1200
TCAGGAGCAT ATGTAGCTGG TTTAGATGGA TTTAAACCAG CAGAGAGAGA GATTTAATT 1260
GATAAGGGA GCAAGTATCA TATTGATAAA GTAACAGAAG TAGTTGTGAAA AGGTATATTGA 1320
AAACTCGTAG TAGATGCGAC ATTATTATA AAATAA 1356

(2) INFORMATION FOR SEQ ID NO:50:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 451 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

<table>
<thead>
<tr>
<th>Met</th>
<th>Val</th>
<th>Ser</th>
<th>Lys</th>
<th>Lys</th>
<th>Leu</th>
<th>Gln</th>
<th>Leu</th>
<th>Val</th>
<th>Thr</th>
<th>Lys</th>
<th>Thr</th>
<th>Leu</th>
<th>Val</th>
<th>Phe</th>
<th>Ser</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Ile</td>
<td>Pro</td>
<td>Leu</td>
<td>Leu</td>
<td>Asn</td>
<td>Asn</td>
<td>Ser</td>
<td>Glu</td>
<td>Ile</td>
<td>Lys</td>
<td>Ala</td>
<td>Glu</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Leu</td>
<td>Asn</td>
<td>Met</td>
<td>Asn</td>
<td>Ser</td>
<td>Gln</td>
<td>Ile</td>
<td>Lys</td>
<td>Tyr</td>
<td>Pro</td>
<td>Asn</td>
<td>Phe</td>
<td>Gln</td>
<td>Asn</td>
<td>Ile</td>
</tr>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Ile</td>
<td>Ala</td>
<td>Asp</td>
<td>Lys</td>
<td>Pro</td>
<td>Val</td>
<td>Asp</td>
<td>Phe</td>
<td>Lys</td>
<td>Glu</td>
<td>Asp</td>
<td>Lys</td>
<td>Glu</td>
<td>Lys</td>
<td>Ala</td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Glu</td>
<td>Trp</td>
<td>Gly</td>
<td>Lys</td>
<td>Glu</td>
<td>Lys</td>
<td>Glu</td>
<td>Lys</td>
<td>Glu</td>
<td>Lys</td>
<td>Trp</td>
<td>Lys</td>
<td>Leu</td>
<td>Thr</td>
<td>Ala</td>
</tr>
<tr>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Lys</td>
<td>Gly</td>
<td>Lys</td>
<td>Ile</td>
<td>Asn</td>
<td>Asp</td>
<td>Phe</td>
<td>Leu</td>
<td>Asp</td>
<td>Asp</td>
<td>Lys</td>
<td>Asp</td>
<td>Gly</td>
<td>Leu</td>
<td>Lys</td>
</tr>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Lys</td>
<td>Tyr</td>
<td>Lys</td>
<td>Glu</td>
<td>Ile</td>
<td>Asn</td>
<td>Phe</td>
<td>Ser</td>
<td>Lys</td>
<td>Asn</td>
<td>Phe</td>
<td>Glu</td>
<td>Tyr</td>
<td>Glu</td>
<td>Thr</td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Leu</td>
<td>Lys</td>
<td>Gln</td>
<td>Leu</td>
<td>Glu</td>
<td>Lys</td>
<td>Ile</td>
<td>Asn</td>
<td>Ser</td>
<td>Met</td>
<td>Leu</td>
<td>Asp</td>
<td>Lys</td>
<td>Ala</td>
<td>Asn</td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Thr</td>
<td>Asn</td>
<td>Ser</td>
<td>Ile</td>
<td>Val</td>
<td>Thr</td>
<td>Tyr</td>
<td>Lys</td>
<td>Asn</td>
<td>Val</td>
<td>Glu</td>
<td>Pro</td>
<td>Thr</td>
<td>Thr</td>
<td>Ile</td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Phe</td>
<td>Asn</td>
<td>His</td>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
<td>Asp</td>
<td>Gly</td>
<td>Asn</td>
<td>Gln</td>
<td>Ile</td>
<td>Asn</td>
<td>Ser</td>
<td>Glu</td>
<td>Ala</td>
</tr>
<tr>
<td>145</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Gln</td>
<td>Lys</td>
<td>Phe</td>
<td>Lys</td>
<td>Glu</td>
<td>Gln</td>
<td>Phe</td>
<td>Leu</td>
<td>Gly</td>
<td>Asn</td>
<td>Ile</td>
<td>Lys</td>
<td>Phe</td>
<td>Asp</td>
<td></td>
</tr>
<tr>
<td>165</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Tyr</td>
<td>Leu</td>
<td>Asp</td>
<td>Met</td>
<td>His</td>
<td>Leu</td>
<td>Thr</td>
<td>Glu</td>
<td>Gln</td>
<td>Asn</td>
<td>Val</td>
<td>Ser</td>
<td>Gly</td>
<td>Lys</td>
<td>Glu</td>
</tr>
<tr>
<td>180</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Val</td>
<td>Ile</td>
<td>Leu</td>
<td>Lys</td>
<td>Val</td>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Gly</td>
<td>Lys</td>
<td>Gly</td>
<td>Ser</td>
<td>Thr</td>
<td>Pro</td>
</tr>
<tr>
<td>195</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Lys</td>
<td>Ala</td>
<td>Gly</td>
<td>Val</td>
<td>Val</td>
<td>Leu</td>
<td>Asn</td>
<td>Asn</td>
<td>Lys</td>
<td>Glu</td>
<td>Tyr</td>
<td>Lys</td>
<td>Met</td>
<td>Leu</td>
<td>Ile</td>
</tr>
<tr>
<td>210</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Asn</td>
<td>Gly</td>
<td>Tyr</td>
<td>Ile</td>
<td>Leu</td>
<td>His</td>
<td>Val</td>
<td>Glu</td>
<td>Asn</td>
<td>Ile</td>
<td>Thr</td>
<td>Lys</td>
<td>Val</td>
<td>Val</td>
<td>Lys</td>
</tr>
<tr>
<td>225</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Gly</td>
<td>Gln</td>
<td>Glu</td>
<td>Cys</td>
<td>Leu</td>
<td>Gln</td>
<td>Val</td>
<td>Gly</td>
<td>Thr</td>
<td>Leu</td>
<td>Lys</td>
<td>Lys</td>
<td>Ser</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Phe</td>
<td>Lys</td>
<td>Asn</td>
<td>Asp</td>
<td>Ser</td>
<td>Asp</td>
<td>Gly</td>
<td>Lys</td>
<td>Gly</td>
<td>Asp</td>
<td>Ser</td>
<td>Trp</td>
<td>Gly</td>
<td>Lys</td>
<td>Lys</td>
</tr>
<tr>
<td>260</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Asn</td>
<td>Tyr</td>
<td>Lys</td>
<td>Glu</td>
<td>Trp</td>
<td>Ser</td>
<td>Asp</td>
<td>Ser</td>
<td>Leu</td>
<td>Thr</td>
<td>Asn</td>
<td>Asp</td>
<td>Gln</td>
<td>Arg</td>
<td>Lys</td>
<td>Asp</td>
</tr>
<tr>
<td>275</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Asn</td>
<td>Tyr</td>
<td>Gly</td>
<td>Ala</td>
<td>Arg</td>
<td>Gly</td>
<td>Tyr</td>
<td>Thr</td>
<td>Glu</td>
<td>Ile</td>
<td>Asn</td>
<td>Lys</td>
<td>Tyr</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td>290</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Glu</td>
<td>Gly</td>
<td>Gly</td>
<td>Thr</td>
<td>Gly</td>
<td>Asn</td>
<td>Thr</td>
<td>Glu</td>
<td>Leu</td>
<td>Glu</td>
<td>Glu</td>
<td>Lys</td>
<td>Ile</td>
<td>Lys</td>
<td>Asn</td>
</tr>
<tr>
<td>305</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Ser</td>
<td>Asp</td>
<td>Ala</td>
<td>Leu</td>
<td>Glu</td>
<td>Lys</td>
<td>Asn</td>
<td>Pro</td>
<td>Ile</td>
<td>Pro</td>
<td>Glu</td>
<td>Asn</td>
<td>Ile</td>
<td>Thr</td>
<td>Val</td>
</tr>
<tr>
<td>325</td>
<td></td>
</tr>
</tbody>
</table>
(2) INFORMATION FOR SEQ ID NO:51:

(ii) MOLECULE TYPE: DNA (genomic)

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:51:

GCTCTAGAAG GAGGTAACCT ATGAACAAGA ATAAPACTAA ATTAAGC

(2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xii) SEQUENCE DESCRIPTION: SEQ ID NO:52:

GGGGTACCTT ACTTAATAGA GACATCG
(2) INFORMATION FOR SEQ ID NO:53:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 2364 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xii) SEQUENCE DESCRIPTION: SEQ ID NO: 53:

ATGAAATATGA ATAAATACTAA ATAAACGCA AGGSSCCTAC CGAGTTTTAT TGATTATTTT 60
AATGGAATTT ATGGATTGTC CACTGGTATC AAAGACATTA TGAATATGAT TTTAAAAACG 120
GATACAGGTT GTAATCTAACC TTATAGGCA AAATCTAAAGA ATCAGCAAGT ATCAATGAG 180
ATTCTGCTGTA AATGGATGAT GGTTAAATGG AGCTTTAATG ATCTTTATCG ACAGGGAAAC 240
TTAAATACAG AATTATCTAA CAAATCTTAA AAAATCGGAA ATGGAACAGAA TGACGCTTTA 300
AATGTGTTTA ATAAACAATCT CGATGCCATA ATACGATGTC TTTATATTAA TCTACAAAA 360
ATCACATCTA GTTAAATGTA TGTTATAGA GAAAAATTAG CGCTAACGATT GCAAGTGAAG 420
TACTTAAAGTA AACATTGAC AGAATATTCT GATAAATTAG ATGTTAATTT CGTAAATGT 480
CTTATTAACCT CTACACCTAC TGAATACAAGA CCGATTAAAT TAGTAAATGAA 540
GAAAATTTTG AAAATTAAC AGAACCTCTA CGGAGTTAAT CAAATTTAAG 600
TCGCTTGCTG ATATTTCTTGCA ATGATTTAATG CTAGGATGAA ATGATTACGCA 660
AAAAATGAGC TGGAGGTTTT TAAATATATCT ATCCAGGATGT ATGATTTGAA 720
AATAATTATG TCGGGGTTTC ACTGCTAAAA ACTGCTGATA AATTAATGCA TAAAAGATAAT 780
GTGAAAAACA AGGCCAGTG AGTAGAAATTT GTTTAATATT CCTAAATTTG ATTAAAGCCT 840
CTACAGCAGG AAGCTTTTCT TACTTTTTACA ACATGCGAAA AATTAAATTGTT TCAATGAGAT 900
ATTGATTTATA CATCTATTTA GAAATTAAC AGAAAAAGAG ATTTAGGATA 960
AACATCTCTTC CTACACTCTTT TAAATTCTTCT TCTATACCTA ATTTAGCAAA ATGAAAGGA 1020
AGTGATGAAAG ATGCAAAAGAT GATTGGGAAA GCTAAACCAG GACATGACTT GTTTGGGTTT 1080
GAAATTAGTA ATGATTCAAA GACAGGTTAA AAGGTATATG AAGCTAAGCT AAAACAAAAT 1140
TACCAAGTTG ATGAAGTTCTC TTATCCGGA GTCTTTCTATG ATGATAGGAA TAAATTATTG 1200
TGCCAGACAT AATCTGAACA AATTTATTAT ACAATAAATA TACTTTTCC AAATGAATAT 1260
GTAATCTACTA AATTGATTTAT TACTAGAAAAT AATGAAAACATT TAAAGATATGA GGTACAGCT 1320
ATTCTTACG ATTCTTACG AGGAGAAATT GACTTAAATA AGAAGAAAGT AGAATCAAGT 1380
GAAGCGGAGT ATAGGACGTT AATGCTAAT AATGATGGAG TATATAGGCC GGTAGGGTC 1440
ATCAGTGAAA CATTTTGAC TCCAATTAAT GGATTTGCCT TCCAAGCTGA TGAAAATTCA 1500
AGATTAATTA CTITACATGC TAAATCATAT TTAAGGGAAC TACACTAGC GACAGACTTA 1560
AGCAATTAAG AAACAAATTT GATGTTCCC CCTATTAGTT TTTAATTGTA TATTUTAGAA 1620
AATGGAAGCT TAGAGGGAGA AAACCTAGAG CCGTGGATAG CAAAATAACA AAATTCGTAT 1680
GTAGATCATATA CAGGTGATAT AAATGGAACT AAAGTTTTTAT ATGTTCATAA GGATGGTGAG 1740
TTTTCACAAATT TGTTGGGAGA TGAGTTAAAA TCGAAAACAG AATATGTAAT TCAATATATT 1800
GTAAAGGGA AAGCTTCTAT TTATTTAAAA GATAAAAAAA ATGAGAATTC CATTATGAA 1860
GAAATAAAAAT ATGATTTAGA AGGTTTCAAC ACTGTTTACTA AACGTGGTAT TACAGGAACG 1920
GATTCTTCAG GATACCTATT AATTTCACG AGTCAGAATG GCGAGGGAGC ATTTGGAGGA 1980
AACTTTATTATAT TCTCAAGAAT TAGAACATCCG GAAAGGTAT TAAATCCAGA ATGTATTATTG 2040
TCGGATGCTT GGTGTGGGATC CCAGGGAAATC TGGATCTCAG GAAATTCCTCT CACTATAAT 2100
AGTAATGTAA ATGGGAACCTT TGACAAAATA CTTCCGTTAG AAGTTTATTC AACCCTATAGT 2160
ATGAAACTTTAT CTTGGAATGG ATTTGGCAGA GTGACAGTAA GAAATTCCTG TGAAGTTATTA 2220
TTTGAAAAATA GTATCCGCA GCTTTCACCT AAGATATTAT CTGAAAAATT TACACGTCA 2280
GCCAATAATA CGCGATTATA TGTAGAGGTT TCTCGCTCAA CGTCGGGTGAG TGCAATAATAT 2340
TTTCGAGAATT TTTCAAT GTAAT 2364

(2) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 787 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

 Met Asn Met Asn Thr Lys Leu Ala Arg Ala Leu Pro Ser Phe
1 5 10 15

 Ile Asp Tyr Phe Asn Gly Ile Tyr Gly Phe Ala Thr Gly Ile Lys Asp
20 25 30

 Ile Met Asn Met Ile Phe Thr Asp Thr Gly Gly Asn Leu Thr Leu
Asp Glu Ile Leu Lys Asn Gln Gln Leu Leu Asn Glu Ile Ser Gly Lys
 50
Leu Asp Gly Val Asn Gly Ser Leu Asn Asp Leu Ile Ala Gln Gly Asn
 65
Leu Asn Thr Glu Leu Ser Lys Glu Ile Leu Lys Ile Ala Asn Glu Gln
 85
Asn Gln Val Leu Asn Asp Val Asn Asn Lys Leu Asp Ala Ile Asn Thr
 100
Met Leu His Ile Tyr Leu Pro Lys Ile Thr Ser Met Leu Ser Asp Val
 115
Met Lys Gln Asn Tyr Ala Leu Ser Leu Gln Val Glu Tyr Leu Ser Lys
 130
Gln Leu Lys Glu Ile Ser Asp Lys Leu Asp Val Ile Asn Val Asn Val
 145
Leu Ile Asn Ser Thr Leu Thr Glu Ile Thr Pro Ala Tyr Gln Arg Ile
 165
Lys Tyr Val Asn Glu Lys Phe Glu Glu Leu Thr Phe Ala Thr Glu Thr
 180
Thr Leu Lys Val Lys Asp Ser Ser Pro Ala Asp Ile Leu Asp Glu
 195
Leu Thr Glu Leu Thr Glu Leu Ala Lys Val Thr Lys Asn Asp Val
 210
Asp Gly Phe Glu Phe Tyr Leu Asn Thr Phe His Asp Val Met Val Gly
 225
Asn Asn Leu Phe Gly Arg Ser Ala Leu Lys Thr Ala Ser Glu Leu Ile
 245
Ala Lys Glu Asn Val Lys Thr Ser Gly Ser Glu Val Gly Asn Val Tyr
 260
Asn Phe Leu Ile Val Leu Thr Ala Leu Gln Ala Lys Ala Phe Leu Thr
 275
Leu Thr Thr Cys Arg Lys Leu Leu Gly Leu Ala Asp Ile Asp Tyr Thr
 290
Ser Ile Met Asn Glu His Leu Asn Lys Glu Glu Gly Phe Arg Val
 305
Asn Ile Leu Pro Thr Leu Ser Asn Thr Phe Ser Asn Pro Asn Tyr Ala
 325
Lys Val Lys Gly Ser Asp Glu Asp Ala Lys Met Ile Val Glu Ala Lys
 340
Pro Gly His Ala Leu Val Gly Phe Glu Ile Ser Asn Asp Ser Met Thr
 355 360 365
Val Leu Lys Val Tyr Glu Ala Lys Leu Lys Gln Asn Tyr Gln Val Asp
 370 375 380
Lys Asp Ser Leu Ser Glu Val Ile Tyr Ser Asp Met Asp Lys Leu Leu
 385 390 395 400
Cys Pro Asp Glu Ser Glu Gln Ile Tyr Thr Asn Asn Ile Val Phe
 405 410 415
Pro Asn Glu Tyr Val Ile Thr Lys Ile Asp Phe Thr Lys Lys Met Lys
 420 425 430
Thr Leu Arg Tyr Glu Val Thr Ala Asn Ser Tyr Asp Ser Ser Thr Gly
 435 440 445
Glu Ile Asp Leu Asn Lys Lys Lys Glu Ser Ser Glu Ala Glu Tyr
 450 455 460
Arg Thr Leu Ser Ala Asn Asn Asp Gly Val Tyr Met Pro Leu Gly Val
 465 470 475 480
Ile Ser Glu Thr Phe Leu Thr Pro Ile Asn Gly Phe Gly Leu Gln Ala
 485 490 495
Asp Glu Asn Ser Arg Leu Ile Thr Thr Cys Lys Ser Tyr Leu Arg
 500 505 510
Glu Leu Leu Ala Thr Asp Leu Ser Asn Lys Glu Thr Lys Leu Ile
 515 520 525
Val Pro Pro Ile Ser Phe Ile Ser Ser Ile Val Glu Asn Gly Asn Leu
 530 535 540
Glu Gly Glu Asn Leu Glu Pro Trp Ile Ala Asn Asn Lys Asn Ala Tyr
 545 550 555 560
Val Asp His Thr Gly Glu Ile Asn Gly Thr Lys Val Leu Tyr Val His
 565 570 575
Lys Asp Gly Glu Phe Ser Gln Phe Val Gly Gly Lys Leu Lys Ser Lys
 580 585 590
Thr Glu Tyr Val Ile Gln Tyr Ile Val Lys Gly Lys Ala Ser Ile Tyr
 595 600 605
Leu Lys Asp Lys Lys Asn Glu Asn Ser Ile Tyr Glu Glu Ile Asn Asn
 610 615 620
Asp Leu Glu Gly Phe Gln Thr Val Thr Lys Arg Phe Ile Thr Gly Thr
 625 630 635 640
Asp Ser Ser Gly Ile His Leu Ile Phe Thr Ser Gln Asn Gly Glu Gly
 645 650 655
Ala Phe Gly Gly Asn Phe Ile Ile Ser Glu Ile Arg Thr Ser Glu Glu
660 665 670
Leu Leu Ser Pro Glu Leu Ile Met Ser Asp Ala Trp Val Gly Ser Gln
675 680 685
Gly Thr Trp Ile Ser Gly Asn Ser Leu Thr Ile Asn Ser Asn Val Asn
690 695 700
Gly Thr Phe Arg Gln Asn Leu Pro Leu Glu Ser Tyr Ser Thr Tyr Ser
705 710 715 720
Met Asn Phe Thr Val Asn Gly Phe Gly Lys Val Thr Val Arg Asn Ser
725 730 735
Arg Glu Val Leu Phe Glu Lys Ser Tyr Pro Gln Leu Ser Pro Lys Asp
740 745 750
Ile Ser Glu Lys Phe Thr Thr Ala Ala Asn Thr Gly Leu Tyr Val
755 760 765
Glu Leu Ser Arg Ser Thr Ser Gly Gly Ala Ile Asn Phe Arg Asp Phe
770 775 780
Ser Ile Lys
785
INDICATIONS RELATING TO A DEPOSITED MICROORGANISM

(PCT Rule 13bis)
REC'D 03 SEP 1999
WIPO PCT

A. The indications made below relate to the microorganism referred to in the description on page 9, line 28.

B. IDENTIFICATION OF DEPOSIT
Further deposits are identified on an additional sheet □

Name of depositary institution
Agricultural Research Service Patent Culture Collection (NRRL), Northern Regional Research Center

Address of depositary institution (including postal code and country)
1815 North University Street
Peoria, Illinois 61604
U.S.A.

Date of deposit
August 5, 1999
Accession Number
NRRL B-30173

C. ADDITIONAL INDICATIONS (leave blank if not applicable)
This information is continued on an additional sheet □

*as culture KB59A4-6

D. DESIGNATED STATES FOR WHICH INDICATIONS ARE MADE (if the indications are not for all designated States)

E. SEPARATE FURNISHING OF INDICATIONS (leave blank if not applicable)

The indications listed below will be submitted to the International Bureau later (specify the general nature of the indications, e.g., "Accession Number of Deposit")

For receiving Office use only

☐ This sheet was received with the international application

Authorized officer

For International Bureau use only

☒ This sheet was received by the International Bureau on:
31 AUGUST 1999

Authorized officer
P. Bicamal
(Handwritten Signature)

Form PCT/RO/134 (July 1992)