
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2017/0109286 A1 

Blankenship et al. 

US 2017.0109286A1 

(43) Pub. Date: Apr. 20, 2017 

(54) 

(71) 

(72) 

(73) 

(21) 

(22) 

(63) 

HIGH PERFORMANCE INTERCONNECT 
COHERENCE PROTOCOL 

Applicant: Intel Corporation, Santa Clara, CA 
(US) 

Inventors: Robert G. Blankenship, Tacoma, WA 
(US); Bahaa Fahim, Santa Clara, CA 
(US); Robert H. Beers, Beaverton, OR 
(US); Yen-Cheng Liu, Portland, OR 
(US); Vedaraman Geetha, Fremont, 
CA (US); Herbert H. Hum, Portland, 
OR (US); Jeff Willey, Timnath, CO 
(US) 

Assignee: Intel Corporation, Santa Clara, CA 
(US) 

Appl. No.: 15/393,577 

Filed: Dec. 29, 2016 

Related U.S. Application Data 
Continuation of application No. 14/554,532, filed on 
Nov. 26, 2014, which is a continuation of application 

No. 13/976,954, filed on Jun. 27, 2013, filed as 
application No. PCT/US2013/032651 on Mar. 15, 
2013. 

Provisional application No. 61/717,091, filed on Oct. 
22, 2012. 

(60) 

Publication Classification 

Int. C. 
G06F 2/083 
G06F 2/0808 
U.S. C. 
CPC ...... G06F 12/0831 (2013.01); G06F 12/0808 

(2013.01); G06F 221 2/621 (2013.01) 
(57) ABSTRACT 
A request is received that is to reference a first agent and to 
request a particular line of memory to be cached in an 
exclusive state. A Snoop request is sent intended for one or 
more other agents. A Snoop response is received that is to 
reference a second agent, the Snoop response to include a 
writeback to memory of a modified cache line that is to 
correspond to the particular line of memory. A complete is 
sent to be addressed to the first agent, wherein the complete 
is to include data of the particular line of memory based on 
the writeback. 
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HGH PERFORMANCE INTERCONNECT 
COHERENCE PROTOCOL 

FIELD 

0001. The present disclosure relates in general to the field 
of computer development, and more specifically, to Software 
development involving coordination of mutually-dependent 
constrained systems. 

BACKGROUND 

0002 Advances in semi-conductor processing and logic 
design have permitted an increase in the amount of logic that 
may be present on integrated circuit devices. As a corollary, 
computer system configurations have evolved from a single 
or multiple integrated circuits in a system to multiple cores, 
multiple hardware threads, and multiple logical processors 
present on individual integrated circuits, as well as other 
interfaces integrated within Such processors. A processor or 
integrated circuit typically comprises a single physical pro 
cessor die, where the processor die may include any number 
of cores, hardware threads, logical processors, interfaces, 
memory, controller hubs, etc. 
0003. As a result of the greater ability to fit more pro 
cessing power in Smaller packages, Smaller computing 
devices have increased in popularity. Smartphones, tablets, 
ultrathin notebooks, and other user equipment have grown 
exponentially. However, these smaller devices are reliant on 
servers both for data storage and complex processing that 
exceeds the form factor. Consequently, the demand in the 
high-performance computing market (i.e. server space) has 
also increased. For instance, in modern servers, there is 
typically not only a single processor with multiple cores, but 
also multiple physical processors (also referred to as mul 
tiple sockets) to increase the computing power. But as the 
processing power grows along with the number of devices in 
a computing system, the communication between sockets 
and other devices becomes more critical. 

0004. In fact, interconnects have grown from more tra 
ditional multi-drop buses that primarily handled electrical 
communications to full blown interconnect architectures 
that facilitate fast communication. Unfortunately, as the 
demand for future processors to consume at even higher 
rates corresponding demand is placed on the capabilities of 
existing interconnect architectures. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0005 FIG. 1 illustrates a simplified block diagram of a 
system including a serial point-to-point interconnect to 
connect I/O devices in a computer system in accordance 
with one embodiment; 
0006 FIG. 2 illustrates a simplified block diagram of a 
layered protocol stack in accordance with one embodiment; 
0007 FIG. 3 illustrates an embodiment of a transaction 
descriptor. 
0008 FIG. 4 illustrates an embodiment of a serial point 
to-point link. 
0009 FIG. 5 illustrates embodiments of potential High 
Performance Interconnect (HPI) system configurations. 
0010 FIG. 6 illustrates an embodiment of a layered 
protocol stack associated with HPI. 
0011 FIG. 7 illustrates a flow diagram of example coher 
ence protocol conflict management. 
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0012 FIG. 8 illustrates a flow diagram of another 
example coherence protocol conflict management. 
0013 FIG. 9 illustrates a flow diagram of another 
example coherence protocol conflict management. 
0014 FIG. 10 illustrates a flow diagram of an example 
Snoop response with writeback to memory. 
0015 FIG. 11 illustrates a flow diagram of another 
example of a Snoop response with writeback to memory. 
0016 FIG. 12 illustrates a flow diagram of an example 
writeback push operation. 
0017 FIG. 13 illustrates a flow diagram of an example 
writeback to memory. 
0018 FIG. 14 illustrates a flow diagram of an example 
memory controller flush operation. 
(0019 FIGS. 15-17 illustrate representations of example 
protocol state tables. 
0020 FIG. 18 illustrates a representation of an example 
nesting of protocol state tables. 
0021 FIG. 19 illustrates a representation of use of a set 
of protocol state tables by an example testing engine. 
0022 FIG. 20 illustrates a representation of use of a set 
of protocol state tables by an example testing engine. 
0023 FIG. 21 illustrates an embodiment of a block 
diagram for a computing system including a multicore 
processor. 
0024 Like reference numbers and designations in the 
various drawings indicate like elements. 

DETAILED DESCRIPTION 

0025. In the following description, numerous specific 
details are set forth, Such as examples of specific types of 
processors and system configurations, specific hardware 
structures, specific architectural and micro architectural 
details, specific register configurations, specific instruction 
types, specific system components, specific processor pipe 
line stages, specific interconnect layers, specific packet/ 
transaction configurations, specific transaction names, spe 
cific protocol exchanges, specific link widths, specific 
implementations, and operation etc. in order to provide a 
thorough understanding of the present invention. It may be 
apparent, however, to one skilled in the art that these specific 
details need not necessarily be employed to practice the 
Subject matter of the present disclosure. In other instances, 
well detailed description of known components or methods 
has been avoided, such as specific and alternative processor 
architectures, specific logic circuits/code for described algo 
rithms, specific firmware code, low-level interconnect 
operation, specific logic configurations, specific manufac 
turing techniques and materials, specific compiler imple 
mentations, specific expression of algorithms in code, spe 
cific power down and gating techniques/logic and other 
specific operational details of computer system in order to 
avoid unnecessarily obscuring the present disclosure. 
0026. Although the following embodiments may be 
described with reference to energy conservation, energy 
efficiency, processing efficiency, and so on in specific inte 
grated circuits, such as in computing platforms or micro 
processors, other embodiments are applicable to other types 
of integrated circuits and logic devices. Similar techniques 
and teachings of embodiments described herein may be 
applied to other types of circuits or semiconductor devices 
that may also benefit from such features. For example, the 
disclosed embodiments are not limited to server computer 
system, desktop computer systems, laptops, UltrabooksTM, 
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but may be also used in other devices, such as handheld 
devices, Smartphones, tablets, other thin notebooks, systems 
on a chip (SOC) devices, and embedded applications. Some 
examples of handheld devices include cellular phones, Inter 
net protocol devices, digital cameras, personal digital assis 
tants (PDAs), and handheld PCs. Here, similar techniques 
for a high-performance interconnect may be applied to 
increase performance (or even save power) in a low power 
interconnect. Embedded applications typically include a 
microcontroller, a digital signal processor (DSP), a system 
on a chip, network computers (NetPC), set-top boxes, net 
work hubs, wide area network (WAN) switches, or any other 
system that can perform the functions and operations taught 
below. Moreover, the apparatus', methods, and systems 
described herein are not limited to physical computing 
devices, but may also relate to Software optimizations for 
energy conservation and efficiency. As may become readily 
apparent in the description below, the embodiments of 
methods, apparatus, and systems described herein (whether 
in reference to hardware, firmware, software, or a combi 
nation thereof) may be considered vital to a “green technol 
ogy' future balanced with performance considerations. 
0027 AS computing systems are advancing, the compo 
nents therein are becoming more complex. The interconnect 
architecture to couple and communicate between the com 
ponents has also increased in complexity to ensure band 
width demand is met for optimal component operation. 
Furthermore, different market segments demand different 
aspects of interconnect architectures to Suit the respective 
market. For example, servers require higher performance, 
while the mobile ecosystem is sometimes able to sacrifice 
overall performance for power savings. Yet, it is a singular 
purpose of most fabrics to provide highest possible perfor 
mance with maximum power saving. Further, a variety of 
different interconnects can potentially benefit from subject 
matter described herein. For instance, the Peripheral Com 
ponent Interconnect (PCI) Express (PCIe) interconnect fab 
ric architecture and QuickPath Interconnect (QPI) fabric 
architecture, among other examples, can potentially be 
improved according to one or more principles described 
herein, among other examples. 
0028 FIG. 1 illustrates one embodiment of a fabric 
composed of point-to-point Links that interconnect a set of 
components is illustrated. System 100 includes processor 
105 and system memory 110 coupled to controller hub 115. 
Processor 105 can include any processing element, Such as 
a microprocessor, a host processor, an embedded processor, 
a co-processor, or other processor. Processor 105 is coupled 
to controller hub 115 through front-side bus (FSB) 106. In 
one embodiment, FSB 106 is a serial point-to-point inter 
connect as described below. In another embodiment, link 
106 includes a serial, differential interconnect architecture 
that is compliant with different interconnect standard. 
0029 System memory 110 includes any memory device, 
such as random access memory (RAM), non-volatile (NV) 
memory, or other memory accessible by devices in system 
100. System memory 110 is coupled to controller hub 115 
through memory interface 116. Examples of a memory 
interface include a double-data rate (DDR) memory inter 
face, a dual-channel DDR memory interface, and a dynamic 
RAM (DRAM) memory interface. 
0030. In one embodiment, controller hub 115 can include 
a root hub, root complex, or root controller, such as in a PCIe 
interconnection hierarchy. Examples of controller hub 115 
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include a chipset, a memory controller hub (MCH), a 
northbridge, an interconnect controller hub (ICH) a south 
bridge, and a root controller/hub. Often the term chipset 
refers to two physically separate controller hubs, e.g., a 
memory controller hub (MCH) coupled to an interconnect 
controller hub (ICH). Note that current systems often 
include the MCH integrated with processor 105, while 
controller 115 is to communicate with I/O devices, in a 
similar manner as described below. In some embodiments, 
peer-to-peer routing is optionally supported through root 
complex 115. 
0031 Here, controller hub 115 is coupled to switch/ 
bridge 120 through serial link 119. Input/output modules 117 
and 121, which may also be referred to as interfaces/ports 
117 and 121, can include/implement a layered protocol stack 
to provide communication between controller hub 115 and 
switch 120. In one embodiment, multiple devices are 
capable of being coupled to switch 120. 
0032 Switch/bridge 120 routes packets/messages from 
device 125 upstream, i.e. up a hierarchy towards a root 
complex, to controller hub 115 and downstream, i.e. down a 
hierarchy away from a root controller, from processor 105 or 
system memory 110 to device 125. Switch 120, in one 
embodiment, is referred to as a logical assembly of multiple 
virtual PCI-to-PCI bridge devices. Device 125 includes any 
internal or external device or component to be coupled to an 
electronic system, such as an I/O device, a Network Inter 
face Controller (NIC), an add-in card, an audio processor, a 
network processor, a hard-drive, a storage device, a 
CD/DVD ROM, a monitor, a printer, a mouse, a keyboard, 
a router, a portable storage device, a Firewire device, a 
Universal Serial Bus (USB) device, a scanner, and other 
input/output devices. Often in the PCIe vernacular, such as 
device, is referred to as an endpoint. Although not specifi 
cally shown, device 125 may include a bridge (e.g., a PCIe 
to PCI/PCI-X bridge) to support legacy or other versions of 
devices or interconnect fabrics Supported by Such devices. 
0033 Graphics accelerator 130 can also be coupled to 
controller hub 115 through serial link 132. In one embodi 
ment, graphics accelerator 130 is coupled to an MCH, which 
is coupled to an ICH. Switch 120, and accordingly I/O 
device 125, is then coupled to the ICH. I/O modules 131 and 
118 are also to implement a layered protocol stack and 
associated logic to communicate between graphics accelera 
tor 130 and controller hub 115. Similar to the MCH discus 
sion above, a graphics controller or the graphics accelerator 
130 itself may be integrated in processor 105. 
0034 Turning to FIG. 2 an embodiment of a layered 
protocol stack is illustrated. Layered protocol stack 200 can 
includes any form of a layered communication stack, Such as 
a QPI stack, a PCIe Stack, a next generation high perfor 
mance computing interconnect (HPI) stack, or other layered 
stack. In one embodiment, protocol stack 200 can include 
transaction layer 205, link layer 210, and physical layer 220. 
An interface, such as interfaces 117, 118, 121, 122, 126, and 
131 in FIG. 1, may be represented as communication 
protocol stack 200. Representation as a communication 
protocol stack may also be referred to as a module or 
interface implementing/including a protocol stack. 
0035 Packets can be used to communicate information 
between components. Packets can be formed in the Trans 
action Layer 205 and Data Link Layer 210 to carry the 
information from the transmitting component to the receiv 
ing component. As the transmitted packets flow through the 
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other layers, they are extended with additional information 
used to handle packets at those layers. At the receiving side 
the reverse process occurs and packets get transformed from 
their Physical Layer 220 representation to the Data Link 
Layer 210 representation and finally (for Transaction Layer 
Packets) to the form that can be processed by the Transaction 
Layer 205 of the receiving device. 
0036. In one embodiment, transaction layer 205 can 
provide an interface between a device's processing core and 
the interconnect architecture, such as Data Link Layer 210 
and Physical Layer 220. In this regard, a primary responsi 
bility of the transaction layer 205 can include the assembly 
and disassembly of packets (i.e., transaction layer packets, 
or TLPs). The translation layer 205 can also manage credit 
based flow control for TLPs. In some implementations, split 
transactions can be utilized, i.e., transactions with request 
and response separated by time, allowing a link to carry 
other traffic while the target device gathers data for the 
response, among other examples. 
0037 Credit-based flow control can be used to realize 
virtual channels and networks utilizing the interconnect 
fabric. In one example, a device can advertise an initial 
amount of credits for each of the receive buffers in Trans 
action Layer 205. An external device at the opposite end of 
the link, such as controller hub 115 in FIG. 1, can count the 
number of credits consumed by each TLP A transaction may 
be transmitted if the transaction does not exceed a credit 
limit. Upon receiving a response an amount of credit is 
restored. One example of an advantage of such a credit 
scheme is that the latency of credit return does not affect 
performance, provided that the credit limit is not encoun 
tered, among other potential advantages. 
0038. In one embodiment, four transaction address 
spaces can include a configuration address space, a memory 
address space, an input/output address space, and a message 
address space. Memory space transactions include one or 
more of read requests and write requests to transfer data 
to/from a memory-mapped location. In one embodiment, 
memory space transactions are capable of using two differ 
ent address formats, e.g., a short address format, such as a 
32-bit address, or a long address format, such as 64-bit 
address. Configuration space transactions can be used to 
access configuration space of various devices connected to 
the interconnect. Transactions to the configuration space can 
include read requests and write requests. Message space 
transactions (or, simply messages) can also be defined to 
Support in-band communication between interconnect 
agents. Therefore, in one example embodiment, transaction 
layer 205 can assemble packet header/payload 206. 
0039 Quickly referring to FIG. 3, an example embodi 
ment of a transaction layer packet descriptor is illustrated. In 
one embodiment, transaction descriptor 300 can be a mecha 
nism for carrying transaction information. In this regard, 
transaction descriptor 300 supports identification of trans 
actions in a system. Other potential uses include tracking 
modifications of default transaction ordering and association 
of transaction with channels. For instance, transaction 
descriptor 300 can include global identifier field 302, attri 
butes field 304 and channel identifier field 306. In the 
illustrated example, global identifier field 302 is depicted 
comprising local transaction identifier field 308 and source 
identifier field 310. In one embodiment, global transaction 
identifier 302 is unique for all outstanding requests. 
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0040 According to one implementation, local transaction 
identifier field 308 is a field generated by a requesting agent, 
and can be unique for all outstanding requests that require a 
completion for that requesting agent. Furthermore, in this 
example, source identifier 310 uniquely identifies the 
requestor agent within an interconnect hierarchy. Accord 
ingly, together with source ID 310, local transaction iden 
tifier 308 field provides global identification of a transaction 
within a hierarchy domain. 
0041 Attributes field 304 specifies characteristics and 
relationships of the transaction. In this regard, attributes field 
304 is potentially used to provide additional information that 
allows modification of the default handling of transactions. 
In one embodiment, attributes field 304 includes priority 
field 312, reserved field 314, ordering field 316, and no 
Snoop field 318. Here, priority sub-field 312 may be modi 
fied by an initiator to assign a priority to the transaction. 
Reserved attribute field 314 is left reserved for future, or 
vendor-defined usage. Possible usage models using priority 
or security attributes may be implemented using the reserved 
attribute field. 
0042. In this example, ordering attribute field 316 is used 
to Supply optional information conveying the type of order 
ing that may modify default ordering rules. According to one 
example implementation, an ordering attribute of “O'” 
denotes default ordering rules are to apply, wherein an 
ordering attribute of “1” denotes relaxed ordering, wherein 
writes can pass writes in the same direction, and read 
completions can pass writes in the same direction. Snoop 
attribute field 318 is utilized to determine if transactions are 
Snooped. As shown, channel ID Field 306 identifies a 
channel that a transaction is associated with. 
0043. Returning to the discussion of FIG. 2, a Link layer 
210, also referred to as data link layer 210, can act as an 
intermediate stage between transaction layer 205 and the 
physical layer 220. In one embodiment, a responsibility of 
the data link layer 210 is providing a reliable mechanism for 
exchanging Transaction Layer Packets (TLPs) between two 
components on a link. One side of the Data Link Layer 210 
accepts TLPs assembled by the Transaction Layer 205, 
applies packet sequence identifier 211, i.e. an identification 
number or packet number, calculates and applies an error 
detection code, i.e. CRC 212, and submits the modified 
TLPs to the Physical Layer 220 for transmission across a 
physical to an external device. 
0044. In one example, physical layer 220 includes logical 
sub block 221 and electrical sub-block 222 to physically 
transmit a packet to an external device. Here, logical Sub 
block 221 is responsible for the “digital functions of 
Physical Layer 221. In this regard, the logical sub-block can 
include a transmit section to prepare outgoing information 
for transmission by physical sub-block 222, and a receiver 
section to identify and prepare received information before 
passing it to the Link Layer 210. 
0045 Physical block 222 includes a transmitter and a 
receiver. The transmitter is supplied by logical sub-block 
221 with symbols, which the transmitter serializes and 
transmits onto to an external device. The receiver is Supplied 
with serialized symbols from an external device and trans 
forms the received signals into a bit-stream. The bit-stream 
is de-serialized and supplied to logical sub-block 221. In one 
example embodiment, an 8b/10b transmission code is 
employed, where ten-bit symbols are transmitted/received. 
Here, special symbols are used to frame a packet with 
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frames 223. In addition, in one example, the receiver also 
provides a symbol clock recovered from the incoming serial 
Stream. 

0046. As stated above, although transaction layer 205, 
link layer 210, and physical layer 220 are discussed in 
reference to a specific embodiment of a protocol stack (Such 
as a PCIe protocol stack), a layered protocol stack is not so 
limited. In fact, any layered protocol may be included/ 
implemented and adopt features discussed herein. As an 
example, a port/interface that is represented as a layered 
protocol can include: (1) a first layer to assemble packets, 
i.e. a transaction layer; a second layer to sequence packets, 
i.e. a link layer, and a third layer to transmit the packets, i.e. 
a physical layer. As a specific example, a high performance 
interconnect layered protocol, as described herein, is uti 
lized. 
0047 Referring next to FIG. 4, an example embodiment 
of a serial point to point fabric is illustrated. A serial 
point-to-point link can include any transmission path for 
transmitting serial data. In the embodiment shown, a link 
can include two, low-voltage, differentially driven signal 
pairs: a transmit pair 406/411 and a receive pair 412/407. 
Accordingly, device 405 includes transmission logic 406 to 
transmit data to device 410 and receiving logic 407 to 
receive data from device 410. In other words, two transmit 
ting paths, i.e. paths 416 and 417, and two receiving paths, 
i.e. paths 418 and 419, are included in some implementa 
tions of a link. 

0048. A transmission path refers to any path for trans 
mitting data, Such as a transmission line, a copper line, an 
optical line, a wireless communication channel, an infrared 
communication link, or other communication path. A con 
nection between two devices, such as device 405 and device 
410, is referred to as a link, such as link 415. A link may 
Support one lane—each lane representing a set of differential 
signal pairs (one pair for transmission, one pair for recep 
tion). To Scale bandwidth, a link may aggregate multiple 
lanes denoted by xN, where N is any supported link width, 
such as 1, 2, 4, 8, 12, 16, 32, 64, or wider. 
0049. A differential pair can refer to two transmission 
paths, such as lines 416 and 417, to transmit differential 
signals. As an example, when line 416 toggles from a low 
Voltage level to a high voltage level, i.e. a rising edge, line 
417 drives from a high logic level to a low logic level, i.e. 
a falling edge. Differential signals potentially demonstrate 
better electrical characteristics, such as better signal integ 
rity, i.e. cross-coupling, Voltage overshoot/undershoot, ring 
ing, among other example advantages. This allows for a 
better timing window, which enables faster transmission 
frequencies. 
0050. In one embodiment, a new High Performance 
Interconnect (HPI) is provided. HPI can include a next 
generation cache-coherent, link-based interconnect. As one 
example, HPI may be utilized in high performance comput 
ing platforms, such as workstations or servers, including in 
systems where PCIe or another interconnect protocol is 
typically used to connect processors, accelerators, I/O 
devices, and the like. However, HPI is not so limited. 
Instead, HPI may be utilized in any of the systems or 
platforms described herein. Furthermore, the individual 
ideas developed may be applied to other interconnects and 
platforms, such as PCIe, MIPI, QPI, etc. 
0051) To support multiple devices, in one example imple 
mentation, HPI can include an Instruction Set Architecture 
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(ISA) agnostic (i.e. HPI is able to be implemented in 
multiple different devices). In another scenario, HPI may 
also be utilized to connect high performance I/O devices, not 
just processors or accelerators. For example, a high perfor 
mance PCIe device may be coupled to HPI through an 
appropriate translation bridge (i.e. HPI to PCIe). Moreover, 
the HPI links may be utilized by many HPI based devices, 
Such as processors, in various ways (e.g. stars, rings, 
meshes, etc.). FIG. 5 illustrates example implementations of 
multiple potential multi-socket configurations. A two-socket 
configuration 505, as depicted, can include two HPI links: 
however, in other implementations, one HPI link may be 
utilized. For larger topologies, any configuration may be 
utilized as long as an identifier (ID) is assignable and there 
is some form of virtual path, among other additional or 
Substitute features. As shown, in one example, a four socket 
configuration 510 has an HPI link from each processor to 
another. But in the eight Socket implementation shown in 
configuration 515, not every socket is directly connected to 
each other through an HPI link. However, if a virtual path or 
channel exists between the processors, the configuration is 
Supported. A range of Supported processors includes 2-32 in 
a native domain. Higher numbers of processors may be 
reached through use of multiple domains or other intercon 
nects between node controllers, among other examples. 
0052. The HPI architecture includes a definition of a 
layered protocol architecture, including in Some examples, 
protocol layers (coherent, non-coherent, and, optionally, 
other memory based protocols), a routing layer, a link layer, 
and a physical layer including associated I/O logic. Further 
more, HPI can further include enhancements related to 
power managers (such as power control units (PCUS)), 
design for test and debug (DFT), fault handling, registers, 
security, among other examples. FIG. 6 illustrates an 
embodiment of an example HPI layered protocol stack. In 
Some implementations, at least some of the layers illustrated 
in FIG. 6 may be optional. Each layer deals with its own 
level of granularity or quantum of information (the protocol 
layer 605a,b with packets 630, link layer 610a, b with flits 
635, and physical layer 605a, b with phits 640). Note that a 
packet, in some embodiments, may include partial flits, a 
single flit, or multiple flits based on the implementation. 
0053 As a first example, a width of a phit 640 includes 
a 1 to 1 mapping of link width to bits (e.g. 20 bit link width 
includes a phit of 20 bits, etc.). Flits may have a greater size, 
such as 184, 192, or 200 bits. Note that if phit 640 is 20 bits 
wide and the size of flit 635 is 184 bits then it takes a 
fractional number of phits 640 to transmit one flit 635 (e.g. 
9.2 phits at 20 bits to transmit an 184 bit flit 635 or 9.6 at 20 
bits to transmit a 192 bit flit, among other examples). Note 
that widths of the fundamental link at the physical layer may 
vary. For example, the number of lanes per direction may 
include 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, etc. In one 
embodiment, link layer 610a, b is capable of embedding 
multiple pieces of different transactions in a single flit, and 
one or multiple headers (e.g. 1, 2, 3, 4) may be embedded 
within the flit. In one example, HPI splits the headers into 
corresponding slots to enable multiple messages in the flit 
destined for different nodes. 

0054 Physical layer 605a, b, in one embodiment, can be 
responsible for the fast transfer of information on the 
physical medium (electrical or optical etc.). The physical 
link can be point-to-point between two Link layer entities, 
such as layer 605a and 605b. The Link layer 610a, b can 
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abstract the Physical layer 605a, b from the upper layers and 
provides the capability to reliably transfer data (as well as 
requests) and manage flow control between two directly 
connected entities. The Link Layer can also be responsible 
for virtualizing the physical channel into multiple virtual 
channels and message classes. The Protocol layer 620a, b 
relies on the Link layer 610a, b to map protocol messages 
into the appropriate message classes and virtual channels 
before handing them to the Physical layer 605a, b for transfer 
across the physical links. Link layer 610a, b may support 
multiple messages, such as a request, Snoop, response, 
writeback, non-coherent data, among other examples. 
0055. The Physical layer 605a, b (or PHY) of HPI can be 
implemented above the electrical layer (i.e. electrical con 
ductors connecting two components) and below the link 
layer 610a, b, as illustrated in FIG. 6. The Physical layer and 
corresponding logic can reside on each agent and connects 
the link layers on two agents (A and B) separated from each 
other (e.g. on devices on either side of a link). The local and 
remote electrical layers are connected by physical media 
(e.g. wires, conductors, optical, etc.). The Physical layer 
605a, b, in one embodiment, has two major phases, initial 
ization and operation. During initialization, the connection is 
opaque to the link layer and signaling may involve a 
combination of timed States and handshake events. During 
operation, the connection is transparent to the link layer and 
signaling is at a speed, with all lanes operating together as 
a single link. During the operation phase, the Physical layer 
transports flits from agent A to agent B and from agent B to 
agent A. The connection is also referred to as a link and 
abstracts some physical aspects including media, width and 
speed from the link layers while exchanging flits and con 
trol/status of current configuration (e.g. width) with the link 
layer. The initialization phase includes minor phases e.g. 
Polling, Configuration. The operation phase also includes 
minor phases (e.g. link power management states). 
0056. In one embodiment, Link layer 610a, b can be 
implemented so as to provide reliable data transfer between 
two protocol or routing entities. The Link layer can abstract 
Physical layer 605a, b from the Protocol layer 620a, b, and 
can be responsible for the flow control between two protocol 
agents (A, B), and provide virtual channel services to the 
Protocol layer (Message Classes) and Routing layer (Virtual 
Networks). The interface between the Protocol layer 620a, b 
and the Link Layer 610a, b can typically be at the packet 
level. In one embodiment, the smallest transfer unit at the 
Link Layer is referred to as a flit which a specified number 
of bits, such as 192 bits or some other denomination. The 
Link Layer 610a, b relies on the Physical layer 605a, b to 
frame the Physical layer's 605a,b unit of transfer (phit) into 
the Link Layer's 610a, b unit of transfer (flit). In addition, the 
Link Layer 610a, b may be logically broken into two parts, 
a sender and a receiver. A sender/receiver pair on one entity 
may be connected to a receiver/sender pair on another entity. 
Flow Control is often performed on both a flit and a packet 
basis. Error detection and correction is also potentially 
performed on a flit level basis. 
0057. In one embodiment, Routing layer 615a, b can 
provide a flexible and distributed method to route HPI 
transactions from a source to a destination. The scheme is 
flexible since routing algorithms for multiple topologies 
may be specified through programmable routing tables at 
each router (the programming in one embodiment is per 
formed by firmware, software, or a combination thereof). 
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The routing functionality may be distributed; the routing 
may be done through a series of routing steps, with each 
routing step being defined through a lookup of a table at 
either the source, intermediate, or destination routers. The 
lookup at a source may be used to inject a HPI packet into 
the HPI fabric. The lookup at an intermediate router may be 
used to route an HPI packet from an input port to an output 
port. The lookup at a destination port may be used to target 
the destination HPI protocol agent. Note that the Routing 
layer, in Some implementations, can be thin since the routing 
tables, and, hence the routing algorithms, are not specifically 
defined by specification. This allows for flexibility and a 
variety of usage models, including flexible platform archi 
tectural topologies to be defined by the system implemen 
tation. The Routing layer 615a,b relies on the Link layer 
610a, b for providing the use of up to three (or more) virtual 
networks (VNs) in one example, two deadlock-free VNs, 
VNO and VN1 with several message classes defined in each 
virtual network. A shared adaptive virtual network (VNA) 
may be defined in the Link layer, but this adaptive network 
may not be exposed directly in routing concepts, since each 
message class and virtual network may have dedicated 
resources and guaranteed forward progress, among other 
features and examples. 
0058. In one embodiment, HPI can include a Coherence 
Protocol layer 620a, b to Support agents caching lines of data 
from memory. An agent wishing to cache memory data may 
use the coherence protocol to read the line of data to load 
into its cache. An agent wishing to modify a line of data in 
its cache may use the coherence protocol to acquire own 
ership of the line before modifying the data. After modifying 
a line, an agent may follow protocol requirements of keeping 
it in its cache until it either writes the line back to memory 
or includes the line in a response to an external request. 
Lastly, an agent may fulfill external requests to invalidate a 
line in its cache. The protocol ensures coherency of the data 
by dictating the rules all caching agents may follow. It also 
provides the means for agents without caches to coherently 
read and write memory data. 
0059. Two conditions may be enforced to support trans 
actions utilizing the HPI Coherence Protocol. First, the 
protocol can maintain data consistency, as an example, on a 
per-address basis, among data in agents caches and between 
those data and the data in memory. Informally, data consis 
tency may refer to each valid line of data in an agent's cache 
representing a most up-to-date value of the data and data 
transmitted in a coherence protocol packet can represent the 
most up-to-date value of the data at the time it was sent. 
When no valid copy of the data exists in caches or in 
transmission, the protocol may ensure the most up-to-date 
value of the data resides in memory. Second, the protocol 
can provide well-defined commitment points for requests. 
Commitment points for reads may indicate when the data is 
usable; and for writes they may indicate when the written 
data is globally observable and will be loaded by subsequent 
reads. The protocol may support these commitment points 
for both cacheable and uncacheable (UC) requests in the 
coherent memory space. 
0060. The HPI Coherence Protocol also may ensure the 
forward progress of coherence requests made by an agent to 
an address in the coherent memory space. Certainly, trans 
actions may eventually be satisfied and retired for proper 
system operation. The HPI Coherence Protocol, in some 
embodiments, may have no notion of retry for resolving 
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resource allocation conflicts. Thus, the protocol itself may 
be defined to contain no circular resource dependencies, and 
implementations may take care in their designs not to 
introduce dependencies that can result in deadlocks. Addi 
tionally, the protocol may indicate where designs are able to 
provide fair access to protocol resources. 
0061 Logically, the HPI Coherence Protocol, in one 
embodiment, can include three items: coherence (or cach 
ing) agents, home agents, and the HPI interconnect fabric 
connecting the agents. Coherence agents and home agents 
can work together to achieve data consistency by exchang 
ing messages over the interconnect. The link layer 610a, b 
and its related description can provide the details of the 
interconnect fabric including how it adheres to the coher 
ence protocols requirements, discussed herein. (It may be 
noted that the division into coherence agents and home 
agents is for clarity. A design may contain multiple agents of 
both types within a socket or even combine agents behaviors 
into a single design unit, among other examples.) 
0062. In one embodiment, home agents can be configured 
to guard physical memory. Each home agent can be respon 
sible for a region of the coherent memory space. Regions 
may be non-overlapping, in that a single address is guarded 
by one home agent, and together the home agent regions in 
a system cover the coherent memory space. For instance, 
each address can be guarded by at least one home agent. 
Therefore, in one embodiment, each address in a HPI 
system's coherent memory space can map to exactly one 
home agent. 
0063 Home agents in the HPI Coherence Protocol, in 
one embodiment, can be responsible for servicing requests 
to the coherent memory space. For read (Rd) requests, home 
agents may generate Snoops (Smp), process their responses, 
send a data response, and send a completion response. For 
invalidation (Inv) requests, home agents may generate nec 
essary Snoops, process their responses, and send a comple 
tion response. For write requests, home agents may commit 
the data to memory and send a completion response. 
0064. Home agents may provide snoops in the HPI 
Coherence Protocol and process Snoop responses from 
coherence agents. Home agents can also process forward 
requests, which are a special Snoop response, from coher 
ence agents for conflict resolution. When a home agent 
receives a forward request, it may send a forward response 
to the coherence agent that generated the forward request 
(i.e., the agent that detected a conflicting Snoop request). 
Coherence agents can use the ordering of these forward 
responses and completion responses from the home agent to 
resolve conflicts. 

0065. A coherence agent may issue supported coherence 
protocol requests. Requests may be issued to an address in 
the coherent memory space. Data received for read requests 
(Rd) except RdCur may be consistent. Data for RdCur 
requests may have been consistent when the data packet was 
generated (although it may have become out of date during 
delivery). Table 1 shows an exemplary, non-exhaustive list 
of potential Supported requests: 

TABLE 1. 

Name Semantics Cache State 

RdCode Request a cache line in F or S state. F or S 
RdData Request a cache line in E, F, or S state. F or S 
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TABLE 1-continued 

Name Semantics Cache State 

Rd Migr Request a cache line in M, E, F, or S Mand 
State. (F or S) 

RdInv Request a cache line in Estate. If line E 
was previously cached in M state, the line 
will be written to memory before E data is 
delivered. 
Request a cache line in M or E State. M 
Request an uncacheable Snapshot of a 
cache line. 
Request exclusive ownership of a cache 
ine without receiving data. 
Request exclusive ownership of a cache 
ine without receiving data and with the 
intent of performing a writeback soon 

RdInvOwn 
RdCur 

nwto M or E 

nwtoM M or E 

nvXtoI Flush a cache line from all caches. 
Requesting agent is to invalidate the 
ine in its cache before issuing this 
request. 
Write a cache line in M state back to M 
memory and invalidate the line in the 
cache. 
Write a cache line in M state back to 
memory and transition line to S state. 
Write a cache line in M state back to 
memory and transition line to E state. 
Write a cache line in M state back to M 
memory, according to a byte-enable mask, 
and transition line to I state. 
Write a cache line in M state back to 
memory, according to a byte-enable mask, 
transition line to Estate, and clear 
the line's mask in the cache. 
Notification to home agent that a cache E 
line in E state was invalidated in the 
cache. 
Send a line in M state to home agent and M 
invalidate the line in the cache; home 
agent may either write the line back to 
memory or send it to a local cache agent 
with M state. 
Request that home flush writes to 
implementation-specific addresses in its 
memory hierarchy. No data is sent with 
the request. 

WbMtOI 

WbMtOS M and S 

WbMtOE M and E 

WbMtOIPt 

WbMtOEPt M and E 

EvctCIn 

WbPSMtOI 

WbFlush 

0.066 HPI can support a Coherency protocol making use 
of principles of the MESI protocol. Each cache line can be 
marked with one or more Supported States (e.g., coded in the 
cache line). A “M” or “Modified’ state can indicate that the 
cache line value has been modified from that value which is 
in main memory. A line in the M-state is only present in the 
particular and the corresponding cache agent can be required 
to write the modified data back to memory at some time in 
the future, for instance, before permitting any other read of 
the (no longer valid) maing memory state. A writeback can 
transition the line from the M-state to the E-state. The “E” 
or “Exclusive' state can indicate that the cache line is only 
present in the current cache but that its value matches that in 
main memory. The cache line in E-state can transition to the 
S-State at any time in response to a read request or may be 
changed to the M-state by writing to the line. The “S” or 
“Shared state can indicates that the cache line may be 
stored in other caches of the machine and has a value that 
matches that of the main memory. The line may be discarded 
(changed to the I-state) at any time. The “I” or “Invalid' 
state can indicate that a cache line is invalid or unused. Other 
state can also supported in HPI, such as an “F” or “Forward” 
shared state that indicates that the particular shared line 
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value is to be forwarded to other caches that are to also share 
the line, among other examples. 
0067 Table 2 include exemplary information that can be 
included in some Coherence protocol messages, including 
Snoop, read, and write requests, among other examples: 

TABLE 2 

Field Usage 

cmd Message command (or name or opcode). 
addr Address of a coherent cache line. 
destNID Node ID (NID) of destination (home or coherence) agent. 
reqNID NID of requesting coherence agent. 
peerNID NID of coherence agent that sent the (forward request) 

message. 
reqTID ID of the resource allocated by the requesting agent 

for the transaction, also known as RTID (or requesting 
transaction identifier). 

homeTID ID of the resource allocated by the home agent to 
process the request, also known as HTID (or home 
transaction identifier). 

data A cache line of data. 
mask Byte mask to qualify the data. 

0068 Snoop messages may be generated by home agents 
and directed toward coherence agents. A snoop (SNP) vir 
tual channel can be used for Snoops and, in one embodiment, 
are the only messages that use the SNP virtual channel. 
Snoops can include the requesting agent's NID and the 
RTID it allocated for the request in case the Snoop results in 
data being sent directly to the requesting agent. Snoops, in 
one embodiment, can also include the HTID allocated by the 
home agent to process the request. The coherence agent 
processing the Snoop may include the HTID in the Snoop 
response it sends back to the home agent. Snoops may, in 
Some instance, not include the home agent's NID because it 
may be derived from the included address, which the tar 
geted coherence agent does when sending its response. 
Fanout snoops (those with “SmpF prefix) may not include 
a destination NID because the Routing Layer is responsible 
for generating the appropriate Snoop messages to all peers in 
the fanout region. An exemplary list of Snoop channel 
messages is listed Table 3: 

TABLE 3 

Command Semantics Fields 

SnipCode Snoop to get data in F or S state. cmd. 
SnipData Snoop to get data in E, F, or S state. addr, 
SnpMigr Snoop to get data in M, E, F, or S state. destNID, 
Snpnv Snoop to invalidate the peers cache, reqNID, 

flushing any M copy to memory. reqTID, 
SnpnvOwn Snoop to get data in M or E state. homeTID 
SnipCur Snoop to get an uncacheable Snapshot of a 

cache line. 
SnpECode Snoop to get data in F or S State; Routing cmd. 

layer to handle distribution to all fanout addr, 
peers reqNID, 

SnFData Snoop to get data in E, F, or S state; reqTID, 
Routing layer to handle distribution to homeTID 
all fanout peers 

SnpFMigr Snoop to get data in M, E, F, or S state; 
Routing layer to handle distribution to 
all fanout peers 

SnpFInvOwn Snoop to get data in M or Estate; Routing 
layer to handle distribution to all fanout 
peers. 

SnFInw Snoop to invalidate the peers cache, 
flushing any M copy to memory; Routing 
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TABLE 3-continued 

Command Semantics Fields 

layer to handle distribution to all fanout 
peers. 
Snoop to get an uncacheable Snapshot of a 
cache line; Routing layer to handle 
distribution to all fanout peers. 

SnpCur 

0069. HPI may also support non Snoop requests that they 
may issue to an address, such as those implemented as 
non-coherent requests. Examples of Such requests can 
include a non-Snoop read to request a read-only line form 
memory, a non-Snoop write to write a line to memory, and 
a write a line to memory according to a mask, among other 
potential examples. 
0070. In one example, four general types of response 
messages can be defined in the HPI Coherence Protocol: 
data, completion, Snoop, and forward. Certain data messages 
can carry an additional completion indication and certain 
Snoop responses can carry data. Response messages may use 
the RSP virtual channel, and the communication fabric may 
maintain proper message delivery ordering among ordered 
completion responses and forward responses. 
0071 Table 4 includes a listing of at least some potential 
response messages Supported by an example HPI Coherence 
Protocol: 

TABLE 4 

Name Semantics Fields 

Data M Data is M state. cmd. 
Data E Data is E state. destNID, 
Data F Data is F state. reqTID, 
Data SI Depending upon request, data in S state or data 

uncacheable 'Snapshot data. 
Data M Data is M state with an ordered completion 

SOSc. 

Data E Data is E state with an ordered completion 
SOSc. 

Data F Data is F state with an ordered completion 
SOSc. 

Data SI Depending upon request, data in S state or 
uncacheable 'Snapshot data, with an 
ordered completion response. 

CmpU Completion message with no ordering cmd. 
requirements. destNID, 

CmpO Completion message to be ordered with reqTID 
forward responses. 

RspI Cache is in I state. cmd. 
RSS Cache is in S state. destNID, 

homeTID 
RSbFwd Copy of cache line was sent to requesting 

agent, cache state did not change. 
RSbFwdI Copy of cache line was sent to requesting 

agent, cache transitions to I state. 
RSbFwdS Copy of cache line was sent to requesting 

agent, cache transitions to S state. 
RSIWb Modified line is being implicitly written cmd. 

back to memory, cache was transitioned destNID, 
to I state. homeTID, 

RSSWb Modified line is being implicitly written data 
back to memory, cache was transitioned 
to S state. 

RSbFwdIWb Modified line is being implicitly written 
back to memory, copy of cache line was 
sent to requesting agent, cache was 
transitioned to I state. 
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TABLE 4-continued 

Name Semantics Fields 

RspFwdSWb Modified line is being implicitly written 
back to memory, copy of cache line was 
sent to requesting agent, cache was 
transitioned to S state. 

RspCnfit Peer has an outstanding request to same cmd. 
address, is requesting an ordered forward destNID, 
response, and has allocated a resource homeTID, 
for the forward. peerNID 

0072. In one example, data responses can target a 
requesting coherence agent. A home agent may send any of 
the data responses. A coherence agent may send only data 
responses not containing an ordered completion indication. 
Additionally, coherence agents may be limited to sending 
data responses only as a result of processing a Snoop request. 
Combined data and completion responses may always be of 
the ordered-completion type and can be kept ordered with 
forward responses by the communication fabric. 
0073. The HPI Coherence Protocol can uses the general 
unordered completion message and a coherence-specific 
ordered completion message. A home agent may send 
completion responses to coherent requests and completion 
responses can be typically destined for a coherence agent. 
The ordered completion response can be kept ordered with 
forward responses by the communication fabric. 
0074. Snoop responses may be sent by coherence agents, 
specifically in response to processing a Snoop request, and 
target the home agent handling the Snoop request. The 
destNTD is usually a home agent (determined from the 
address in the Snoop request) and the included TID is for the 
home agent's resource allocated to process the request. 
Snoop responses with “Wb' in the command are for implicit 
writebacks of modified cache lines, and they carry the cache 
line data. (Implicit writebacks can include those a coherence 
agent makes due to another agent's request, whereas the 
other requests are made explicitly by the coherence agent 
using its request resources.) 
0075 Coherence agents can generate a forward request 
when a Snoop request conflicts with an outstanding request. 
Forward requests target the home agent that generated the 
Snoop, which is determined from the address in the Snoop 
request. Thus, the destNTD is a home agent. The forward 
request can also include the TID for the home agents 
resource allocated to process the original request and the 
NID of the coherence agent generating the forward request 
0076. The HPI Coherence Protocol can support a single 
forward response, FwdCnfltO. Home agents can send a 
forward response for every forward request received and to 
the coherence agent in the forward requests peerNID field. 
Forward responses carry the cache line address so the 
coherence agent can match the message to the forward 
resource it allocated. Forward response message can carry 
the requesting agent’s NID but, in some cases, not the 
requesting agents TID. If a coherence agent wants to 
Support cache-to-cache transfers for forward responses, it 
can save the requesting agent's TID when processing the 
Snoop and send a forward request. To Support conflict 
resolution, the communication fabric may maintain ordering 
between the forward response and all ordered completions 
sent before it to the same destination coherence agent. 
0077. In some systems, home agent resources are pre 
allocated in that “RTIDs' represent resources in the home 
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agents and the caching agents allocate RTIDS from system 
configured pools when generating new coherence requests. 
Such schemes can limit the number of active requests any 
particular caching agent can have to a home agent to the 
number of RTIDs it was given by the system, effectively 
slicing up home resources statically among caching agents. 
Such schemes can result inefficient allocation of resources 
and properly sizing a home agent to Support request through 
put can become impractical for large systems, among other 
potential issues. For instance. Such schemes can force RTID 
pool management upon the caching agents. Additionally, in 
Some systems, a caching agent may not reuse the RTID until 
the home agent has completely processed the transaction. 
Waiting until a home agent completes all processing, how 
ever, can unnecessarily throttle caching agents. Additionally, 
certain flows in the protocol can involve caching agents 
holding onto RTIDs beyond the home agent release notifi 
cation, further throttling their performance, among other 
1SSU.S. 

0078. In one implementation, home agents can be 
allowed to allocate their resources as requests arrive from 
cache agents. In such instances, home agent resource man 
agement can be kept separate from coherence agent logic. In 
Some implementations, home resource management and 
coherence agent logic can be at least partially intermingled. 
In some instances, coherence agents can have more out 
standing requests to a home agent than the home agent can 
simultaneously handle. For instance, HPI can allow requests 
to queue up in the communication fabric. Further, to avoid 
deadlocks caused by the home agent blocking incoming 
requests until resources become available, the HPI Coher 
ence protocol can be configured to ensure that other mes 
sages can make progress around blocked requests to ensure 
that active transactions reach completion. 
0079. In one example, resource management can be sup 
ported by allowing an agent receiving a request to allocate 
resources to process it, the agent sending the request allo 
cating respective resources for all responses to the request 
The HTID can represent the resource that a home agent 
allocates for a given request included in some protocol 
messages. The HTID (along with RNID/RTID) in Snoop 
requests and forward responses can be used to Support 
responses to a home agent as well as data forwarding to a 
requesting agent, among other examples. Further, HPI can 
Support the ability of an agent to send an ordered complete 
(CmpO) early, that is, before the home agent is finished 
processing the request, when it is determined to be safe for 
a requesting agent to reuse its RTID resource. General 
handling of Snoops with similar RNID/RTID can also be 
defined by the protocol. 
0080. In one illustrative example, when a particular 
request's tracker state is busy, a directory state can be used 
to determine when the home agent may send a response. For 
instance, an Invalid directory state can allow a response to 
be sent, except for RdCur requests which indicates there are 
no outstanding Snoop responses. An Unknown directory 
state can dictate that all peer agents have been Snooped and 
all their responses gathered before a response can be sent. 
The Exclusive directory state can dictate that the owner be 
Snooped and all responses gathered before a response is sent, 
or if the requesting agent is the owner then a response may 
immediately be sent. The Shared directory state can specify 
that an invalidating request (e.g., RdInv or Inv) has 
Snooped all peer agents and gathered all Snoop responses. 
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When a given request’s tracker state is writeback buffered 
(WbBuffered), the home agent may send a data response. 
When the request’s tracker state is DataSent (indicating the 
home agent has already sent a data response) or DataXfrd 
(indicating a peer transferred a copy of the line), the home 
agent may send the completion response. 
0081. In instances such as those described above, a home 
agent may send data and completion responses before all 
Snoop responses have been gathered. The HPI interface 
allows these “early” responses. When sending early data and 
completions, the home agent may gather all outstanding 
Snoop responses before releasing the resource it allocated for 
the request. The home agent can also continue blocking 
further standard requests to the same address until all Snoop 
responses have been gathered, then releasing the resource. A 
home agent sending a response message from a Busy or 
WbBuffered state can use a sub-action table (e.g., included 
in a set of protocol tables embodying the formal specifica 
tion of the HPI Coherence protocol) for which message to 
send and use a sub action table for how to update the 
directory state, among other examples. In some cases, an 
early completion can be performed without pre-allocation by 
a home node. 

0082 In one embodiment, HPI Coherence protocol can 
omit the use of either or both pre-allocated home resources 
and ordered request channels. In such implementations, 
certain messages on the HPI RSP communication channel 
can be ordered. For instance, specifically “ordered comple 
tion” and “forward response' messages, can be provided, 
that can be sent from the home agent to the coherence agent. 
Home agents can send an ordered completion (CmpO or 
Data CmpO) for all coherent read and invalidation 
requests (as well as other requests, such as a NonSnpRd 
requests, that are not involved in cache-coherence conflicts). 
0083 Home agents can send forward responses (FwdC 

infltO) to coherence agents that send forward requests (Rsp 
Cnflt) to indicate a conflict. A coherence agent can generate 
a forward request whenever it has an outstanding read or 
invalidation request and detects an incoming Snoop request 
to the same cache line as the request. When the coherence 
agent receives the forward response, it checks the current 
state of the outstanding request to determine how to process 
the original Snoop. The home agent can sent the forward 
response to be ordered with a complete (e.g., CmpO or 
Data CmpO). The coherence agent can utilize informa 
tion included in the Snoop to aid the coherence agent in 
processing a forward response. For instance, a forward 
response may not include any “type' information and no 
RTID. The nature of the forward response can be derived 
from information obtained from the preceding Snoop(s). 
Further, a coherence agent may block outstanding Snoop 
requests when all of its “forward resources' are waiting for 
forward responses. In some implementations, each coher 
ence agent can be designed to have at least one forward 
SOUC. 

0084. In some implementations, communication fabric 
requirements can be upon the Routing Layer. In one embodi 
ment, the HPI Coherence protocol has one communication 
fabric requirement that is specific to the Routing Layer. The 
coherence protocol can depend upon the routing layer to 
convert a fanout snoop (SmpF* opcodes—Snoop (SNP) 
Channel Messages') into the appropriate Snoops for all of 
the request’s peers in the fanout set of Coherence Agents. 
The fanout set is a configuration parameter of the Routing 
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Layer that is shared by the Protocol Layer. In this coherence 
protocol specification it is described as a Home Agent 
configuration parameter. 
I0085. In some implementations above, the HPI Coher 
ence Protocol can utilizes four of the virtual channels: REQ, 
WB, SNP, and RSP. The virtual channels can be used to 
unwind dependency cycles and avoid deadlock. In one 
embodiment, every message can be delivered without dupli 
cation on all virtual channels and an ordering requirement 
upon the RSP virtual channel. 
I0086. In some implementations, the communication fab 
ric can be configured to preserve an ordering among certain 
completion messages and the FwdCnfltO message. The 
completion messages are the CmpO message and any data 
message with CmpO attached (Data CmpO). Together, 
all of these messages are the “ordered completion 
responses.” The conceptual requirement between ordered 
completion responses and the FwdCnfltO message is that a 
FwdCnfltO does not “pass an ordered completion. More 
specifically, if a home agent sends an ordered completion 
response followed by a FwdCnfltO message and both mes 
sages are destined for the same coherence agent, then the 
communication fabric delivers the ordered completion 
response before the FwdCnfltO, among other potential 
examples. 
I0087. It should be appreciated that while some examples 
of the protocol flow are disclosed herein, the described 
examples are merely intended to give an intuitive feel for the 
protocol and do not necessarily cover all possible scenarios 
and behaviors the protocol may exhibit. 
I0088 A conflict may occur when requests to the same 
cache-line address from more than one coherence agent 
occur around the same time. As a specific example, a conflict 
can occur when a Snoop for a coherence agent's standard 
request arrives at a peer coherence agent with an outstanding 
request to the same address. Because each Snoop may end up 
in a conflict, a single request can have multiple conflicts. 
Resolving conflicts may be a coordinated effort among the 
home agent, the coherence agents, and the communication 
fabric. However, the primary responsibility lies with the 
coherence agents detecting conflicting Snoops. 
I0089. In one embodiment, home agents, coherence 
agents, and communication fabric can be configured to assist 
in Successfully resolving conflicts. For example, home 
agents may have outstanding Snoops for only one request per 
address at a time. Such that, for a given address, a home 
agent may have outstanding Snoops for only one request. 
This can serve to exclude the possibility of race conditions 
involving two requests conflicting with each other. It can 
also ensure that a coherence agent will not see another Snoop 
to the same address after it has detected a conflict but not yet 
resolved it. 
0090. In another example, when a coherence agent pro 
cesses a Snoop with an address matching an active standard 
request, it can allocates a forward resource and sends a 
forward request to the home agent. A coherence agent with 
an outstanding standard request that receives a Snoop to the 
same address can responds with a RspCnflt Snoop response. 
This response can be a forward request to the home agent. 
Because the message is a request, before sending it the 
coherence agent can allocate a resource to handle the 
response that the home agent will send. (The coherence 
protocol allows blocking conflicting Snoops when the coher 
ence agent has run out of forward resources, in some 
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instances.) The coherence agent may store information 
about the conflicting Snoop to use when processing the 
forward response. After detecting a conflict and until pro 
cessing the forward response, a coherence agent may be 
guaranteed to not see another Snoop to the same address. 
0091. In some examples, when a home agent receives a 
forward request, it does not record the Snoop response. 
Instead, the home agent can send a forward response to the 
conflicting coherence agent. A forward request (RspCnflt), 
in one example, looks like a Snoop response but the home 
agent does not treat it as one. It does not record the message 
as a Snoop response, but instead sends a forward response. 
Specifically, for every forward request (RspCnflt) a home 
agent receives, it sends a forward response (FwdCnfltO) to 
the requesting coherence agent. 
0092. The HPI Communication Fabric orders forward 
responses and ordered completions between the home agent 
and the targeted coherence agent. The fabric can thereby 
serve to differentiate an early conflict from a late conflict at 
the conflicting coherence agent. From a system-level per 
spective, an early conflict occurs when a Snoop encounters 
a request that the home agent has not yet processed, and a 
late conflict occurs when a Snoop encounters a request that 
the home agent has already processed. From a home agents 
perspective, an early conflict is when a Snoop for the 
currently active request encounters a request that the home 
agent has not yet received or started processing, and a late 
conflict is when the Snoop encounters a request it has already 
processed. In other words, a late conflict is with a request to 
which the home agent has already sent a completion 
response. Thus, when a home agent receives a forward 
request for a late conflict, it will have already sent the 
completion response to the conflicting agents outstanding 
request. By ordering the forward responses and ordered 
completion responses from home agent to the coherence 
agent, the coherence agent can determine whether the con 
flict was early or late by the processing state of its conflicting 
request. 
0093. When a coherence agent receives a forward 
response, it uses the State of its conflicting request to 
determine whether the conflict was early or late and when to 
process the original Snoop. Because of the communication 
fabric's ordering requirement, the state of the conflicting 
request indicates whether the conflict was early or late. If the 
request state indicates the completion has been received then 
it was a late conflict, otherwise it was an early conflict. 
Alternatively, if the request state indicates the request is still 
waiting for its response(s) then it was an early conflict, 
otherwise it was a late conflict. The type of conflict deter 
mines when to process the Snoop: From a coherence agents 
perspective, an early conflict means the Snoop is for a 
request being processed before the agents conflicting 
request, and a late conflict means the Snoop is for a request 
being processed after the agent's conflicting request. Given 
that ordering, for an early conflict, the coherence agent 
immediately processes the original Snoop; and for a late 
conflict, the coherence agent waits until the conflicting 
request has received its data (for reads) and its processor has 
had an opportunity to act upon the finished request before 
processing the Snoop. When the conflicting Snoop is pro 
cessed, the coherence agent will generate a Snoop response 
for the home agent to finally record. 
0094 All conflicts with writeback requests can be late 
conflicts. A late conflict from the coherence agent's perspec 
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tive is when the agent's request is processed before the 
Snoop's request. By this definition all conflicts with write 
back requests can be treated as late conflicts because the 
writeback is processed first. Otherwise, data consistency and 
coherency could be violated if the home agent were to 
process the request before the writeback commits to 
memory. Because all conflicts with writebacks are deemed 
late conflicts, coherence agents can be configured to block 
conflicting Snoops until an outstanding writeback request 
completes. Further, writebacks can also block the processing 
of forwards. Blocking forwards by an active writeback can 
also be implemented as a protocol requirement for Support 
ing uncacheable stores, among other examples. 
0.095 When a coherence agent receives a request to 
Snoop its cache, it can first check if the coherence protocol 
will allow it, and then it may process the Snoop and generate 
a response. One or more state tables can be defined within 
a set of state tables that defines the protocol specification. 
One or more state table can specify when a coherence agent 
may process a Snoop and whether it will Snoop the cache or 
instead generate a conflict forward request. In one example, 
there are two conditions under which a coherence agent 
processes a Snoop. The first condition is when the coherence 
agent has a REQ request (Rd. or Inv) to the Snoop address 
and it has an available forward resource. In this case, the 
coherence agent must generate a forward request (RspCnflt). 
The second condition is when the coherence agent does not 
have a REQ, Wb*, or EvctCln request to the Snoop address. 
A state table can define how a coherence agent is to process 
the Snoop in accordance with Such respective conditions. In 
one example, under other conditions, the coherence agent 
can block the Snoop until either a forward resource becomes 
available (first condition) or the blocking Wb or EvctCln 
receives its CmpU response (second condition). Note that 
NonSnp requests may not affect Snoop processing and a 
coherence agent can disregard NonSnp entries when deter 
mining how to process or block a Snoop. 
0096. When generating a forward request, a coherence 
agent can reserve a resource for the forward response. The 
HPI Coherence protocol, in one example, may not require a 
minimum number of forward response resources (beyond 
having at least one) and can allow a coherence agent to block 
Snoops when it has no forward response resources available. 
0097 How a coherence agent processes a snoop in its 
cache can depend upon the Snoop type and current cache 
state. For a given Snoop type and cache state, however, there 
may be many allowed responses. For example, a coherence 
agent with a full modified line that receives a non-conflicting 
SnpMigr (or is processing a forward response after a 
SnpMigr) may do any of the following: Downgrade to S, 
send implicit writeback to Home and Data F to requestor; 
Downgrade to S, send implicit writeback to Home: Down 
grade to I, send Data M to requestor, Downgrade to I, send 
implicit writeback to Home and Data E to requestor; Down 
grade to I, send implicit writeback to Home; among poten 
tially other examples. 
(0098. The HPI Coherence protocol allows a coherence 
agent to store modified lines with partial masks in its cache. 
However, all rows in for M copies can require a Full or 
Empty mask. The HPI Coherence protocol, in one example, 
may restrict implicit writeback of partial lines. A coherence 
agent wishing to evict a partial M line due to a Snoop request 
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(or forward response) can first initiate an explicit writeback 
and block the Snoop (or forward) until the explicit writeback 
is completed. 
0099 Saving information for forward responses: The 
HPI Coherence Protocol, in one embodiment, allows a 
coherence agent to store forward response information sepa 
rate from the outgoing request buffer (ORB). Separating the 
information allows the ORB to release ORB resources and 
RTID when all responses are gathered, regardless of the 
entry being involved in a conflict. State tables can be utilized 
to specify what information to store for forward responses 
and under what conditions. 

0100 Forward responses in the HPI Coherence protocol 
can contain the address, the requesting agent's NID, and the 
home TID. It does not contain the original Snoop type or the 
RTID. A coherence agent may store the forward type and the 
RTID if it wishes to use them with the forward response, and 
it may use the address to match the incoming forward 
response with the proper forward entry (and to generate the 
home NID). Storing the forward type may be optional. If no 
type is stored, the coherence agent can treat a forward 
response as having Fwdlnv type. Likewise, storing the RTID 
can be optional and may only occur when the coherence 
agent is to support cache-to-cache transfers when processing 
forward responses. 
0101 AS noted above, coherence agents can generate a 
forward request when a Snoop request conflicts with an 
outstanding request. Forward requests target the home agent 
that generated the Snoop, which can be determined from the 
address in the snoop request. Thus, the destNTD can identify 
a home agent. The forward request can also include the TID 
for the home agent's resource allocated to process the 
original request and the NID of the coherence agent gener 
ating the forward request. 
0102. In one embodiment, a coherence agent can block 
forwards for writeback requests to maintain data consis 
tency. Coherence agents can also use a writeback request to 
commit uncacheable (UC) data before processing a forward 
and can allow the coherence agent to writeback partial cache 
lines instead of protocol Supporting a partial implicit write 
back for forwards. Indeed, in one embodiment, a coherence 
agent can be allowed to store modified lines with partial 
masks in its cache (although M copies are to include a Full 
or Empty mask). 
0103) In one example, early conflicts may be resolved by 
a forward response encountering an outstanding standard 
request before it has received any response. A corresponding 
protocol state table can specify, in one example, that a 
forward response can be processed as long as the standard 
request entry is still in ReqSent state. Late conflicts can be 
resolved by a forward response arriving after the outstanding 
request has received its completion response. When this 
occurs either the request will have finished (already received 
its data or was an Inv request) or the entry is in its 
RcvdCmp state. If the request is still waiting for its data, 
then the coherence agent must block the forward until the 
data is received (and used). If the conflicting Rd. or Inv 
request has finished, then the forward response may be 
processed as long as the coherence agent has not initiated an 
explicit writeback of the cache line. It can be permissible for 
a coherence agent to initiate an explicit writeback while it 
has a forward response (or Snoop request) to the same 
address, thus allowing partial lines (e.g. Snoop Requests to 
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Partially Modified Lines') or uncacheable stores to be 
properly committed to memory. 
0104 Turning to FIG. 7, a first example is illustrated of 
an example conflict management scheme. A first cache (or 
coherence) agent 705 can send a read request for a particular 
line of data to home agent 710 resulting in a read of memory 
715. Shortly after the read request by cache agent 705, 
another cache agent 720 makes a request for ownership 
(RFO) of the same line. However, the home agent 710 has 
sent the Data S CmpO to the first cache agent 705 prior to 
receiving the RFO from cache agent 720. The RFO can 
result in a snoop (SmpFO) being sent to the cache agent 705 
(as well as other cache agents), the Snoop being received by 
the first cache agent 705 prior to receiving the complete 
Data S. CmpO. The cache agent 705, upon receiving the 
Snoop SnpO can identify a potential conflict involving the 
line of memory requested in its original read request and can 
notify the home agent 710 of the conflict by responding to 
the SnpO with a forward responses conflict message (Rsp 
Cnflt). The home agent 710 can respond to the forward 
response RspCnflt by sending a forward response (FwdCn 
fltO). The cache agent 705 can then receive the shared data 
complete Data S. CmpO and transition from an I state to S 
state. The forward response FwdCnfltO can then be received 
by the cache agent 705 and cache agent 705 can determine 
how to respond to the forward response message FwdClfltO 
based on the Snoop SnpFO that triggered the sending of the 
forward response RspCnflt. In this example, the cache agent 
705 can consult a protocol state table, for instance, to 
determine a response to the forward response message 
FwdClfltO. In the particular example of FIG. 7, the cache 
agent 705 can transition to an F-state and send the S-copy of 
the data it received from the home agent 710 in the Data 
S CmpO message to the second cache agent 720 in a Data F 
message. The first cache agent 705 can also send a response 
message RspFwdS to the home agent 710 notifying the 
home agent 710 that the first cache agent has shared its copy 
of the data with the second cache agent. 
0105. In another illustrative example, shown in the sim 
plified flow diagram of FIG. 8, the first cache agent 705 can 
send a request for ownership (RFO) of a particular line of 
memory to the home agent 710. Shortly thereafter, a second 
cache agent can send a RdInvOwn message to the home 
agent 710 as a request for the same line of memory in an M 
state. In connection with the RFO message from the first 
cache agent 705, the home agent 710 can send a Snoop 
(SnpFO) to the second cache agent 720 which the second 
cache agent 720 can identify as a potential conflict involving 
the line of memory subject to both the RFO and RdInvOwn 
requests. Accordingly, the second cache agent 720 can send 
a forward request RspCnflt to the home agent 720. The home 
agent 720 responds to the second cache agents 720 forward 
request with a forward response. The second cache agent 
720 determines a response to the forward response based on 
information contained in the original Snoop SmpFO. In this 
example, the second cache agent 720 responds with a Snoop 
response RspI indicating that the second cache agent 720 is 
in an I-state. The home agent 710 receives the Snoop 
response RspI and determines that it is appropriate to send 
the data complete exclusive (Data E CmpO) to the first 
cache agent 705, which causes the first cache agent to 
transition to an E state. With the complete sent, the home 
agent 710 can then begin responding to the second cache 
agent's RdInvOwn request, beginning with a Snoop request 
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SnpinvO of the first cache agent 705. The first cache agent 
705 can identify that the Snoop results in a request by the 
second cache agent 720 to obtain an exclusive M-state copy 
of the line. Consequently, the first cache agent 705 transi 
tions to the M state to send its copy of the line as an M-state 
copy (with Data M message) to the second cache agent 720. 
Additionally, the first cache agent 705 also sends a response 
message RspFwdI to indicate that the copy of the line has 
been sent to the second cache agent 720 and that the first 
cache agent has transitioned to an I-state (having given up 
ownership of the copy to the second cache agent 720). 
0106 Turning next to the example of FIG. 9, another 
simplified flowchart is shown. In this example, a cache agent 
720 attempts to request exclusive ownership of an uncache 
able (UC) line without receiving data (e.g., through a 
InVItoE message). A first cache agent 705 send a competing 
message (RdInv) for the cache line in E state. The HPI 
Coherence protocol can specify that if the requested line was 
previously cached in M state, the line will be written to 
memory before E data is delivered in response to the RdInv 
of the first cache agent 705. The home agent 710 can send 
a complete (CmpO) to the InvitoE request and send a Snoop 
(Snpinv) to cache agent 720 based on the RdInv request. If 
the cache agent 720 receives the Snoop before the complete, 
the cache agent 720 can identify that the Snoop pertains to 
the same cache line as its exclusive ownership request and 
indicate a conflict through a forward requests RspCnflt. As 
in previous examples, the home agent 710 can be configured 
to respond to the forward request with a forward response 
(FwdCnfltO). Multiple permissible responses may be 
allowed to the forward response. For instance, the cache 
agent 720 can initiate an explicit writeback (e.g., WbMtoI) 
and block the Snoop (or forward) until the explicit writeback 
is completed (e.g., CmpU), as shown in the example of FIG. 
9. The cache agent can then complete the Snoop response 
(RspI). The home agent 710 can then process the RdInv 
request of the first cache agent 705 and return a complete 
Data E CmpO, among other examples. 
0107. In examples, such as the example of FIG. 9, where 
a cache agent receives a Snoop when the agent has an 
outstanding read or invalidation request to the same address 
and it has cached a partial modified line (often referred to as 
a “buried-M'), the HPI Coherence protocol, in one imple 
mentation, allows the agent to either 1) perform an explicit 
writeback (partial) of the line while blocking the Snoop or 2) 
send a forward request (RspCnflt) to the home agent. If (1) 
is chosen, the agent processes the Snoop after receiving the 
complete for the writeback. If (2) is chosen, it is possible that 
the agent will receive forward response (FwdCnfltO) while 
its outstanding read or invalidation request is still waiting for 
responses and the agent still has a partial modified line. If 
that is the case, the protocol allows the agent to block the 
forward while performing an explicit writeback (partial) of 
the line. During the writeback, the protocol guarantees the 
agent will not receive responses for the outstanding read or 
invalidation request. The mechanism described above (al 
lowing coherence agents to issue explicit writebacks and 
block Snoops and forwards, even when the agent has an 
outstanding read or invalidation request) is also used to 
ensure partial or UC writes are posted to memory before the 
writer acquires global observability. 
0108 Coherence agents use a two-step process for par 
tial/UC writes. First, they check if they have ownership of 
the cacheline and issue an ownership (invalidation) request 
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in the protocol if they do not. Second, they perform the 
write. In the first step, if they performed an ownership 
request, it is possible that the request will conflict with other 
agents requests for the line, meaning the agent might 
receive a Snoop while the ownership request is outstanding. 
Per coherence protocol requirements, the agent will issue a 
forward request for the conflicting Snoop. While waiting for 
the forward response, the agent may receive the ownership 
request's completion, which grants ownership of the line to 
the agent and allows the agent to initiate the writeback for 
the partial/UC write. While this is occurring, the agent might 
receive the forward response, which it is obligated to process 
also. The coherence agent may not combine the two activi 
ties. The coherence agent is to instead writeback the partial/ 
UC write data separately from processing the forward, and 
perform the writeback first. For instance, a cache agent may 
use a writeback request to commit UC data before process 
ing forward and writeback partial cache lines, among other 
examples and features. 
0109. In one embodiment, the HPI Coherence protocol 
can Support a read invalidate (Rdnv) request accepting 
Exclusive-state data. Semantics of uncacheable (UC) reads 
include flushing modified data to memory. Some architec 
tures, however, allow forwarding M data to invalidating 
reads, which forced the requesting agent to clean the line if 
it received M data. The RdInv simplifies the flow and does 
not allow E data to be forwarded. For instance, as shown in 
the example of FIG. 10, the directory state of a home agent 
710 can indicate that no agent (e.g., 705, 710) has a copy of 
the line. In Such instances, the home agent 710 may imme 
diately send the data and completion response(s). HPI 
allows the same if the effective directory state indicates no 
peer can have a copy of the line. 
0110. As shown in the example of FIG. 10, in some 
implementations an agent can respond to a Snoop with a 
RspIWb message, indicating that the cache agent (e.g., 705) 
is in (or has transitioned to) an I-state while requesting a 
write to memory. A RspIWb can set the effective directory 
state to Invalid and allows a home agent 710 to send a 
response without Snooping all peers. In the example of FIG. 
10, a second cache agent 720 senda RdInv request while the 
home agent directory is in an Unknown state. In response, 
the home agent 710 initially Snoops only first cache agent 
705. In this example, cache agent 705 has a modified copy 
of the line and responds with an implicit writeback (e.g., 
RspIWb). When Home receives the RspIWb message, it can 
determined that no other agent could have had a copy of the 
line and identified further that cache agent 705 has invali 
dated its cache through the RspIWb. In response, the home 
agent 710 can set the directory state to Invalid. Because the 
directory state is Invalid, the home agent 710 waits until the 
write to memory 715 completes and then sends the data and 
completion response(s) (e.g., Data E CmpO) and releases 
the resource it allocated for the request from cache agent 
720. In this example, the home agent may skip the Snooping 
of other cache agents in the system. Indeed, in Such 
examples, a home agent (e.g., 710) can send data and a 
completion response prior to receiving all Snoop responses 
(e.g., due to the identification of an M-copy at agent 705), as 
illustrated in the example illustrated in FIG. 11 (with cache 
agent 1105). 
0111. In the examples of FIGS. 10 and 11, when the 
second cache agent 720 receives the Data E CmpO 
response from the home agent 710, the cache agent 720 can 



US 2017/01 0928.6 A1 

load the data into its cache, set its cache state to E, and 
release the resource RTID it allocated for the request. After 
releasing the RTID, cache agent 720 may reuse it for a new 
request. In the meantime, the home agent 710 can wait for 
Snoop responses for Snoops to the request originally using 
the RTID. Snoop messages can contain the requests RTID 
and requesting agent’s NID. Thus, because cache agent 720 
could reuse the RTID for a new request to the same or a 
different home agent, and that home agent could generate 
Snoops for the new request while Snoops for the original 
request are outstanding, it is possible that the same “unique” 
transaction ID will exist in Snoops to the same coherence 
agents. From a coherency perspective this duplication of 
transaction ID (TID) can nonetheless be acceptable because 
Snoops for the original request will only find I states. 
0112 A home agent may generate a Snoop when the 
requests Tracker state is Wait, Busy or DataXfrd, meaning 
either the home agent has not yet sent a data response or a 
Snoop response indicated some peer forwarded the data to 
the requesting agent. A home agent may also check the 
requests Snoop field to ensure it has not yet sent a Snoop to 
a Peer. When sending a Snoop, a home agent may add Peer 
(or all fanout Peers) to Snoop (to prevent sending a second 
Snoop) and track outstanding Snoop responses. 
0113. As noted above, some implementations of HPI can 
Support fanout Snoops. Additionally, in some examples, HPI 
can Support an explicit fanout Snoop operation, SnpF, for 
fanout Snoops generated by the Routing layer. An HPI home 
agent (e.g., 710) can utilize SnpF to generate a single fanout 
Snoop request (e.g., with a single command and message) 
and, in response, the Routing layer can generate Snoops to all 
peer agents in the respective fanout cone based on the SnpF 
request. The home agent may accordingly expect Snoop 
responses from each of the agent sections. While other 
Snoop messages may include a destination node ID, fanout 
Snoops may omit a destination NID because the Routing 
layer is responsible for generating the appropriate Snoop 
messages to all peers in the fanout region. 
0114. As the Routing layer is immediately below the 
Protocol layer, in some implementations, communication 
fabric requirements are upon the Routing Layer. In one 
embodiment, the HPI Coherence protocol can have has one 
communication fabric requirement that is specific to the 
Routing layer. For instance, the Coherence protocol can 
depend upon the Routing layer to convert a fanout Snoop 
(SnpF* opcodes—Snoop (SNP) Channel Messages) into the 
appropriate Snoops for all of the request’s peers in the fanout 
set of cache agents. The fanout set is a configuration 
parameter of the Routing layer that is shared by the Protocol 
layer, or a home agent configuration parameter. 
0115. In some implementations, a home agent may send 
a fanout snoop for an active standard request. The HPI 
Routing layer can convert the fanout Snoop request of the 
home agent into regular Snoops to each of the peers in the 
fanout cone defined by the Routing layer. The HPI Coher 
ence protocol home agent is made aware of which coherence 
agents are covered by the Routing layer fanout via a 
HAFanout Agent configuration parameter identifying the 
respective cache agents that are included in the fanout cone 
by address. The Routing layer can receive the fanout Snoop 
SnpF and convert it into a Snoops of every cache agent 
included in the fanout cone (excepting the requesting agent). 
In one implementation, the Routing layer can convert the 
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fanout Snoop into corresponding non-fanout Snoops (with 
appropriate non-fanout opcodes, such as those in Table 3). 
among other examples. 
0116 Similar to regular Snoops, a home agent may be 
limited to sending a fanout Snoop only before it sends a 
completion response to a coherence protocol request by a 
cache agent. Further, additional conditions can be placed on 
the fanout Snoops. As examples, a home agent may send a 
fanout Snoop if it has not individually Snooped any of the 
peers in the fanout cone. In other words, a home agent may 
not initiate a fanout Snoop, in some implementations, if the 
fanout cone is empty or if the requesting cache agent is the 
only agent in the fanout cone, among other examples 
0117. In one embodiment, HPI can support an explicit 
writeback with cache-push hint (WbPushMtoI). Generally, 
in some examples, modified data can be transferred by either 
explicitly writing the data back to memory or transferring 
the modified data in response to a Snoop request. Transfer 
ring modified data in connection with a Snoop response can 
be considered a “pull transfer. In some implementations, a 
"push” mechanism can also be supported, whereby a cache 
agent with the modified data sends the modified data directly 
to another caching agent for storage in the target agents 
cache (along with the Modified cache state). 
0118. In one embodiment, a cache agent can write back 
modified data with a hint to the home agent that it may push 
the modified data to a “local cache, storing the data in M 
state in the local cache, without writing the data to memory. 
In one implementation, a home agent 710 can receive a 
WbPushMtoI message from a cache agent 705 and identify 
the hint that another cache agent (e.g., 720) is likely to utilize 
or desire ownership of a particular line in the near future, as 
shown in the example of FIG. 12. The home agent 710 can 
process the WbPushMtoI message and effectively accept the 
hint and push the written-back data to the other cache agent 
720 without writing the data to memory 715, thereby caus 
ing the other cache agent 720 to transition to an M state. In 
Some implementations, the home agent 710 can alternatively 
process the WbPushMtoI message and opt to write the data 
back to memory, as in a WbMtoI request (such as illustrated 
in FIG. 13) and not push the written-back data directly to the 
other cache agent 720. 
0119. In one example implementation, a home agent 
(e.g., 710) can process a WbPushMtoI message by checking 
that the tracker state is WbBuffered, which can indicate that 
the home agent has not yet processed the data. In some 
instances, a “push” of the data can be conditioned on the 
home agent determining that the home agent is not already 
processing a standard request to the same address. In some 
implementations, the push can be further conditioned on the 
home agent determining that the targeted cache agent (e.g., 
720, in the example of FIG. 12) is “local.” If the targeted 
cache agent is not covered by the home agent directory, then 
the home agent may transfer the data to the target cache 
agent's cache and update the directory to Invalid. If the 
targeted cache agent is covered by the directory, then the 
data transfer to the cache agent's cache may only be allowed 
only if the targeted cache agent does not have an active 
InvXtoI, and when transferred the home agent can update 
the directory to Exclusive with the target cache agent as the 
owner. Other conditions can be defined (e.g., in a corre 
sponding protocol state table) for a home agent in determin 
ing whether to accept the hint of the WbPushMtoI message 
and push data to a targeted cache agent, or instead process 
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the WbPushMtoI message as a WbMtoI request by first 
writing the data to memory, among other potential examples. 
0120 In some implementations, HPI Can support an 
InVItoM message to pre-allocate to a directory cache of a 
home agent, such as an I/O directory cache (IODC). An 
InvItoM can request exclusive ownership of a cache line 
without receiving data while indicating an the intent of 
performing a writeback Soon afterward. A required cache 
state may be an M state, and E state, or either. A home agent 
can process an InvitoM message to pre-allocate a resource 
for the writeback hinted at through the InvItoM message 
(including the InvitoM opcode). 
0121. In some implementations, an opcode can be pro 
vided through HPI Coherence protocol to trigger a memory 
flush of a memory controller with which one or more home 
agents interact. For instance, an opcode, WbFlush, can be 
defined for persistent memory flush. As shown in the 
example of FIG. 14, a host (e.g., 1405) can send a WbFlush 
message directed to a particular memory controller 1410. In 
some instances, the WbFlush can indicate a particular 
address and the WbFlush command can be sent to the 
specific memory controller targeted by the address. In 
another example, a WbFlush message can be broadcast to 
multiple memory controllers. In one example, the t may be 
sent as a result of a persistent commit in a CPU. Each 
respective memory controller (e.g., 1410) receiving a 
WbFlush command can process the message to all pending 
writes at the memory controller to a persistent memory 
device (or memory location) managed by the memory 
controller. The purpose of the command can be to commit all 
previous writes to persistent memory. For example, a 
WbFlush command can be triggered in connection with a 
power failure management controller or process, so as to 
ensure that pending writes are flushed to non-volatile 
memory and preserved in the event of a power failure of the 
system. Further, as shown in the example of FIG. 14, upon 
flushing (or initiating the flushing of) all pending writes to 
memory (e.g., 1415), the memory controller 1410 can 
respond to the requesting host (or agent) (e.g., 1405) with a 
completion indicating the flush. The completion should not 
be sent to the host until the memory controller has assured 
that the data will make it to persistent memory. The WbFlush 
message or corresponding completion can serve as a check 
point for other processes and controllers dependent on or 
driving the flushing of pending writes to memory, among 
other uses and examples. 
0122) Some traditional architectures can require for 
Data M and corresponding completes to be sent separately. 
HPI may be extended to have coherence agents support 
accepting a combined Data M. CmpO. Further, home 
agents can be configured to generate a combined Data M 
Cmp0 message via buffering implicit writeback data. 
Indeed, in some implementations, an agent can be provided 
with logic that combines cache and home agent behaviors, 
Such that when the agent receives a request and find M data 
in its cache, it can directly generate the Data M. CmpO. In 
Such instances, the Data M. CmpO response can be gener 
ated without generating a RspIWb or buffering writeback 
data, among other examples. 
0123. In another example, as shown in the example 
protocol state table 1500 illustrated in FIG. 15, a state 
machine (embodied by a machine readable state table (e.g., 
1500)) can define a variety of potential response messages a 
home agent may send when the standard request's tracker 
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entry is identified as in Busy or WbBuffered state. As shown 
in table 1500, in one example, a home agent may not be 
allowed to send a CmpO completion message to a read Rd 
request from either state, effectively meaning a home agent 
is to send a data response before or with a completion 
response. In cases where a Data X response may be sent in 
the home agent response message, the home agent may 
combine the data response with a completion and send it 
instead. 

0.124. The state of the data response can be fixed for 
invalidating requests and RdCur. For Rd Migrand RdData, 
non-shared directory states can allow E data to be sent. For 
RdMigr, RdData, and RdCode, a Shared directory state can 
involve checking if all peers that might have F state were 
Snooped. If they were, then the data can be sent with F state; 
otherwise, the data can be sent in S state in case an 
unsnooped peer has an F copy, among other potential 
examples. Further, a home agent may send a Data M or 
Data M. CmpO response, in Some implementations, only if 
it buffered the data from a RspIWb Snoop response. When a 
home agent buffers RspIWb data, it can store the data in the 
tracker entry and change the entry's state to WbBuffered. 
Note that if a home agent buffers the RspIWb data instead 
of writing it to memory, it sends a Data M or Data M 
CmpO response in this example. 
0.125. In one embodiment, as noted above, HPI Coher 
ence protocol can Support an F State that allows a cache 
agent to keep F State when forwarding shared data. In some 
systems, or instances, the F (forward) cache state can be 
itself forwardable. When a cache holds a line in F state and 
receives a Snoop which allows transferring shared data, the 
cache may forward the data, and when it does it can send the 
F state with the data and transition its cache state to S (or I). 
In some circumstances, it is desirable for the cache to instead 
keep the F state when forwarding data, in which case it will 
send S state with the forwarded data. 
I0126. In one example, the ability of a cache agent to keep 
or pass an F State on a shared transfer can be controllable. 
In one example, a configuration parameter, per coherence 
agent, can indicate whether a coherence agent will transfer 
or hold onto a F State. Regardless of the parameter setting, 
the coherence agent can use the same Snoop response (e.g., 
RspFwdS). In the additional case of an agent having the line 
in E State when the Snoop arrives, the cache agent can 
transition its cache state to F when forwarding the S data and 
sending the RspFwdS response (when the parameter is set to 
hold F state). In the additional case of an agent having the 
line in M (full) state when the Snoop arrives, the cache agent 
can downgrade its cache state to F when forwarding the S 
data, writing back the data to memory, and sending the 
RspFwdSWb response (when the parameter is set to hold F 
state). Further, a coherence agent with F state that receives 
a 'sharing Snoop or forward after Such a Snoop may keep 
the F State while sending S state to the requesting agent. In 
other instances, the configuration parameter can be toggled 
to allow the F state to be transferred in a transfer of shared 
data and transition to an S (or I) state, among other 
examples. Indeed, as shown in the example state table 1600 
of FIG. 16, a cache agent in F State can respond in a variety 
of ways, including a SnpMigr/FwdNigr, F, F, RspFwdS, 
Data S, among other examples. 
I0127. As noted above, in some implementations, state 
transitions of a cache line and agents can be managed using 
a state machine. In one implementation, the state machine 
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can be further embodied by a set or library of state tables that 
have been defined to detail all of the various combinations 
of commands, attributes, previous states, and other condi 
tions that can influence how state transitions are to take 
place, as well as the types of messages, data operations, 
masks, and so on, that can be associated with the State 
transition (such as illustrated in the particular examples of 
FIGS. 15 and 16). Each state table can correspond to a 
particular action or category of actions or states. The set of 
tables can include multiple tables, each table corresponding 
to a particular action or Sub-action. The set of tables can 
embody a formal specification of a protocol. Such as the 
Coherence Protocol or another protocol (at any of the stack 
layers) of HPI. 
0128 State tables can be human-readable files, such as 
table structures that can be readily interpreted and modified 
and developed by a human user interacting with the state 
table structure using an endpoint computer device. Other 
users can utilize the state table to readily interpret state 
transitions within the Coherence Protocol (or any other 
protocol of HPI). Further, state tables can be machine 
readable and parsable structures that can be read and inter 
preted by a computer to identify how states are to transition 
according to a particular protocol specification. 
0129 FIG. 17 illustrates a simplified representation of a 
generalized state table for an action “Action A. A protocol 
state table 1700, in one example, can include columns (e.g., 
1705) pertaining to current states (or the states from which 
a transition is to be made) and other columns (e.g., 1710) 
pertaining to next states (or the States that are to be transi 
tioned to). Columns in the current state columns can corre 
spond to various characteristics of the State, such as com 
mands received in a response message, Snoop message, or 
other message, a cache line state, outgoing request buffer 
(ORB) condition, credits or resources to apply/reserve, 
whether the cache line is partially modified, a forwarding 
condition, and so on. Each row in the table 1700 can 
correspond to a detected set of conditions for a cache line in 
a particular state. Further, the cells in the row within the next 
state columns (e.g., 1710) can indicate the next state and 
conditions of the next state that is to be entered into based 
on the current state conditions specified in the row cells in 
the current state columns (e.g., 1705). The next state col 
umns (e.g., 1710) can correspond to conditions in the next 
state Such as the messages that are to be sent (e.g., to a 
corresponding home node (HNID), requesting node (RNID), 
peer node, etc.), the next cache line state, forward State, and 
SO. O. 

0130. In one embodiment, protocol state tables can use 
row spanning to indicate that multiple behaviors or states 
(rows) are equally permissible for a certain set of current 
state conditions. For instance, in the example of FIG. 17. 
when the Command is Cmdl, a first condition is false, the 
cache line is in a second state, and a second condition is also 
false (as indicated by rows 1715), multiple potential next 
state conditions are possible and may be equally permis 
sible, each indicated by a respective row. In other word, any 
one of Such equally permissible transitions can be triggered 
based on the corresponding current state conditions. In some 
implementations, additional agent logic can select which of 
the multiple next state to select, among other example 
implementations. In one illustrative example, a current state 
section of a state table corresponding to home agent send 
request responses can include multiple conditions (or input 
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and state guards) including all valid behaviors for a coher 
ence agent to perform when the agent holds a full M-line in 
its cache and is processing a SnpMigr to the same cacheline. 
The table rows may correspond to five different, and equally 
permissible, next state behaviors the coherence agent can 
take in response to the current state conditions, among other 
examples. 
I0131. In other systems, a bias bit may be included in 
protocol state tables where multiple potential next states or 
conditions are possible for a particular current state. In QPI. 
for instance, a "bias’ bit is included in tables as a mechanism 
to select among behaviors. Such bias bits may be primarily 
used during validation of a protocol’s State machine, but 
Such bias bits introduce additional complexity and, in some 
cases, confusion unfamiliar with the utility of the bias bit. In 
Some respects, a bias bit may be nothing more than an 
artifact of a validation exercise. In one example of HPI, 
through protocol tables using rows that potentially span 
multiple rows, bias bits and other features can be excluded. 
In Such instances, HPI protocol tables can emphasize 
explicit non-determinism. 
I0132 Turning to the example of FIG. 18, in one embodi 
ment, protocol tables may be nested by having one table 
refer to another sub-table in the “next state' columns, and 
the nested table can have additional or finer-grained guards 
to specify which rows (behaviors) are permitted. As shown 
in FIG. 18, an example protocol state table 1700 can include 
an embedded reference 1805 to another table 1800 included 
in the set of tables embodying a protocol specification, such 
as a state table pertaining to a sub-action related to the action 
or behavior included in the next state designated for certain 
rows of table 1700. Multiple tables (e.g., 1700, 1810) can 
reference a nested table (e.g., 1800). As an example, an 
agent processing incoming responses to protocol responses 
may follow an action table (e.g., 1700, 1810) and a subaction 
table 1800. Here, action table 1700 can include a next state 
with a subaction table nested under one or more other 
protocol tables. This type of nesting can apply beyond 
coherence protocol and protocol layer state tables, but can 
also be applied to any known or future protocol response/ 
tables. 
0133. In one example, an agent can make use of protocol 
tables (or another parsable structure constructed from the 
protocol tables) and can identify a particular state table 
corresponding to a particular action or event. Further, the 
agent can identify the row that applies to the cache line 
handled or targeted by the agent and identify, from the table, 
the next state information for the cache line. This determi 
nation can include the identification of a reference to a 
nested table of a Sub-action. Accordingly, the agent can 
identify the corresponding structure of the linked-to nested 
table and further reference the nested table to determine the 
state transition. 
I0134. In one particular example, a collective set of pro 
tocol tables can be defined and represent all of the possible, 
defined state transitions in a protocol. Further, each table can 
specify a set of transitions covering a set of related behaviors 
within the protocol (e.g. one table covers all the behaviors 
involved in Snooping and updating cache State, one covers 
all behaviors generating new requests, etc.). When an agent 
is to perform a behavior, process an event, or check if some 
other action should be taken the agent can identify the 
particular state table covering that particular behavior within 
the set of state tables. The agent can then identify the current 
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state of the system and reference the selected state table to 
identify the row or group of rows matching the current state, 
if any. If no rows match, the agent may, in some instances, 
refrain from taking any action for the given current state and 
wait for some other event/behavior to change the state 
before trying again. Further, in Some instances, as intro 
duced above, if more than one row matches the identified 
system state, the agent can selects any of them to perform, 
as all can be regarded as equally permissible. Further, in the 
case of nesting, if a row refers to a nested table, the agent can 
access the nested table and use the identified current state of 
the system to search for allowed rows in the nested table. 
0135. In some examples, upon traversing any primary 
and nested tables to determine a response to a particular 
identified system (or protocol) state, the agent can cause the 
corresponding actions to be performed and the state of the 
system to be updated in accordance with the “next states' 
designated in the corresponding state tables. 
0136. In some instances, it can be possible that more than 
one state table relates to or covers a set of behaviors. For 
instance, as an illustrative example, two tables may be 
provided for processing Snoops, the first for the case when 
there was a conflicting active request, the second table was 
for when there was not. Accordingly, in some implementa 
tions, an agent may survey multiple tables to determine 
which table includes rows relevant to the particular condi 
tions and states identified by the agent. Further, in some 
cases, an agent may handle two unrelated or distinct events 
occurring simultaneously, Such as an example where a home 
agent receives a Snoop response and a new request at the 
same time. In instances where multiple events are being 
processes, an agent can identify and use multiple corre 
sponding tables simultaneously to determine how to process 
the events. 

0137 Turning now to FIGS. 19 and 20, simplified block 
diagrams 1900, 2000 are shown of examples of a testing or 
validation environment for use in validating at least a 
portion of a protocol. For instance, in the example of FIG. 
19, a test engine 1900 is provided adapted to validate a state 
machine of a protocol. For instance, in one example, test 
engine 1900 can include or be based upon principles of a 
Murphi tool or another enumerative (explicit state) model 
checker, among other examples. For instance, other speci 
fication languages can be utilized in lieu of the Murphi 
examples described, including, as another example, TLA+ 
or another Suitable language or format. In traditional sys 
tems, state model checkers have been constructed by human 
developers who attempt to translate state machines (e.g., 
from accompanying state tables, etc.) into a set of require 
ments that are then used to generate a checker capable of 
checking the state machine. This is not only a typically 
labor- and resource-intensive process, but also introduces 
human error as the states and state transitions of a state table 
are transcribed and interpreted by human users. 
0.138. In one implementation, a test engine 1900 can 

utilize a set of state tables (e.g., 1905) to automatically 
generate, from the set of state tables, resources to model 
behaviors of agents in a test environment. For instance, in 
the example of FIG. 19, a test engine 1900 can utilize the 
state tables 1905 as a functionality engine for modeling a 
cache agent or other agent (e.g., 1910) that can be used to 
validate various state transitions by simulating requests and 
responses (e.g., 1912) with other real or simulated agents, 
including a home agent 1915. Similarly, as shown in the 
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example of FIG. 20, test engine 1900 can utilize state tables 
1905 to simulate requests and responses (e.g., 1918) of a 
home agent (e.g., 1920) and interface with other real or 
simulated agents (e.g., 1925) to further validate and enu 
merate states of the protocol. As an example, test engine 
1900 can model an agent and receive real or modeled 
protocol messages, such as HPI Coherence protocol mes 
sages, and reference state tables 1905 (or another parsable 
structure generated from the state tables 1905) to automati 
cally generate an appropriate response, perform correspond 
ing state transitions, and so on, based on the state tables 
1905. 

0.139. In one particular implementation, a test engine or 
other software- or hardware-based utility can be used to 
utilize state tables (e.g., 1905) to generate code to drive and 
react to designs that employ a particular protocol. Such as 
HPI Coherence protocol. In this particular example, state 
tables can be utilized as an input of the test engine by 
converting tables or included pseudocode along with Murphi 
mappings for table values and pseudocode elements into 
appropriate Murphi rule and procedure format. The test 
engine can be used to further generate Murphi code for type 
definitions and Supporting functionality. The Murphi rule, 
procedure, type and Support code can be used to generate a 
Murphi model. The Murphi model can be translated, for 
instance, using a converter, to a C++ or other class defini 
tion. Indeed, any suitable programming language can be 
utilized. Sub-classes of the model class can be further 
generated and these modules can be used to behave as a 
simulated or testbench version of an agent employing and 
aligned to the protocol specification embodied in the state 
tables. Further, an internal API can be generated or other 
wise provided that is aligned to message generation and 
message reception as defined in the protocol state tables. For 
instance, a message generation API can be tied to link packet 
types and message reception can be unified under single 
interface point. In this example, an entire formal protocol 
specification can be converted into a C++ (or other object 
oriented programming language) class. Inheritance can be 
used to intercept messages generated, and instances of the 
inheriting class can be created as functional testbench agent 
(s). Generally, formal specification tables can be used as a 
functionality engine for a validation or testing environment 
tool rather than having developers separately create their 
own tools based upon their interpretation of the specifica 
tion. 

0140 HPI can incorporated in any variety of computing 
devices and systems, including mainframes, server systems, 
personal computers, mobile computers (such as tablets, 
Smartphones, personal digital systems, etc.), Smart appli 
ances, gaming or entertainment consoles and set top boxes, 
among other examples. For instance, referring to FIG. 21, an 
embodiment of a block diagram for a computing system 
including a multicore processor is depicted. Processor 2100 
includes any processor or processing device, such as a 
microprocessor, an embedded processor, a digital signal 
processor (DSP), a network processor, a handheld processor, 
an application processor, a co-processor, a system on a chip 
(SOC), or other device to execute code. Processor 2100, in 
one embodiment, includes at least two cores—core 2101 and 
2102, which may include asymmetric cores or symmetric 
cores (the illustrated embodiment). However, processor 
2100 may include any number of processing elements that 
may be symmetric or asymmetric. 
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0141. In one embodiment, a processing element refers to 
hardware or logic to Support a Software thread. Examples of 
hardware processing elements include: a thread unit, a 
thread slot, a thread, a process unit, a context, a context unit, 
a logical processor, a hardware thread, a core, and/or any 
other element, which is capable of holding a state for a 
processor, such as an execution state or architectural state. In 
other words, a processing element, in one embodiment, 
refers to any hardware capable of being independently 
associated with code, such as a software thread, operating 
system, application, or other code. A physical processor (or 
processor Socket) typically refers to an integrated circuit, 
which potentially includes any number of other processing 
elements, such as cores or hardware threads. 
0142. A core often refers to logic located on an integrated 
circuit capable of maintaining an independent architectural 
state, wherein each independently maintained architectural 
state is associated with at least some dedicated execution 
resources. In contrast to cores, a hardware thread typically 
refers to any logic located on an integrated circuit capable of 
maintaining an independent architectural state, wherein the 
independently maintained architectural States share access to 
execution resources. As can be seen, when certain resources 
are shared and others are dedicated to an architectural state, 
the line between the nomenclature of a hardware thread and 
core overlaps. Yet often, a core and a hardware thread are 
viewed by an operating system as individual logical proces 
sors, where the operating system is able to individually 
schedule operations on each logical processor. 
0143 Physical processor 2100, as illustrated in FIG. 21, 
includes two cores—core 2101 and 2102. Here, core 2101 
and 2102 are considered symmetric cores, i.e. cores with the 
same configurations, functional units, and/or logic. In 
another embodiment, core 2101 includes an out-of-order 
processor core, while core 2102 includes an in-order pro 
cessor core. However, cores 2101 and 2102 may be indi 
vidually selected from any type of core, such as a native 
core, a software managed core, a core adapted to execute a 
native Instruction Set Architecture (ISA), a core adapted to 
execute a translated Instruction Set Architecture (ISA), a 
co-designed core, or other known core. In a heterogeneous 
core environment (i.e. asymmetric cores). Some form of 
translation, such a binary translation, may be utilized to 
schedule or execute code on one or both cores. Yet to further 
the discussion, the functional units illustrated in core 2101 
are described in further detail below, as the units in core 
2102 operate in a similar manner in the depicted embodi 
ment. 

0144. As depicted, core 2101 includes two hardware 
threads 2101a and 2101b, which may also be referred to as 
hardware thread slots 2101a and 2101b. Therefore, software 
entities, such as an operating system, in one embodiment 
potentially view processor 2100 as four separate processors, 
i.e., four logical processors or processing elements capable 
of executing four software threads concurrently. As alluded 
to above, a first thread is associated with architecture state 
registers 2101a, a second thread is associated with architec 
ture state registers 2101b, a third thread may be associated 
with architecture state registers 2102a, and a fourth thread 
may be associated with architecture state registers 2102b. 
Here, each of the architecture state registers (2101a, 2101b. 
2102a, and 2102b) may be referred to as processing ele 
ments, thread slots, or thread units, as described above. As 
illustrated, architecture state registers 2101a are replicated 
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in architecture state registers 2101b, so individual architec 
ture states/contexts are capable of being stored for logical 
processor 2101a and logical processor 2101b. In core 2101, 
other Smaller resources, such as instruction pointers and 
renaming logic in allocator and renamer block 2130 may 
also be replicated for threads 2101a and 2101b. Some 
resources, such as re-order buffers in reorder/retirement unit 
2135, ILTB 2120, load/store buffers, and queues may be 
shared through partitioning. Other resources, such as general 
purpose internal registers, page-table base register(s), low 
level data-cache and data-TLB 2151, execution unit(s) 2140, 
and portions of out-of-order unit 2135 are potentially fully 
shared. 

(0145 Processor 2100 often includes other resources, 
which may be fully shared, shared through partitioning, or 
dedicated by/to processing elements. In FIG. 21, an embodi 
ment of a purely exemplary processor with illustrative 
logical units/resources of a processor is illustrated. Note that 
a processor may include, or omit, any of these functional 
units, as well as include any other known functional units, 
logic, or firmware not depicted. As illustrated, core 2101 
includes a simplified, representative out-of-order (OOO) 
processor core. But an in-order processor may be utilized in 
different embodiments. The OOO core includes a branch 
target buffer 2120 to predict branches to be executed/taken 
and an instruction-translation buffer (I-TLB) 2120 to store 
address translation entries for instructions. 

0146 Core 2101 further includes decode module 2125 
coupled to fetch unit 2120 to decode fetched elements. Fetch 
logic, in one embodiment, includes individual sequencers 
associated with thread slots 2101a, 2101b, respectively. 
Usually core 2101 is associated with a first ISA, which 
defines/specifies instructions executable on processor 2100. 
Often machine code instructions that are part of the first ISA 
include a portion of the instruction (referred to as an 
opcode), which references/specifies an instruction or opera 
tion to be performed. Decode logic 2125 includes circuitry 
that recognizes these instructions from their opcodes and 
passes the decoded instructions on in the pipeline for pro 
cessing as defined by the first ISA. For example, as dis 
cussed in more detail below decoders 2125, in one embodi 
ment, include logic designed or adapted to recognize 
specific instructions, such as transactional instruction. As a 
result of the recognition by decoders 2125, the architecture 
or core 2101 takes specific, predefined actions to perform 
tasks associated with the appropriate instruction. It is impor 
tant to note that any of the tasks, blocks, operations, and 
methods described herein may be performed in response to 
a single or multiple instructions; some of which may be new 
or old instructions. Note decoders 2126, in one embodiment, 
recognize the same ISA (or a subset thereof). Alternatively, 
in a heterogeneous core environment, decoders 2126 recog 
nize a second ISA (either a subset of the first ISA or a distinct 
ISA). 
0.147. In one example, allocator and renamer block 2130 
includes an allocator to reserve resources, such as register 
files to store instruction processing results. However, threads 
2101a and 2101b are potentially capable of out-of-order 
execution, where allocator and renamer block 2130 also 
reserves other resources, such as reorder buffers to track 
instruction results. Unit 2130 may also include a register 
renamer to rename program/instruction reference registers 
to other registers internal to processor 2100. Reorder/retire 
ment unit 2135 includes components, such as the reorder 
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buffers mentioned above, load buffers, and store buffers, to 
Support out-of-order execution and later in-order retirement 
of instructions executed out-of-order. 

0148 Scheduler and execution unit(s) block 2140, in one 
embodiment, includes a scheduler unit to schedule instruc 
tions/operation on execution units. For example, a floating 
point instruction is scheduled on a port of an execution unit 
that has an available floating point execution unit. Register 
files associated with the execution units are also included to 
store information instruction processing results. Exemplary 
execution units include a floating point execution unit, an 
integer execution unit, a jump execution unit, a load execu 
tion unit, a store execution unit, and other known execution 
units. 

0149 Lower level data cache and data translation buffer 
(D-TLB) 2150 are coupled to execution unit(s) 2140. The 
data cache is to store recently used/operated on elements, 
Such as data operands, which are potentially held in memory 
coherency states. The D-TLB is to store recent virtual/linear 
to physical address translations. As a specific example, a 
processor may include a page table structure to break 
physical memory into a plurality of virtual pages. 
0150. Here, cores 2101 and 2102 share access to higher 
level or further-out cache, such as a second level cache 
associated with on-chip interface 2110. Note that higher 
level or further-out refers to cache levels increasing or 
getting further way from the execution unit(s). In one 
embodiment, higher-level cache is a last-level data cache— 
last cache in the memory hierarchy on processor 2100— 
such as a second or third level data cache. However, higher 
level cache is not so limited, as it may be associated with or 
include an instruction cache. A trace cache—a type of 
instruction cache—instead may be coupled after decoder 
2125 to store recently decoded traces. Here, an instruction 
potentially refers to a macro-instruction (i.e. a general 
instruction recognized by the decoders), which may decode 
into a number of micro-instructions (micro-operations). 
0151. In the depicted configuration, processor 2100 also 
includes on-chip interface module 2110. Historically, a 
memory controller, which is described in more detail below, 
has been included in a computing system external to pro 
cessor 2100. In this scenario, on-chip interface 2110 is to 
communicate with devices external to processor 2100, such 
as system memory 2175, a chipset (often including a 
memory controller hub to connect to memory 2175 and an 
I/O controller hub to connect peripheral devices), a memory 
controller hub, a northbridge, or other integrated circuit. And 
in this scenario, bus 2105 may include any known intercon 
nect, such as multi-drop bus, a point-to-point interconnect, 
a serial interconnect, a parallel bus, a coherent (e.g. cache 
coherent) bus, a layered protocol architecture, a differential 
bus, and a GTL bus. 
0152 Memory 2175 may be dedicated to processor 2100 
or shared with other devices in a system. Common examples 
of types of memory 2175 include DRAM, SRAM, non 
Volatile memory (NV memory), and other known storage 
devices. Note that device 2180 may include a graphic 
accelerator, processor or card coupled to a memory control 
ler hub, data storage coupled to an I/O controller hub, a 
wireless transceiver, a flash device, an audio controller, a 
network controller, or other known device. 
0153. Recently however, as more logic and devices are 
being integrated on a single die. Such as SOC, each of these 
devices may be incorporated on processor 2100. For 
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example in one embodiment, a memory controller hub is on 
the same package and/or die with processor 2100. Here, a 
portion of the core (an on-core portion) 2110 includes one or 
more controller(s) for interfacing with other devices such as 
memory 2175 or a graphics device 2180. The configuration 
including an interconnect and controllers for interfacing 
with such devices is often referred to as an on-core (or 
un-core configuration). As an example, on-chip interface 
2110 includes a ring interconnect for on-chip communica 
tion and a high-speed serial point-to-point link 2105 for 
off-chip communication. Yet, in the SOC environment, even 
more devices, such as the network interface, co-processors, 
memory 2175, graphics processor 2180, and any other 
known computer devices/interface may be integrated on a 
single die or integrated circuit to provide Small form factor 
with high functionality and low power consumption. 
0154) In one embodiment, processor 2100 is capable of 
executing a compiler, optimization, and/or translator code 
2177 to compile, translate, and/or optimize application code 
2176 to support the apparatus and methods described herein 
or to interface therewith. A compiler often includes a pro 
gram or set of programs to translate Source text/code into 
target text/code. Usually, compilation of program/applica 
tion code with a compiler is done in multiple phases and 
passes to transform hi-level programming language code 
into low-level machine or assembly language code. Yet, 
single pass compilers may still be utilized for simple com 
pilation. A compiler may utilize any known compilation 
techniques and perform any known compiler operations, 
Such as lexical analysis, preprocessing, parsing. Semantic 
analysis, code generation, code transformation, and code 
optimization. 
0155 Larger compilers often include multiple phases, but 
most often these phases are included within two general 
phases: (1) a front-end, i.e. generally where syntactic pro 
cessing, semantic processing, and some transformation/op 
timization may take place, and (2) a back-end, i.e. generally 
where analysis, transformations, optimizations, and code 
generation takes place. Some compilers refer to a middle, 
which illustrates the blurring of delineation between a 
front-end and back end of a compiler. As a result, reference 
to insertion, association, generation, or other operation of a 
compiler may take place in any of the aforementioned 
phases or passes, as well as any other known phases or 
passes of a compiler. As an illustrative example, a compiler 
potentially inserts operations, calls, functions, etc. in one or 
more phases of compilation, Such as insertion of calls/ 
operations in a front-end phase of compilation and then 
transformation of the calls/operations into lower-level code 
during a transformation phase. Note that during dynamic 
compilation, compiler code or dynamic optimization code 
may insert Such operations/calls, as well as optimize the 
code for execution during runtime. As a specific illustrative 
example, binary code (already compiled code) may be 
dynamically optimized during runtime. Here, the program 
code may include the dynamic optimization code, the binary 
code, or a combination thereof. 
0156 Similar to a compiler, a translator, such as a binary 
translator, translates code either statically or dynamically to 
optimize and/or translate code. Therefore, reference to 
execution of code, application code, program code, or other 
software environment may refer to: (1) execution of a 
compiler program(s), optimization code optimizer, or trans 
lator either dynamically or statically, to compile program 
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code, to maintain Software structures, to perform other 
operations, to optimize code, or to translate code; (2) execu 
tion of main program code including operations/calls. Such 
as application code that has been optimized/compiled; (3) 
execution of other program code. Such as libraries, associ 
ated with the main program code to maintain Software 
structures, to perform other Software related operations, or to 
optimize code; or (4) a combination thereof. 
(O157. While the present invention has been described 
with respect to a limited number of embodiments, those 
skilled in the art will appreciate numerous modifications and 
variations therefrom. It is intended that the appended claims 
cover all such modifications and variations as fall within the 
true spirit and scope of this present invention. 
0158. A design may go through various stages, from 
creation to simulation to fabrication. Data representing a 
design may represent the design in a number of manners. 
First, as is useful in simulations, the hardware may be 
represented using a hardware description language or 
another functional description language. Additionally, a cir 
cuit level model with logic and/or transistor gates may be 
produced at Some stages of the design process. Furthermore, 
most designs, at Some stage, reach a level of data represent 
ing the physical placement of various devices in the hard 
ware model. In the case where conventional semiconductor 
fabrication techniques are used, the data representing the 
hardware model may be the data specifying the presence or 
absence of various features on different mask layers for 
masks used to produce the integrated circuit. In any repre 
sentation of the design, the data may be stored in any form 
of a machine readable medium. A memory or a magnetic or 
optical storage Such as a disc may be the machine readable 
medium to store information transmitted via optical or 
electrical wave modulated or otherwise generated to trans 
mit such information. When an electrical carrier wave 
indicating or carrying the code or design is transmitted, to 
the extent that copying, buffering, or re-transmission of the 
electrical signal is performed, a new copy is made. Thus, a 
communication provider or a network provider may store on 
a tangible, machine-readable medium, at least temporarily, 
an article, such as information encoded into a carrier wave, 
embodying techniques of embodiments of the present inven 
tion. 

0159. A module as used herein refers to any combination 
of hardware, Software, and/or firmware. As an example, a 
module includes hardware, such as a micro-controller, asso 
ciated with a non-transitory medium to store code adapted to 
be executed by the micro-controller. Therefore, reference to 
a module, in one embodiment, refers to the hardware, which 
is specifically configured to recognize and/or execute the 
code to be held on a non-transitory medium. Furthermore, in 
another embodiment, use of a module refers to the non 
transitory medium including the code, which is specifically 
adapted to be executed by the microcontroller to perform 
predetermined operations. And as can be inferred, in yet 
another embodiment, the term module (in this example) may 
refer to the combination of the microcontroller and the 
non-transitory medium. Often module boundaries that are 
illustrated as separate commonly vary and potentially over 
lap. For example, a first and a second module may share 
hardware, Software, firmware, or a combination thereof, 
while potentially retaining some independent hardware, 
software, or firmware. In one embodiment, use of the term 
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logic includes hardware, such as transistors, registers, or 
other hardware. Such as programmable logic devices. 
0160 Use of the phrase configured to, in one embodi 
ment, refers to arranging, putting together, manufacturing, 
offering to sell, importing and/or designing an apparatus, 
hardware, logic, or element to perform a designated or 
determined task. In this example, an apparatus or element 
thereof that is not operating is still configured to perform 
a designated task if it is designed, coupled, and/or intercon 
nected to perform said designated task. As a purely illustra 
tive example, a logic gate may provide a 0 or a 1 during 
operation. But a logic gate configured to provide an enable 
signal to a clock does not include every potential logic gate 
that may provide a 1 or 0. Instead, the logic gate is one 
coupled in some manner that during operation the 1 or 0 
output is to enable the clock. Note once again that use of the 
term configured to does not require operation, but instead 
focus on the latent state of an apparatus, hardware, and/or 
element, where in the latent state the apparatus, hardware, 
and/or element is designed to perform a particular task when 
the apparatus, hardware, and/or element is operating. 
0.161 Furthermore, use of the phrases to, capable 
of/to, and or operable to, in one embodiment, refers to 
Some apparatus, logic, hardware, and/or element designed in 
Such a way to enable use of the apparatus, logic, hardware, 
and/or element in a specified manner. Note as above that use 
of to, capable to, or operable to, in one embodiment, refers 
to the latent state of an apparatus, logic, hardware, and/or 
element, where the apparatus, logic, hardware, and/or ele 
ment is not operating but is designed in Such a manner to 
enable use of an apparatus in a specified manner. 
0162. A value, as used herein, includes any known rep 
resentation of a number, a state, a logical state, or a binary 
logical state. Often, the use of logic levels, logic values, or 
logical values is also referred to as 1s and 0's, which simply 
represents binary logic states. For example, a 1 refers to a 
high logic level and 0 refers to a low logic level. In one 
embodiment, a storage cell. Such as a transistor or flash cell, 
may be capable of holding a single logical value or multiple 
logical values. However, other representations of values in 
computer systems have been used. For example the decimal 
number ten may also be represented as a binary value of 
2110 and a hexadecimal letter A. Therefore, a value includes 
any representation of information capable of being held in a 
computer system. 
0163 Moreover, states may be represented by values or 
portions of values. As an example, a first value, such as a 
logical one, may represent a default or initial state, while a 
second value. Such as a logical Zero, may represent a 
non-default State. In addition, the terms reset and set, in one 
embodiment, refer to a default and an updated value or state, 
respectively. For example, a default value potentially 
includes a high logical value, i.e. reset, while an updated 
value potentially includes a low logical value, i.e. set. Note 
that any combination of values may be utilized to represent 
any number of States. 
(0164. The embodiments of methods, hardware, software, 
firmware or code set forth above may be implemented via 
instructions or code stored on a machine-accessible, 
machine readable, computer accessible, or computer read 
able medium which are executable by a processing element. 
A non-transitory machine-accessible/readable medium 
includes any mechanism that provides (i.e., stores and/or 
transmits) information in a form readable by a machine. Such 



US 2017/01 0928.6 A1 

as a computer or electronic system. For example, a non 
transitory machine-accessible medium includes random-ac 
cess memory (RAM), such as static RAM (SRAM) or 
dynamic RAM (DRAM); ROM; magnetic or optical storage 
medium; flash memory devices; electrical storage devices; 
optical storage devices; acoustical storage devices; other 
form of storage devices for holding information received 
from transitory (propagated) signals (e.g., carrier waves, 
infrared signals, digital signals); etc., which are to be distin 
guished from the non-transitory mediums that may receive 
information there from. 

0.165 Instructions used to program logic to perform 
embodiments of the invention may be stored within a 
memory in the system, such as DRAM, cache, flash 
memory, or other storage. Furthermore, the instructions can 
be distributed via a network or by way of other computer 
readable media. Thus a machine-readable medium may 
include any mechanism for storing or transmitting informa 
tion in a form readable by a machine (e.g., a computer), but 
is not limited to, floppy diskettes, optical disks, Compact 
Disc, Read-Only Memory (CD-ROMs), and magneto-opti 
cal disks, Read-Only Memory (ROMs), Random Access 
Memory (RAM), Erasable Programmable Read-Only 
Memory (EPROM), Electrically Erasable Programmable 
Read-Only Memory (EEPROM), magnetic or optical cards, 
flash memory, or a tangible, machine-readable storage used 
in the transmission of information over the Internet via 
electrical, optical, acoustical or other forms of propagated 
signals (e.g., carrier waves, infrared signals, digital signals, 
etc.). Accordingly, the computer-readable medium includes 
any type of tangible machine-readable medium Suitable for 
storing or transmitting electronic instructions or information 
in a form readable by a machine (e.g., a computer). 
0166 The following examples pertain to embodiments in 
accordance with this Specification. One or more embodi 
ments may provide an apparatus, a system, a machine 
readable storage, a machine readable medium, and a method 
to receive a request that is to reference a first agent and to 
request a particular line of memory to be cached in an 
exclusive state, send a Snoop request intended for one or 
more other agents, receive a Snoop response that is to 
reference a second agent, the Snoop response to include a 
writeback to memory of a modified cache line that is to 
correspond to the particular line of memory, and send a 
complete to be addressed to the first agent, wherein the 
complete is to include data of the particular line of memory 
based on the writeback. 

0167. In at least one example, the modified cache line is 
written to the particular line of memory. 
0.168. In at least one example, it is determined that the 
cache line of the second agent is a modified cache line. The 
complete can be to be sent prior to receiving responses to all 
of the Snoop requests corresponding to the request from the 
first agent based on determining that the cache line of the 
second agent is a modified cache line. 
0169. In at least one example, the snoop request com 
prises a Snoop invalidate request. The Snoop invalidate 
request can be to invalidate the cache of the receiving other 
agent corresponding to the particular line or memory. The 
Snoop invalidate request can identify the particular line of 
memory and a command included in the request from the 
first agent. 
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0170 In at least one example, a directory state can be 
transitioned to indicate that the particular line of memory is 
associated with an exclusive state. 
0171 One or more embodiments may provide an appa 
ratus, a system, a machine readable storage, a machine 
readable medium, and a method to receive a request that is 
to send a request for a particular cache line in an exclusive 
state, and receive data from memory corresponding to the 
particular cache line, wherein the particular data comprises 
data written-back to memory by another agent following the 
request. 
0172. In at least one example, the particular cache line is 
in an invalid state prior to the request. 
0173. In at least one example, the exclusive state is an 
E-state indicating that a copy of the data in the particular 
cache line matches the memory and is an exclusive copy. 
0.174. In at least one example, the particular data is copied 
to the particular cache line. The particular cache line can be 
transitioned to an exclusive state based on receiving the 
particular data. 
0.175. In at least one example, the data written-back to 
memory by another agent comprises data returned in 
response to a Snoop corresponding to the request for the 
particular cache line in an exclusive state. 
0176). In at least one example, the Snoop is one of a 
plurality of Snoops and the particular data is to be received 
prior to responses being returned for each of the Snoop 
requests. 
0177. One or more embodiments may provide an appa 
ratus, a system, a machine readable storage, a machine 
readable medium, and a method to receive a request that is 
to receive an explicit writeback request, wherein the explicit 
writeback request is to correspond to a modified cache line 
that is to correspond to a particular line of memory, and the 
explicit writeback request is to include a hint to indicate that 
another cache is to request the particular line of memory, 
determine whether to push data of the modified cache line to 
the other cache prior to writing the data of the modified 
cache line to the particular line of memory, and send a 
complete to correspond to the explicit writeback request. 
0178. In at least one example, determining not to push the 
data is to cause the data of the modified cache line to be 
written to the particular line of memory. 
0179. In at least one example, the data of the modified 
cache line is not to be pushed to the other cache. 
0180. In at least one example, a directory state corre 
sponding to the particular line of memory can be transi 
tioned from an exclusive state to an invalid state. 
0181. In at least one example, determining to push the 
data is to cause the data of the modified cache line to be sent 
to a first cache agent corresponding to the other cache to 
write the data of the modified cache line to be written to a 
corresponding cache line of the other cache. 
0182. In at least one example, a directory state corre 
sponding to the particular line of memory is to transition to 
a state indicating that the other cache has an exclusive copy 
of the particular line of memory. 
0183 In at least one example, the explicit writeback 
request comprises a single coherence protocol request from 
a different, second cache agent corresponding to the modi 
fied cache line. 
0184. In at least one example, determining to push the 
data comprises determining whether the other cache is a 
local cache. 
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0185. In at least one example, determining to push the 
data comprises determining whether there are other out 
standing requests for the particular line of memory. 
0186 One or more embodiments may provide an appa 
ratus, a system, a machine readable storage, a machine 
readable medium, and a method to receive a request that is 
to send an explicit writeback request to a home agent, 
wherein the explicit writeback request is to correspond to a 
modified cache line that is to correspond to a particular line 
of memory, the explicit writeback request is to include a hint 
to indicate that another cache is to request the particular line 
of memory, and receive a completion from the home agent 
for the explicit writeback request. 
0187. In at least one example, the modified cache line is 
to transition from a modified State to an invalid State 
following the sending of the explicit writeback request. 
0188 In at least one example, the explicit writeback 
request is to cause data of the modified cache line to be 
written to the other cache without being written to the 
particular line of memory. 
0189 In at least one example, the explicit writeback 
request comprises a single coherence protocol request. 
0190. In at least one example, the explicit writeback 
request is to identify the other cache. 
0191) One or more embodiments may provide an appa 
ratus, a system, a machine readable storage, a machine 
readable medium, and a method to receive a request that is 
to receive a writeback flush message, identify a set of 
pending writes of the memory controller to a particular 
persistent memory, and write all of the set of pending writes 
to the particular memory based on the writeback flush 
message. 
0.192 In at least one example, the writeback flush mes 
sage comprises a coherence protocol message. 
0193 In at least one example, the writeback flush mes 
Sage generated by a cache agent. 
0194 In at least one example, the set of pending writes 
comprises all pending writes of the memory controller. 
0.195 The apparatus of claim 40, wherein the writeback 
flush message is to identify the memory controller. 
0196. In at least one example, the writeback flush mes 
sage is to identify a memory address corresponding to the 
particular memory. 
0197) In at least one example, the writeback flush mes 
sage corresponds to a power failure management activity. 
0198 One or more embodiments may provide an appa 
ratus, a system, a machine readable storage, a machine 
readable medium, and a method to receive a request that is 
to identify that a particular line of a cache is in a forward 
state, receive a request that corresponds to the particular line 
of the cache, determine whether to retain the forward state 
following a response to the request, and respond to the 
request. 
0199. In at least one example, determining whether to 
retain the forward State includes determining a value of a 
configuration parameter for the agent, wherein a value of the 
configuration parameter identifies whether or not the for 
ward state is to be retained. 
0200. In at least one example, the value of the configu 
ration parameter can be changed. Determining whether to 
retain the forward State can include determining to retain the 
forward state following the response. Determining whether 
to retain the forward State can include determining to 
transition from the forward state following the response. In 
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at least one example, the forward State is to transition from 
the forward State to a shared State. In at least one example, 
the forward state is to transition from the forward state to the 
invalid state. 
0201 In at least one example, the request comprises a 
Snoop. Responding to the request can include forwarding 
data from the particular line of cache to another agent. 
0202 One or more embodiments may provide an appa 
ratus, a system, a machine readable storage, a machine 
readable medium, and a method to receive a request that is 
to provide an agent including protocol layer logic to gener 
ate a fanout Snoop request, and routing layer logic to identify 
a plurality of agents to receive a Snoop according to the 
fanout Snoop request, and send Snoop requests to each of the 
plurality of agents. 
0203. In at least one example, the plurality of agents is 
identified from a configuration parameter identifying each 
agent in a corresponding fanouot cone. 
0204. In at least one example, the configuration param 
eter is to identify each agent by address. 
0205. In at least one example, it can be determined 
whether a fanout Snoop can be used to Snoop one or more 
agents. 
0206. In at least one example, the agent is a home agent 
and the Snoop requests can each comprise a Snoop to obtain 
cache data in anyone of a forward or shared State. 
0207. In at least one example, the snoop requests each 
comprise a Snoop to obtain cache data in anyone of a 
modified, exclusive, forward, or shared state. 
0208. In at least one example, the snoop requests each 
comprise a Snoop to obtain cache data in anyone of a 
modified or exclusive state. 
0209. In at least one example, the snoop requests each 
comprise a Snoop to the cache of the respective agent, 
wherein data in modified state is to be flushed to memory. 
0210. In at least one example, Snoop responses can be 
received for one or more of the Snoop requests. 
0211 One or more examples can further provide an agent 
including a layered protocol stack including a protocol layer, 
wherein the protocol layer is to initiate a read invalidate 
request that is to accept exclusive coherency state data. 
0212. One or more examples can further provide an agent 
including a layered protocol stack including a protocol layer, 
wherein the protocol layer is to initiate an invalidate that is 
to request exclusive ownership of a cache line without 
receiving data and with an indication of writing back the 
cache line. 
0213. In at least one example, writing back the cache line 
is within a near time frame. 
0214. One or more examples can further provide an agent 
including a layered protocol stack including a protocol layer, 
wherein the protocol layer is to initiate a write-back flush 
request that is to cause a flush of data to persistent memory. 
0215 One or more examples can further provide an agent 
including a layered protocol stack including a protocol layer, 
wherein the protocol layer is to initiate a single fanout Snoop 
request that is to cause a Snoop request to be generated to 
peer agents within a fanout cone. 
0216. One or more examples can further provide an agent 
including a layered protocol stack including a protocol layer, 
wherein the protocol layer is to initiate an explicit writeback 
request with cache-push hint to a home agent that a refer 
enced cache line may be pushed to a local cache without 
writing the data to memory. 
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0217. In at least one example, the cache line may be 
storing in M state. 
0218. One or more examples can further provide an agent 
including a layered protocol stack including a protocol layer, 
wherein the protocol layer is to initiate a forward of shared 
data, while maintaining a forward State to be associated with 
the shared data. 
0219 Reference throughout this specification to “one 
embodiment' or “an embodiment’ means that a particular 
feature, structure, or characteristic described in connection 
with the embodiment is included in at least one embodiment 
of the present invention. Thus, the appearances of the 
phrases “in one embodiment” or “in an embodiment” in 
various places throughout this specification are not neces 
sarily all referring to the same embodiment. Furthermore, 
the particular features, structures, or characteristics may be 
combined in any Suitable manner in one or more embodi 
mentS. 

0220. In the foregoing specification, a detailed descrip 
tion has been given with reference to specific exemplary 
embodiments. It will, however, be evident that various 
modifications and changes may be made thereto without 
departing from the broader spirit and scope of the invention 
as set forth in the appended claims. The specification and 
drawings are, accordingly, to be regarded in an illustrative 
sense rather than a restrictive sense. Furthermore, the fore 
going use of embodiment and other exemplarily language 
does not necessarily refer to the same embodiment or the 
same example, but may refer to different and distinct 
embodiments, as well as potentially the same embodiment. 

1-73. (canceled) 
74. An apparatus comprising: 
a node comprising at least one processor, a cache, and a 

first coherence agent to: 
receive a Snoop request, wherein the Snoop request is to 
be received from a home agent, the Snoop request 
comprises a Snoop invalidate request, the Snoop 
request is to correspond to a request sent to the home 
agent by a second coherence agent, and the Snoop 
request comprises an address field encoded with a 
node identifier (NID) of the home agent; 

generate a Snoop response, wherein the Snoop response 
comprises a command field, a destination NID field, 
a home transaction identifier (TID) field, and data, 
wherein the command field is to be encoded to 
indicate that the Snoop response comprises an 
implicit writeback, the destination NID field is 
encoded with the NID of the home agent, the home 
TID field is encoded to identify a resource allocated 
by the home agent to process the Snoop request, and 
the data is to be written back to memory; 

send the Snoop response to the home agent; and 
change a state of the cache based on the Snoop 

response. 
75. The apparatus of claim 74, wherein the state of the 

cache is one of a set of defined States. 
76. The apparatus of claim 75, wherein the set of defined 

states comprise a modified State, an exclusive state, a shared 
state, and an invalid State. 

77. The apparatus of claim 74, wherein the state of cache 
is changed to an invalid state. 

78. The apparatus of claim 77, wherein the state of the 
cache is changed from a modified State to the invalid state. 
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79. The apparatus of claim 78, wherein the Snoop 
response is to comprise the implicit writeback based on the 
modified state. 

80. The apparatus of claim 74, wherein the Snoop invali 
date request is based on an exclusive directory state asso 
ciated with the home agent. 

81. The apparatus of claim 74, wherein the data is written 
back to memory based on the implicit writeback. 

82. The apparatus of claim 81, wherein the data is flushed 
from the cache concurrently with the writing back of the data 
to memory. 

83. A method comprising: 
receiving at a home agent of a memory, a read request 

from a first caching agent, wherein the read request 
corresponds to a particular line of the memory; 

sending a Snoop request to a second caching agent respon 
sive to the read request, wherein the Snoop request 
comprises a command field, an address field, a desti 
nation node identifier (NID) field, a requesting (NID) 
field, a requesting transaction identifier (TID) field, and 
a home TID field, wherein the command field of the 
Snoop request is encoded to indicate that the Snoop 
request comprises a Snoop invalidate and the home TID 
field of the snoop request identifies a resource allocated 
by the home agent to process the Snoop request; 

receiving a Snoop response from the second caching agent 
responsive to the Snoop request, wherein the Snoop 
response comprises a command field, a destination NID 
field, a home TID field, and data from a cache corre 
sponding to the second caching agent, wherein the 
command field of the Snoop response is encoded to 
indicate that the Snoop response comprises an implicit 
writeback; 

writing the data to the particular line of the memory; 
changing a state of the particular line of the memory to an 

invalid State based on writing the data to the particular 
line; 

sending a completion to the first caching agent responsive 
to the read request; and 

changing the state of the particular line of the memory to 
an exclusive state based on the completion. 

84. The method of claim 83, wherein the state of the 
particular line of memory is changed from an exclusive state 
to the invalid state. 

85. The method of claim 83, wherein the read request 
comprises a request to cause the first caching agent to obtain 
ownership of the particular line of the memory in an 
exclusive state. 

86. The method of claim 85, wherein the completion 
comprises no data. 

87. The method of claim 83, wherein the completion 
comprises the data. 

88. The method of claim 83, wherein the read request 
comprises a read invalidate (Rdnv) request. 

89. The method of claim 88, wherein the read invalidate 
request corresponds to an unknown directory state corre 
sponding to the particular line of the memory. 

90. The method of claim 88, wherein the read invalidate 
request indicates that an exclusive copy of the particular line 
is requested. 

91. At least one non-transitory machine accessible storage 
medium having instructions stored thereon, the instructions 
when executed on a machine, cause the machine to: 
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receive a Snoop request, wherein the Snoop request is to 
be received from a home agent, the Snoop request 
comprises a Snoop invalidate request, the Snoop request 
is to correspond to a request sent to the home agent by 
a second coherence agent, and the Snoop request com 
prises an address field encoded with a node identifier 
(NID) of the home agent; 

generate a Snoop response, wherein the Snoop response 
comprises a command field, a destination NID field, a 
home transaction identifier (TID) field, and data, 
wherein the command field is to be encoded to indicate 
that the Snoop response comprises an implicit write 
back, the destination NID field is encoded with the NID 
of the home agent, the home TID field is encoded to 
identify a resource allocated by the home agent to 
process the Snoop request, and the data is to be written 
back to memory; 

send the Snoop response to the home agent; and 
change a state of the cache based on the Snoop response. 
92. At least one non-transitory machine accessible storage 

medium having instructions stored thereon, the instructions 
when executed on a machine, cause the machine to: 

Senda Snoop request to a second caching agent responsive 
to the read request, wherein the Snoop request com 
prises a command field, an address field, a destination 
node identifier (NID) field, a requesting (NID) field, a 
requesting transaction identifier (TID) field, and a 
home TID field, wherein the command field of the 
Snoop request is encoded to indicate that the Snoop 
request comprises a Snoop invalidate and the home TID 
field of the snoop request identifies a resource allocated 
by the home agent to process the Snoop request; 

receive a Snoop response from the second caching agent 
responsive to the Snoop request, wherein the Snoop 
response comprises a command field, a destination NID 
field, a home TID field, and data from a cache corre 
sponding to the second caching agent, wherein the 
command field of the Snoop response is encoded to 
indicate that the Snoop response comprises an implicit 
writeback; 

write the data to the particular line of the memory; 
change a state of the particular line of the memory to an 

invalid State based on writing the data to the particular 
line; 

send a completion to the first caching agent responsive to 
the read request; and 

change the State of the particular line of the memory to an 
exclusive state based on the completion. 

93. A system comprising: 
a first node comprising a first processor, a first cache, and 

a first caching agent; 
a second node comprising a second processor, a second 

cache, and a second caching agent; and 
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a third node comprising a third processor, a memory, and 
a third caching agent, wherein the third caching agent 
comprises protocol logic to: 
receive a read request from the first caching agent for 

data from a particular line of the memory; 
send a Snoop request to the second caching agent 

responsive to the read request, wherein the Snoop 
request comprises a command field encoded to indi 
cate that the Snoop request comprises a Snoop invali 
date; 

receive a Snoop response from the second caching 
agent responsive to the Snoop request, wherein the 
Snoop response comprises data from the second 
cache and a command field encoded to indicate that 
the Snoop response comprises an implicit writeback; 

write the data to the particular line of the memory 
responsive to the Snoop response; 

change a directory state of the particular line to an 
invalid state based on the implicit writeback; 

send a completion to the first caching agent responsive 
to the read request, wherein the completion com 
prises the data; and 

change the directory state of the particular line to an 
exclusive state based on sending the completion. 

94. The system of claim 93, wherein the third caching 
agent comprises a home agent. 

95. The system of claim 93, wherein the first, second, and 
third nodes are interconnected by a plurality of links in the 
system. 

96. The system of claim 95, wherein the plurality of links 
are according to a cache coherent multilayer interconnect 
protocol. 

97. A system comprising: 
means to receive a Snoop request, wherein the Snoop 

request is to be received from a home agent, the Snoop 
request comprises a Snoop invalidate request, the Snoop 
request is to correspond to a request sent to the home 
agent by a second coherence agent, and the Snoop 
request comprises an address field encoded with a node 
identifier (NID) of the home agent; 

means to generate a Snoop response, wherein the Snoop 
response comprises a command field, a destination NID 
field, a home transaction identifier (TID) field, and 
data, wherein the command field is to be encoded to 
indicate that the Snoop response comprises an implicit 
writeback, the destination NID field is encoded with the 
NID of the home agent, the home TID field is encoded 
to identify a resource allocated by the home agent to 
process the Snoop request, and the data is to be written 
back to memory; 

means to send the Snoop response to the home agent; and 
means to change a state of the cache based on the Snoop 

response. 


