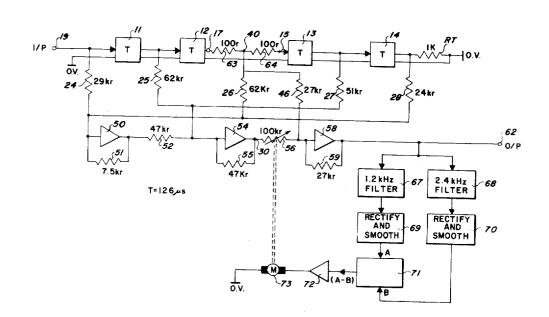
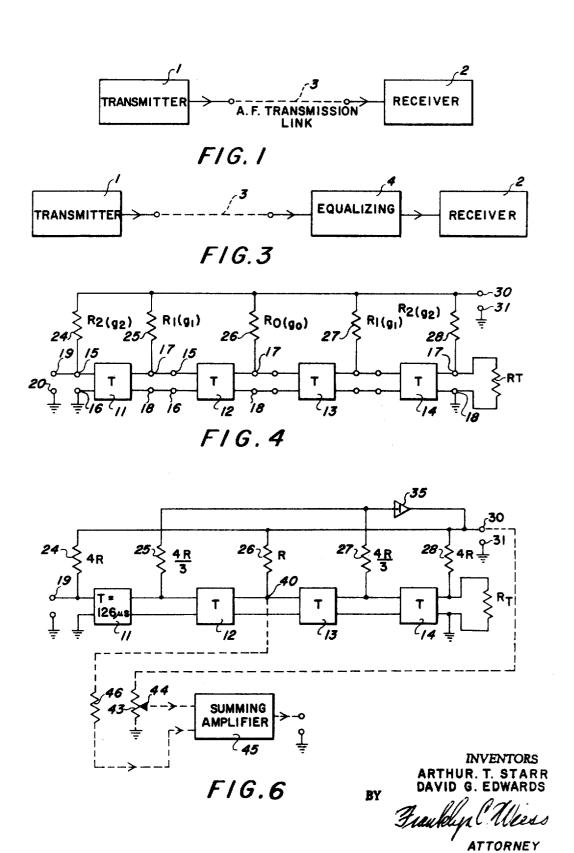
3,670,269 [15] [45] June 13, 1972

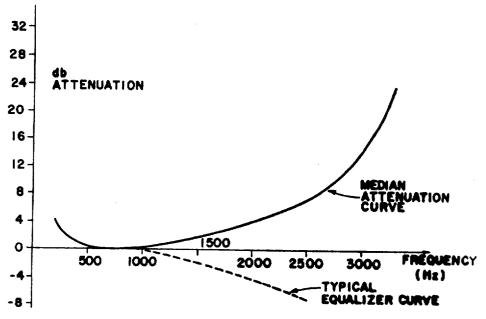
Starr et al.

[54]	AUTOMATIC TRANSVERSAL EQUALIZER				
[72]	Inventors:	Arthur T. Starr, New Barnet; David G. Edwards, Tonbridge Wells, both of England			
[73]	Assignee:	Xerox Corporation, Stamford, Conn.			
[22]	Filed:	Nov. 6, 1970			
[21]	Appl. No.:	87,546			
[30] Foreign Application Priority Data April 21, 1970 Great Britain19,039/70					
[51]	Int. Cl				
[56]		References Cited			
UNITED STATES PATENTS					
3,011	,135 11/19	61 Stump et al333/18 X			

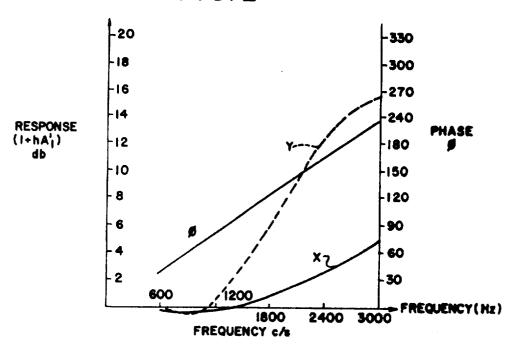

3,017,508	1/1962	Kious	333/18 X
3,292,116	12/1966	Walker et al	333/18
3,292,110	12/1966	Becker et al	333/18

Primary Examiner—Paul L. Gensler Attorney-James J. Ralabate, John E. Beck and Franklyn C. Weiss

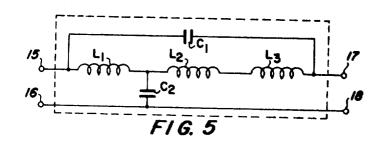

[57] **ABSTRACT**


An equalizing circuit, intended to be inserted between the transmission link and the receiver of an electrical information transmission system, the equalizer being arranged to have, within a preselected bandwidth of audio frequencies, an amplitude frequency response in the form of a family of similar curves, the equalizer including comparison means which is responsive to the difference between the outputs of the equalizer at two different frequencies of which at least one is within the said bandwidth to thereby automatically select a predetermined one of the said curves.

10 Claims, 13 Drawing Figures

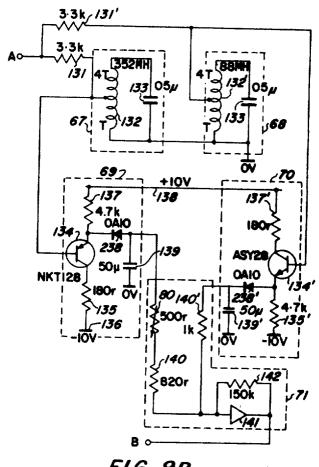
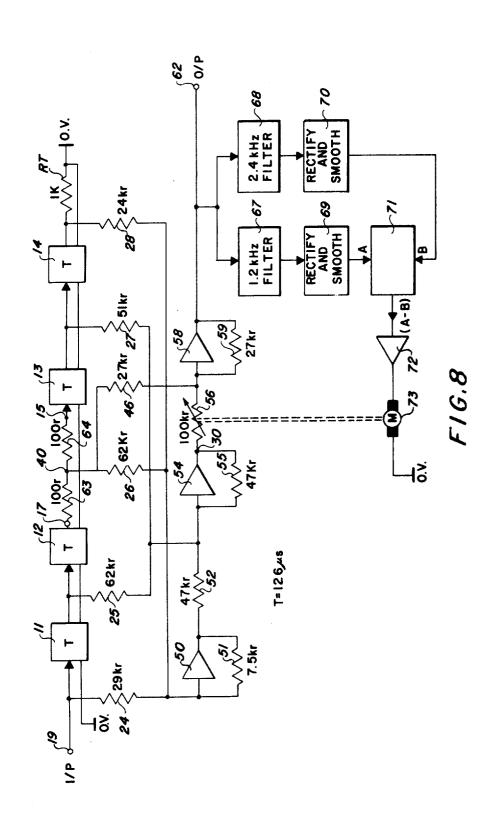
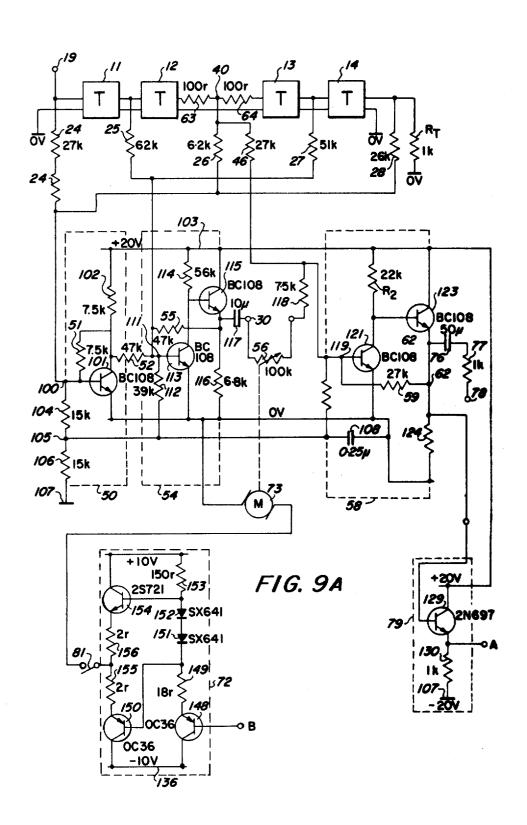
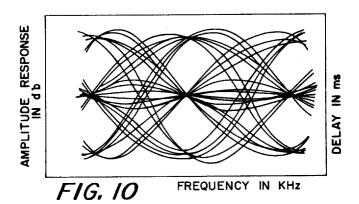


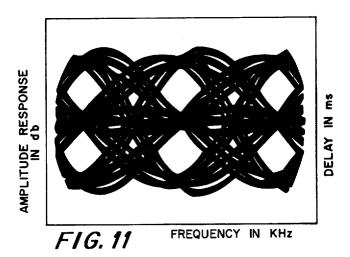
SHEET 1 OF 6

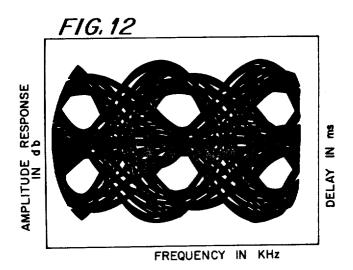


F1G. 2

F1G.7


FIG. 9B



SHEET 5 OF 6

AUTOMATIC TRANSVERSAL EQUALIZER

This invention is concerned with improvements in or relating to electrical information transmission systems of the type (hereinafter referred to for convenience as "the type specified") wherein the system includes a transmitter of audio-frequency signals and a receiver of those signals, the system being of the kind wherein the signals are conveyed from the transmitter to the receiver by establishing an interconnection therebetween by means of a given one, or one at a time, of typically available audio-frequency transmission links.

One example of such a case is where the transmitter and the receiver of the data-transmission system of our co-pending U.S. Pat. application, Ser. No. 87,545 filed on Nov. 6, 1970 are intermittently interconnected, for the transmission of the 15 data, by way of a commercial telephone or telegraph transmission link which is established, as and when required, between the locations of the transmitter and of the receiver.

According to one aspect of the invention there is provided an equalizing circuit, intended to be inserted between the 20 transmission link and the receiver of an electrical information transmission system of the type specified, the equalizer being arranged to have, within a preselected bandwidth of the said audio-frequencies, an amplitude-frequency response in the form of a family of similar curves, the equalizer including comparison means which is responsive to the difference between the outputs of the equalizer at two different frequencies of which at least one is within the said bandwidth to thereby automatically select a predetermined one of the said curves.

Conveniently, the circuit includes a transversal network of the kind comprising at least two time-delay network circuits each having an input and an output and connected together in series so as to form a chain having an input, which constitutes the network input, and an output and a number of inter- 35 mediate junctions each formed where the output of one said circuit is connected to the input of the next succeeding circuit in the chain, the network also including a separate corresponding pick-off resistance associated with and connected to each of the said chain input, the said chain output and the 40 said intermediate junctions so as to provide, in response to an input signal appearing at the network input, a number of pickoff signals equal in number to the number of the resistances. and the network also including first combining means for combining the pick-off signals in predetermined relationship to 45 produce a first network output signal, the network also including at least one further pick-off resistance associated with and connected to one of the said intermediate junctions so as to provide, in response to the said input signal appearing at the network input, a further pick-off signal constituting a second 50 network output signal, the network also including second combining means for combining the first and the second network output signals in variable relationship to thereby provide the said family of curves.

Conveniently, there is an even number of the time-delay circuits arranged in pairs, the circuits of each pair having equal time-delays and being symmetrically located at opposite sides of that one said intermediate junction which is at the center of the chain, the first-mentioned pick-off resistances being so selected that the corresponding pick-off signals comprise a single pick-off signal from the said central one intermediate junction and a number of pairs of pick-off signals for each of which pairs the two signals are similar except in that one is time-delayed relatively to the other.

Conveniently, there is one said further pick-off resistance, 65 which resistance is associated with and connected to the said one intermediate junction which is at the center of the chain.

There may be four of the time-delay circuits.

Conveniently, the time-delay circuits have each the same time-delay.

The first combining means may comprise, at least in part, the connection of at least two of the first-mentioned pick-off signals to a common point, and/or may comprise, at least in part, an inverting amplifier for reversing the polarity of at least one of the first-mentioned pick-off signals.

Conveniently, the second combining means includes a variable resistance which is variable to provide the said variable relationship.

Conveniently, the comparison means includes an electric motor which is arranged to control the variable resistance in response to the said difference between the outputs of the equalizer.

According to a second aspect of the invention there is provided an electrical information transmission system of the type specified, the system having an equalizer according to the invention inserted between the transmission link and the receiver, and the system being arranged for the transmission, from the transmitter to the receiver, of two signals respectively of two different audio-frequencies, the comparison means of the equalizer being arranged to respond to the difference between the outputs of the equalizer at those two frequencies.

An example of the invention will now be described with reference to the accompanying drawings in which:

FIGS. 1 and 3 are block diagrams illustrating systems of the type to which the invention is applicable;

FIG. 2 is a curve of attenuation plotted against frequency;

FIG. 4 is a part-schematic circuit diagram of one form of transversal network;

FIG. 5 is a circuit diagram of a time-delay network for use in the network of FIG. 4;

FIG. 6 is a part-schematic circuit diagram showing, in full lines, one form of the transversal network of FIG. 4 and, in broken lines, a form of modification of the network;

FIG. 7 is a graph illustrating the frequency response of the modified network of FIG. 6;

FIG. 8 is a part-schematic circuit diagram of an automatic equalizer circuit according to the invention;

FIG. 9A and 9B in combination show a circuit diagram showing more details of the apparatus of FIG. 8, and

FIGS. 10, 11 and 12 show eye patterns.

Referring to FIG. 1, consider an electrical information transmission system which includes a transmitter 1 of audiofrequency signals and a receiver 2 of those signals, the receiver being located remotely from the transmitter, and the system being of the kind wherein the signals are conveyed from the transmitter to the receiver by establishing an interconnection therebetween by means of one at a time of typically available audio-frequency transmission links such as that indicated by the broken line 3.

According to workers who examined and compared the audio-frequency responses of many such links, the median attenuation of those links had the form of the full-line curve of FIG. 2, and the attenuation of many of those links rose approximately linearly (in decibels) within the frequency bandwidth of about 1,200 Hz to 2,800 Hz.

The present invention proposes that this approximately linear rise in attenuation should be automatically approximately neutralized, for systems of the type of FIG. 1, by inserting, between the transmission link 3 and the receiver 2, a suitable automatic equalizing circuit 4 (FIG. 3) which is designed to automatically balance the said linear rise in attenuation by providing an appropriately rising amplitude response.

The equalizing circuit makes use of a transversal network of a particular kind (of which an example is shown in FIG. 4). In the case of FIG. 4, the transversal network comprises four identical delay networks 11, 12, 13 and 14 each having input terminals 15, 16 and output terminals 17, 18, the networks 11-14 being connected together in series, output to input, to form a chain.

Each of the networks 11-14 of FIG. 4 has the same time-delay T, so that if a wave represented by $e^{j\omega t}$ is supplied to the input of one of those networks, there emerges at the output of the network a corresponding wave represented by $e^{j\omega t-D}$, i.e. each of the networks has a response factor $e^{-j\omega T}$.

FIG. 5 shows one suitable form of delay network. The terminal 15 is connected to the terminal 17 by way of three series-connected inductances L₁, L₂ and L₃, the inductances L₁
75 and L₂ being intercoupled and the three inductances being

bridged by a capacitance C1. The terminals 16 and 18 are directly interconnected by a line which is connected, by way of a capacitance C2, to the common point of the inductances L, and L,

In FIG. 4, the input terminal 16 of the network 11, and the 5 output terminal 18 of the network 14, are connected to earth. The chain of networks may thus be regarded as having an input (afforded by the terminal 15 of the network 11, which terminal is connected to the input terminal 19 of the complete of the network 14), and three intermediate junctions each formed where the output of one of the networks 11-13 is connected to the input of the next succeeding network in the chain, the three intermediate junctions being in this case afforded by the terminals 17 of the respective networks 11-13.

The transversal network also includes a separate corresponding pick-off resistance associated with and connected to each of the said chain input, the said chain output and the said intermediate junctions so as to provide, in response to an input signal appearing at the network input (terminal 19), a number of pick-off signals equal in number to the number of the resistances. In the case of FIG. 4, these resistances are constituted respectively by the resistances 24, 28, and 25, 26, 27, the remote ends of the resistances being shown as com- 25 moned by connection to the output terminal 30 of the transversal network. In the simple case of FIG. 4, the resistance 26 is of magnitude R₀, the resistances 25 and 27 are of identical magnitude R₁, and the resistances 24 and 28 are of identical magnitude R_2 , the resistances R_0 , R_1 and R_2 corresponding 30 respectively to conductances go, g1 and g2.

A suitable terminal impedance, in the form of a resistance R_r, is connected in known manner between the terminals 17 and 18 of the network 14.

Thus, in FIG. 4, the output current wave (at the terminal 30, 35 when 30 is connected to a very low impedance,) for unit input wave (at the terminal 19) is the sum of the five pick-off signals obtained respectively via the five resistances 24-28, and is given by

$$g_2 + g_1 e^{-j\omega T} + g_0 e^{-j\omega 2T} + g_1 e^{-j\omega 3T} + g_2 e^{-j\omega 4T}$$

$$= e^{-j\omega 2T} (g_0 + 2g_1 \cos \omega T + 2g_2 \cos 2\omega T)$$

it being noted that this result is obtained by combining four of the five pick-off signals in pairs (e.g., $g_1e^{-j\omega t}$ and $g_1e^{-j\omega 3T}$) of 45 which the two signals are of equal amplitude (g1) but differ in that one is delayed relatively to the other.

In calculating the response of the transversal network, the factor e^{-j} 27 may be ignored, since it represents only a distortionless delay of 2T. Then the transversal network of FIG. 4 $\,^{50}$ has the response

$$A_1(\omega) = g_0 + 2g_1 \cos \omega T + 2g_2 \cos 2\omega T.$$

Denoting (ωT) by θ , and noting that $A_1(\omega)$ is symmetrical about $\theta = \pi$, we choose g_0 , g_1 and g_2 such that A_1 (ω) has the values 0, 0, ½ and 1 respectively for θ equal to 0, $\pi/3$, $2\pi/3$ and π . This gives $g_0 = \frac{1}{2}$, $g_1 = -\frac{1}{4}$, and $g_2 = \frac{1}{12}$, whence $A_1(\omega) = \frac{1}{2} \left[1 - \frac{3}{2} \cos \omega BT + \frac{1}{2} \cos 2\omega T \right]$,

which approximates closely to a full, raised cosine curve and has the following values:

$$\omega T = 0^{\circ}$$
 30° 60° 90° 120° 150° 180° $A_1(\omega) = 0$ -0.02 0 0.166 0.50 0.85 1.00

The ratio of the resistances $R_0: R_1: R_2$ is given by the ratio

$$(1/g_0)$$
 : $(1/g_1)$: $(1/g_3)$
= 3 : (-4) : 12
= 1 : $(-(4/3))$: 4

the negative signal indicating that those pick-off signals which 70 are obtained via the resistances 25 and 27 (of resistance R₁) need to be inverted relatively to the remaining pick-off signals.

We find that, if we choose (T) such that $\theta = 60^{\circ}$ at a frequency $(\omega/2\pi)$ equal to 1,323 Hz, then T=126microseconds.

The transversal network then has the basic form indicated in solid lines in FIG. 6, wherein R represents the magnitude of a basic resistance and 35 represents an amplifier of current gain equal to (-1) of very low input impedance, and of high output inpedance.

If the response of the transversal network of FIG. 6 is denoted by $A_1'(\omega)$, i.e. a particular example of $A_1(\omega)$, then we find that if that transversal network is so placed upon a unit pedestal that the overall response of the resulting arrangement transversal network), an output (afforded by the terminal 17 10 is $[1 + hA_1'(\omega)]$, where (h) is a fraction of which the magnitude is adjustable as required, then that overall response is of the kind desired for the equalizing circuit 4 of FIG. 3.

Thus, in FIG. 7, the curves X and Y show respectively the said overall response of such an arrangement, for the particu-15 Iar two cases of $(1 + hA_1') = 4$ db at a frequency of 2,850 Hz and $(1 + hA_1') = 16$ db at the same frequency. The curves X and Y are representative of a family of curves, corresponding to different values of the fraction (h), these curves providing good approximate compensations for the said approximately linear rise in attenuation of many audio-frequency transmission links.

It will be noted, from FIG. 7, wherein the straight-line curve ϕ represents the phase associated with the response (1 + hA)), that the introduction of the arrangement into the system, in the manner of FIG. 3, does not introduce a variation of timedelay over the audiofrequency band.

The expression "placed upon a unit pedestal" employed above, is intended to indicate that the basic circuit of FIG. 6. as shown in the full lines and having the response A_1 , is so modified that the resultant response is equal to the sum of unity and the fraction (h) of the response A_1

A general manner of attaining such a result is indicated by the broken-line portion of FIG. 6, wherein the output at the output terminal 30 of the basic transversal network is supplied to a potentiometer 43 of which the tapping 44 is arranged to derive the required variable fraction (h) of that output and to supply that fraction to one input of a summing amplifier 45 of which the other input is supplied, from the basic transversal network, with a signal representing the unity just referred to. In FIG. 6, this latter signal is shown as obtained, via a resistance 46, from that one said intermediate junction 40 which is at the center of the chain: the reason for taking this further pick-off signal from the terminal 40 is to allow for the said distortionless delay of 2T associated with that factor $e^{-j\omega 2T}$ which was ignored above, in deriving the expression for A_1 (w).

It is to be understood that the circuit of FIG. 6 is of simple form, in regard to the manner in which the said five pick-off signals and the said further pick-off signal are derived from the chain and subsequently combined as required.

FIG. 8 is a part-schematic circuit diagram of an automatic equalizing circuit according to the invention and making use of the general principles discussed above. The circuit gives a range of adjustment of response from (at 2,850 Hz) 3.5 db to 17.5 db, relative to the response up to about 1,200 Hz.

The circuit includes a modified transversal network of the general form of that described with reference to FIG. 6. Thus, the pick-off resistances 24, 26 and 28 provide three of the five pick-off signals in the form of currents which are effectively summed and inverted by a first amplifying stage of the virtualearth-input type and having unit gain, the stage comprising a high-gain inverting amplifier 50 having a feed-back resistance 51 connected between its output and input and arranged to deliver its current output via resistance 52 to the input of a 65 second amplifying stage.

The pick-off resistances 25 and 27 similarly provide the remaining two pick-off signals in the form of currents which are also delivered to the input of the second amplifying stage. The second amplifying stage effectively sums and inverts the current signals thus delivered to its input, the stage comprising a high-gain amplifier 54 having a feedback resistance 55 connected between its output and input and arranged to deliver its current output via a variable resistance 56 (corresponding to the potentiometer 43, FIG. 6) to the input of a third amplify-75 ing stage.

The said further pick-off signal is obtained, in the form of a current and via the further pick-off resistance 46, from that said intermediate junction 40 which is at the center of the chain, the current signal being also delivered to the input of the third amplifying stage.

The third amplifying stage effectively sums the currents thus delivered to its input, the stage comprising a high-gain amplifier 58 having a feedback resistance 59 connected between its output and input and arranged to deliver its output to the output terminal 62 of the equalizing circuit of which the input ter- 10 minal is constituted by the terminal 19.

It will be noted that the magnitudes of the resistances 24-28 depart somewhat from the ratios indicated in the simple circuit of FIG. 6. The reason for this is that, whereas the above theory assumes that, for each of the delay networks 11-14, the associated pick-off resistances can be so chosen as not to significantly affect the values of the load and source impedances presented to those networks, in practice however, convenient values of those resistances do not always meet this condition. Thus, the theoretically derived simple arrangement may in practice, in certain cases, have to be modified somewhat, in generally known manner and by simple experiment, in order to obtain the required result. In the case of FIG. 8, the pick-off resistances 26 and 46 would significantly affect the delay-net- 25 work impedance (of 1 Kilohm) in this case), were the effect not overcome by insertion of the resistances 63 and 64. The attenuation changes associated with the introduction of the resistances 63, and 64 necessitated modification of the magnitudes of the pick-off resistances 26,46, 27 and 28.

When an equalizing circuit of the form of FIG. 8 is inserted into an electrical information transmission system in the manner of FIG. 3, the transmitter 1 of that system is arranged to transmit, over the transmission link 3, two control signals respectively of two different frequencies of which at least one 35 is within the frequency bandwidth over which the response (1 $+ hA_1'$) is arranged to be variable by adjustment of the fraction (h). These control signals need not be continuously transmitted during the whole of the time for which the transmitter 1 is connected to the receiver 2 by way of one particular trans- 40mission link 3 but may conveniently be transmitted only for a limited time immediately following the establishment of that connection by way of one particular transmission link 3. Thus, for example, in the case where the system is the data-transmission system of our co-pending U.S. Pat. application Ser. No. 87.545 filed on Nov. 6, 1970 the two control signals would conveniently be provided by, firstly, the continuously transmitted quadrature carrier of frequency 2,400 Hz, and, secondly, by causing the transmitter to commence transmission to the receiver with a sufficiently long series of binary ones, for such a series has a fundamental of 1,200 Hz with no second harmonic.

The two control signals do not have to be of equal amplitude at transmission from the transmitter, but their relative 55 transistor 121 of which the emitter is connected to earth and amplitude must be predetermined and (see below) the comparison circuit of the equalizer set accordingly.

Returning to FIG. 8, assuming that those control signals are respectively of frequency 1,200 Hz and 2,400 Hz, the signals of these frequencies which appear at the terminal 62 are 60 minal 62 which is connected, firstly, via the resistance 59 to respectively selected by means of filters 67 and 68 of which the outputs are respectively both rectified and smoothed by circuits 69 and 70. The resulting two signals are supplied to the two inputs of a difference circuit 71 of which the output is amplified by the amplifier 72 of which the output is arranged 65 to drive an electric motor 73 arranged in known manner to control the magnitude of the resistance 56 by varying the position of the slider of that resistance. It will be understood that variation of the magnitude of the resistance 56 effectively varies the magnitude of the fraction (h) referred to above.

It is to be understood that, instead of the motor 73 controlling the magnitude of the resistance 56, any other suitable means may be employed to combine the said further pick-off signal with the said five pick-off signals in suitable variable relationship.

FIGS. 9A and 9B in combination show is a circuit diagram showing more details of the circuit of FIG. 8, corresponding elements having been marked with the same reference numerals. FIG. 9B can be combined with FIG. 9A by connecting the terminals designated A and B in the former to those similarly designated in the latter. It will be noted that the output terminal 62 is capacitance-coupled via a capacitor 76 and a 1-kilohm resistor 77 to a terminal 78 for connection to the receiver 2 (FIG. 3). In a modification, a direct output of low impedance, with a standing direct voltage of about 8 volts, may be employed instead. The terminal 62 is also connected, via a transistor amplifier stage 79, to the filters 67 and 68. The current outputs of the rectifying and smoothing circuits 69 and 70 are differenced in the amplifying stage 71, the variable resistance permitting the ratio of the two currents to be adjusted to suit the predetermined relative amplitudes of the two control signals at transmission from the transmitter. The onoff switch 81 can be used to disconnect the output of the amplifier 72 from the motor 73, thereby interrupting the automatic operation of the circuit. The input impedance of the arrangement, at the terminal 19, is 1 kilohm, and attention must be paid to impedance matching at this point. The maximum output of the arrangement is 5 volts peak-to-peak, when the input at 600 Hz is 5 volts peak-to-peak.

Referring to FIG. 9A in detail, the transversal network at the top left-hand corner is identical with that of FIG. 8. The input to the amplifier 50 (FIGS. 8, 9) appears at the terminal 100 which is connected to the base of a transistor 101 of which the emitter is connected to earth and the collector is connected, firstly, via the resistance 51 to the base, and, secondly, via a resistance 102 to a positive supply line 103. The terminal 100 is also connected via a resistance 104 to a common point 105 which is connected, firstly, via a resistance 106 to a negative supply line 107, and, secondly, via a capacitance 108 to earth.

The collector of transistor 101 is also connected via the resistance 52 to a common point 111 which constitutes the input of the amplifier 54 (FIGS. 8, 9). The common point 111 is connected, firstly, via a resistance 112 to the common point 105, and, secondly, to the base of a transistor 113 of which the emitter is connected to earth and the collector is connected, firstly, via a resistance 114 to the line 103, and, secondly, to the base of a transistor 115. The collector of this transistor is connected to the supply line 103, and the emitter is connected, firstly, via the resistance 55 to the common point 111, and, secondly, via a resistance 116 to earth, and, thirdly, via a capacitance 117 to the terminal 30.

The terminal 30 is connected, via the variable resistance 56 and a supplementary resistance 118, to the common point 119 which constitutes the input of the amplifier 58 (FIGS. 8,9). THe common point 119 is connected, firstly, via a resistance 120 to the common point 105, and, secondly, to the base of a the collector is connected, firstly, via a resistance 122 to the supply line 103, and, secondly, to the base of a transistor 123 of which the collector is also connected to the line 103.

The emitter of the transistor 123 is connected, to the terthe common point 119, and, secondly, via a resistance 124 to earth, and, thirdly, via the capacitance 76 and the series resistance 77 to the terminal 78, and, fourthly, to the base of a transistor 129 of the amplifying stage 79.

The collector of the transistor 129 is connected to the supply line 103, and the emitter is connected via a resistance 130 to the negative supply line 107.

The emitter is also connected, via a resistance 131, (FIG. 9B) to the tapping (at T turns from one end) of an inductance 70 132 (having 5T turns) bridged by a capacitance 133, the said one end of the inductance being earthed.

The emitter is also connected, via a resistance 131', to the tapping (at T turns from one end) of an inductance 132' (having 5T turns) bridged by a capacitance 133', the said one end 75 of the inductance 132' being also earthed.

The tapping of the inductance 132 is connected to the base of a transistor 134 of which the collector is connected, via a resistance 135, to a negative supply line 136 and of which the emitter is connected, firstly, via a resistance 137 to a positive supply line 138, and, secondly, to the cathode of a diode recti- 5 fier 238 of which the anode is connected, firstly, via a capacitance 139 to earth, and, secondly, via the variable resistance 80 and a fixed series resistance 140, to the input of a high-gain inverting amplifier 141 having a feedback resistance 142 connected between its output and its input.

The tapping of the inductance 132' is connected to the base of a transistor 134' of which the collector is connected, via a resistance 137', to the supply line 138 and of which the emitter is connected, firstly, via a resistance 135' to the negative supply line 136, and, secondly, to the anode of a diode 15 rectifier 238' of which the cathode is connected, firstly, via a capacitance 139' to earth, and, secondly, via a resistance 140' to the input of the amplifier 141 (FIG. 9B).

The output of the amplifier 141 (FIG. 9A) is connected to the base of a transistor 148 of which the collector is connected 20 to the negative supply line 136 and the emitter is connected, via a resistance 149, to the base of a transistor 150 of which the collector is connected to the line 136.

The base of the transistor 150 is connected to the cathode of a diode rectifier 151 of which the anode is connected to the 25 rically located at opposite sides of that one said intermediate cathode of a further diode rectifier 152 of which the anode is connected, firstly, via a resistance 153 to the positive supply line 138, and, secondly, to the base of a transistor 154 of which the collector is connected to the line 138.

The emitter of transistor 150 is connected, via a resistance 30 155, to one contact of the on-off switch 81, which contact is also connected, via a resistance 156, to the emitter of transistor 154. The other contact of the switch 81 is connected, via the motor 73, to earth.

The broken line of FIG. 2 illustrates how the equalizer is 35 employed to balance the said approximately linear rise in attenuation of a transmission link 3 (FIG. 3) by providing an appropriately rising response.

The remaining FIGS. 10-12 show the response characplitude response and delay characteristics in terms of decibels and milliseconds as a function of the frequency variation of the signal in the usual form of eye patterns. FIG. 10 shows the eye pattern of a bipolar system in which there is no line distortion. FIG. 11 shows a severely degraded eye pattern in which 45 there are median attenuation and time-delay distortions as found in certain transmission links. FIG. 12 shows an improved eye pattern obtained with the present equalizer in conjunction with the a transmission line which had median attenuation and time-delay distortions.

What we claim is:

1. An automatic equalizer to be inserted in a transmission system between its transmission link and receiver for correcting the frequency-dependent distortions in the signal intransversal network comprising:

at least two time-delay circuits each having an input and an output and connected together in series so as to form a chain having an input and an output, which constitutes intermediate junction formed where the output of one of said time-delay circuit is connected to the input of the

next succeeding time-delay circuit in the chain, the network also including,

a separate corresponding pick-off means associated with and connected to each of the input and output of said transversal network and the intermediate junction so as to provide, in response to the input signal appearing at the network input, a number of pick-off signals equal in number to the number of the pick-off means, and the network also including,

first combining means for combining the pick-off signals in predetermined relationship to produce a first network

output signal, the network also including, at least one further pick-off means associated with and connected to said at least one intermediate junction so as to provide, in response to the input signal appearing at the network input, a further pick-off signal constituting a second network output signal, and the network also in-

second combining means for combining the first and the second network output signals in variable relationship to thereby correct the frequency-dependent distortions.

The equalizer according to claim 1, wherein there is an even number of the time-delay circuits arranged in pairs, the circuits of each pair having equal time-delays and being symmetjunction which is at the center of the chain, the first-mentioned pick-off means being so selected that the corresponding pick-off signals comprise a single pick-off signal from the said central one intermediate junction and a number of pairs of pick-off signals for each of which pairs the two signals are similar except that one is time-delayed relative to the other.

3. The equalizer according to claim 2, wherein said further pick-off means, is associated with and connected to the said one intermediate junction which is at the center of the chain.

4. The equalizer according to claim 3, wherein there are four of the time-delay circuits.

5. The equalizer according to claim 4, wherein the timedelay circuits have each the same time-delay.

6. The equalizer according to claim 5, wherein the first teristics of the transmission systems in the form of the am- 40 combining means comprises, at least in part, the connection of at least two of the first-mentioned pick-off signals to a common point.

7. The equalizer according to claim 6, wherein the first combining means comprises, at least in part, an inverting amplifier connected to said common point for reversing the polarity of at least one of the first-mentioned pick-off signals.

8. The equalizer according to claim 7 wherein the second combining means includes a variable resistance which is variable to provide the said variable relationship.

9. The equalizer according to claim 8 having an amplitudefrequency response in the form of a family of curves and including comparison means for comparing the outputs of said transversal delay network at two different frequencies of which at least one is within a preselected audio frequency troduced by said transmission link, said equalizer including a 55 bandwidth to select a predetermined one of the said family of

10. The equalizer according to claim 9 wherein said comparison means includes an electric motor which is arranged to control said variable resistance in response to the said difthe transversal network input and output, and at least one 60 ference between the two outputs of said transversal delay network.