WO 02/35328 Al

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

2 May 2002 (02.05.2002) PCT WO 02/35328 Al
(51) International Patent Classification’: GO6F 1/00 (74) Agents: WRIGHT, William, H. et al.; Hogan & Hartson
L.L.P, Biltmore Tower, Suite 1900, 500 South Grand Av-
(21) International Application Number: PCT/US01/26804 enue, Los Angeles, CA 90071 (US).
(22) International Filing Date: 28 August 2001 (28.08.2001) (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
(25) Filing Language: English CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
(26) Publication Language: English LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
(30) Priority Data: SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
60/242,939 24 October 2000 (24.10.2000) US
09/885,427 19 June 2001 (19.06.2001) US (84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
(71) Applicant: VCIS, INC. [US/US]; 522 Erskine Drive, Pa- patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
cific Palisades, CA 90272 (US). patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,
(72) Inventor: VAN DER MADE, Peter, A., J.; 201 Barren- CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,

joey Rd., Newport Beach, NSW 2106 (AU).

TG).

[Continued on next page]

(54) Title: ANALYTICAL VIRTUAL MACHINE

100 REAL OR PHYSICAL COMPUTER HARDWARE

FILE SYSTEM HOOK |/0Ui§g w J
DEVICE DRIVER 101 i

: PHYSICAL
COMPUTER OPERATING M?(A]%RY
SYSTEM, EXECUTING

QTHER APPLICATIONS
AND THE APPLICATION
THAT INTALIZES THE
VIRTUAL MACHINE, USER
INTERFACE. STORED IN
PHYSICAL MEMORY 102

PHYSICAL
CPU
105

BEHAVIOR PATTERN
RETURNED TO CALLING
PROCESS

ENTRY POINT, FILE TYPE
AND ENTRY CODE
PASSED TOW 103

200 ANALYTICAL VIRTUAL MACHINE
[wieRRUPT | VRIUAL
Kt VECTORS MACHINE
PROCRAM 12 BYIE B 20 Ru | VENORY
LOADER sl
M PREFETCH - povwen
OPERATNG 201 T MEMORY
Srzirc%‘ous L] INSTRUCTION F ﬁi%ﬁ%m
| DECODER
SMION S DATA SEG.
INTERRUPT 212 |] ADDRESS | | | EYTRA SEG.
SIMULATION VIRTUAL REMAPPER | | | STACK SEG.
EIIIE— | 3) BT CRU 210
MODIFED 202§ 205 o
[CONTROL} INTERRUPT VECTOR . A%
: CALLER A FETCH AL
2 /16/32 207 |71 INT. SERVICES
BEHAVIOR FLAGS
[- J0g| |_BT REGSTERS206 e 1/0 PORTS
SEQUENCER 545 OPORT |k
SIMULATION 215 PHYSICAL
MEMORY
106

(57) Abstract: An analytical virtual machine (AVM) ana-
lyzes computer code using a software processor including
a register that stores behavior flags indicative of behaviors
identified by virtually executing the code within the virtual
machine. The AVM includes a sequencer that stores the
sequence in which behavior flags are set in the behavior
flags register. The AVM analyzes machine performance by
emulating execution of the code being analyzed on a fully
virtual machine and records the observed behavior. When
emulation and analysis are complete, the AVM returns the
behavior flags register and sequencer to the real machine
and terminates.

w0 02/35328 A1 D000 0O OO

Published:
— with international search report

before the expiration of the time limit for amending the

claims and to be republished in the event of receipt of
amendments

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

10

15

20

25

30

WO 02/35328 PCT/US01/26804

ANALYTICAL VIRTUAL MACHINE

PRIORITY CLAIM AND RELATED APPLICATION
This application claims priority from U.S. provisional patent
application Serial No. 60/242,939 filed October 24, 2000, which application is
incorporated by reference in its entirety. This application is related to U.S.
patent application Serial No. 09/642,625, filed August 18, 2000, which

application is incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to a virtual machine system and, more
particularly, relates to a virtual machine system appropriate for automated
code analysis and capable of analyzing data including executable programs
presented to a computer system.

2. Discussion of the Related Art

Detection of malicious code including programs such as viruses has
been a concern throughout the era of the personal computer. With the growth
of communication networks such as the Internet and increasing interchange
of data, including the rapid growth in the use of e-mail for communications,
the infection of computers through communications or file exchange is an
increasingly significant consideration. Infections take various forms, but are
typically related to computer viruses, trojan programs, or other forms of
malicious code. Recent incidents of e-mail mediated virus attacks have been
dramatic both for the speed of propagation and for the extent of damage, with
Internet service providers (ISPs) and companies suffering service problems
and a loss of e-mail capability. In many instances, attempts to adequately

prevent file exchange or e-mail mediated infections significantly

10

15

20

25

30

WO 02/35328 PCT/US01/26804

inconvenience computer users. Improved strategies for detecting and dealing
with virus attacks are desired.

One conventional technique for detecting viruses is signature scanning.
Signature scanning systems use sample code patterns extracted from known
malicious code and scan for the occurrence of these patterns in other program
code. In some cases program code that is scanned is first decrypted through
emulation, and the resulting code is scanned for signatures or function
signatures. A primary limitation of this signature scanning method is that
only known malicious code is detected, that is, only code that matches the
stored sample signatures of known malicious code is identified as being
infected. All viruses or malicious code not pi'eviously identified and all
viruses or malicious code created after the last update to the signature
database will not be detected. Thus, newly created viruses are not detected
by this method; neither are viruses with code in which the signature,
previously extracted and contained in the signature database, has been
overwritten.

In addition, the signature analysis technique fails to identify the
presence of a virus if the signature is not aligned in the code in the expected
fashion. Alternately, the authors of a virus may obscure the identity of the
virus by opcode substitution or by inserting dummy or random code into virus
functions. Nonsense code can be inserted that alters the signature of the
virus to a sufficient extent as to be undetectable by a signature scanning
program, without diminishing the ability of the virus to propagate and deliver
its payload.

Another virus detection strategy is integrity checking. Integrity
checking systems extract a code sample from known, benign application
program code. The code sample is stored, together with information from the
program file such as the executable program header and the file length, as
well as the creation date and creation time for the program file. The program
file is checked at regular intervals against this database to ensure that the

program file has not been modified. A main disadvantage of an integrity

10

15

20

25

30

WO 02/35328 PCT/US01/26804

check based virus detection system is that a great many warnings of virus
activity issue when any modification .of an application program is performed.
For example, integrity checking programs generate long lists of modified files
when a user upgrades the operating system of the computer or installs or
upgrades application software. It is difficult for a user to determine when a
warning represents a legitimate attack on the computer system.

Checksum monitoring systems detect viruses by generating a cyclic
redundancy check (CRC) value for each program file. Modification of the
program file is detected by a variation in the CRC value. Checksum monitors
improve on integrity check systems in that it is more difficult for malicious
code to defeat the monitoring. On the other hand, checksum monitors exhibit
the same limitations as integrity checking systems in that many false
warnings issue and it is difficult to identify which warnings represent actual
viruses or infection.

Behavior interception systems detect virus activity by interacting with
the operating system of the target computer and monitoring for potentially
malicious behavior. When such malicious behavior is detected, the action is
blocked and the user is informed that a potentially dangerous action is about
to take place. The potentially malicious code can be allowed to perform this
action by the user. This makes the behavior interception system somewhat
unreliable, because the effectiveness of the system depends on user input. In
addition, resident behavior interception systems are sometimes detected and
disabled by malicious code.

Another conventional strategy for detecting infections is the use of bait
files. This strategy is typically used in combination with other virus detection
strategies to detect an existing and active infection. This means that the
malicious code is presently running on the target computer and is modifying
files. The virus is detected when the bait file is modified. Many viruses are
aware of bait files and do not modify files that are either too small, obviously
bait files because of their structure or have a predetermined content in the

file name.

10

15

20

25

30

WO 02/35328 PCT/US01/26804

It is apparent that improved techniques for detecting viruses and other
malicious types of code are desirable. |

Aspects of the present invention utilize certain characteristics of
virtual machine technology. The concept of a "virtual machine" is known in
the art and virtual machines have found various uses. The merits of the
"virtual machine" include the ability to execute code that would not execute
on the hardware platform under other circumstances, such as code intended
for other hardware platforms. Other applications of virtual machine
technology can be found in multi-user and multi-processing systems, where
each process runs within its own virtual machine.

Virtual machines have been applied to various computer functions,
such as in the interface between computer hardware and high level languages
(HLL) (U.S. Patent No. 5,872,978 to Hoskins), the networking of real
machines to form a parallel processor (U.S. Patent No. 5,774,727 to Walsh et
al.) and to create a multi-tasking or multi-user computer environment (U.S.
Patent No. 4,400,769, to Kaneda et al.). Virtual machines have also been
applied where cross-platform HLL code portability is required (U.S. Patent
No. 6,118,940 to Alexander, III et al).

SUMMARY OF THE PREFERRED EMBODIMENTS

An aspect of the invention provides a virtual machine system for
computer code behavior analysis, the virtual machine system having a
software processor. The processor stores a behavior record including behavior
flags representative of computer code behavior observed by virtually
executing the computer code under analysis within the virtual machine. A
sequencer stores a sequence in which behavior flags are set in the behavior
record during virtual execution of the computer code under analysis.
Simulated memory and a simulated operating system representative of a host
real computer system are provided and the computer code under analysis
interacts with the simulated memory and the simulated operating system to

generate the behavior flags. The virtual machine passes data representative

4

10

15

20

25

30

WO 02/35328 PCT/US01/26804

of the behavior record to the host real computer system prior to termination
of the virtual machine

Another aspect of the present invention provides a virtual machine
system for computer code behavior analysis having a software processor. The
virtual machine includes a register or structure that stores behavior flags
representative of computer code behavior observed by virtually executing the
computer code under analysis within the virtual machine. The virtual
machine also includes a register or structure that stores a sequence in which
behavior flags are set in the behavior flags register or structure. Registers or
structures store all entry points to the computer code under analysis within
the virtual machine. A structure stores interrupt vector addresses that point
at interrupt service routines loaded into memory reserved by the virtual
machine when the virtual machine is initialized. A memory structure
simulates input and output ports and another memory structure simulates
processor memory. One or more operating system simulation shells simulate
values returned by a real operating system under which the computer code

under analysis is intended to operate.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 illustrates a configuration of an analytical virtual machine with
DOS MZ-type executable or binary file.

FIG. 2 illustrates a configuration of an analytical virtual machine with
high level language (HLL) program code.

FIG. 3 illustrates a configuration of an analytical virtual machine
running PE, NE or LE Windows executable code.

FIG. 4 shows a memory map of an analytical virtual machine running
a binary (COM or SYS) executable and running a Visual Basic (VB)
executable.

FIGS. 5A and 5B schematically illustrate a table listing behavior
pattern, sequencer and entry point structures generated by a preferred

implementation of the analytical virtual machine.

10

15

20

25

30

WO 02/35328 PCT/US01/26804

FIG. 6 shows a schematic procedure flow diagram of a preferred
implementation of the analytical virtual machine executing binary machine
code.

FIG. 7 shows a schematic procedure flow diagram of a preferred

implementation of the analytical virtual machine executing HLL.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Preferred implementations of the present invention provide an
analytical virtual machine (AVM) system that executes program code within
an emulated computer system in a manner similar to how the code would be
executed in a real computer system. Preferred implementations of an
analytical virtual machine do not allow physical input or output to take place
or any interaction between the program code under analysis and the real or
physical computer system. Instead, input and output operations, system
calls, and instructions are simulated in a manner transparent to the code
under analysis. System functions, operating system application program
interface (API) calls, input and output commands and alterations to pre-
defined memory locations preferably are all logged by the analytical virtual
machine during execution of the code being analyzed. Most preferably the
analytical virtual machine returns the logged data to the real or physical
computer system as both a behavior pattern and a sequence structure
representing the sequence in which the behavior pattern bits were set during
virtual execution.

The analytical virtual machine (AVM) described here is intended to be
used in automated code function analysis and behavior extraction. The "code"
is either binary machine code or high level language (HLL) in either
tokenized or source code text format. The analytical virtual machine executes
the code to be analyzed from each entry point in the entry point table that is
passed to it. While virtually executing code, the AVM monitors system calls,
input/output (I/0) operations and memory accesses. Either machine language

instructions or high-level language instructions are executed within the

10

15

20

25

30

WO 02/35328 PCT/US01/26804

emulated central processing unit (CPU) of the AVM. Operating system
functions called by the application code, input/output port read and write
operations and memory read and write operations performed by the
application code are simulated within the AVM environment.

Previous analytical systems scanned code without virtual execution. In
such systems, application code was scanned for function calls or target code
snippets (U.S. Patent No. 5,440,723 to Arnold et al.). The scanning method
has several disadvantages, the first being that a code pattern match may be
out of synchronization with the actual executed code. Another disadvantage
of the scanning method is that direct access to a function, that is a function
access that is not through a documented call structure, is not detected. In
addition, a control fields in memory, which are filled by code execution, are
not present and so are not analyzed in the scanning method. A third
disadvantage is that persons who write malicious code are likely to disguise
the real function of that code by inserting 'do nothing' code into the function
template or by calling the function in an unconventional manner. Because of
these disadvantages a scanning analysis system is less than exact.

Preferred implementations of the present invention employ an
analytical virtual machine like that presented here. Such a virtual machine
executes application program code in step with the real program flow
beginning from each entry point. When using such a particularly preferred
analytical virtual machine, an exact representation of the functions contained
within the application program code is obtained. Do Nothing' instructions no
longer are effective in disguising code. Calling a function in an
unconventional manner will have no effect if the AVM is implemented in the
particularly preferred manner to respond as the real machine would.

As will be explained below in greater detail, the use of a virtual
machine in code analysis has an advantage that, as compared to a
conventional native machine, code is analyzed by executing the code within a
safe environment. Here "safe" refers to the fact that the operating system,

programs and data of the real computer system do not interact with code

10

15

20

25

30

WO 02/35328 PCT/US01/26804

under analysis and so are not likely to be damaged by the code under
analysis. Analysis nevertheless takes place in step with normal code
execution, as if the code were executed on a native machine using a real
processor system.

Thus, preferred implementations of the analytical virtual machine can
accommodate a plurality of operating systems and hardware platforms for
simulation. The organization of the computing system can be flexibly
modified. Further, it is possible to supervise the operation of the system. In
certain presently preferred embodiments, a supervision function is built into
the virtual operating system of the AVM to analyze the behavior of the
unknown program code. FIG. 1 shows a block diagram of a current
implementation of the AVM within a physical computer system. Like a
compiler-based virtual machine, the AVM processes the flow of the code
stream. Unlike a compiler-based virtual machine, code is executed and
virtual operating system functions are called.

FIG. 1 shows the organization of a computer system running an
instance of the AVM that has been initialized for execution of a DOS MZ-type
executable or DOS binary COM or SYS program, including the boot sector
loader used by such programs. The area inside the box labeled 100
represents a real machine, that is, the hardware of a computer comprising the
physical central processing unit (CPU), physical memory, and user input and
output channels. The input and output channels include the keyboard,
mouse, video display, disk drives and other peripheral equipment connected
to the processing unit. The operating system 102 is stored in physical
memory 106 together with device drivers and applications programs that are
in the process of execution, likely within other virtual machines. All such
software is executed by the real central processing unit (CPU) 105. One
device driver is shown in the block diagram, which is the file system hook
device driver 101. File system hook device driver 101 hooks to the real
operating system file system and informs the application which launches the
AVM of modifications to files stored on the hard disk drive.

10

15

20

25

30

WO 02/35328 PCT/US01/26804

The operating system software 102 resides in memory 106 and
operates within the real machine 100. The application program 103 that
initializes and receives the results of the analytical virtual machine 200 exists
on the real machine, executing within the operating system 102 environment,
as does the analytical virtual machine 200. After the analytical virtual
machine 200 is initialized, the application program passes the entry point,
the file type and a buffer containing the segment holding the program's main
entry point through 103 to the program loader pre-processor 211.

Once the virtual machine is created, a part of physical memory 106 is
reserved by the application program for use by the virtual machine. This
memory block is labeled 210 and exists in physical memory 106. The
preprocessor 211 prepares virtual memory block 210 for use by the analytical
virtual machine and creates all appropriate, simulated operating system
memory blocks, such as the interrupt vector table (IVT) at virtual addresses
0000 to 1023, the DOS parameter area at virtual addresses 1024 to 1279, the
program area and the memory reserved for the VGA display (mapped at
virtual address 0AOOOh). The program loader pre-processor 211 creates
memory control blocks (MCB's) and then loads the entry point code into this
memory. In simulated high memory, above the 640K boundary of the IBM
PC base memory map, virtual interrupt service routines are created. All
addresses referenced by the program code under analysis are remapped to fit
inside this memory model by software memory mapper 207.

After the program loader 211 completes the initialization of the virtual
DOS memory model, the virtual CPU 205 commences fetching program
instructions through the prefetch mechanism 203. Depending on the second
byte (the Or/m byte) of each instruction fetched and decoded by software
instruction decoder 204, the software or virtual CPU fetches from the register
stack 206 or from the virtual memory 210, using the data fetch mechanism
208 and memory mapper 207.

The software CPU 205 performs the desired operation on the data and
writes the results back to the destination determined by the Or/m byte.

9

10

15

20

25

30

WO 02/35328 PCT/US01/26804

Referenced operating system functions are simulated in the operating system
simulator 201. Interrupt services are simulated in the interrupt services
simulator 212, with vectors stored in virtual memory 210 at addresses 0000 to
1023. The interrupt services in high memory act as a link between the
interrupt vector table and the simulated interrupt services 212. The memory
block 210 also contains the system stack and the application code stack. The
system and application code stacks are not shown, since they are created at
the addresses contained within the application code under analysis and vary
from application to application. Data are fetched from the virtual stack area
reserved in memory 210 if the control byte Or/m indicates that this is
required.

The software CPU 205 has a prefetch mechanism 203, and an
instruction decoder 204. As instructions are fetched, decoded and executed,
the program code under analysis performs simulated functions. The
executipn of each simulated function sets and resets flags in the behavior
flags rewgister 209 and the sequence in which these operations take place is
recorded in sequencer 213. The resulting behavior flag pattern, together with
the sequencer structure, are passed to the application that initiated the
analytical virtual machine. The analytical virtual machine is then
terminated in presently preferred embodiments.

This process is further illustrated in FIG. 6, which shows a block
diagram of a procedure flow within a preferred implementation of the AVM.
FIG. 6 is, like the other figures, illustrative of a preferred implementation but
is not intended to limit the scope of the present invention. The program
loader pre-processor function is show in the top left hand corner. The
application program passes the file type, code length, entry point offset and a
buffer of length "len" containing the entire entry segment code as well as the
SS (stack segment), SP (stack pointer), CS (code segment) and the IP
(instruction pointer) register values contained within the executable file. The
loader pre-processor then reserves a block of physical memory for use by the

AVM as virtual memory. The size of the memory block reserved for virtual

10

10

15

20

25

30

WO 02/35328 PCT/US01/26804

memory is at this moment limited to 64000h bytes (409600 decimal).
However, the size of the virtual memory is not relevant to the operation of the
AVM and so should not be considered limiting.

The virtual memory map is initialized to contain the interrupt vector
table, the BIOS parameter area, the DOS parameter area, the environment
string table, the program segment prefix (PSP) and the display adapter
memory block (mapped at 0AOOOh). An area is reserved above the display
adapter memory block in which interrupt service routines (ISR's) are created
for each of the 1024 interrupts contained within the interrupt vector table
(IVT). Then the remaining memory is configured as memory blocks controlled
by memory control blocks (MCB's). The entry segment code, passed to the
AVM by the controlling application program, is placed within the MCB
memory blocks in virtual memory. Next, the virtual processor's segment
registers; SS, ES, DS, CS, GS and FS, are initialized with values that depend
on the type of executable code that is placed in virtual memory. Then the
register stack EAX, EBX, ECX, EDX, ESP, EBP, ESI, EDI and the flags
register are initialized. The monitor function, which sets and resets flags in
the behavior register, is built into individual operating system calls, interrupt
calls and API calls, as well as the address remapper and the interrupt service
routines. During each of the following instruction processing loops, the AVM
checks if the maximum allowed CPU time has been exceeded. This virtual
CPU time limit is most preferably imposed to break deadlock conditions,
where the code under analysis causes the AVM to enter an endless loop.
Proper configuration of the CPU time limit allows long decryption or
polymorphic loops to be processed with risking deadlock.

The IP register points to the entry point in the virtual memory. At this
point in the virtual execution process the virtual CPU starts to fill the 12-byte
prefetch queue. The bytes are decoded according to Intel's Pentium
instruction set reference, whereby the first byte in this 12-byte queue
determines the function of the instruction word. The instruction word

comprises an operation, an interrupt call or an operating system API call. Of

11

10

15

20

25

30

WO 02/35328 PCT/US01/26804

course, in implementations for other processors, other instruction set-
references will be appropriate and the specific details will vary. It will be
apparent from this discussion how to implement the analytical virtual
machine for different processors and different operating system
implementations.

In case of an operation, the FetchData procedure is called, which
retrieves the correct data either from virtual memory, the prefetch queue or
from the processor's registers, depending on the values stored in the 22d byte
of the prefetch queue (the Or/m byte). The data thus retrieved is processed,
e.g. added, divided, multiplied or processed through a multitude of other
arithmetic or logic operators applied to the data. Then the SetFlags
procedure is called, which evaluates the result of the operation that was
performed and sets flags in the virtual flags register accordingly. The
SetSign procedure adjusts the sign of the processed results. The MemRemap
procedure takes as its input the address of the destination in virtual memory.
This address is remapped to fit into the 409600 bytes reserved for virtual
memory. Monitoring of address space modifications is performed in the
MemRemap procedure.

In case of an interrupt call, the call index is passed to a procedure that
passes control to the appropriate interrupt service routine by looking up the
address in the interrupt vector table (IVT). Analysis then continues by
executing the appropriate interrupt service routine, either in virtual BIOS,
virtual DOS, virtual DPMI, virtual Windows (native API) or in the code under
analysis if that code has modified the IVT to point at one of its own
procedures. Monitoring of interrupt functions is performed in the appropriate
procedures.

In case of an API call, the call is passed to a procedure that attaches
the relevant ordinal number to the call, and passes control to the virtual APL.
This virtual API contains procedures that simulate the response, but not the
functionality, of the real operating system API. Monitoring of API functions

is performed in each API procedure. API functions modify areas of virtual

12

10

15

20

25

30

WO 02/35328 PCT/US01/26804

memory, so that subsequent virtual API calls can read back the correct and
expected results.

This sequence of events continues to take place until a terminate
program system call is encountered or a far jump is performed that is outside
the current segment. Whenever a branch instruction is encountered, the
AVM will use the parameters intended by the original programmer to jump,
but store the other side of the branch in the entry point table together with
the conditions used in the branch instruction. The entry point table is
traversed and code is executed from each entry point in the entry point table.
No duplication is allowed in the entry point table. When all entry points have
been processed, the resulting behavior pattern is returned to the calling
application, together with the sequencer structure and the AVM is
terminated, releasing the reserved memory block. The calling program
within the real computer system can then review the behavior pattern and
the sequencer to evaluate the code analyzed by the AVM.

FIG. 2 shows a configuration of the AVM with a code interpreter shell
loaded, of the type appropriate to running a high level language. The
program loader 301 splits the program code into individual lines, indexes the
program lines and places them in virtual memory 310. During this load
operation, entry point information is extracted from the code and placed in an
entry point table, together with the program line index that each entry point
references. Variables used in the program code are extracted in the AVM's
second pass through the program code. Variables are stored in a variable
structure in virtual memory 310, containing the variable index, the variable
type, and the current value of the variable, initialized to zero prior to
emulation. At this point the code interpreter 305 rec‘eives control and starts
to fetch instructions from the first entry point in the entry point table.
Instructions are interpreted, operating on the variables in the variable
structure at the position from which instructions are fetched Gump
instructions) or they call system services (open file, write file etc.) and

perform application program interface (API) calls. System services are

13

10

15

20

25

30

WO 02/35328 PCT/US01/26804

simulated in the services simulation procedure 312. The Calc. Next
procedure 308 calculates the next line number in memory 310 from which the
next instruction line is to be fetched by the Fetch Next procedure 307. The
behavior flags register 302 monitors the initialization of certain system
variables, system service and API calls. These events set and reset bits in the
behavior flags register 302. The sequence in which behavior register flags are
set or reset is also recorded in the sequencer structure 309. Scratchpad
storage 306 is used to temporarily store the condition of system services,
which may be referenced at a later time by the application program code.

The system performs this sequence of events for each instruction line,
and continues at each entry point in the code until all entry points in the
entry point table have been processed. The AVM then returns the behavior
pattern, together with the sequencer structure, to the calling program and
the AVM is terminated. The process flow of the FIG. 2 instance of the AVM is
further illustrated in FIG. 7, which shows the processing flow within the
current AVM implementation after the AVM has been initialized to interpret
and extract the behavior pattern of a high level language (HLL) program,
such as VB Script code. The language definition key-word list and rules
define the language interpreted by the processing core. In FIG. 7, a keyword
list is shown that is a cross between VBA and VBS, but the processing core is
not limited to those languages.

When the AVM of FIG. 7 is initialized, a 409600 byte (hexadecimal
0x64000) block of real memory is reserved as virtual computer memory. The
loader function initializes the memory and then loads the code buffer passed
to it into virtual memory as individual lines, marked by a carriage return (CR
= 0Dh) or a CR and line feed (CR LF = 0D 0Ah) character codes. These lines
are indexed into a source structure, whereby each line is assigned an address.
Processing the source lines commences in pass 1, whereby all entry points
defined in the code, such as menu entries, auto-executing procedures and
procedures attached to standard system functions are placed in an entry-

point table. In pass 2, all variables that are present in the code are extracted

14

10

15

20

25

30

WO 02/35328 PCT/US01/26804

and placed in a variable structure within virtual memory. Each variable is
stored as an address, the variable type, the variable name and the variable
value.

After this the AVM processing core begins fetching instruction lines
from the first entry point to the code. The line is decoded using the keyword
list and the language rules. Variables references by the code line are fetched
from the variable structure and processed. The variable value is then written
back to the appropriate position. In case of an API call to perform an
operating system function, the virtual API is referenced and it looks up the
internal ordinal number of the API function, performs the simulated function
and returns the simulated call values back to the HLL calling function.
During execution the process flow causes flags in the behavior register 302
(FIG. 2) to be set or reset, and the sequence of these events to be stored in a
sequencer structure 309 (FIG. 2). This process continues until all entry
points in the entry point table have been processed, at which time the
allocated memory is released, the behavior register value and the sequencer
structure are returned to the application program for analysis, and the AVM
is terminated.

In a present implementation, an analytical virtual machine in
accordance with the present invention has three operating modes, a high level
mode, a protected mode and a real mode. The real mode corresponds to an
operating system such as DOS and the corresponding instance of the AVM is
illustrated in FIGS. 1 and 6. The high level mode might be used to analyze a
program in a high level language such as Perl, Visual Basic, or a scripting
language. A high level mode of the AVM is illustrated in FIGS. 2 and 7.

A protected mode instance of the AVM might be used to analyze thirty-
two bit Windows code or Linux code. An illustration of the configuration of
the AVM for protected mode use is illustrated in, for example, FIG. 3. The
structure and operation of the FIG. 3 AVM is apparent from that illustration
and the detailed discussion of the high level and real mode analytical virtual

machines and so is not discussed further here. The primary difference as

15

10

15

20

25

30

WO 02/35328 PCT/US01/26804

compared to the real mode implementation is the kernel and API
functionality of the protected mode system. These aspects of the protected
mode reflect the fact that it is already running a virtual machine and the fact
that API calls are made rather than interrupts.

FIG. 4 illustrates the various memory maps that are used by the
analytical virtual machine in the different modes identified here. As shown,
the programs to be analyzed by the different mode devices load differently.
Consequently, the analytical virtual machine is configured especially for each
of these different modes and determines where the program to analyze is to
begin execution and how the program should be analyzed. The memory
allocation illustrated here is exemplary and is subject to optimization for
particular systems. As such, future developments for future processors and
programs are expected to alter the precise characteristics of the AVM and its
implementations illustrated here.

The end product of an invocation of an AVM in accordance with
preferred embodiments of the present invention are the contents of the
behavior flag register and the sequencer. FIGS. 5A and 5B illustrate an
exemplary and presently preferred set of behaviors that are tracked to
characterize the code under analysis. This list of behaviors is presently
preferred because it accurately tracks potentially malicious behavior and
precisely characterizes presently contemplated forms of code. It is
anticipated that future, different behavior sets or modifications of the
illustrated behavior set might be desirable. The sequencer is a data structure
that tracks the evolution of the behavior flag register. The sequence of
setting the flags in the behavior register is particularly significant in
analyzing and fully characterizing analyzed code. The sequencer is a data
structure whose size is adapted to accurately characterize the code. Both the
end pattern in the behavior register and the sequence of flag settings and
resettings stored in the sequence are passed to the real machine just prior to
terminating the virtual machine. The calling application program then uses

the data in these structures to characterize the analyzed code.

16

10

15

20

25

30

WO 02/35328 PCT/US01/26804

The preceding discussion described a virfual machine that performs
analysis of an application program (code) within a protected execution
environment on a real computer. This analytical virtual machine (AVM)
comprises a pre-processor which creates, in the memory reserved by the
virtual machine, an image of the appropriate operating system under which
the application software program is intended to execute. The AVM identifies
the operating system and configures the execution environment by the file
format and control fields within the header of the file that stores the
application program and by the program code to be analyzed. The AVM is
run by the operating system of the real computer to execute the application
program contained within the AVM. No direct interaction is allowed to exist
between the application program and the system software execution
environment and / or the computer hardware.

An AVM is created by the computer immune system application for
each analysis and is destroyed when that analysis is complete. The AVM is
constructed out of a number of layered shells. The configuration of AVM
shells depends on the format of the application program that needs to be
analyzed; e.g. a software CPU shell is loaded in case native program code is
analyzed, while in the case of high level language script or program code the
appropriate language interpreter is loaded. Therefore, the processor core of
the AVM exists either as a CPU executing native code or as a high level
language interpreter. Operating system calls that are contained within the
application software program are simulated in such a way that the
application program appears to execute within a physical computer
environment.

The application program is executed in several passes through the
AVM, depending on the structure of the application software program, and
may not be executed in any sequence as intended by the original creator of
the application program. The aim of execution within the AVM is to perform
an analysis that extracts the program code behavior under every condition

contained within that program. Once this aim has been satisfied, the

17

WO 02/35328 PCT/US01/26804

analytical virtual machine is terminated, preserving the generated behavior
pattern and the sequencer structure, which contains the sequence in which
events recorded in the behavior pattern have taken place.

The AVM described here is well suited for and is intended for use with
the computer immune system and method described in U.S. patent
application Serial No. 09/642,625 filed August 18, 2000. Application Serial
No. 09/642,625 is incorporated by reference in its entirety as disclosing
further aspects of a preferred implementation and application of the

described analytical virtual machine.

18

10

15

WO 02/35328 PCT/US01/26804

What is claimed:
1. A virtual machine system for computer code behavior analysis, the
virtual machine system having a software processor comprising:

a behavior record storing behavior flags representative of computer
code behavior observed by virtually executing the computer code under
analysis within the virtual machine;

a sequencer that stores a sequence in which behavior flags are set in
the behavior record during virtual execution of the computer code under
analysis; and

simulated memory and a simulated operating system representative of
a host real computer system, the computer code under analysis interacting
with the simulated memory and the simulated operating system to generate
the behavior flags,

wherein the virtual machine passes data representative of the behavior
record to the host real computer system prior to termination of the virtual

machine.

19

10

15

20

25

30

WO 02/35328 PCT/US01/26804

2. A virtual machine system for computer code behavior analysis, the
virtual machine system having a software processor, comprising:

a register or structure that stores behavior flags representative of
computer code behavior observed by virtually executing the computer code
under analysis within the virtual machine;

a register or structure that stores a sequence in which behavior flags
are set in the behavior flags register or structure;

an entry point table that stores all entry points to the computer code
under analysis within the virtual machine;

a structure that stores interrupt vector addresses, pointing at interrupt
service routines loaded into memory reserved by the virtual machine when
the virtual machine is initialized;

a memory structure simulating input and output ports;

a memory structure simulating processor memory;

one or more operating system simulation shells that simulate values
returned by a real operating system under which the computer code under

analysis is intended to operate.

3. The system of claim 2, wherein the software processor executes the
computer code under analysis, or fragments of the computer code under
analysis, starting at each of the entry points defined within the entry point

table and produces a behavior pattern comprising a set of behavior flags.

4. The system of claim 2, wherein the software processor executes the
computer code under analysis, starting at each entry point defined within the
entry point table and produces a sequence in which the behavior flags are set

or reset.

5. The system of claim 2, wherein the software processor interprets a high

level language within the virtual machine system.

20

10

15

20

WO 02/35328 PCT/US01/26804

6. The system of claim 5, wherein the software processor executes the
computer code under analysis, or fragments of the computer code under
analysis, starting at each of the entry points defined within the entry point

table and produces a behavior pattern comprising a set of behavior flags.

7. The system of claim 5, wherein the software processor executes the
computer code under analysis, starting at each entry point defined within the
entry point table and produces a sequence in which the behavior flags are set

or reset.

8. The system of claim 2, wherein the software processor executes 32-bit
or 64-bit program code and the operating system simulation shell responds to

application program interface calls.

9. The system of claim 8, wherein the software processor executes the
computer code under analysis, or fragments of the computer code under
analysis, starting at each of the entry points defined within the entry point

table and produces a behavior pattern comprising a set of behavior flags.

10. The system of claim 8, wherein the software processor executes the
computer code under analysis, starting at each entry point defined within the
entry point table and produces a sequence in which the behavior flags are set

or reset.

21

WO 02/35328 PCT/US01/26804

1/8

100 REAL OR PHYSICAL COMPUTER HARDWARE

FILE SYSTEM HOOK [~ USER]

1/0 AND GUI
DEVCE DRVER N

P PHYSICAL

COMPUTER OPERATING M%%Ry.

SYSTEM, EXECUTING
OTHER APPLICATIONS
AND THE APPLICATION PHYSICAL
THAT INTAUZES THE [l oy B
VIRTUAL MACHINE, USER 105
INTERFACE. STORED IN _
PHYSICAL MEMORY 100 s
e

ENTRY POINT, FILE TYPE
AND ENTRY CODE
PASSED TO W 103

) BEHAVIOR PATTERN
¥ RETURNED TO CALLING
-1 PROCESS

¥ ANALYTICAL VIRTUAL MACHINE
::~ BEHAVIOR %] INTERRUPT VIRTUAL
PROGRAM 12 BYTE D0S RAM MEMORY
= LOADER 944 PREFETCH ==

‘ 203 <7=| PROGRAM

OPERATING 201 el 4 MEMORY

NS INSTRUCTION S5 256K

L SMULATION DECODER PROGRAM
- DATA SEG.
ggr'i:\'fngg? 212 SRS ADDRESS | | | EXTRA SEG.
SIMULATION VIRTUAL REMAPPER STACK SEG.
SR 281U, 210
VoA
128K

207 [INT. SERVICES
sz |/0 PORTS

200

i
S

F

MODIFIED 202

(‘;ONT';(I | AR |
CBIST e O\l [DATA PETOH 208fE

| SRR |

1 B/16/32
) BEHAVIOR FLA%SOQ BIT REGISTERS206

| SRR |
" SIMULATION 215 PHYSICAL

106

: MEMORY
FIG. 1

WO 02/35328 PCT/US01/26804

2/8

100 REAL OR PHYSICAL COMPUTER HARDWARE

FILE SYSTEM HOOK [USER 1

1/0 AND GUI
DEVICE DRVER o

] PHYSICAL
COMPUTER OPERATING | i M%OGRY
SYSTEM, EXECUTING R
OTHER APPLICATIONS
AND THE APPLICATION
THAT INITIALIZES THE
VIRTUAL MACHINE, USER

INTERFACE. STORED IN ‘
PHYSICAL MEMORY 102 P

PHYSICAL
CPU

105

mﬂnﬁw TéogEE e 5% RETURNED TO CALLING

il t BEHAVIOR PATTERN
PASSED TO WM 103| [i] PROCESS

 FE[awAOTOAL VIRTUAL WACHINE TR
HEAOR | A ENTRY POINT

300

: > MACHINE
STORAGE
PROGRAM ENTRY POINT et MEMORY

¥+ STORAGE
+f¢ VARINDEX

MEIEETTTENU N

SO A P) "l

3 ' e bR
I T ORI AP

OPERATING e

SYSTEM VARIABLE VARTYPE
FUNCTIONS INTIALIZATION . [
SIMULATION . J04 VARALLE

| PROGRAM
SUJ CODE e e STORAGE
EZSEEST— | INTERPRETER 310
SERVICES = 305 [

CONTROL]
[BUS: SWULATON 312 CALC. NEXT 308 ==

[EERRRE |

waere] USER 10
= SIMULATION

L BEHAVIOR FLAGS. | | FETCH NEXT %

21 4[302 N 307 SO ‘
L) SEQUENCER 510 | [SCRATCHPAD STORAGE
306 PHYSICAL

MEMORY
106

FIG.2

WO 02/35328 PCT/US01/26804

3/8

100 REAL OR PHYSICAL COMPUTER HARDWARE

FILE SYSTEM HOOK USER
DEVICE DRIVER 10 /0 AND GUI

Rp——T J 104

COMPUTER OPERATING = oS
SYSTEN, EXECUTING
OTHER APPLICATIONS
AND THE APPLICATION PHYSICAL
THAT NTALZES THE [ii] onu B
VIRTUAL WACHINE, USER 105

INTERFACE. STORED N |
PHYSICAL MEWORY 10 s

et 1 BEHAVOR PATTERN
l N N
e e e % RETURNED TO CALLING

PASSED TO WM 103| [i| PROCESS

PHYSICAL

__JE{ ANALYTICAL VIRTUAL MACHINE RTUAL
- BEFAVIOR INTERRUPT
PROGRAM 12 BYTE 00S RAM MEMORY

203 .
KERNEL 201 RS 4

FNCTONS - INSTRUCTION S 256Kb
SIMULATION DECODER PROGRAM

204

INTERRUPT 212 BTN JODRESS MEMORY
SERVICES
SlMUlATION _ VIRTUAL REMAPPER

‘ = —— | 3BT CU 210
CONTROL NTERLE v R 1 VGA
RS o | oA 208k B i
i 63 | 2 N, SERVICES

-{ BEHAVIOR FLAGS ‘

i | RN | o

5%5:1_| SEQUENCER /O PORT |t

— 213 | siyuLamon 215 S

200

7]

FIG.3 =

WO 02/35328

4/8

PCT/US01/26804

AFTER LOADING CS:IP
IS MOVED: AT ENTRY POINT

FIG.4

BINARY FILES MZ EXECUTABLE | VISUAL BASIC
ENTRY POINT
VECTORS VECTORS e
BIOS DATA BIOS DATA VARINDEX
ENVIRONMENT ENVIRONMENT
STRING TABLE STRING TABLE VARNAME | DICTIONARY
00S DA | e 1 10 BYTES DOS DATA VARTYPE
MCB MCB VARVALUE
CS OFFSET 0 DS S
PSP PSP WINAP!
. | cS=DS+10h
IP:100 OFFSET 0
EXECUTABLE EXECUTABLE
PROGRAM PROGRAM PROGRAM
IMAGE IMAGE STORAGE
COM EXE
(INDEXED)
| STRING
DISPLAY DISPLAY OUTPUT
ADAPTER ADAPTER AREA
12868 1268 128KkB
INT. SERVICES INT. SERVICES

WO 02/35328

PCT/US01/26804

5/8

BIT | LABEL DESCRIPTION

0 OLDENTRY PROGRAM CODE CONTAINS THE PREVIOUS RECORDED ENTRY POINT
CODE AND OFFSET

1 VERSION VERSION INFORMATION IN THE FILE IS UNCHANGED

2 ENCRYPTION CODE CONTAINS A DECRYPTION (SELF MODIFYING) PROCEDURE

3 SELFMOD CODE MODIFIES TS OWN FUNCTIONALITY

4 INTERRUPTMOD CODE MODIFIES THE INTERRUPT VECTOR TABLE CONTENTS

9 |JuMp RELATIVE JUMP NEAR ENTRY POINT OF THE CODE

6 | TUNNEL CONTAINS INTERRUPT TUNNELING THROUGH INT1 OR INT3 TRAP FLAG

7 |ATTACH CONTAINS A PROCEDURE ‘THAT COPIES THIS CODE TO THE END OF
OTHER EXECUTABLES

8 EXESIZE GETS THE SIZE OF AN EXECUTABLE

9 EXEACCESS OPENS AN EXECUTABLE FILE

10 | EXEWRITE CONTAINS CODE THAT WRITES TO AN EXECUTABLE

11 |EXEREAD CONTAINS CODE THAT READS CODE FROM AN EXECUTABLE

12 | EXESEARCH CONTAINS A SEARCH PROCEDURE THAT LOOKS FOR EXECUTABLES IN
THIS DIRECTORY

13 | EXESEARCHRPT THE SEARCH PROCEDURE IS REPEATED

14 | EXEKILL THE CODE KILLS EXECUTABLES OR SOURCE FILES

15 | DIRKILL THE CODE KILLS ENTIRE DIRECTORIES

16 |RELOC CODE _RELOCATES ITSELF IN MEMORY

17 |MEMALLOC CODE ALLOCATES MEMORY BLOCKS TO ITSELF

18 | MEMSTEALTH CODE LABELS MEMORY CONTROL BLOCKS (MCB'S) AS OWNED BY

- OPERATING SYSTEM

19 | FLEXENTRY CODE IS RELOCATABLE

20 | DIRECTACCESS CODE_ATTEMPTS TO DIRECTLY ACCESS THE HARD DISK DRIVE (HDD)

21 |TSR CODE TERMINATES BUT STAYS RESIDENT

22 | CHAINED CODE LOADS ANOTHER EXECUTABLE AND PASSES CONTROL TO IT.

23 |RINGO CODE CONTAINS A CALL GATE TO RINGO

24 | DATAOVERLAP CODE AND DATA SEGMENTS OVERLAP, CREATING A WRITABLE CODE
SEGMENT

25 | REENTRY RECURSIVE RE-ENTRANT CODE

26 | OVERWRITE OVERWRITES FILES ON HDD

27 | EXEHDR FILE FORMAT IS INCONSISTENT

28 | EMUFALL CODE FAILED TO RUN IN VIRTUAL ENVIRONMENT

29 | STANDARDSYS TAKES OVER A STANDARD OPERATING SYSTEM, OR ATTACHES TO
STANDARD 0S FUNCTION

30 |INTROUTINEADD CODE CONTAINS AN INTERRUPT SERVICE ROUTINE TO WHICH A NEW
IVT ENTRY IS MAPPED

31 | HWBIOS FLASHES THE BIOS ROM WITH NON-BIOS CODE (FORMAT OF CODE)

32 [ENTRYOUT ENTRY TO CODE IS NOT WITHIN CODE SEGMENT BUT IN DATA

SEGMENT

FIG.5A

WO 02/35328

PCT/US01/26804

6/8

BIT | LABEL DESCRIPTION

33 | MOVEEND ENTRY POINT IS NEAR THE END OF THE CODE SEGMENT

34 | VSAFEOFF A CALL IS MODE TO THE OS TO SWITCH OFF vSAFE (A DOS BASED
BEHAVIOR BLOCKER)

35 | WRITEDIRECT THE CODE ATTEMPTS TO WRITE DIRECT TO THE HDD HARDWARE

36 | MBRINFECT {)H%FC(T)EE QBTDEMPTS TO WRITE DIRECT TO SECTOR 1, TRACK 0, HEAD

37 | SECTORSMASH SMASHES SECTORS ON THE HDD BY WRITING GARBAGE

38 | SIEALTH CODE CONTAINS INSTRUCTIONS TO HIDE ITS CODE FROM OTHER

\ PROGRAMS (0S HOOKING)

39 | TIMETRIGGER CODE CONTAINS A FUNCTION THAT CHECKS SYSTEM TIME AND
BRANCHES ACCORDINGLY

40 [FORMATS CALLS FORMAT FUNCTION OR API

41 | SNEAKYINT gﬁLtS AN INTERRUPT AS A FAR CALL RATHER THAN USING INT nn

42 | READCHKSUM READS CHECKSUM VALUE FROM EXECUTABLE FILE HEADER

43 | WRITECHKSUM WRITES NEW CHECKSUM VALUE TO EXECUTABLE FILE HEADER

44 | ENTRYMOD CHANGES THE ENTRY POINT VALUE IN THE HEADER

45 | ENTRYCODEMOD WRITES TO THE ENTRY POINT LOCATION OF AN EXECUTABLE FILE

46 | HWINTCTL WRITES DIRECT TO THE INTERRUPT CONTROLLER

47 AP MODIFIES A SYSTEM API

48 | SECTORSIZE SETS SECTOR SIZE OF NE/PE/LE FILES TO MAXIMUM AND COPIES

OWN CODE THERE

FIG.5B

WO 02/35328

Filetype, Codelength,

Entry point offset,

Codeaen), SS,SP,CS,IP
|

Allocate 0x64000
bytes memory as
virtual memory

_1

7/8

PCT/US01/26804

Call Loader Function:

Initiolize virtual memory
loads Code(len)

1

F e 0
AT

L,

AP ordinal lookup

>

VI S AT)

R R P T

Operating System AP
‘ Fr

Initialize segment e S
registers according i Perform Simuloted [,
to filetype Operation
| ;:"f 7R
Initialize Processor Retum simulated

register stack and
temporary registers

iy values to calling
] functlon

e T TS g G My R O
Wkl N S B S TN

Next lnstructson

CPU time
exceeded?

IP points at next
instruction
in virtual memory

]

Pre—fetch 12 bytes
from virtual memory
at CS:IP

—

Decode instruction:
Direction=Byte(1).bit(2)
Width= Byte()-bit(1)

Decode Instructlon.

Byte(1).bit(7)..bit(2)

=Function Pointer

r

]

Case Processor

Each Processor Instructuon

v Call FetchData Proc |

o -:eh'
%) Perform Operation |2

4 on dota, defined by

] .Functnon Pointer
L Call Setflags J

| Call SetSign Proc |5

instruction nn
: 1

Case Interrupt nn

I

Case API call

Program
Terminate?

Call modified
interrupts in

simulated procedures

DeAllocate Memory
Terminate VM return
Behavior+Seqnc

_Interrupt_Groups

:(_ K .;:
e N
1 5o 5t ¢
] BIOS N
L e
) "
3 N—— P TTC TR T prworilis
2 o
t oy o
& Tie
e ovt
k" . “ 5
i ':'. .
* A% »Y
¢ 02 3
rer, o .,‘..-.
“ — .
"o rracH = . s
e A
e L 2
> k2
_x er.]
a0 P l 33
'y 7.
e o ™3
i w3
e 2. hEM
prew K
s, L MK X .ol
o - s
"H: 3 o)
P P
St . e
; INGOWS o
ey
et
She

WO 02/35328

Filetype, Codelength,
Entry point offsets
Code(len)

Allocate 0x64000 bytes
memory as
virtual memory

8/8

Call Loader Function:
Initialize virtual memory

Split code buffer into
individual code lines

Operating System API

API ordinal lookup

P SO ST)

Perform Simulated

PCT/US01/26804

Language Definition
Key-word list

with index numbers % Operation = 232
| ':'":.:‘ KT S PRSI 7 M _‘-’:
Pass 1: extract i Retun simuloted }=f | AddFolders
additional entries into VO'U(}S to caling k=4 | And
entry table ”‘“c\t'f’"‘ b |Amay
' DRSNS ko] i Ta el iYL ASC
Pass 2: extract variables AtEndOfLine
and store in virtual ﬁﬁEﬂdOfStreOm
memory structure
¢ Next Code |Line Language Rules
Get line from
virtual memory]
T For each keyword
W ot i Lt
Decode line key Fetch variable
words | from variable store
| 2| in virtual memory
S O NN I ST TN
Case structure for reform Onerat; i
each interpreted : reform Operation
ful,"cﬁf,f,re ° p defined by keyword 3
:'_‘.:‘,.,?.Z.:::i_-.‘\“‘.’--’.‘-..;:‘-: ol ['.. S -;~_‘_-:_‘,i._::,:,5;-.
| . Write results to :

Case AP| call

Procedure End

Next Entry Point
in Entry Point
table

End of
Entry Table

n T

T3
YR AT

variable store in
virtual memory

LRI D 'swk“‘-".;-j

Return Behavior + Seqnc

DeAllocate Memory
Terminate W

INTERNATIONAL SEARCH REPORT Int plication No
PCT/US 01/26804

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 GO6F1/00

According to International Patent Glassification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 5 854 916 A (NACHENBERG CAREY S) 1-10
29 December 1998 (1998-12-29)
abstract

column 6, line 1 - line 58

A US 5 842 002 A (KLEMMER TIMOTHY J ET AL) 1-10
24 November 1998 (1998-11-24)

abstract

23 May 2000 (2000-05-23)
abstract

A US 6 067 410 A (NACHENBERG CAREY) 1-10

iy

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

"A" document defining the general state of the art which is not
considered to be of particular relevance

‘E" earlier document but published on or after the international
filing date

"L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another
citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or
other means

"P" document published prior to the international filing date but
later than the priority date claimed

T later document published after the international filing date
or priority date and not in conflict with the application but
cited to understand the principle or theoty underlying the
invention

X document of particular relevance; the claimed {nvention
cannot be considered novel or cannot be considered to
involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-—
ments, ?tuch combination being obvious to a person skilled
in the art.

*&" document member of the same patent family

Date of the actual compietion of the international search Date of mailing of the international search report
6 March 2002 21/03/2002
Name and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL ~ 2280 HV Rijswijk .
Tel. (+:31-70) 340-2040, Tx. 31 651 epo ni,
Fax: (+31-70) 340-3016 Renault, S

Form PCT/ISA/210 {second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Int¢ plication No

PCT/US 01/26804

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category °

Gitation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A

ANDREW P. KOSORESOW, STEVEN A.
HOFMEYR: "Intrusion Detection via System
Call Traces "

TIEEE SOFTWARE,

vol. 14, no. 5, October 1997 (1997-10),
pages 35-42, XP002192265

the whole document

1-10

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

Information on patent family members

plication No

Int1_
{.;;T/US 01/26804

Patent document
cited in search report

Publication
date

Patent family
member(s)

Publication
date

US 5854916 A 29-12-1998 US 5765030 A 09-06-1998
us 6067410 A 23-05-2000
us 5696822 A 09-12-1997
EP 0941512 Al 15-09-1999
Wo 9824023 Al 04-06-1998
us 5999723 A 07-12-1999
Wo 9803916 Al 29-01-1998
AU 1848597 A 28-08-1997
CA 2244892 Al 14-08-1997
DE 69702335 D1 27-07-2000
DE 69702335 T2 30-11-2000
EP 0880743 A2 02-12-1998
Wo 9729425 A2 14-08-1997
AU 7247796 A 17-04-1997
DE 69609980 D1 28-09-2000
DE 69609980 T2 08-02-2001
EP 0852763 Al 15-07-1998
Wo 9712322 Al 03-04-1997
us 5826013 A 20-10-1998

US 5842002 A 24-11-1998 AT 183592 T 15-09-1999
CA 2191205 Al 07-12-1995
DE 69511556 D1 23-09-1999
EP 0769170 Al 23-04-1997
JP 10501354 T 03-02-1998
WO 9533237 Al 07-12-1995

US 6067410 A 23-05-2000 AU 1848597 A 28-08-1997
CA 2244892 Al 14-08-1997
DE 69702335 D1 27-07-2000
DE 69702335 T2 30-11-2000
EP 0880743 A2 02-12-1998
Wo 9729425 A2 14-08-1997
us 5999723 A 07-12-1999
us 5854916 A 29-12-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

