
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0109286 A1

Blankenship et al.

US 2017.0109286A1

(43) Pub. Date: Apr. 20, 2017

(54)

(71)

(72)

(73)

(21)

(22)

(63)

HIGH PERFORMANCE INTERCONNECT
COHERENCE PROTOCOL

Applicant: Intel Corporation, Santa Clara, CA
(US)

Inventors: Robert G. Blankenship, Tacoma, WA
(US); Bahaa Fahim, Santa Clara, CA
(US); Robert H. Beers, Beaverton, OR
(US); Yen-Cheng Liu, Portland, OR
(US); Vedaraman Geetha, Fremont,
CA (US); Herbert H. Hum, Portland,
OR (US); Jeff Willey, Timnath, CO
(US)

Assignee: Intel Corporation, Santa Clara, CA
(US)

Appl. No.: 15/393,577

Filed: Dec. 29, 2016

Related U.S. Application Data
Continuation of application No. 14/554,532, filed on
Nov. 26, 2014, which is a continuation of application

No. 13/976,954, filed on Jun. 27, 2013, filed as
application No. PCT/US2013/032651 on Mar. 15,
2013.

Provisional application No. 61/717,091, filed on Oct.
22, 2012.

(60)

Publication Classification

Int. C.
G06F 2/083
G06F 2/0808
U.S. C.
CPC G06F 12/0831 (2013.01); G06F 12/0808

(2013.01); G06F 221 2/621 (2013.01)
(57) ABSTRACT
A request is received that is to reference a first agent and to
request a particular line of memory to be cached in an
exclusive state. A Snoop request is sent intended for one or
more other agents. A Snoop response is received that is to
reference a second agent, the Snoop response to include a
writeback to memory of a modified cache line that is to
correspond to the particular line of memory. A complete is
sent to be addressed to the first agent, wherein the complete
is to include data of the particular line of memory based on
the writeback.

(51)
(2006.01)
(2006.01)

(52)

100

Graphics Acce feratof
130

Arocessor

f(5

f6

Controffer
fiti
f fi

f)

& 120) Sysian
y / petitory

v. 122 A f 10

I/O Device 125

Patent Application Publication

100

f32

raph fos. Acce feraiof
130

Apr. 20, 2017. Sheet 1 of 19

Arocessor

106

118 Conifro f fer
fiti
f 15

I/O Device 125

AIG 7

US 2017/O109286 A1

System
fmemory

f 10

Patent Application Publication Apr. 20, 2017. Sheet 2 of 19 US 2017/O109286 A1

fo Arocessing Core

A

,, .,,, Aacket Header/

fransact for layer 205 tgCO
Y-------------------------------'

A
vil

70 y
A link layer 2 2ff 206 212

N. -1

TTA III

Physical layer 220
logicaf Stif is fock 22f

223 2ff 2O6 2/2 223
ffectrica / Sub-Bfock 222

fo Axterna f Dev foe

AIG 2

Patent Application Publication Apr. 20, 2017. Sheet 4 of 19 US 2017/O109286 A1

HPI Based
Processor

HP Based
Processor

P Based
Processor

HP Based
Processor

HPI Based
Processor

HPI Based HPI Based P Based HPI Based
Processor Processor Processor Processor

HPI Based P Based HPI Based HP Based
Processor Processor Processor Processor

HP

US 2017/O109286 A1 Apr. 20, 2017. Sheet 5 of 19 Patent Application Publication

q0/9 2/9A87 yu/7

999 S? //-/

Patent Application Publication Apr. 20, 2017. Sheet 6 of 19 US 2017/O109286 A1

Fig. 7

Patent Application Publication Apr. 20, 2017. Sheet 7 of 19 US 2017/O109286 A1

Diff c Eyf-f

Fig. 8

Patent Application Publication Apr. 20, 2017. Sheet 8 of 19 US 2017/O109286 A1

Z0 Z2 Z10
Cache Cache home Z3

Agent 1 Agent 2 Agent Memory
Cacfie r Cacfie r f Dff a ty

fed (if)

is

(Comp fete)

Patent Application Publication

702
Cache

Agent 1
Cache r if

fief

A.
Cache

Agent 2
Cacfie F /

fy f

Afg. 10

Apr. 20, 2017. Sheet 9 of 19 US 2017/O109286 A1

US 2017/O109286 A1 Apr. 20, 2017. Sheet 10 of 19 Patent Application Publication

Patent Application Publication Apr. 20, 2017. Sheet 11 of 19 US 2017/0109286 A1

Z03 Z22 Z10

Cache ...2 Home ZE
CaOfie r if Cache F | A far - A f-f

Pushm

fy if Data Push Afric Fyof-2

cur

fig. 12

Patent Application Publication Apr. 20, 2017. Sheet 12 of 19 US 2017/0109286 A1

Z03 A2 Z10
Cache Cache home ZE

Agent 1 Agent 2 Agent femory
Cache r if Cache - 1 A fir - Exclf-f

fig. 13

Patent Application Publication Apr. 20, 2017. Sheet 13 of 19 US 2017/0109286 A1

1403 1410 1413
Host femory femory

Contro / ?er

Fush
Persistent
Writes

Fig. 14

Patent Application Publication Apr. 20, 2017. Sheet 14 of 19 US 2017/0109286 A1

Current States Next State

Reqrk Dir RecTrk Msg to Red NED RecTrk
state cmd state Snoop cmd Data state

invalid,
Exclusive, Data E CmpO
Unknown

Data F. CmpO

I Data sco
includes a Uses
Peer Owers Data FCmp0

Data St
iData St. CmpO

invalid, Data F
Exclusive, Data F. CmpO

DataSent
CmpSent
DataSent

CmpSent
DataSent
CmpSent
DataSent

Data St. CmpO
COO CmoSent

Stored DataSent

Data M. CmpOData CmpSent

US 2017/O109286 A1

- - - - - - - - -| ?eled q?Spºdski?I”TË!/\!

GINH on ºsw|, aleis || (sew | Ble?s

? ?

Apr. 20, 2017. Sheet 15 of 19 Patent Application Publication

US 2017/O109286 A1

„~~~

:ITETET
Apr. 20, 2017. Sheet 16 of 19 Patent Application Publication

Patent Application Publication Apr. 20, 2017. Sheet 18 of 19 US 2017/0109286 A1

fast Angine
1900

fiome Agent
Af

Simu fated
Cache Agent

ff

Afg. 79

fest Engine
f00

Cache Agent
Simu fated
fonie Agent f2.

Patent Application Publication Apr. 20, 2017. Sheet 19 of 19 US 2017/0109286 A1

POWerControl. 2160

CORE 2707 (ORE 2102

Arch Reg Arch Reg Arch Reg Arch Reg
2/0 fa 2fOff 2fO2a 2fO2

BIBand I-ILB 2120 BIBand I-ILB 2121

Rename/AlloCater 21.30 Rename/Allocater 21.3.1

Scheduler Execution Scheduler/Execution
Unit(S) 2/40 Unit(S) 2141

ReOrder Retirement ReOrder Retirement
Unit 2/35 Unit 2/36

LOWer level D- LOWer level D
Cache and D-ILB2/50 Cache and D-ILB2/51

On-Chip interface 21 10

2176 217 System memory 27.75
AIG 21

Device 2180

US 2017/01 0928.6 A1

HGH PERFORMANCE INTERCONNECT
COHERENCE PROTOCOL

FIELD

0001. The present disclosure relates in general to the field
of computer development, and more specifically, to Software
development involving coordination of mutually-dependent
constrained systems.

BACKGROUND

0002 Advances in semi-conductor processing and logic
design have permitted an increase in the amount of logic that
may be present on integrated circuit devices. As a corollary,
computer system configurations have evolved from a single
or multiple integrated circuits in a system to multiple cores,
multiple hardware threads, and multiple logical processors
present on individual integrated circuits, as well as other
interfaces integrated within Such processors. A processor or
integrated circuit typically comprises a single physical pro
cessor die, where the processor die may include any number
of cores, hardware threads, logical processors, interfaces,
memory, controller hubs, etc.
0003. As a result of the greater ability to fit more pro
cessing power in Smaller packages, Smaller computing
devices have increased in popularity. Smartphones, tablets,
ultrathin notebooks, and other user equipment have grown
exponentially. However, these smaller devices are reliant on
servers both for data storage and complex processing that
exceeds the form factor. Consequently, the demand in the
high-performance computing market (i.e. server space) has
also increased. For instance, in modern servers, there is
typically not only a single processor with multiple cores, but
also multiple physical processors (also referred to as mul
tiple sockets) to increase the computing power. But as the
processing power grows along with the number of devices in
a computing system, the communication between sockets
and other devices becomes more critical.

0004. In fact, interconnects have grown from more tra
ditional multi-drop buses that primarily handled electrical
communications to full blown interconnect architectures
that facilitate fast communication. Unfortunately, as the
demand for future processors to consume at even higher
rates corresponding demand is placed on the capabilities of
existing interconnect architectures.

BRIEF DESCRIPTION OF THE DRAWINGS

0005 FIG. 1 illustrates a simplified block diagram of a
system including a serial point-to-point interconnect to
connect I/O devices in a computer system in accordance
with one embodiment;
0006 FIG. 2 illustrates a simplified block diagram of a
layered protocol stack in accordance with one embodiment;
0007 FIG. 3 illustrates an embodiment of a transaction
descriptor.
0008 FIG. 4 illustrates an embodiment of a serial point
to-point link.
0009 FIG. 5 illustrates embodiments of potential High
Performance Interconnect (HPI) system configurations.
0010 FIG. 6 illustrates an embodiment of a layered
protocol stack associated with HPI.
0011 FIG. 7 illustrates a flow diagram of example coher
ence protocol conflict management.

Apr. 20, 2017

0012 FIG. 8 illustrates a flow diagram of another
example coherence protocol conflict management.
0013 FIG. 9 illustrates a flow diagram of another
example coherence protocol conflict management.
0014 FIG. 10 illustrates a flow diagram of an example
Snoop response with writeback to memory.
0015 FIG. 11 illustrates a flow diagram of another
example of a Snoop response with writeback to memory.
0016 FIG. 12 illustrates a flow diagram of an example
writeback push operation.
0017 FIG. 13 illustrates a flow diagram of an example
writeback to memory.
0018 FIG. 14 illustrates a flow diagram of an example
memory controller flush operation.
(0019 FIGS. 15-17 illustrate representations of example
protocol state tables.
0020 FIG. 18 illustrates a representation of an example
nesting of protocol state tables.
0021 FIG. 19 illustrates a representation of use of a set
of protocol state tables by an example testing engine.
0022 FIG. 20 illustrates a representation of use of a set
of protocol state tables by an example testing engine.
0023 FIG. 21 illustrates an embodiment of a block
diagram for a computing system including a multicore
processor.
0024 Like reference numbers and designations in the
various drawings indicate like elements.

DETAILED DESCRIPTION

0025. In the following description, numerous specific
details are set forth, Such as examples of specific types of
processors and system configurations, specific hardware
structures, specific architectural and micro architectural
details, specific register configurations, specific instruction
types, specific system components, specific processor pipe
line stages, specific interconnect layers, specific packet/
transaction configurations, specific transaction names, spe
cific protocol exchanges, specific link widths, specific
implementations, and operation etc. in order to provide a
thorough understanding of the present invention. It may be
apparent, however, to one skilled in the art that these specific
details need not necessarily be employed to practice the
Subject matter of the present disclosure. In other instances,
well detailed description of known components or methods
has been avoided, such as specific and alternative processor
architectures, specific logic circuits/code for described algo
rithms, specific firmware code, low-level interconnect
operation, specific logic configurations, specific manufac
turing techniques and materials, specific compiler imple
mentations, specific expression of algorithms in code, spe
cific power down and gating techniques/logic and other
specific operational details of computer system in order to
avoid unnecessarily obscuring the present disclosure.
0026. Although the following embodiments may be
described with reference to energy conservation, energy
efficiency, processing efficiency, and so on in specific inte
grated circuits, such as in computing platforms or micro
processors, other embodiments are applicable to other types
of integrated circuits and logic devices. Similar techniques
and teachings of embodiments described herein may be
applied to other types of circuits or semiconductor devices
that may also benefit from such features. For example, the
disclosed embodiments are not limited to server computer
system, desktop computer systems, laptops, UltrabooksTM,

US 2017/01 0928.6 A1

but may be also used in other devices, such as handheld
devices, Smartphones, tablets, other thin notebooks, systems
on a chip (SOC) devices, and embedded applications. Some
examples of handheld devices include cellular phones, Inter
net protocol devices, digital cameras, personal digital assis
tants (PDAs), and handheld PCs. Here, similar techniques
for a high-performance interconnect may be applied to
increase performance (or even save power) in a low power
interconnect. Embedded applications typically include a
microcontroller, a digital signal processor (DSP), a system
on a chip, network computers (NetPC), set-top boxes, net
work hubs, wide area network (WAN) switches, or any other
system that can perform the functions and operations taught
below. Moreover, the apparatus', methods, and systems
described herein are not limited to physical computing
devices, but may also relate to Software optimizations for
energy conservation and efficiency. As may become readily
apparent in the description below, the embodiments of
methods, apparatus, and systems described herein (whether
in reference to hardware, firmware, software, or a combi
nation thereof) may be considered vital to a “green technol
ogy' future balanced with performance considerations.
0027 AS computing systems are advancing, the compo
nents therein are becoming more complex. The interconnect
architecture to couple and communicate between the com
ponents has also increased in complexity to ensure band
width demand is met for optimal component operation.
Furthermore, different market segments demand different
aspects of interconnect architectures to Suit the respective
market. For example, servers require higher performance,
while the mobile ecosystem is sometimes able to sacrifice
overall performance for power savings. Yet, it is a singular
purpose of most fabrics to provide highest possible perfor
mance with maximum power saving. Further, a variety of
different interconnects can potentially benefit from subject
matter described herein. For instance, the Peripheral Com
ponent Interconnect (PCI) Express (PCIe) interconnect fab
ric architecture and QuickPath Interconnect (QPI) fabric
architecture, among other examples, can potentially be
improved according to one or more principles described
herein, among other examples.
0028 FIG. 1 illustrates one embodiment of a fabric
composed of point-to-point Links that interconnect a set of
components is illustrated. System 100 includes processor
105 and system memory 110 coupled to controller hub 115.
Processor 105 can include any processing element, Such as
a microprocessor, a host processor, an embedded processor,
a co-processor, or other processor. Processor 105 is coupled
to controller hub 115 through front-side bus (FSB) 106. In
one embodiment, FSB 106 is a serial point-to-point inter
connect as described below. In another embodiment, link
106 includes a serial, differential interconnect architecture
that is compliant with different interconnect standard.
0029 System memory 110 includes any memory device,
such as random access memory (RAM), non-volatile (NV)
memory, or other memory accessible by devices in system
100. System memory 110 is coupled to controller hub 115
through memory interface 116. Examples of a memory
interface include a double-data rate (DDR) memory inter
face, a dual-channel DDR memory interface, and a dynamic
RAM (DRAM) memory interface.
0030. In one embodiment, controller hub 115 can include
a root hub, root complex, or root controller, such as in a PCIe
interconnection hierarchy. Examples of controller hub 115

Apr. 20, 2017

include a chipset, a memory controller hub (MCH), a
northbridge, an interconnect controller hub (ICH) a south
bridge, and a root controller/hub. Often the term chipset
refers to two physically separate controller hubs, e.g., a
memory controller hub (MCH) coupled to an interconnect
controller hub (ICH). Note that current systems often
include the MCH integrated with processor 105, while
controller 115 is to communicate with I/O devices, in a
similar manner as described below. In some embodiments,
peer-to-peer routing is optionally supported through root
complex 115.
0031 Here, controller hub 115 is coupled to switch/
bridge 120 through serial link 119. Input/output modules 117
and 121, which may also be referred to as interfaces/ports
117 and 121, can include/implement a layered protocol stack
to provide communication between controller hub 115 and
switch 120. In one embodiment, multiple devices are
capable of being coupled to switch 120.
0032 Switch/bridge 120 routes packets/messages from
device 125 upstream, i.e. up a hierarchy towards a root
complex, to controller hub 115 and downstream, i.e. down a
hierarchy away from a root controller, from processor 105 or
system memory 110 to device 125. Switch 120, in one
embodiment, is referred to as a logical assembly of multiple
virtual PCI-to-PCI bridge devices. Device 125 includes any
internal or external device or component to be coupled to an
electronic system, such as an I/O device, a Network Inter
face Controller (NIC), an add-in card, an audio processor, a
network processor, a hard-drive, a storage device, a
CD/DVD ROM, a monitor, a printer, a mouse, a keyboard,
a router, a portable storage device, a Firewire device, a
Universal Serial Bus (USB) device, a scanner, and other
input/output devices. Often in the PCIe vernacular, such as
device, is referred to as an endpoint. Although not specifi
cally shown, device 125 may include a bridge (e.g., a PCIe
to PCI/PCI-X bridge) to support legacy or other versions of
devices or interconnect fabrics Supported by Such devices.
0033 Graphics accelerator 130 can also be coupled to
controller hub 115 through serial link 132. In one embodi
ment, graphics accelerator 130 is coupled to an MCH, which
is coupled to an ICH. Switch 120, and accordingly I/O
device 125, is then coupled to the ICH. I/O modules 131 and
118 are also to implement a layered protocol stack and
associated logic to communicate between graphics accelera
tor 130 and controller hub 115. Similar to the MCH discus
sion above, a graphics controller or the graphics accelerator
130 itself may be integrated in processor 105.
0034 Turning to FIG. 2 an embodiment of a layered
protocol stack is illustrated. Layered protocol stack 200 can
includes any form of a layered communication stack, Such as
a QPI stack, a PCIe Stack, a next generation high perfor
mance computing interconnect (HPI) stack, or other layered
stack. In one embodiment, protocol stack 200 can include
transaction layer 205, link layer 210, and physical layer 220.
An interface, such as interfaces 117, 118, 121, 122, 126, and
131 in FIG. 1, may be represented as communication
protocol stack 200. Representation as a communication
protocol stack may also be referred to as a module or
interface implementing/including a protocol stack.
0035 Packets can be used to communicate information
between components. Packets can be formed in the Trans
action Layer 205 and Data Link Layer 210 to carry the
information from the transmitting component to the receiv
ing component. As the transmitted packets flow through the

US 2017/01 0928.6 A1

other layers, they are extended with additional information
used to handle packets at those layers. At the receiving side
the reverse process occurs and packets get transformed from
their Physical Layer 220 representation to the Data Link
Layer 210 representation and finally (for Transaction Layer
Packets) to the form that can be processed by the Transaction
Layer 205 of the receiving device.
0036. In one embodiment, transaction layer 205 can
provide an interface between a device's processing core and
the interconnect architecture, such as Data Link Layer 210
and Physical Layer 220. In this regard, a primary responsi
bility of the transaction layer 205 can include the assembly
and disassembly of packets (i.e., transaction layer packets,
or TLPs). The translation layer 205 can also manage credit
based flow control for TLPs. In some implementations, split
transactions can be utilized, i.e., transactions with request
and response separated by time, allowing a link to carry
other traffic while the target device gathers data for the
response, among other examples.
0037 Credit-based flow control can be used to realize
virtual channels and networks utilizing the interconnect
fabric. In one example, a device can advertise an initial
amount of credits for each of the receive buffers in Trans
action Layer 205. An external device at the opposite end of
the link, such as controller hub 115 in FIG. 1, can count the
number of credits consumed by each TLP A transaction may
be transmitted if the transaction does not exceed a credit
limit. Upon receiving a response an amount of credit is
restored. One example of an advantage of such a credit
scheme is that the latency of credit return does not affect
performance, provided that the credit limit is not encoun
tered, among other potential advantages.
0038. In one embodiment, four transaction address
spaces can include a configuration address space, a memory
address space, an input/output address space, and a message
address space. Memory space transactions include one or
more of read requests and write requests to transfer data
to/from a memory-mapped location. In one embodiment,
memory space transactions are capable of using two differ
ent address formats, e.g., a short address format, such as a
32-bit address, or a long address format, such as 64-bit
address. Configuration space transactions can be used to
access configuration space of various devices connected to
the interconnect. Transactions to the configuration space can
include read requests and write requests. Message space
transactions (or, simply messages) can also be defined to
Support in-band communication between interconnect
agents. Therefore, in one example embodiment, transaction
layer 205 can assemble packet header/payload 206.
0039 Quickly referring to FIG. 3, an example embodi
ment of a transaction layer packet descriptor is illustrated. In
one embodiment, transaction descriptor 300 can be a mecha
nism for carrying transaction information. In this regard,
transaction descriptor 300 supports identification of trans
actions in a system. Other potential uses include tracking
modifications of default transaction ordering and association
of transaction with channels. For instance, transaction
descriptor 300 can include global identifier field 302, attri
butes field 304 and channel identifier field 306. In the
illustrated example, global identifier field 302 is depicted
comprising local transaction identifier field 308 and source
identifier field 310. In one embodiment, global transaction
identifier 302 is unique for all outstanding requests.

Apr. 20, 2017

0040 According to one implementation, local transaction
identifier field 308 is a field generated by a requesting agent,
and can be unique for all outstanding requests that require a
completion for that requesting agent. Furthermore, in this
example, source identifier 310 uniquely identifies the
requestor agent within an interconnect hierarchy. Accord
ingly, together with source ID 310, local transaction iden
tifier 308 field provides global identification of a transaction
within a hierarchy domain.
0041 Attributes field 304 specifies characteristics and
relationships of the transaction. In this regard, attributes field
304 is potentially used to provide additional information that
allows modification of the default handling of transactions.
In one embodiment, attributes field 304 includes priority
field 312, reserved field 314, ordering field 316, and no
Snoop field 318. Here, priority sub-field 312 may be modi
fied by an initiator to assign a priority to the transaction.
Reserved attribute field 314 is left reserved for future, or
vendor-defined usage. Possible usage models using priority
or security attributes may be implemented using the reserved
attribute field.
0042. In this example, ordering attribute field 316 is used
to Supply optional information conveying the type of order
ing that may modify default ordering rules. According to one
example implementation, an ordering attribute of “O'”
denotes default ordering rules are to apply, wherein an
ordering attribute of “1” denotes relaxed ordering, wherein
writes can pass writes in the same direction, and read
completions can pass writes in the same direction. Snoop
attribute field 318 is utilized to determine if transactions are
Snooped. As shown, channel ID Field 306 identifies a
channel that a transaction is associated with.
0043. Returning to the discussion of FIG. 2, a Link layer
210, also referred to as data link layer 210, can act as an
intermediate stage between transaction layer 205 and the
physical layer 220. In one embodiment, a responsibility of
the data link layer 210 is providing a reliable mechanism for
exchanging Transaction Layer Packets (TLPs) between two
components on a link. One side of the Data Link Layer 210
accepts TLPs assembled by the Transaction Layer 205,
applies packet sequence identifier 211, i.e. an identification
number or packet number, calculates and applies an error
detection code, i.e. CRC 212, and submits the modified
TLPs to the Physical Layer 220 for transmission across a
physical to an external device.
0044. In one example, physical layer 220 includes logical
sub block 221 and electrical sub-block 222 to physically
transmit a packet to an external device. Here, logical Sub
block 221 is responsible for the “digital functions of
Physical Layer 221. In this regard, the logical sub-block can
include a transmit section to prepare outgoing information
for transmission by physical sub-block 222, and a receiver
section to identify and prepare received information before
passing it to the Link Layer 210.
0045 Physical block 222 includes a transmitter and a
receiver. The transmitter is supplied by logical sub-block
221 with symbols, which the transmitter serializes and
transmits onto to an external device. The receiver is Supplied
with serialized symbols from an external device and trans
forms the received signals into a bit-stream. The bit-stream
is de-serialized and supplied to logical sub-block 221. In one
example embodiment, an 8b/10b transmission code is
employed, where ten-bit symbols are transmitted/received.
Here, special symbols are used to frame a packet with

US 2017/01 0928.6 A1

frames 223. In addition, in one example, the receiver also
provides a symbol clock recovered from the incoming serial
Stream.

0046. As stated above, although transaction layer 205,
link layer 210, and physical layer 220 are discussed in
reference to a specific embodiment of a protocol stack (Such
as a PCIe protocol stack), a layered protocol stack is not so
limited. In fact, any layered protocol may be included/
implemented and adopt features discussed herein. As an
example, a port/interface that is represented as a layered
protocol can include: (1) a first layer to assemble packets,
i.e. a transaction layer; a second layer to sequence packets,
i.e. a link layer, and a third layer to transmit the packets, i.e.
a physical layer. As a specific example, a high performance
interconnect layered protocol, as described herein, is uti
lized.
0047 Referring next to FIG. 4, an example embodiment
of a serial point to point fabric is illustrated. A serial
point-to-point link can include any transmission path for
transmitting serial data. In the embodiment shown, a link
can include two, low-voltage, differentially driven signal
pairs: a transmit pair 406/411 and a receive pair 412/407.
Accordingly, device 405 includes transmission logic 406 to
transmit data to device 410 and receiving logic 407 to
receive data from device 410. In other words, two transmit
ting paths, i.e. paths 416 and 417, and two receiving paths,
i.e. paths 418 and 419, are included in some implementa
tions of a link.

0048. A transmission path refers to any path for trans
mitting data, Such as a transmission line, a copper line, an
optical line, a wireless communication channel, an infrared
communication link, or other communication path. A con
nection between two devices, such as device 405 and device
410, is referred to as a link, such as link 415. A link may
Support one lane—each lane representing a set of differential
signal pairs (one pair for transmission, one pair for recep
tion). To Scale bandwidth, a link may aggregate multiple
lanes denoted by xN, where N is any supported link width,
such as 1, 2, 4, 8, 12, 16, 32, 64, or wider.
0049. A differential pair can refer to two transmission
paths, such as lines 416 and 417, to transmit differential
signals. As an example, when line 416 toggles from a low
Voltage level to a high voltage level, i.e. a rising edge, line
417 drives from a high logic level to a low logic level, i.e.
a falling edge. Differential signals potentially demonstrate
better electrical characteristics, such as better signal integ
rity, i.e. cross-coupling, Voltage overshoot/undershoot, ring
ing, among other example advantages. This allows for a
better timing window, which enables faster transmission
frequencies.
0050. In one embodiment, a new High Performance
Interconnect (HPI) is provided. HPI can include a next
generation cache-coherent, link-based interconnect. As one
example, HPI may be utilized in high performance comput
ing platforms, such as workstations or servers, including in
systems where PCIe or another interconnect protocol is
typically used to connect processors, accelerators, I/O
devices, and the like. However, HPI is not so limited.
Instead, HPI may be utilized in any of the systems or
platforms described herein. Furthermore, the individual
ideas developed may be applied to other interconnects and
platforms, such as PCIe, MIPI, QPI, etc.
0051) To support multiple devices, in one example imple
mentation, HPI can include an Instruction Set Architecture

Apr. 20, 2017

(ISA) agnostic (i.e. HPI is able to be implemented in
multiple different devices). In another scenario, HPI may
also be utilized to connect high performance I/O devices, not
just processors or accelerators. For example, a high perfor
mance PCIe device may be coupled to HPI through an
appropriate translation bridge (i.e. HPI to PCIe). Moreover,
the HPI links may be utilized by many HPI based devices,
Such as processors, in various ways (e.g. stars, rings,
meshes, etc.). FIG. 5 illustrates example implementations of
multiple potential multi-socket configurations. A two-socket
configuration 505, as depicted, can include two HPI links:
however, in other implementations, one HPI link may be
utilized. For larger topologies, any configuration may be
utilized as long as an identifier (ID) is assignable and there
is some form of virtual path, among other additional or
Substitute features. As shown, in one example, a four socket
configuration 510 has an HPI link from each processor to
another. But in the eight Socket implementation shown in
configuration 515, not every socket is directly connected to
each other through an HPI link. However, if a virtual path or
channel exists between the processors, the configuration is
Supported. A range of Supported processors includes 2-32 in
a native domain. Higher numbers of processors may be
reached through use of multiple domains or other intercon
nects between node controllers, among other examples.
0052. The HPI architecture includes a definition of a
layered protocol architecture, including in Some examples,
protocol layers (coherent, non-coherent, and, optionally,
other memory based protocols), a routing layer, a link layer,
and a physical layer including associated I/O logic. Further
more, HPI can further include enhancements related to
power managers (such as power control units (PCUS)),
design for test and debug (DFT), fault handling, registers,
security, among other examples. FIG. 6 illustrates an
embodiment of an example HPI layered protocol stack. In
Some implementations, at least some of the layers illustrated
in FIG. 6 may be optional. Each layer deals with its own
level of granularity or quantum of information (the protocol
layer 605a,b with packets 630, link layer 610a, b with flits
635, and physical layer 605a, b with phits 640). Note that a
packet, in some embodiments, may include partial flits, a
single flit, or multiple flits based on the implementation.
0053 As a first example, a width of a phit 640 includes
a 1 to 1 mapping of link width to bits (e.g. 20 bit link width
includes a phit of 20 bits, etc.). Flits may have a greater size,
such as 184, 192, or 200 bits. Note that if phit 640 is 20 bits
wide and the size of flit 635 is 184 bits then it takes a
fractional number of phits 640 to transmit one flit 635 (e.g.
9.2 phits at 20 bits to transmit an 184 bit flit 635 or 9.6 at 20
bits to transmit a 192 bit flit, among other examples). Note
that widths of the fundamental link at the physical layer may
vary. For example, the number of lanes per direction may
include 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, etc. In one
embodiment, link layer 610a, b is capable of embedding
multiple pieces of different transactions in a single flit, and
one or multiple headers (e.g. 1, 2, 3, 4) may be embedded
within the flit. In one example, HPI splits the headers into
corresponding slots to enable multiple messages in the flit
destined for different nodes.

0054 Physical layer 605a, b, in one embodiment, can be
responsible for the fast transfer of information on the
physical medium (electrical or optical etc.). The physical
link can be point-to-point between two Link layer entities,
such as layer 605a and 605b. The Link layer 610a, b can

US 2017/01 0928.6 A1

abstract the Physical layer 605a, b from the upper layers and
provides the capability to reliably transfer data (as well as
requests) and manage flow control between two directly
connected entities. The Link Layer can also be responsible
for virtualizing the physical channel into multiple virtual
channels and message classes. The Protocol layer 620a, b
relies on the Link layer 610a, b to map protocol messages
into the appropriate message classes and virtual channels
before handing them to the Physical layer 605a, b for transfer
across the physical links. Link layer 610a, b may support
multiple messages, such as a request, Snoop, response,
writeback, non-coherent data, among other examples.
0055. The Physical layer 605a, b (or PHY) of HPI can be
implemented above the electrical layer (i.e. electrical con
ductors connecting two components) and below the link
layer 610a, b, as illustrated in FIG. 6. The Physical layer and
corresponding logic can reside on each agent and connects
the link layers on two agents (A and B) separated from each
other (e.g. on devices on either side of a link). The local and
remote electrical layers are connected by physical media
(e.g. wires, conductors, optical, etc.). The Physical layer
605a, b, in one embodiment, has two major phases, initial
ization and operation. During initialization, the connection is
opaque to the link layer and signaling may involve a
combination of timed States and handshake events. During
operation, the connection is transparent to the link layer and
signaling is at a speed, with all lanes operating together as
a single link. During the operation phase, the Physical layer
transports flits from agent A to agent B and from agent B to
agent A. The connection is also referred to as a link and
abstracts some physical aspects including media, width and
speed from the link layers while exchanging flits and con
trol/status of current configuration (e.g. width) with the link
layer. The initialization phase includes minor phases e.g.
Polling, Configuration. The operation phase also includes
minor phases (e.g. link power management states).
0056. In one embodiment, Link layer 610a, b can be
implemented so as to provide reliable data transfer between
two protocol or routing entities. The Link layer can abstract
Physical layer 605a, b from the Protocol layer 620a, b, and
can be responsible for the flow control between two protocol
agents (A, B), and provide virtual channel services to the
Protocol layer (Message Classes) and Routing layer (Virtual
Networks). The interface between the Protocol layer 620a, b
and the Link Layer 610a, b can typically be at the packet
level. In one embodiment, the smallest transfer unit at the
Link Layer is referred to as a flit which a specified number
of bits, such as 192 bits or some other denomination. The
Link Layer 610a, b relies on the Physical layer 605a, b to
frame the Physical layer's 605a,b unit of transfer (phit) into
the Link Layer's 610a, b unit of transfer (flit). In addition, the
Link Layer 610a, b may be logically broken into two parts,
a sender and a receiver. A sender/receiver pair on one entity
may be connected to a receiver/sender pair on another entity.
Flow Control is often performed on both a flit and a packet
basis. Error detection and correction is also potentially
performed on a flit level basis.
0057. In one embodiment, Routing layer 615a, b can
provide a flexible and distributed method to route HPI
transactions from a source to a destination. The scheme is
flexible since routing algorithms for multiple topologies
may be specified through programmable routing tables at
each router (the programming in one embodiment is per
formed by firmware, software, or a combination thereof).

Apr. 20, 2017

The routing functionality may be distributed; the routing
may be done through a series of routing steps, with each
routing step being defined through a lookup of a table at
either the source, intermediate, or destination routers. The
lookup at a source may be used to inject a HPI packet into
the HPI fabric. The lookup at an intermediate router may be
used to route an HPI packet from an input port to an output
port. The lookup at a destination port may be used to target
the destination HPI protocol agent. Note that the Routing
layer, in Some implementations, can be thin since the routing
tables, and, hence the routing algorithms, are not specifically
defined by specification. This allows for flexibility and a
variety of usage models, including flexible platform archi
tectural topologies to be defined by the system implemen
tation. The Routing layer 615a,b relies on the Link layer
610a, b for providing the use of up to three (or more) virtual
networks (VNs) in one example, two deadlock-free VNs,
VNO and VN1 with several message classes defined in each
virtual network. A shared adaptive virtual network (VNA)
may be defined in the Link layer, but this adaptive network
may not be exposed directly in routing concepts, since each
message class and virtual network may have dedicated
resources and guaranteed forward progress, among other
features and examples.
0058. In one embodiment, HPI can include a Coherence
Protocol layer 620a, b to Support agents caching lines of data
from memory. An agent wishing to cache memory data may
use the coherence protocol to read the line of data to load
into its cache. An agent wishing to modify a line of data in
its cache may use the coherence protocol to acquire own
ership of the line before modifying the data. After modifying
a line, an agent may follow protocol requirements of keeping
it in its cache until it either writes the line back to memory
or includes the line in a response to an external request.
Lastly, an agent may fulfill external requests to invalidate a
line in its cache. The protocol ensures coherency of the data
by dictating the rules all caching agents may follow. It also
provides the means for agents without caches to coherently
read and write memory data.
0059. Two conditions may be enforced to support trans
actions utilizing the HPI Coherence Protocol. First, the
protocol can maintain data consistency, as an example, on a
per-address basis, among data in agents caches and between
those data and the data in memory. Informally, data consis
tency may refer to each valid line of data in an agent's cache
representing a most up-to-date value of the data and data
transmitted in a coherence protocol packet can represent the
most up-to-date value of the data at the time it was sent.
When no valid copy of the data exists in caches or in
transmission, the protocol may ensure the most up-to-date
value of the data resides in memory. Second, the protocol
can provide well-defined commitment points for requests.
Commitment points for reads may indicate when the data is
usable; and for writes they may indicate when the written
data is globally observable and will be loaded by subsequent
reads. The protocol may support these commitment points
for both cacheable and uncacheable (UC) requests in the
coherent memory space.
0060. The HPI Coherence Protocol also may ensure the
forward progress of coherence requests made by an agent to
an address in the coherent memory space. Certainly, trans
actions may eventually be satisfied and retired for proper
system operation. The HPI Coherence Protocol, in some
embodiments, may have no notion of retry for resolving

US 2017/01 0928.6 A1

resource allocation conflicts. Thus, the protocol itself may
be defined to contain no circular resource dependencies, and
implementations may take care in their designs not to
introduce dependencies that can result in deadlocks. Addi
tionally, the protocol may indicate where designs are able to
provide fair access to protocol resources.
0061 Logically, the HPI Coherence Protocol, in one
embodiment, can include three items: coherence (or cach
ing) agents, home agents, and the HPI interconnect fabric
connecting the agents. Coherence agents and home agents
can work together to achieve data consistency by exchang
ing messages over the interconnect. The link layer 610a, b
and its related description can provide the details of the
interconnect fabric including how it adheres to the coher
ence protocols requirements, discussed herein. (It may be
noted that the division into coherence agents and home
agents is for clarity. A design may contain multiple agents of
both types within a socket or even combine agents behaviors
into a single design unit, among other examples.)
0062. In one embodiment, home agents can be configured
to guard physical memory. Each home agent can be respon
sible for a region of the coherent memory space. Regions
may be non-overlapping, in that a single address is guarded
by one home agent, and together the home agent regions in
a system cover the coherent memory space. For instance,
each address can be guarded by at least one home agent.
Therefore, in one embodiment, each address in a HPI
system's coherent memory space can map to exactly one
home agent.
0063 Home agents in the HPI Coherence Protocol, in
one embodiment, can be responsible for servicing requests
to the coherent memory space. For read (Rd) requests, home
agents may generate Snoops (Smp), process their responses,
send a data response, and send a completion response. For
invalidation (Inv) requests, home agents may generate nec
essary Snoops, process their responses, and send a comple
tion response. For write requests, home agents may commit
the data to memory and send a completion response.
0064. Home agents may provide snoops in the HPI
Coherence Protocol and process Snoop responses from
coherence agents. Home agents can also process forward
requests, which are a special Snoop response, from coher
ence agents for conflict resolution. When a home agent
receives a forward request, it may send a forward response
to the coherence agent that generated the forward request
(i.e., the agent that detected a conflicting Snoop request).
Coherence agents can use the ordering of these forward
responses and completion responses from the home agent to
resolve conflicts.

0065. A coherence agent may issue supported coherence
protocol requests. Requests may be issued to an address in
the coherent memory space. Data received for read requests
(Rd) except RdCur may be consistent. Data for RdCur
requests may have been consistent when the data packet was
generated (although it may have become out of date during
delivery). Table 1 shows an exemplary, non-exhaustive list
of potential Supported requests:

TABLE 1.

Name Semantics Cache State

RdCode Request a cache line in F or S state. F or S
RdData Request a cache line in E, F, or S state. F or S

Apr. 20, 2017

TABLE 1-continued

Name Semantics Cache State

Rd Migr Request a cache line in M, E, F, or S Mand
State. (F or S)

RdInv Request a cache line in Estate. If line E
was previously cached in M state, the line
will be written to memory before E data is
delivered.
Request a cache line in M or E State. M
Request an uncacheable Snapshot of a
cache line.
Request exclusive ownership of a cache
ine without receiving data.
Request exclusive ownership of a cache
ine without receiving data and with the
intent of performing a writeback soon

RdInvOwn
RdCur

nwto M or E

nwtoM M or E

nvXtoI Flush a cache line from all caches.
Requesting agent is to invalidate the
ine in its cache before issuing this
request.
Write a cache line in M state back to M
memory and invalidate the line in the
cache.
Write a cache line in M state back to
memory and transition line to S state.
Write a cache line in M state back to
memory and transition line to E state.
Write a cache line in M state back to M
memory, according to a byte-enable mask,
and transition line to I state.
Write a cache line in M state back to
memory, according to a byte-enable mask,
transition line to Estate, and clear
the line's mask in the cache.
Notification to home agent that a cache E
line in E state was invalidated in the
cache.
Send a line in M state to home agent and M
invalidate the line in the cache; home
agent may either write the line back to
memory or send it to a local cache agent
with M state.
Request that home flush writes to
implementation-specific addresses in its
memory hierarchy. No data is sent with
the request.

WbMtOI

WbMtOS M and S

WbMtOE M and E

WbMtOIPt

WbMtOEPt M and E

EvctCIn

WbPSMtOI

WbFlush

0.066 HPI can support a Coherency protocol making use
of principles of the MESI protocol. Each cache line can be
marked with one or more Supported States (e.g., coded in the
cache line). A “M” or “Modified’ state can indicate that the
cache line value has been modified from that value which is
in main memory. A line in the M-state is only present in the
particular and the corresponding cache agent can be required
to write the modified data back to memory at some time in
the future, for instance, before permitting any other read of
the (no longer valid) maing memory state. A writeback can
transition the line from the M-state to the E-state. The “E”
or “Exclusive' state can indicate that the cache line is only
present in the current cache but that its value matches that in
main memory. The cache line in E-state can transition to the
S-State at any time in response to a read request or may be
changed to the M-state by writing to the line. The “S” or
“Shared state can indicates that the cache line may be
stored in other caches of the machine and has a value that
matches that of the main memory. The line may be discarded
(changed to the I-state) at any time. The “I” or “Invalid'
state can indicate that a cache line is invalid or unused. Other
state can also supported in HPI, such as an “F” or “Forward”
shared state that indicates that the particular shared line

US 2017/01 0928.6 A1

value is to be forwarded to other caches that are to also share
the line, among other examples.
0067 Table 2 include exemplary information that can be
included in some Coherence protocol messages, including
Snoop, read, and write requests, among other examples:

TABLE 2

Field Usage

cmd Message command (or name or opcode).
addr Address of a coherent cache line.
destNID Node ID (NID) of destination (home or coherence) agent.
reqNID NID of requesting coherence agent.
peerNID NID of coherence agent that sent the (forward request)

message.
reqTID ID of the resource allocated by the requesting agent

for the transaction, also known as RTID (or requesting
transaction identifier).

homeTID ID of the resource allocated by the home agent to
process the request, also known as HTID (or home
transaction identifier).

data A cache line of data.
mask Byte mask to qualify the data.

0068 Snoop messages may be generated by home agents
and directed toward coherence agents. A snoop (SNP) vir
tual channel can be used for Snoops and, in one embodiment,
are the only messages that use the SNP virtual channel.
Snoops can include the requesting agent's NID and the
RTID it allocated for the request in case the Snoop results in
data being sent directly to the requesting agent. Snoops, in
one embodiment, can also include the HTID allocated by the
home agent to process the request. The coherence agent
processing the Snoop may include the HTID in the Snoop
response it sends back to the home agent. Snoops may, in
Some instance, not include the home agent's NID because it
may be derived from the included address, which the tar
geted coherence agent does when sending its response.
Fanout snoops (those with “SmpF prefix) may not include
a destination NID because the Routing Layer is responsible
for generating the appropriate Snoop messages to all peers in
the fanout region. An exemplary list of Snoop channel
messages is listed Table 3:

TABLE 3

Command Semantics Fields

SnipCode Snoop to get data in F or S state. cmd.
SnipData Snoop to get data in E, F, or S state. addr,
SnpMigr Snoop to get data in M, E, F, or S state. destNID,
Snpnv Snoop to invalidate the peers cache, reqNID,

flushing any M copy to memory. reqTID,
SnpnvOwn Snoop to get data in M or E state. homeTID
SnipCur Snoop to get an uncacheable Snapshot of a

cache line.
SnpECode Snoop to get data in F or S State; Routing cmd.

layer to handle distribution to all fanout addr,
peers reqNID,

SnFData Snoop to get data in E, F, or S state; reqTID,
Routing layer to handle distribution to homeTID
all fanout peers

SnpFMigr Snoop to get data in M, E, F, or S state;
Routing layer to handle distribution to
all fanout peers

SnpFInvOwn Snoop to get data in M or Estate; Routing
layer to handle distribution to all fanout
peers.

SnFInw Snoop to invalidate the peers cache,
flushing any M copy to memory; Routing

Apr. 20, 2017

TABLE 3-continued

Command Semantics Fields

layer to handle distribution to all fanout
peers.
Snoop to get an uncacheable Snapshot of a
cache line; Routing layer to handle
distribution to all fanout peers.

SnpCur

0069. HPI may also support non Snoop requests that they
may issue to an address, such as those implemented as
non-coherent requests. Examples of Such requests can
include a non-Snoop read to request a read-only line form
memory, a non-Snoop write to write a line to memory, and
a write a line to memory according to a mask, among other
potential examples.
0070. In one example, four general types of response
messages can be defined in the HPI Coherence Protocol:
data, completion, Snoop, and forward. Certain data messages
can carry an additional completion indication and certain
Snoop responses can carry data. Response messages may use
the RSP virtual channel, and the communication fabric may
maintain proper message delivery ordering among ordered
completion responses and forward responses.
0071 Table 4 includes a listing of at least some potential
response messages Supported by an example HPI Coherence
Protocol:

TABLE 4

Name Semantics Fields

Data M Data is M state. cmd.
Data E Data is E state. destNID,
Data F Data is F state. reqTID,
Data SI Depending upon request, data in S state or data

uncacheable 'Snapshot data.
Data M Data is M state with an ordered completion

SOSc.

Data E Data is E state with an ordered completion
SOSc.

Data F Data is F state with an ordered completion
SOSc.

Data SI Depending upon request, data in S state or
uncacheable 'Snapshot data, with an
ordered completion response.

CmpU Completion message with no ordering cmd.
requirements. destNID,

CmpO Completion message to be ordered with reqTID
forward responses.

RspI Cache is in I state. cmd.
RSS Cache is in S state. destNID,

homeTID
RSbFwd Copy of cache line was sent to requesting

agent, cache state did not change.
RSbFwdI Copy of cache line was sent to requesting

agent, cache transitions to I state.
RSbFwdS Copy of cache line was sent to requesting

agent, cache transitions to S state.
RSIWb Modified line is being implicitly written cmd.

back to memory, cache was transitioned destNID,
to I state. homeTID,

RSSWb Modified line is being implicitly written data
back to memory, cache was transitioned
to S state.

RSbFwdIWb Modified line is being implicitly written
back to memory, copy of cache line was
sent to requesting agent, cache was
transitioned to I state.

US 2017/01 0928.6 A1

TABLE 4-continued

Name Semantics Fields

RspFwdSWb Modified line is being implicitly written
back to memory, copy of cache line was
sent to requesting agent, cache was
transitioned to S state.

RspCnfit Peer has an outstanding request to same cmd.
address, is requesting an ordered forward destNID,
response, and has allocated a resource homeTID,
for the forward. peerNID

0072. In one example, data responses can target a
requesting coherence agent. A home agent may send any of
the data responses. A coherence agent may send only data
responses not containing an ordered completion indication.
Additionally, coherence agents may be limited to sending
data responses only as a result of processing a Snoop request.
Combined data and completion responses may always be of
the ordered-completion type and can be kept ordered with
forward responses by the communication fabric.
0073. The HPI Coherence Protocol can uses the general
unordered completion message and a coherence-specific
ordered completion message. A home agent may send
completion responses to coherent requests and completion
responses can be typically destined for a coherence agent.
The ordered completion response can be kept ordered with
forward responses by the communication fabric.
0074. Snoop responses may be sent by coherence agents,
specifically in response to processing a Snoop request, and
target the home agent handling the Snoop request. The
destNTD is usually a home agent (determined from the
address in the Snoop request) and the included TID is for the
home agent's resource allocated to process the request.
Snoop responses with “Wb' in the command are for implicit
writebacks of modified cache lines, and they carry the cache
line data. (Implicit writebacks can include those a coherence
agent makes due to another agent's request, whereas the
other requests are made explicitly by the coherence agent
using its request resources.)
0075 Coherence agents can generate a forward request
when a Snoop request conflicts with an outstanding request.
Forward requests target the home agent that generated the
Snoop, which is determined from the address in the Snoop
request. Thus, the destNTD is a home agent. The forward
request can also include the TID for the home agents
resource allocated to process the original request and the
NID of the coherence agent generating the forward request
0076. The HPI Coherence Protocol can support a single
forward response, FwdCnfltO. Home agents can send a
forward response for every forward request received and to
the coherence agent in the forward requests peerNID field.
Forward responses carry the cache line address so the
coherence agent can match the message to the forward
resource it allocated. Forward response message can carry
the requesting agent’s NID but, in some cases, not the
requesting agents TID. If a coherence agent wants to
Support cache-to-cache transfers for forward responses, it
can save the requesting agent's TID when processing the
Snoop and send a forward request. To Support conflict
resolution, the communication fabric may maintain ordering
between the forward response and all ordered completions
sent before it to the same destination coherence agent.
0077. In some systems, home agent resources are pre
allocated in that “RTIDs' represent resources in the home

Apr. 20, 2017

agents and the caching agents allocate RTIDS from system
configured pools when generating new coherence requests.
Such schemes can limit the number of active requests any
particular caching agent can have to a home agent to the
number of RTIDs it was given by the system, effectively
slicing up home resources statically among caching agents.
Such schemes can result inefficient allocation of resources
and properly sizing a home agent to Support request through
put can become impractical for large systems, among other
potential issues. For instance. Such schemes can force RTID
pool management upon the caching agents. Additionally, in
Some systems, a caching agent may not reuse the RTID until
the home agent has completely processed the transaction.
Waiting until a home agent completes all processing, how
ever, can unnecessarily throttle caching agents. Additionally,
certain flows in the protocol can involve caching agents
holding onto RTIDs beyond the home agent release notifi
cation, further throttling their performance, among other
1SSU.S.

0078. In one implementation, home agents can be
allowed to allocate their resources as requests arrive from
cache agents. In such instances, home agent resource man
agement can be kept separate from coherence agent logic. In
Some implementations, home resource management and
coherence agent logic can be at least partially intermingled.
In some instances, coherence agents can have more out
standing requests to a home agent than the home agent can
simultaneously handle. For instance, HPI can allow requests
to queue up in the communication fabric. Further, to avoid
deadlocks caused by the home agent blocking incoming
requests until resources become available, the HPI Coher
ence protocol can be configured to ensure that other mes
sages can make progress around blocked requests to ensure
that active transactions reach completion.
0079. In one example, resource management can be sup
ported by allowing an agent receiving a request to allocate
resources to process it, the agent sending the request allo
cating respective resources for all responses to the request
The HTID can represent the resource that a home agent
allocates for a given request included in some protocol
messages. The HTID (along with RNID/RTID) in Snoop
requests and forward responses can be used to Support
responses to a home agent as well as data forwarding to a
requesting agent, among other examples. Further, HPI can
Support the ability of an agent to send an ordered complete
(CmpO) early, that is, before the home agent is finished
processing the request, when it is determined to be safe for
a requesting agent to reuse its RTID resource. General
handling of Snoops with similar RNID/RTID can also be
defined by the protocol.
0080. In one illustrative example, when a particular
request's tracker state is busy, a directory state can be used
to determine when the home agent may send a response. For
instance, an Invalid directory state can allow a response to
be sent, except for RdCur requests which indicates there are
no outstanding Snoop responses. An Unknown directory
state can dictate that all peer agents have been Snooped and
all their responses gathered before a response can be sent.
The Exclusive directory state can dictate that the owner be
Snooped and all responses gathered before a response is sent,
or if the requesting agent is the owner then a response may
immediately be sent. The Shared directory state can specify
that an invalidating request (e.g., RdInv or Inv) has
Snooped all peer agents and gathered all Snoop responses.

US 2017/01 0928.6 A1

When a given request’s tracker state is writeback buffered
(WbBuffered), the home agent may send a data response.
When the request’s tracker state is DataSent (indicating the
home agent has already sent a data response) or DataXfrd
(indicating a peer transferred a copy of the line), the home
agent may send the completion response.
0081. In instances such as those described above, a home
agent may send data and completion responses before all
Snoop responses have been gathered. The HPI interface
allows these “early” responses. When sending early data and
completions, the home agent may gather all outstanding
Snoop responses before releasing the resource it allocated for
the request. The home agent can also continue blocking
further standard requests to the same address until all Snoop
responses have been gathered, then releasing the resource. A
home agent sending a response message from a Busy or
WbBuffered state can use a sub-action table (e.g., included
in a set of protocol tables embodying the formal specifica
tion of the HPI Coherence protocol) for which message to
send and use a sub action table for how to update the
directory state, among other examples. In some cases, an
early completion can be performed without pre-allocation by
a home node.

0082 In one embodiment, HPI Coherence protocol can
omit the use of either or both pre-allocated home resources
and ordered request channels. In such implementations,
certain messages on the HPI RSP communication channel
can be ordered. For instance, specifically “ordered comple
tion” and “forward response' messages, can be provided,
that can be sent from the home agent to the coherence agent.
Home agents can send an ordered completion (CmpO or
Data CmpO) for all coherent read and invalidation
requests (as well as other requests, such as a NonSnpRd
requests, that are not involved in cache-coherence conflicts).
0083 Home agents can send forward responses (FwdC

infltO) to coherence agents that send forward requests (Rsp
Cnflt) to indicate a conflict. A coherence agent can generate
a forward request whenever it has an outstanding read or
invalidation request and detects an incoming Snoop request
to the same cache line as the request. When the coherence
agent receives the forward response, it checks the current
state of the outstanding request to determine how to process
the original Snoop. The home agent can sent the forward
response to be ordered with a complete (e.g., CmpO or
Data CmpO). The coherence agent can utilize informa
tion included in the Snoop to aid the coherence agent in
processing a forward response. For instance, a forward
response may not include any “type' information and no
RTID. The nature of the forward response can be derived
from information obtained from the preceding Snoop(s).
Further, a coherence agent may block outstanding Snoop
requests when all of its “forward resources' are waiting for
forward responses. In some implementations, each coher
ence agent can be designed to have at least one forward
SOUC.

0084. In some implementations, communication fabric
requirements can be upon the Routing Layer. In one embodi
ment, the HPI Coherence protocol has one communication
fabric requirement that is specific to the Routing Layer. The
coherence protocol can depend upon the routing layer to
convert a fanout snoop (SmpF* opcodes—Snoop (SNP)
Channel Messages') into the appropriate Snoops for all of
the request’s peers in the fanout set of Coherence Agents.
The fanout set is a configuration parameter of the Routing

Apr. 20, 2017

Layer that is shared by the Protocol Layer. In this coherence
protocol specification it is described as a Home Agent
configuration parameter.
I0085. In some implementations above, the HPI Coher
ence Protocol can utilizes four of the virtual channels: REQ,
WB, SNP, and RSP. The virtual channels can be used to
unwind dependency cycles and avoid deadlock. In one
embodiment, every message can be delivered without dupli
cation on all virtual channels and an ordering requirement
upon the RSP virtual channel.
I0086. In some implementations, the communication fab
ric can be configured to preserve an ordering among certain
completion messages and the FwdCnfltO message. The
completion messages are the CmpO message and any data
message with CmpO attached (Data CmpO). Together,
all of these messages are the “ordered completion
responses.” The conceptual requirement between ordered
completion responses and the FwdCnfltO message is that a
FwdCnfltO does not “pass an ordered completion. More
specifically, if a home agent sends an ordered completion
response followed by a FwdCnfltO message and both mes
sages are destined for the same coherence agent, then the
communication fabric delivers the ordered completion
response before the FwdCnfltO, among other potential
examples.
I0087. It should be appreciated that while some examples
of the protocol flow are disclosed herein, the described
examples are merely intended to give an intuitive feel for the
protocol and do not necessarily cover all possible scenarios
and behaviors the protocol may exhibit.
I0088 A conflict may occur when requests to the same
cache-line address from more than one coherence agent
occur around the same time. As a specific example, a conflict
can occur when a Snoop for a coherence agent's standard
request arrives at a peer coherence agent with an outstanding
request to the same address. Because each Snoop may end up
in a conflict, a single request can have multiple conflicts.
Resolving conflicts may be a coordinated effort among the
home agent, the coherence agents, and the communication
fabric. However, the primary responsibility lies with the
coherence agents detecting conflicting Snoops.
I0089. In one embodiment, home agents, coherence
agents, and communication fabric can be configured to assist
in Successfully resolving conflicts. For example, home
agents may have outstanding Snoops for only one request per
address at a time. Such that, for a given address, a home
agent may have outstanding Snoops for only one request.
This can serve to exclude the possibility of race conditions
involving two requests conflicting with each other. It can
also ensure that a coherence agent will not see another Snoop
to the same address after it has detected a conflict but not yet
resolved it.
0090. In another example, when a coherence agent pro
cesses a Snoop with an address matching an active standard
request, it can allocates a forward resource and sends a
forward request to the home agent. A coherence agent with
an outstanding standard request that receives a Snoop to the
same address can responds with a RspCnflt Snoop response.
This response can be a forward request to the home agent.
Because the message is a request, before sending it the
coherence agent can allocate a resource to handle the
response that the home agent will send. (The coherence
protocol allows blocking conflicting Snoops when the coher
ence agent has run out of forward resources, in some

US 2017/01 0928.6 A1

instances.) The coherence agent may store information
about the conflicting Snoop to use when processing the
forward response. After detecting a conflict and until pro
cessing the forward response, a coherence agent may be
guaranteed to not see another Snoop to the same address.
0091. In some examples, when a home agent receives a
forward request, it does not record the Snoop response.
Instead, the home agent can send a forward response to the
conflicting coherence agent. A forward request (RspCnflt),
in one example, looks like a Snoop response but the home
agent does not treat it as one. It does not record the message
as a Snoop response, but instead sends a forward response.
Specifically, for every forward request (RspCnflt) a home
agent receives, it sends a forward response (FwdCnfltO) to
the requesting coherence agent.
0092. The HPI Communication Fabric orders forward
responses and ordered completions between the home agent
and the targeted coherence agent. The fabric can thereby
serve to differentiate an early conflict from a late conflict at
the conflicting coherence agent. From a system-level per
spective, an early conflict occurs when a Snoop encounters
a request that the home agent has not yet processed, and a
late conflict occurs when a Snoop encounters a request that
the home agent has already processed. From a home agents
perspective, an early conflict is when a Snoop for the
currently active request encounters a request that the home
agent has not yet received or started processing, and a late
conflict is when the Snoop encounters a request it has already
processed. In other words, a late conflict is with a request to
which the home agent has already sent a completion
response. Thus, when a home agent receives a forward
request for a late conflict, it will have already sent the
completion response to the conflicting agents outstanding
request. By ordering the forward responses and ordered
completion responses from home agent to the coherence
agent, the coherence agent can determine whether the con
flict was early or late by the processing state of its conflicting
request.
0093. When a coherence agent receives a forward
response, it uses the State of its conflicting request to
determine whether the conflict was early or late and when to
process the original Snoop. Because of the communication
fabric's ordering requirement, the state of the conflicting
request indicates whether the conflict was early or late. If the
request state indicates the completion has been received then
it was a late conflict, otherwise it was an early conflict.
Alternatively, if the request state indicates the request is still
waiting for its response(s) then it was an early conflict,
otherwise it was a late conflict. The type of conflict deter
mines when to process the Snoop: From a coherence agents
perspective, an early conflict means the Snoop is for a
request being processed before the agents conflicting
request, and a late conflict means the Snoop is for a request
being processed after the agent's conflicting request. Given
that ordering, for an early conflict, the coherence agent
immediately processes the original Snoop; and for a late
conflict, the coherence agent waits until the conflicting
request has received its data (for reads) and its processor has
had an opportunity to act upon the finished request before
processing the Snoop. When the conflicting Snoop is pro
cessed, the coherence agent will generate a Snoop response
for the home agent to finally record.
0094 All conflicts with writeback requests can be late
conflicts. A late conflict from the coherence agent's perspec

Apr. 20, 2017

tive is when the agent's request is processed before the
Snoop's request. By this definition all conflicts with write
back requests can be treated as late conflicts because the
writeback is processed first. Otherwise, data consistency and
coherency could be violated if the home agent were to
process the request before the writeback commits to
memory. Because all conflicts with writebacks are deemed
late conflicts, coherence agents can be configured to block
conflicting Snoops until an outstanding writeback request
completes. Further, writebacks can also block the processing
of forwards. Blocking forwards by an active writeback can
also be implemented as a protocol requirement for Support
ing uncacheable stores, among other examples.
0.095 When a coherence agent receives a request to
Snoop its cache, it can first check if the coherence protocol
will allow it, and then it may process the Snoop and generate
a response. One or more state tables can be defined within
a set of state tables that defines the protocol specification.
One or more state table can specify when a coherence agent
may process a Snoop and whether it will Snoop the cache or
instead generate a conflict forward request. In one example,
there are two conditions under which a coherence agent
processes a Snoop. The first condition is when the coherence
agent has a REQ request (Rd. or Inv) to the Snoop address
and it has an available forward resource. In this case, the
coherence agent must generate a forward request (RspCnflt).
The second condition is when the coherence agent does not
have a REQ, Wb*, or EvctCln request to the Snoop address.
A state table can define how a coherence agent is to process
the Snoop in accordance with Such respective conditions. In
one example, under other conditions, the coherence agent
can block the Snoop until either a forward resource becomes
available (first condition) or the blocking Wb or EvctCln
receives its CmpU response (second condition). Note that
NonSnp requests may not affect Snoop processing and a
coherence agent can disregard NonSnp entries when deter
mining how to process or block a Snoop.
0096. When generating a forward request, a coherence
agent can reserve a resource for the forward response. The
HPI Coherence protocol, in one example, may not require a
minimum number of forward response resources (beyond
having at least one) and can allow a coherence agent to block
Snoops when it has no forward response resources available.
0097 How a coherence agent processes a snoop in its
cache can depend upon the Snoop type and current cache
state. For a given Snoop type and cache state, however, there
may be many allowed responses. For example, a coherence
agent with a full modified line that receives a non-conflicting
SnpMigr (or is processing a forward response after a
SnpMigr) may do any of the following: Downgrade to S,
send implicit writeback to Home and Data F to requestor;
Downgrade to S, send implicit writeback to Home: Down
grade to I, send Data M to requestor, Downgrade to I, send
implicit writeback to Home and Data E to requestor; Down
grade to I, send implicit writeback to Home; among poten
tially other examples.
(0098. The HPI Coherence protocol allows a coherence
agent to store modified lines with partial masks in its cache.
However, all rows in for M copies can require a Full or
Empty mask. The HPI Coherence protocol, in one example,
may restrict implicit writeback of partial lines. A coherence
agent wishing to evict a partial M line due to a Snoop request

US 2017/01 0928.6 A1

(or forward response) can first initiate an explicit writeback
and block the Snoop (or forward) until the explicit writeback
is completed.
0099 Saving information for forward responses: The
HPI Coherence Protocol, in one embodiment, allows a
coherence agent to store forward response information sepa
rate from the outgoing request buffer (ORB). Separating the
information allows the ORB to release ORB resources and
RTID when all responses are gathered, regardless of the
entry being involved in a conflict. State tables can be utilized
to specify what information to store for forward responses
and under what conditions.

0100 Forward responses in the HPI Coherence protocol
can contain the address, the requesting agent's NID, and the
home TID. It does not contain the original Snoop type or the
RTID. A coherence agent may store the forward type and the
RTID if it wishes to use them with the forward response, and
it may use the address to match the incoming forward
response with the proper forward entry (and to generate the
home NID). Storing the forward type may be optional. If no
type is stored, the coherence agent can treat a forward
response as having Fwdlnv type. Likewise, storing the RTID
can be optional and may only occur when the coherence
agent is to support cache-to-cache transfers when processing
forward responses.
0101 AS noted above, coherence agents can generate a
forward request when a Snoop request conflicts with an
outstanding request. Forward requests target the home agent
that generated the Snoop, which can be determined from the
address in the snoop request. Thus, the destNTD can identify
a home agent. The forward request can also include the TID
for the home agent's resource allocated to process the
original request and the NID of the coherence agent gener
ating the forward request.
0102. In one embodiment, a coherence agent can block
forwards for writeback requests to maintain data consis
tency. Coherence agents can also use a writeback request to
commit uncacheable (UC) data before processing a forward
and can allow the coherence agent to writeback partial cache
lines instead of protocol Supporting a partial implicit write
back for forwards. Indeed, in one embodiment, a coherence
agent can be allowed to store modified lines with partial
masks in its cache (although M copies are to include a Full
or Empty mask).
0103) In one example, early conflicts may be resolved by
a forward response encountering an outstanding standard
request before it has received any response. A corresponding
protocol state table can specify, in one example, that a
forward response can be processed as long as the standard
request entry is still in ReqSent state. Late conflicts can be
resolved by a forward response arriving after the outstanding
request has received its completion response. When this
occurs either the request will have finished (already received
its data or was an Inv request) or the entry is in its
RcvdCmp state. If the request is still waiting for its data,
then the coherence agent must block the forward until the
data is received (and used). If the conflicting Rd. or Inv
request has finished, then the forward response may be
processed as long as the coherence agent has not initiated an
explicit writeback of the cache line. It can be permissible for
a coherence agent to initiate an explicit writeback while it
has a forward response (or Snoop request) to the same
address, thus allowing partial lines (e.g. Snoop Requests to

Apr. 20, 2017

Partially Modified Lines') or uncacheable stores to be
properly committed to memory.
0104 Turning to FIG. 7, a first example is illustrated of
an example conflict management scheme. A first cache (or
coherence) agent 705 can send a read request for a particular
line of data to home agent 710 resulting in a read of memory
715. Shortly after the read request by cache agent 705,
another cache agent 720 makes a request for ownership
(RFO) of the same line. However, the home agent 710 has
sent the Data S CmpO to the first cache agent 705 prior to
receiving the RFO from cache agent 720. The RFO can
result in a snoop (SmpFO) being sent to the cache agent 705
(as well as other cache agents), the Snoop being received by
the first cache agent 705 prior to receiving the complete
Data S. CmpO. The cache agent 705, upon receiving the
Snoop SnpO can identify a potential conflict involving the
line of memory requested in its original read request and can
notify the home agent 710 of the conflict by responding to
the SnpO with a forward responses conflict message (Rsp
Cnflt). The home agent 710 can respond to the forward
response RspCnflt by sending a forward response (FwdCn
fltO). The cache agent 705 can then receive the shared data
complete Data S. CmpO and transition from an I state to S
state. The forward response FwdCnfltO can then be received
by the cache agent 705 and cache agent 705 can determine
how to respond to the forward response message FwdClfltO
based on the Snoop SnpFO that triggered the sending of the
forward response RspCnflt. In this example, the cache agent
705 can consult a protocol state table, for instance, to
determine a response to the forward response message
FwdClfltO. In the particular example of FIG. 7, the cache
agent 705 can transition to an F-state and send the S-copy of
the data it received from the home agent 710 in the Data
S CmpO message to the second cache agent 720 in a Data F
message. The first cache agent 705 can also send a response
message RspFwdS to the home agent 710 notifying the
home agent 710 that the first cache agent has shared its copy
of the data with the second cache agent.
0105. In another illustrative example, shown in the sim
plified flow diagram of FIG. 8, the first cache agent 705 can
send a request for ownership (RFO) of a particular line of
memory to the home agent 710. Shortly thereafter, a second
cache agent can send a RdInvOwn message to the home
agent 710 as a request for the same line of memory in an M
state. In connection with the RFO message from the first
cache agent 705, the home agent 710 can send a Snoop
(SnpFO) to the second cache agent 720 which the second
cache agent 720 can identify as a potential conflict involving
the line of memory subject to both the RFO and RdInvOwn
requests. Accordingly, the second cache agent 720 can send
a forward request RspCnflt to the home agent 720. The home
agent 720 responds to the second cache agents 720 forward
request with a forward response. The second cache agent
720 determines a response to the forward response based on
information contained in the original Snoop SmpFO. In this
example, the second cache agent 720 responds with a Snoop
response RspI indicating that the second cache agent 720 is
in an I-state. The home agent 710 receives the Snoop
response RspI and determines that it is appropriate to send
the data complete exclusive (Data E CmpO) to the first
cache agent 705, which causes the first cache agent to
transition to an E state. With the complete sent, the home
agent 710 can then begin responding to the second cache
agent's RdInvOwn request, beginning with a Snoop request

US 2017/01 0928.6 A1

SnpinvO of the first cache agent 705. The first cache agent
705 can identify that the Snoop results in a request by the
second cache agent 720 to obtain an exclusive M-state copy
of the line. Consequently, the first cache agent 705 transi
tions to the M state to send its copy of the line as an M-state
copy (with Data M message) to the second cache agent 720.
Additionally, the first cache agent 705 also sends a response
message RspFwdI to indicate that the copy of the line has
been sent to the second cache agent 720 and that the first
cache agent has transitioned to an I-state (having given up
ownership of the copy to the second cache agent 720).
0106 Turning next to the example of FIG. 9, another
simplified flowchart is shown. In this example, a cache agent
720 attempts to request exclusive ownership of an uncache
able (UC) line without receiving data (e.g., through a
InVItoE message). A first cache agent 705 send a competing
message (RdInv) for the cache line in E state. The HPI
Coherence protocol can specify that if the requested line was
previously cached in M state, the line will be written to
memory before E data is delivered in response to the RdInv
of the first cache agent 705. The home agent 710 can send
a complete (CmpO) to the InvitoE request and send a Snoop
(Snpinv) to cache agent 720 based on the RdInv request. If
the cache agent 720 receives the Snoop before the complete,
the cache agent 720 can identify that the Snoop pertains to
the same cache line as its exclusive ownership request and
indicate a conflict through a forward requests RspCnflt. As
in previous examples, the home agent 710 can be configured
to respond to the forward request with a forward response
(FwdCnfltO). Multiple permissible responses may be
allowed to the forward response. For instance, the cache
agent 720 can initiate an explicit writeback (e.g., WbMtoI)
and block the Snoop (or forward) until the explicit writeback
is completed (e.g., CmpU), as shown in the example of FIG.
9. The cache agent can then complete the Snoop response
(RspI). The home agent 710 can then process the RdInv
request of the first cache agent 705 and return a complete
Data E CmpO, among other examples.
0107. In examples, such as the example of FIG. 9, where
a cache agent receives a Snoop when the agent has an
outstanding read or invalidation request to the same address
and it has cached a partial modified line (often referred to as
a “buried-M'), the HPI Coherence protocol, in one imple
mentation, allows the agent to either 1) perform an explicit
writeback (partial) of the line while blocking the Snoop or 2)
send a forward request (RspCnflt) to the home agent. If (1)
is chosen, the agent processes the Snoop after receiving the
complete for the writeback. If (2) is chosen, it is possible that
the agent will receive forward response (FwdCnfltO) while
its outstanding read or invalidation request is still waiting for
responses and the agent still has a partial modified line. If
that is the case, the protocol allows the agent to block the
forward while performing an explicit writeback (partial) of
the line. During the writeback, the protocol guarantees the
agent will not receive responses for the outstanding read or
invalidation request. The mechanism described above (al
lowing coherence agents to issue explicit writebacks and
block Snoops and forwards, even when the agent has an
outstanding read or invalidation request) is also used to
ensure partial or UC writes are posted to memory before the
writer acquires global observability.
0108 Coherence agents use a two-step process for par
tial/UC writes. First, they check if they have ownership of
the cacheline and issue an ownership (invalidation) request

Apr. 20, 2017

in the protocol if they do not. Second, they perform the
write. In the first step, if they performed an ownership
request, it is possible that the request will conflict with other
agents requests for the line, meaning the agent might
receive a Snoop while the ownership request is outstanding.
Per coherence protocol requirements, the agent will issue a
forward request for the conflicting Snoop. While waiting for
the forward response, the agent may receive the ownership
request's completion, which grants ownership of the line to
the agent and allows the agent to initiate the writeback for
the partial/UC write. While this is occurring, the agent might
receive the forward response, which it is obligated to process
also. The coherence agent may not combine the two activi
ties. The coherence agent is to instead writeback the partial/
UC write data separately from processing the forward, and
perform the writeback first. For instance, a cache agent may
use a writeback request to commit UC data before process
ing forward and writeback partial cache lines, among other
examples and features.
0109. In one embodiment, the HPI Coherence protocol
can Support a read invalidate (Rdnv) request accepting
Exclusive-state data. Semantics of uncacheable (UC) reads
include flushing modified data to memory. Some architec
tures, however, allow forwarding M data to invalidating
reads, which forced the requesting agent to clean the line if
it received M data. The RdInv simplifies the flow and does
not allow E data to be forwarded. For instance, as shown in
the example of FIG. 10, the directory state of a home agent
710 can indicate that no agent (e.g., 705, 710) has a copy of
the line. In Such instances, the home agent 710 may imme
diately send the data and completion response(s). HPI
allows the same if the effective directory state indicates no
peer can have a copy of the line.
0110. As shown in the example of FIG. 10, in some
implementations an agent can respond to a Snoop with a
RspIWb message, indicating that the cache agent (e.g., 705)
is in (or has transitioned to) an I-state while requesting a
write to memory. A RspIWb can set the effective directory
state to Invalid and allows a home agent 710 to send a
response without Snooping all peers. In the example of FIG.
10, a second cache agent 720 senda RdInv request while the
home agent directory is in an Unknown state. In response,
the home agent 710 initially Snoops only first cache agent
705. In this example, cache agent 705 has a modified copy
of the line and responds with an implicit writeback (e.g.,
RspIWb). When Home receives the RspIWb message, it can
determined that no other agent could have had a copy of the
line and identified further that cache agent 705 has invali
dated its cache through the RspIWb. In response, the home
agent 710 can set the directory state to Invalid. Because the
directory state is Invalid, the home agent 710 waits until the
write to memory 715 completes and then sends the data and
completion response(s) (e.g., Data E CmpO) and releases
the resource it allocated for the request from cache agent
720. In this example, the home agent may skip the Snooping
of other cache agents in the system. Indeed, in Such
examples, a home agent (e.g., 710) can send data and a
completion response prior to receiving all Snoop responses
(e.g., due to the identification of an M-copy at agent 705), as
illustrated in the example illustrated in FIG. 11 (with cache
agent 1105).
0111. In the examples of FIGS. 10 and 11, when the
second cache agent 720 receives the Data E CmpO
response from the home agent 710, the cache agent 720 can

US 2017/01 0928.6 A1

load the data into its cache, set its cache state to E, and
release the resource RTID it allocated for the request. After
releasing the RTID, cache agent 720 may reuse it for a new
request. In the meantime, the home agent 710 can wait for
Snoop responses for Snoops to the request originally using
the RTID. Snoop messages can contain the requests RTID
and requesting agent’s NID. Thus, because cache agent 720
could reuse the RTID for a new request to the same or a
different home agent, and that home agent could generate
Snoops for the new request while Snoops for the original
request are outstanding, it is possible that the same “unique”
transaction ID will exist in Snoops to the same coherence
agents. From a coherency perspective this duplication of
transaction ID (TID) can nonetheless be acceptable because
Snoops for the original request will only find I states.
0112 A home agent may generate a Snoop when the
requests Tracker state is Wait, Busy or DataXfrd, meaning
either the home agent has not yet sent a data response or a
Snoop response indicated some peer forwarded the data to
the requesting agent. A home agent may also check the
requests Snoop field to ensure it has not yet sent a Snoop to
a Peer. When sending a Snoop, a home agent may add Peer
(or all fanout Peers) to Snoop (to prevent sending a second
Snoop) and track outstanding Snoop responses.
0113. As noted above, some implementations of HPI can
Support fanout Snoops. Additionally, in some examples, HPI
can Support an explicit fanout Snoop operation, SnpF, for
fanout Snoops generated by the Routing layer. An HPI home
agent (e.g., 710) can utilize SnpF to generate a single fanout
Snoop request (e.g., with a single command and message)
and, in response, the Routing layer can generate Snoops to all
peer agents in the respective fanout cone based on the SnpF
request. The home agent may accordingly expect Snoop
responses from each of the agent sections. While other
Snoop messages may include a destination node ID, fanout
Snoops may omit a destination NID because the Routing
layer is responsible for generating the appropriate Snoop
messages to all peers in the fanout region.
0114. As the Routing layer is immediately below the
Protocol layer, in some implementations, communication
fabric requirements are upon the Routing Layer. In one
embodiment, the HPI Coherence protocol can have has one
communication fabric requirement that is specific to the
Routing layer. For instance, the Coherence protocol can
depend upon the Routing layer to convert a fanout Snoop
(SnpF* opcodes—Snoop (SNP) Channel Messages) into the
appropriate Snoops for all of the request’s peers in the fanout
set of cache agents. The fanout set is a configuration
parameter of the Routing layer that is shared by the Protocol
layer, or a home agent configuration parameter.
0115. In some implementations, a home agent may send
a fanout snoop for an active standard request. The HPI
Routing layer can convert the fanout Snoop request of the
home agent into regular Snoops to each of the peers in the
fanout cone defined by the Routing layer. The HPI Coher
ence protocol home agent is made aware of which coherence
agents are covered by the Routing layer fanout via a
HAFanout Agent configuration parameter identifying the
respective cache agents that are included in the fanout cone
by address. The Routing layer can receive the fanout Snoop
SnpF and convert it into a Snoops of every cache agent
included in the fanout cone (excepting the requesting agent).
In one implementation, the Routing layer can convert the

Apr. 20, 2017

fanout Snoop into corresponding non-fanout Snoops (with
appropriate non-fanout opcodes, such as those in Table 3).
among other examples.
0116 Similar to regular Snoops, a home agent may be
limited to sending a fanout Snoop only before it sends a
completion response to a coherence protocol request by a
cache agent. Further, additional conditions can be placed on
the fanout Snoops. As examples, a home agent may send a
fanout Snoop if it has not individually Snooped any of the
peers in the fanout cone. In other words, a home agent may
not initiate a fanout Snoop, in some implementations, if the
fanout cone is empty or if the requesting cache agent is the
only agent in the fanout cone, among other examples
0117. In one embodiment, HPI can support an explicit
writeback with cache-push hint (WbPushMtoI). Generally,
in some examples, modified data can be transferred by either
explicitly writing the data back to memory or transferring
the modified data in response to a Snoop request. Transfer
ring modified data in connection with a Snoop response can
be considered a “pull transfer. In some implementations, a
"push” mechanism can also be supported, whereby a cache
agent with the modified data sends the modified data directly
to another caching agent for storage in the target agents
cache (along with the Modified cache state).
0118. In one embodiment, a cache agent can write back
modified data with a hint to the home agent that it may push
the modified data to a “local cache, storing the data in M
state in the local cache, without writing the data to memory.
In one implementation, a home agent 710 can receive a
WbPushMtoI message from a cache agent 705 and identify
the hint that another cache agent (e.g., 720) is likely to utilize
or desire ownership of a particular line in the near future, as
shown in the example of FIG. 12. The home agent 710 can
process the WbPushMtoI message and effectively accept the
hint and push the written-back data to the other cache agent
720 without writing the data to memory 715, thereby caus
ing the other cache agent 720 to transition to an M state. In
Some implementations, the home agent 710 can alternatively
process the WbPushMtoI message and opt to write the data
back to memory, as in a WbMtoI request (such as illustrated
in FIG. 13) and not push the written-back data directly to the
other cache agent 720.
0119. In one example implementation, a home agent
(e.g., 710) can process a WbPushMtoI message by checking
that the tracker state is WbBuffered, which can indicate that
the home agent has not yet processed the data. In some
instances, a “push” of the data can be conditioned on the
home agent determining that the home agent is not already
processing a standard request to the same address. In some
implementations, the push can be further conditioned on the
home agent determining that the targeted cache agent (e.g.,
720, in the example of FIG. 12) is “local.” If the targeted
cache agent is not covered by the home agent directory, then
the home agent may transfer the data to the target cache
agent's cache and update the directory to Invalid. If the
targeted cache agent is covered by the directory, then the
data transfer to the cache agent's cache may only be allowed
only if the targeted cache agent does not have an active
InvXtoI, and when transferred the home agent can update
the directory to Exclusive with the target cache agent as the
owner. Other conditions can be defined (e.g., in a corre
sponding protocol state table) for a home agent in determin
ing whether to accept the hint of the WbPushMtoI message
and push data to a targeted cache agent, or instead process

US 2017/01 0928.6 A1

the WbPushMtoI message as a WbMtoI request by first
writing the data to memory, among other potential examples.
0120 In some implementations, HPI Can support an
InVItoM message to pre-allocate to a directory cache of a
home agent, such as an I/O directory cache (IODC). An
InvItoM can request exclusive ownership of a cache line
without receiving data while indicating an the intent of
performing a writeback Soon afterward. A required cache
state may be an M state, and E state, or either. A home agent
can process an InvitoM message to pre-allocate a resource
for the writeback hinted at through the InvItoM message
(including the InvitoM opcode).
0121. In some implementations, an opcode can be pro
vided through HPI Coherence protocol to trigger a memory
flush of a memory controller with which one or more home
agents interact. For instance, an opcode, WbFlush, can be
defined for persistent memory flush. As shown in the
example of FIG. 14, a host (e.g., 1405) can send a WbFlush
message directed to a particular memory controller 1410. In
some instances, the WbFlush can indicate a particular
address and the WbFlush command can be sent to the
specific memory controller targeted by the address. In
another example, a WbFlush message can be broadcast to
multiple memory controllers. In one example, the t may be
sent as a result of a persistent commit in a CPU. Each
respective memory controller (e.g., 1410) receiving a
WbFlush command can process the message to all pending
writes at the memory controller to a persistent memory
device (or memory location) managed by the memory
controller. The purpose of the command can be to commit all
previous writes to persistent memory. For example, a
WbFlush command can be triggered in connection with a
power failure management controller or process, so as to
ensure that pending writes are flushed to non-volatile
memory and preserved in the event of a power failure of the
system. Further, as shown in the example of FIG. 14, upon
flushing (or initiating the flushing of) all pending writes to
memory (e.g., 1415), the memory controller 1410 can
respond to the requesting host (or agent) (e.g., 1405) with a
completion indicating the flush. The completion should not
be sent to the host until the memory controller has assured
that the data will make it to persistent memory. The WbFlush
message or corresponding completion can serve as a check
point for other processes and controllers dependent on or
driving the flushing of pending writes to memory, among
other uses and examples.
0122) Some traditional architectures can require for
Data M and corresponding completes to be sent separately.
HPI may be extended to have coherence agents support
accepting a combined Data M. CmpO. Further, home
agents can be configured to generate a combined Data M
Cmp0 message via buffering implicit writeback data.
Indeed, in some implementations, an agent can be provided
with logic that combines cache and home agent behaviors,
Such that when the agent receives a request and find M data
in its cache, it can directly generate the Data M. CmpO. In
Such instances, the Data M. CmpO response can be gener
ated without generating a RspIWb or buffering writeback
data, among other examples.
0123. In another example, as shown in the example
protocol state table 1500 illustrated in FIG. 15, a state
machine (embodied by a machine readable state table (e.g.,
1500)) can define a variety of potential response messages a
home agent may send when the standard request's tracker

Apr. 20, 2017

entry is identified as in Busy or WbBuffered state. As shown
in table 1500, in one example, a home agent may not be
allowed to send a CmpO completion message to a read Rd
request from either state, effectively meaning a home agent
is to send a data response before or with a completion
response. In cases where a Data X response may be sent in
the home agent response message, the home agent may
combine the data response with a completion and send it
instead.

0.124. The state of the data response can be fixed for
invalidating requests and RdCur. For Rd Migrand RdData,
non-shared directory states can allow E data to be sent. For
RdMigr, RdData, and RdCode, a Shared directory state can
involve checking if all peers that might have F state were
Snooped. If they were, then the data can be sent with F state;
otherwise, the data can be sent in S state in case an
unsnooped peer has an F copy, among other potential
examples. Further, a home agent may send a Data M or
Data M. CmpO response, in Some implementations, only if
it buffered the data from a RspIWb Snoop response. When a
home agent buffers RspIWb data, it can store the data in the
tracker entry and change the entry's state to WbBuffered.
Note that if a home agent buffers the RspIWb data instead
of writing it to memory, it sends a Data M or Data M
CmpO response in this example.
0.125. In one embodiment, as noted above, HPI Coher
ence protocol can Support an F State that allows a cache
agent to keep F State when forwarding shared data. In some
systems, or instances, the F (forward) cache state can be
itself forwardable. When a cache holds a line in F state and
receives a Snoop which allows transferring shared data, the
cache may forward the data, and when it does it can send the
F state with the data and transition its cache state to S (or I).
In some circumstances, it is desirable for the cache to instead
keep the F state when forwarding data, in which case it will
send S state with the forwarded data.
I0126. In one example, the ability of a cache agent to keep
or pass an F State on a shared transfer can be controllable.
In one example, a configuration parameter, per coherence
agent, can indicate whether a coherence agent will transfer
or hold onto a F State. Regardless of the parameter setting,
the coherence agent can use the same Snoop response (e.g.,
RspFwdS). In the additional case of an agent having the line
in E State when the Snoop arrives, the cache agent can
transition its cache state to F when forwarding the S data and
sending the RspFwdS response (when the parameter is set to
hold F state). In the additional case of an agent having the
line in M (full) state when the Snoop arrives, the cache agent
can downgrade its cache state to F when forwarding the S
data, writing back the data to memory, and sending the
RspFwdSWb response (when the parameter is set to hold F
state). Further, a coherence agent with F state that receives
a 'sharing Snoop or forward after Such a Snoop may keep
the F State while sending S state to the requesting agent. In
other instances, the configuration parameter can be toggled
to allow the F state to be transferred in a transfer of shared
data and transition to an S (or I) state, among other
examples. Indeed, as shown in the example state table 1600
of FIG. 16, a cache agent in F State can respond in a variety
of ways, including a SnpMigr/FwdNigr, F, F, RspFwdS,
Data S, among other examples.
I0127. As noted above, in some implementations, state
transitions of a cache line and agents can be managed using
a state machine. In one implementation, the state machine

US 2017/01 0928.6 A1

can be further embodied by a set or library of state tables that
have been defined to detail all of the various combinations
of commands, attributes, previous states, and other condi
tions that can influence how state transitions are to take
place, as well as the types of messages, data operations,
masks, and so on, that can be associated with the State
transition (such as illustrated in the particular examples of
FIGS. 15 and 16). Each state table can correspond to a
particular action or category of actions or states. The set of
tables can include multiple tables, each table corresponding
to a particular action or Sub-action. The set of tables can
embody a formal specification of a protocol. Such as the
Coherence Protocol or another protocol (at any of the stack
layers) of HPI.
0128 State tables can be human-readable files, such as
table structures that can be readily interpreted and modified
and developed by a human user interacting with the state
table structure using an endpoint computer device. Other
users can utilize the state table to readily interpret state
transitions within the Coherence Protocol (or any other
protocol of HPI). Further, state tables can be machine
readable and parsable structures that can be read and inter
preted by a computer to identify how states are to transition
according to a particular protocol specification.
0129 FIG. 17 illustrates a simplified representation of a
generalized state table for an action “Action A. A protocol
state table 1700, in one example, can include columns (e.g.,
1705) pertaining to current states (or the states from which
a transition is to be made) and other columns (e.g., 1710)
pertaining to next states (or the States that are to be transi
tioned to). Columns in the current state columns can corre
spond to various characteristics of the State, such as com
mands received in a response message, Snoop message, or
other message, a cache line state, outgoing request buffer
(ORB) condition, credits or resources to apply/reserve,
whether the cache line is partially modified, a forwarding
condition, and so on. Each row in the table 1700 can
correspond to a detected set of conditions for a cache line in
a particular state. Further, the cells in the row within the next
state columns (e.g., 1710) can indicate the next state and
conditions of the next state that is to be entered into based
on the current state conditions specified in the row cells in
the current state columns (e.g., 1705). The next state col
umns (e.g., 1710) can correspond to conditions in the next
state Such as the messages that are to be sent (e.g., to a
corresponding home node (HNID), requesting node (RNID),
peer node, etc.), the next cache line state, forward State, and
SO. O.

0130. In one embodiment, protocol state tables can use
row spanning to indicate that multiple behaviors or states
(rows) are equally permissible for a certain set of current
state conditions. For instance, in the example of FIG. 17.
when the Command is Cmdl, a first condition is false, the
cache line is in a second state, and a second condition is also
false (as indicated by rows 1715), multiple potential next
state conditions are possible and may be equally permis
sible, each indicated by a respective row. In other word, any
one of Such equally permissible transitions can be triggered
based on the corresponding current state conditions. In some
implementations, additional agent logic can select which of
the multiple next state to select, among other example
implementations. In one illustrative example, a current state
section of a state table corresponding to home agent send
request responses can include multiple conditions (or input

Apr. 20, 2017

and state guards) including all valid behaviors for a coher
ence agent to perform when the agent holds a full M-line in
its cache and is processing a SnpMigr to the same cacheline.
The table rows may correspond to five different, and equally
permissible, next state behaviors the coherence agent can
take in response to the current state conditions, among other
examples.
I0131. In other systems, a bias bit may be included in
protocol state tables where multiple potential next states or
conditions are possible for a particular current state. In QPI.
for instance, a "bias’ bit is included in tables as a mechanism
to select among behaviors. Such bias bits may be primarily
used during validation of a protocol’s State machine, but
Such bias bits introduce additional complexity and, in some
cases, confusion unfamiliar with the utility of the bias bit. In
Some respects, a bias bit may be nothing more than an
artifact of a validation exercise. In one example of HPI,
through protocol tables using rows that potentially span
multiple rows, bias bits and other features can be excluded.
In Such instances, HPI protocol tables can emphasize
explicit non-determinism.
I0132 Turning to the example of FIG. 18, in one embodi
ment, protocol tables may be nested by having one table
refer to another sub-table in the “next state' columns, and
the nested table can have additional or finer-grained guards
to specify which rows (behaviors) are permitted. As shown
in FIG. 18, an example protocol state table 1700 can include
an embedded reference 1805 to another table 1800 included
in the set of tables embodying a protocol specification, such
as a state table pertaining to a sub-action related to the action
or behavior included in the next state designated for certain
rows of table 1700. Multiple tables (e.g., 1700, 1810) can
reference a nested table (e.g., 1800). As an example, an
agent processing incoming responses to protocol responses
may follow an action table (e.g., 1700, 1810) and a subaction
table 1800. Here, action table 1700 can include a next state
with a subaction table nested under one or more other
protocol tables. This type of nesting can apply beyond
coherence protocol and protocol layer state tables, but can
also be applied to any known or future protocol response/
tables.
0133. In one example, an agent can make use of protocol
tables (or another parsable structure constructed from the
protocol tables) and can identify a particular state table
corresponding to a particular action or event. Further, the
agent can identify the row that applies to the cache line
handled or targeted by the agent and identify, from the table,
the next state information for the cache line. This determi
nation can include the identification of a reference to a
nested table of a Sub-action. Accordingly, the agent can
identify the corresponding structure of the linked-to nested
table and further reference the nested table to determine the
state transition.
I0134. In one particular example, a collective set of pro
tocol tables can be defined and represent all of the possible,
defined state transitions in a protocol. Further, each table can
specify a set of transitions covering a set of related behaviors
within the protocol (e.g. one table covers all the behaviors
involved in Snooping and updating cache State, one covers
all behaviors generating new requests, etc.). When an agent
is to perform a behavior, process an event, or check if some
other action should be taken the agent can identify the
particular state table covering that particular behavior within
the set of state tables. The agent can then identify the current

US 2017/01 0928.6 A1

state of the system and reference the selected state table to
identify the row or group of rows matching the current state,
if any. If no rows match, the agent may, in some instances,
refrain from taking any action for the given current state and
wait for some other event/behavior to change the state
before trying again. Further, in Some instances, as intro
duced above, if more than one row matches the identified
system state, the agent can selects any of them to perform,
as all can be regarded as equally permissible. Further, in the
case of nesting, if a row refers to a nested table, the agent can
access the nested table and use the identified current state of
the system to search for allowed rows in the nested table.
0135. In some examples, upon traversing any primary
and nested tables to determine a response to a particular
identified system (or protocol) state, the agent can cause the
corresponding actions to be performed and the state of the
system to be updated in accordance with the “next states'
designated in the corresponding state tables.
0136. In some instances, it can be possible that more than
one state table relates to or covers a set of behaviors. For
instance, as an illustrative example, two tables may be
provided for processing Snoops, the first for the case when
there was a conflicting active request, the second table was
for when there was not. Accordingly, in some implementa
tions, an agent may survey multiple tables to determine
which table includes rows relevant to the particular condi
tions and states identified by the agent. Further, in some
cases, an agent may handle two unrelated or distinct events
occurring simultaneously, Such as an example where a home
agent receives a Snoop response and a new request at the
same time. In instances where multiple events are being
processes, an agent can identify and use multiple corre
sponding tables simultaneously to determine how to process
the events.

0137 Turning now to FIGS. 19 and 20, simplified block
diagrams 1900, 2000 are shown of examples of a testing or
validation environment for use in validating at least a
portion of a protocol. For instance, in the example of FIG.
19, a test engine 1900 is provided adapted to validate a state
machine of a protocol. For instance, in one example, test
engine 1900 can include or be based upon principles of a
Murphi tool or another enumerative (explicit state) model
checker, among other examples. For instance, other speci
fication languages can be utilized in lieu of the Murphi
examples described, including, as another example, TLA+
or another Suitable language or format. In traditional sys
tems, state model checkers have been constructed by human
developers who attempt to translate state machines (e.g.,
from accompanying state tables, etc.) into a set of require
ments that are then used to generate a checker capable of
checking the state machine. This is not only a typically
labor- and resource-intensive process, but also introduces
human error as the states and state transitions of a state table
are transcribed and interpreted by human users.
0.138. In one implementation, a test engine 1900 can

utilize a set of state tables (e.g., 1905) to automatically
generate, from the set of state tables, resources to model
behaviors of agents in a test environment. For instance, in
the example of FIG. 19, a test engine 1900 can utilize the
state tables 1905 as a functionality engine for modeling a
cache agent or other agent (e.g., 1910) that can be used to
validate various state transitions by simulating requests and
responses (e.g., 1912) with other real or simulated agents,
including a home agent 1915. Similarly, as shown in the

Apr. 20, 2017

example of FIG. 20, test engine 1900 can utilize state tables
1905 to simulate requests and responses (e.g., 1918) of a
home agent (e.g., 1920) and interface with other real or
simulated agents (e.g., 1925) to further validate and enu
merate states of the protocol. As an example, test engine
1900 can model an agent and receive real or modeled
protocol messages, such as HPI Coherence protocol mes
sages, and reference state tables 1905 (or another parsable
structure generated from the state tables 1905) to automati
cally generate an appropriate response, perform correspond
ing state transitions, and so on, based on the state tables
1905.

0.139. In one particular implementation, a test engine or
other software- or hardware-based utility can be used to
utilize state tables (e.g., 1905) to generate code to drive and
react to designs that employ a particular protocol. Such as
HPI Coherence protocol. In this particular example, state
tables can be utilized as an input of the test engine by
converting tables or included pseudocode along with Murphi
mappings for table values and pseudocode elements into
appropriate Murphi rule and procedure format. The test
engine can be used to further generate Murphi code for type
definitions and Supporting functionality. The Murphi rule,
procedure, type and Support code can be used to generate a
Murphi model. The Murphi model can be translated, for
instance, using a converter, to a C++ or other class defini
tion. Indeed, any suitable programming language can be
utilized. Sub-classes of the model class can be further
generated and these modules can be used to behave as a
simulated or testbench version of an agent employing and
aligned to the protocol specification embodied in the state
tables. Further, an internal API can be generated or other
wise provided that is aligned to message generation and
message reception as defined in the protocol state tables. For
instance, a message generation API can be tied to link packet
types and message reception can be unified under single
interface point. In this example, an entire formal protocol
specification can be converted into a C++ (or other object
oriented programming language) class. Inheritance can be
used to intercept messages generated, and instances of the
inheriting class can be created as functional testbench agent
(s). Generally, formal specification tables can be used as a
functionality engine for a validation or testing environment
tool rather than having developers separately create their
own tools based upon their interpretation of the specifica
tion.

0140 HPI can incorporated in any variety of computing
devices and systems, including mainframes, server systems,
personal computers, mobile computers (such as tablets,
Smartphones, personal digital systems, etc.), Smart appli
ances, gaming or entertainment consoles and set top boxes,
among other examples. For instance, referring to FIG. 21, an
embodiment of a block diagram for a computing system
including a multicore processor is depicted. Processor 2100
includes any processor or processing device, such as a
microprocessor, an embedded processor, a digital signal
processor (DSP), a network processor, a handheld processor,
an application processor, a co-processor, a system on a chip
(SOC), or other device to execute code. Processor 2100, in
one embodiment, includes at least two cores—core 2101 and
2102, which may include asymmetric cores or symmetric
cores (the illustrated embodiment). However, processor
2100 may include any number of processing elements that
may be symmetric or asymmetric.

US 2017/01 0928.6 A1

0141. In one embodiment, a processing element refers to
hardware or logic to Support a Software thread. Examples of
hardware processing elements include: a thread unit, a
thread slot, a thread, a process unit, a context, a context unit,
a logical processor, a hardware thread, a core, and/or any
other element, which is capable of holding a state for a
processor, such as an execution state or architectural state. In
other words, a processing element, in one embodiment,
refers to any hardware capable of being independently
associated with code, such as a software thread, operating
system, application, or other code. A physical processor (or
processor Socket) typically refers to an integrated circuit,
which potentially includes any number of other processing
elements, such as cores or hardware threads.
0142. A core often refers to logic located on an integrated
circuit capable of maintaining an independent architectural
state, wherein each independently maintained architectural
state is associated with at least some dedicated execution
resources. In contrast to cores, a hardware thread typically
refers to any logic located on an integrated circuit capable of
maintaining an independent architectural state, wherein the
independently maintained architectural States share access to
execution resources. As can be seen, when certain resources
are shared and others are dedicated to an architectural state,
the line between the nomenclature of a hardware thread and
core overlaps. Yet often, a core and a hardware thread are
viewed by an operating system as individual logical proces
sors, where the operating system is able to individually
schedule operations on each logical processor.
0143 Physical processor 2100, as illustrated in FIG. 21,
includes two cores—core 2101 and 2102. Here, core 2101
and 2102 are considered symmetric cores, i.e. cores with the
same configurations, functional units, and/or logic. In
another embodiment, core 2101 includes an out-of-order
processor core, while core 2102 includes an in-order pro
cessor core. However, cores 2101 and 2102 may be indi
vidually selected from any type of core, such as a native
core, a software managed core, a core adapted to execute a
native Instruction Set Architecture (ISA), a core adapted to
execute a translated Instruction Set Architecture (ISA), a
co-designed core, or other known core. In a heterogeneous
core environment (i.e. asymmetric cores). Some form of
translation, such a binary translation, may be utilized to
schedule or execute code on one or both cores. Yet to further
the discussion, the functional units illustrated in core 2101
are described in further detail below, as the units in core
2102 operate in a similar manner in the depicted embodi
ment.

0144. As depicted, core 2101 includes two hardware
threads 2101a and 2101b, which may also be referred to as
hardware thread slots 2101a and 2101b. Therefore, software
entities, such as an operating system, in one embodiment
potentially view processor 2100 as four separate processors,
i.e., four logical processors or processing elements capable
of executing four software threads concurrently. As alluded
to above, a first thread is associated with architecture state
registers 2101a, a second thread is associated with architec
ture state registers 2101b, a third thread may be associated
with architecture state registers 2102a, and a fourth thread
may be associated with architecture state registers 2102b.
Here, each of the architecture state registers (2101a, 2101b.
2102a, and 2102b) may be referred to as processing ele
ments, thread slots, or thread units, as described above. As
illustrated, architecture state registers 2101a are replicated

Apr. 20, 2017

in architecture state registers 2101b, so individual architec
ture states/contexts are capable of being stored for logical
processor 2101a and logical processor 2101b. In core 2101,
other Smaller resources, such as instruction pointers and
renaming logic in allocator and renamer block 2130 may
also be replicated for threads 2101a and 2101b. Some
resources, such as re-order buffers in reorder/retirement unit
2135, ILTB 2120, load/store buffers, and queues may be
shared through partitioning. Other resources, such as general
purpose internal registers, page-table base register(s), low
level data-cache and data-TLB 2151, execution unit(s) 2140,
and portions of out-of-order unit 2135 are potentially fully
shared.

(0145 Processor 2100 often includes other resources,
which may be fully shared, shared through partitioning, or
dedicated by/to processing elements. In FIG. 21, an embodi
ment of a purely exemplary processor with illustrative
logical units/resources of a processor is illustrated. Note that
a processor may include, or omit, any of these functional
units, as well as include any other known functional units,
logic, or firmware not depicted. As illustrated, core 2101
includes a simplified, representative out-of-order (OOO)
processor core. But an in-order processor may be utilized in
different embodiments. The OOO core includes a branch
target buffer 2120 to predict branches to be executed/taken
and an instruction-translation buffer (I-TLB) 2120 to store
address translation entries for instructions.

0146 Core 2101 further includes decode module 2125
coupled to fetch unit 2120 to decode fetched elements. Fetch
logic, in one embodiment, includes individual sequencers
associated with thread slots 2101a, 2101b, respectively.
Usually core 2101 is associated with a first ISA, which
defines/specifies instructions executable on processor 2100.
Often machine code instructions that are part of the first ISA
include a portion of the instruction (referred to as an
opcode), which references/specifies an instruction or opera
tion to be performed. Decode logic 2125 includes circuitry
that recognizes these instructions from their opcodes and
passes the decoded instructions on in the pipeline for pro
cessing as defined by the first ISA. For example, as dis
cussed in more detail below decoders 2125, in one embodi
ment, include logic designed or adapted to recognize
specific instructions, such as transactional instruction. As a
result of the recognition by decoders 2125, the architecture
or core 2101 takes specific, predefined actions to perform
tasks associated with the appropriate instruction. It is impor
tant to note that any of the tasks, blocks, operations, and
methods described herein may be performed in response to
a single or multiple instructions; some of which may be new
or old instructions. Note decoders 2126, in one embodiment,
recognize the same ISA (or a subset thereof). Alternatively,
in a heterogeneous core environment, decoders 2126 recog
nize a second ISA (either a subset of the first ISA or a distinct
ISA).
0.147. In one example, allocator and renamer block 2130
includes an allocator to reserve resources, such as register
files to store instruction processing results. However, threads
2101a and 2101b are potentially capable of out-of-order
execution, where allocator and renamer block 2130 also
reserves other resources, such as reorder buffers to track
instruction results. Unit 2130 may also include a register
renamer to rename program/instruction reference registers
to other registers internal to processor 2100. Reorder/retire
ment unit 2135 includes components, such as the reorder

US 2017/01 0928.6 A1

buffers mentioned above, load buffers, and store buffers, to
Support out-of-order execution and later in-order retirement
of instructions executed out-of-order.

0148 Scheduler and execution unit(s) block 2140, in one
embodiment, includes a scheduler unit to schedule instruc
tions/operation on execution units. For example, a floating
point instruction is scheduled on a port of an execution unit
that has an available floating point execution unit. Register
files associated with the execution units are also included to
store information instruction processing results. Exemplary
execution units include a floating point execution unit, an
integer execution unit, a jump execution unit, a load execu
tion unit, a store execution unit, and other known execution
units.

0149 Lower level data cache and data translation buffer
(D-TLB) 2150 are coupled to execution unit(s) 2140. The
data cache is to store recently used/operated on elements,
Such as data operands, which are potentially held in memory
coherency states. The D-TLB is to store recent virtual/linear
to physical address translations. As a specific example, a
processor may include a page table structure to break
physical memory into a plurality of virtual pages.
0150. Here, cores 2101 and 2102 share access to higher
level or further-out cache, such as a second level cache
associated with on-chip interface 2110. Note that higher
level or further-out refers to cache levels increasing or
getting further way from the execution unit(s). In one
embodiment, higher-level cache is a last-level data cache—
last cache in the memory hierarchy on processor 2100—
such as a second or third level data cache. However, higher
level cache is not so limited, as it may be associated with or
include an instruction cache. A trace cache—a type of
instruction cache—instead may be coupled after decoder
2125 to store recently decoded traces. Here, an instruction
potentially refers to a macro-instruction (i.e. a general
instruction recognized by the decoders), which may decode
into a number of micro-instructions (micro-operations).
0151. In the depicted configuration, processor 2100 also
includes on-chip interface module 2110. Historically, a
memory controller, which is described in more detail below,
has been included in a computing system external to pro
cessor 2100. In this scenario, on-chip interface 2110 is to
communicate with devices external to processor 2100, such
as system memory 2175, a chipset (often including a
memory controller hub to connect to memory 2175 and an
I/O controller hub to connect peripheral devices), a memory
controller hub, a northbridge, or other integrated circuit. And
in this scenario, bus 2105 may include any known intercon
nect, such as multi-drop bus, a point-to-point interconnect,
a serial interconnect, a parallel bus, a coherent (e.g. cache
coherent) bus, a layered protocol architecture, a differential
bus, and a GTL bus.
0152 Memory 2175 may be dedicated to processor 2100
or shared with other devices in a system. Common examples
of types of memory 2175 include DRAM, SRAM, non
Volatile memory (NV memory), and other known storage
devices. Note that device 2180 may include a graphic
accelerator, processor or card coupled to a memory control
ler hub, data storage coupled to an I/O controller hub, a
wireless transceiver, a flash device, an audio controller, a
network controller, or other known device.
0153. Recently however, as more logic and devices are
being integrated on a single die. Such as SOC, each of these
devices may be incorporated on processor 2100. For

Apr. 20, 2017

example in one embodiment, a memory controller hub is on
the same package and/or die with processor 2100. Here, a
portion of the core (an on-core portion) 2110 includes one or
more controller(s) for interfacing with other devices such as
memory 2175 or a graphics device 2180. The configuration
including an interconnect and controllers for interfacing
with such devices is often referred to as an on-core (or
un-core configuration). As an example, on-chip interface
2110 includes a ring interconnect for on-chip communica
tion and a high-speed serial point-to-point link 2105 for
off-chip communication. Yet, in the SOC environment, even
more devices, such as the network interface, co-processors,
memory 2175, graphics processor 2180, and any other
known computer devices/interface may be integrated on a
single die or integrated circuit to provide Small form factor
with high functionality and low power consumption.
0154) In one embodiment, processor 2100 is capable of
executing a compiler, optimization, and/or translator code
2177 to compile, translate, and/or optimize application code
2176 to support the apparatus and methods described herein
or to interface therewith. A compiler often includes a pro
gram or set of programs to translate Source text/code into
target text/code. Usually, compilation of program/applica
tion code with a compiler is done in multiple phases and
passes to transform hi-level programming language code
into low-level machine or assembly language code. Yet,
single pass compilers may still be utilized for simple com
pilation. A compiler may utilize any known compilation
techniques and perform any known compiler operations,
Such as lexical analysis, preprocessing, parsing. Semantic
analysis, code generation, code transformation, and code
optimization.
0155 Larger compilers often include multiple phases, but
most often these phases are included within two general
phases: (1) a front-end, i.e. generally where syntactic pro
cessing, semantic processing, and some transformation/op
timization may take place, and (2) a back-end, i.e. generally
where analysis, transformations, optimizations, and code
generation takes place. Some compilers refer to a middle,
which illustrates the blurring of delineation between a
front-end and back end of a compiler. As a result, reference
to insertion, association, generation, or other operation of a
compiler may take place in any of the aforementioned
phases or passes, as well as any other known phases or
passes of a compiler. As an illustrative example, a compiler
potentially inserts operations, calls, functions, etc. in one or
more phases of compilation, Such as insertion of calls/
operations in a front-end phase of compilation and then
transformation of the calls/operations into lower-level code
during a transformation phase. Note that during dynamic
compilation, compiler code or dynamic optimization code
may insert Such operations/calls, as well as optimize the
code for execution during runtime. As a specific illustrative
example, binary code (already compiled code) may be
dynamically optimized during runtime. Here, the program
code may include the dynamic optimization code, the binary
code, or a combination thereof.
0156 Similar to a compiler, a translator, such as a binary
translator, translates code either statically or dynamically to
optimize and/or translate code. Therefore, reference to
execution of code, application code, program code, or other
software environment may refer to: (1) execution of a
compiler program(s), optimization code optimizer, or trans
lator either dynamically or statically, to compile program

US 2017/01 0928.6 A1

code, to maintain Software structures, to perform other
operations, to optimize code, or to translate code; (2) execu
tion of main program code including operations/calls. Such
as application code that has been optimized/compiled; (3)
execution of other program code. Such as libraries, associ
ated with the main program code to maintain Software
structures, to perform other Software related operations, or to
optimize code; or (4) a combination thereof.
(O157. While the present invention has been described
with respect to a limited number of embodiments, those
skilled in the art will appreciate numerous modifications and
variations therefrom. It is intended that the appended claims
cover all such modifications and variations as fall within the
true spirit and scope of this present invention.
0158. A design may go through various stages, from
creation to simulation to fabrication. Data representing a
design may represent the design in a number of manners.
First, as is useful in simulations, the hardware may be
represented using a hardware description language or
another functional description language. Additionally, a cir
cuit level model with logic and/or transistor gates may be
produced at Some stages of the design process. Furthermore,
most designs, at Some stage, reach a level of data represent
ing the physical placement of various devices in the hard
ware model. In the case where conventional semiconductor
fabrication techniques are used, the data representing the
hardware model may be the data specifying the presence or
absence of various features on different mask layers for
masks used to produce the integrated circuit. In any repre
sentation of the design, the data may be stored in any form
of a machine readable medium. A memory or a magnetic or
optical storage Such as a disc may be the machine readable
medium to store information transmitted via optical or
electrical wave modulated or otherwise generated to trans
mit such information. When an electrical carrier wave
indicating or carrying the code or design is transmitted, to
the extent that copying, buffering, or re-transmission of the
electrical signal is performed, a new copy is made. Thus, a
communication provider or a network provider may store on
a tangible, machine-readable medium, at least temporarily,
an article, such as information encoded into a carrier wave,
embodying techniques of embodiments of the present inven
tion.

0159. A module as used herein refers to any combination
of hardware, Software, and/or firmware. As an example, a
module includes hardware, such as a micro-controller, asso
ciated with a non-transitory medium to store code adapted to
be executed by the micro-controller. Therefore, reference to
a module, in one embodiment, refers to the hardware, which
is specifically configured to recognize and/or execute the
code to be held on a non-transitory medium. Furthermore, in
another embodiment, use of a module refers to the non
transitory medium including the code, which is specifically
adapted to be executed by the microcontroller to perform
predetermined operations. And as can be inferred, in yet
another embodiment, the term module (in this example) may
refer to the combination of the microcontroller and the
non-transitory medium. Often module boundaries that are
illustrated as separate commonly vary and potentially over
lap. For example, a first and a second module may share
hardware, Software, firmware, or a combination thereof,
while potentially retaining some independent hardware,
software, or firmware. In one embodiment, use of the term

Apr. 20, 2017

logic includes hardware, such as transistors, registers, or
other hardware. Such as programmable logic devices.
0160 Use of the phrase configured to, in one embodi
ment, refers to arranging, putting together, manufacturing,
offering to sell, importing and/or designing an apparatus,
hardware, logic, or element to perform a designated or
determined task. In this example, an apparatus or element
thereof that is not operating is still configured to perform
a designated task if it is designed, coupled, and/or intercon
nected to perform said designated task. As a purely illustra
tive example, a logic gate may provide a 0 or a 1 during
operation. But a logic gate configured to provide an enable
signal to a clock does not include every potential logic gate
that may provide a 1 or 0. Instead, the logic gate is one
coupled in some manner that during operation the 1 or 0
output is to enable the clock. Note once again that use of the
term configured to does not require operation, but instead
focus on the latent state of an apparatus, hardware, and/or
element, where in the latent state the apparatus, hardware,
and/or element is designed to perform a particular task when
the apparatus, hardware, and/or element is operating.
0.161 Furthermore, use of the phrases to, capable
of/to, and or operable to, in one embodiment, refers to
Some apparatus, logic, hardware, and/or element designed in
Such a way to enable use of the apparatus, logic, hardware,
and/or element in a specified manner. Note as above that use
of to, capable to, or operable to, in one embodiment, refers
to the latent state of an apparatus, logic, hardware, and/or
element, where the apparatus, logic, hardware, and/or ele
ment is not operating but is designed in Such a manner to
enable use of an apparatus in a specified manner.
0162. A value, as used herein, includes any known rep
resentation of a number, a state, a logical state, or a binary
logical state. Often, the use of logic levels, logic values, or
logical values is also referred to as 1s and 0's, which simply
represents binary logic states. For example, a 1 refers to a
high logic level and 0 refers to a low logic level. In one
embodiment, a storage cell. Such as a transistor or flash cell,
may be capable of holding a single logical value or multiple
logical values. However, other representations of values in
computer systems have been used. For example the decimal
number ten may also be represented as a binary value of
2110 and a hexadecimal letter A. Therefore, a value includes
any representation of information capable of being held in a
computer system.
0163 Moreover, states may be represented by values or
portions of values. As an example, a first value, such as a
logical one, may represent a default or initial state, while a
second value. Such as a logical Zero, may represent a
non-default State. In addition, the terms reset and set, in one
embodiment, refer to a default and an updated value or state,
respectively. For example, a default value potentially
includes a high logical value, i.e. reset, while an updated
value potentially includes a low logical value, i.e. set. Note
that any combination of values may be utilized to represent
any number of States.
(0164. The embodiments of methods, hardware, software,
firmware or code set forth above may be implemented via
instructions or code stored on a machine-accessible,
machine readable, computer accessible, or computer read
able medium which are executable by a processing element.
A non-transitory machine-accessible/readable medium
includes any mechanism that provides (i.e., stores and/or
transmits) information in a form readable by a machine. Such

US 2017/01 0928.6 A1

as a computer or electronic system. For example, a non
transitory machine-accessible medium includes random-ac
cess memory (RAM), such as static RAM (SRAM) or
dynamic RAM (DRAM); ROM; magnetic or optical storage
medium; flash memory devices; electrical storage devices;
optical storage devices; acoustical storage devices; other
form of storage devices for holding information received
from transitory (propagated) signals (e.g., carrier waves,
infrared signals, digital signals); etc., which are to be distin
guished from the non-transitory mediums that may receive
information there from.

0.165 Instructions used to program logic to perform
embodiments of the invention may be stored within a
memory in the system, such as DRAM, cache, flash
memory, or other storage. Furthermore, the instructions can
be distributed via a network or by way of other computer
readable media. Thus a machine-readable medium may
include any mechanism for storing or transmitting informa
tion in a form readable by a machine (e.g., a computer), but
is not limited to, floppy diskettes, optical disks, Compact
Disc, Read-Only Memory (CD-ROMs), and magneto-opti
cal disks, Read-Only Memory (ROMs), Random Access
Memory (RAM), Erasable Programmable Read-Only
Memory (EPROM), Electrically Erasable Programmable
Read-Only Memory (EEPROM), magnetic or optical cards,
flash memory, or a tangible, machine-readable storage used
in the transmission of information over the Internet via
electrical, optical, acoustical or other forms of propagated
signals (e.g., carrier waves, infrared signals, digital signals,
etc.). Accordingly, the computer-readable medium includes
any type of tangible machine-readable medium Suitable for
storing or transmitting electronic instructions or information
in a form readable by a machine (e.g., a computer).
0166 The following examples pertain to embodiments in
accordance with this Specification. One or more embodi
ments may provide an apparatus, a system, a machine
readable storage, a machine readable medium, and a method
to receive a request that is to reference a first agent and to
request a particular line of memory to be cached in an
exclusive state, send a Snoop request intended for one or
more other agents, receive a Snoop response that is to
reference a second agent, the Snoop response to include a
writeback to memory of a modified cache line that is to
correspond to the particular line of memory, and send a
complete to be addressed to the first agent, wherein the
complete is to include data of the particular line of memory
based on the writeback.

0167. In at least one example, the modified cache line is
written to the particular line of memory.
0.168. In at least one example, it is determined that the
cache line of the second agent is a modified cache line. The
complete can be to be sent prior to receiving responses to all
of the Snoop requests corresponding to the request from the
first agent based on determining that the cache line of the
second agent is a modified cache line.
0169. In at least one example, the snoop request com
prises a Snoop invalidate request. The Snoop invalidate
request can be to invalidate the cache of the receiving other
agent corresponding to the particular line or memory. The
Snoop invalidate request can identify the particular line of
memory and a command included in the request from the
first agent.

20
Apr. 20, 2017

0170 In at least one example, a directory state can be
transitioned to indicate that the particular line of memory is
associated with an exclusive state.
0171 One or more embodiments may provide an appa
ratus, a system, a machine readable storage, a machine
readable medium, and a method to receive a request that is
to send a request for a particular cache line in an exclusive
state, and receive data from memory corresponding to the
particular cache line, wherein the particular data comprises
data written-back to memory by another agent following the
request.
0172. In at least one example, the particular cache line is
in an invalid state prior to the request.
0173. In at least one example, the exclusive state is an
E-state indicating that a copy of the data in the particular
cache line matches the memory and is an exclusive copy.
0.174. In at least one example, the particular data is copied
to the particular cache line. The particular cache line can be
transitioned to an exclusive state based on receiving the
particular data.
0.175. In at least one example, the data written-back to
memory by another agent comprises data returned in
response to a Snoop corresponding to the request for the
particular cache line in an exclusive state.
0176). In at least one example, the Snoop is one of a
plurality of Snoops and the particular data is to be received
prior to responses being returned for each of the Snoop
requests.
0177. One or more embodiments may provide an appa
ratus, a system, a machine readable storage, a machine
readable medium, and a method to receive a request that is
to receive an explicit writeback request, wherein the explicit
writeback request is to correspond to a modified cache line
that is to correspond to a particular line of memory, and the
explicit writeback request is to include a hint to indicate that
another cache is to request the particular line of memory,
determine whether to push data of the modified cache line to
the other cache prior to writing the data of the modified
cache line to the particular line of memory, and send a
complete to correspond to the explicit writeback request.
0178. In at least one example, determining not to push the
data is to cause the data of the modified cache line to be
written to the particular line of memory.
0179. In at least one example, the data of the modified
cache line is not to be pushed to the other cache.
0180. In at least one example, a directory state corre
sponding to the particular line of memory can be transi
tioned from an exclusive state to an invalid state.
0181. In at least one example, determining to push the
data is to cause the data of the modified cache line to be sent
to a first cache agent corresponding to the other cache to
write the data of the modified cache line to be written to a
corresponding cache line of the other cache.
0182. In at least one example, a directory state corre
sponding to the particular line of memory is to transition to
a state indicating that the other cache has an exclusive copy
of the particular line of memory.
0183 In at least one example, the explicit writeback
request comprises a single coherence protocol request from
a different, second cache agent corresponding to the modi
fied cache line.
0184. In at least one example, determining to push the
data comprises determining whether the other cache is a
local cache.

US 2017/01 0928.6 A1

0185. In at least one example, determining to push the
data comprises determining whether there are other out
standing requests for the particular line of memory.
0186 One or more embodiments may provide an appa
ratus, a system, a machine readable storage, a machine
readable medium, and a method to receive a request that is
to send an explicit writeback request to a home agent,
wherein the explicit writeback request is to correspond to a
modified cache line that is to correspond to a particular line
of memory, the explicit writeback request is to include a hint
to indicate that another cache is to request the particular line
of memory, and receive a completion from the home agent
for the explicit writeback request.
0187. In at least one example, the modified cache line is
to transition from a modified State to an invalid State
following the sending of the explicit writeback request.
0188 In at least one example, the explicit writeback
request is to cause data of the modified cache line to be
written to the other cache without being written to the
particular line of memory.
0189 In at least one example, the explicit writeback
request comprises a single coherence protocol request.
0190. In at least one example, the explicit writeback
request is to identify the other cache.
0191) One or more embodiments may provide an appa
ratus, a system, a machine readable storage, a machine
readable medium, and a method to receive a request that is
to receive a writeback flush message, identify a set of
pending writes of the memory controller to a particular
persistent memory, and write all of the set of pending writes
to the particular memory based on the writeback flush
message.
0.192 In at least one example, the writeback flush mes
sage comprises a coherence protocol message.
0193 In at least one example, the writeback flush mes
Sage generated by a cache agent.
0194 In at least one example, the set of pending writes
comprises all pending writes of the memory controller.
0.195 The apparatus of claim 40, wherein the writeback
flush message is to identify the memory controller.
0196. In at least one example, the writeback flush mes
sage is to identify a memory address corresponding to the
particular memory.
0197) In at least one example, the writeback flush mes
sage corresponds to a power failure management activity.
0198 One or more embodiments may provide an appa
ratus, a system, a machine readable storage, a machine
readable medium, and a method to receive a request that is
to identify that a particular line of a cache is in a forward
state, receive a request that corresponds to the particular line
of the cache, determine whether to retain the forward state
following a response to the request, and respond to the
request.
0199. In at least one example, determining whether to
retain the forward State includes determining a value of a
configuration parameter for the agent, wherein a value of the
configuration parameter identifies whether or not the for
ward state is to be retained.
0200. In at least one example, the value of the configu
ration parameter can be changed. Determining whether to
retain the forward State can include determining to retain the
forward state following the response. Determining whether
to retain the forward State can include determining to
transition from the forward state following the response. In

Apr. 20, 2017

at least one example, the forward State is to transition from
the forward State to a shared State. In at least one example,
the forward state is to transition from the forward state to the
invalid state.
0201 In at least one example, the request comprises a
Snoop. Responding to the request can include forwarding
data from the particular line of cache to another agent.
0202 One or more embodiments may provide an appa
ratus, a system, a machine readable storage, a machine
readable medium, and a method to receive a request that is
to provide an agent including protocol layer logic to gener
ate a fanout Snoop request, and routing layer logic to identify
a plurality of agents to receive a Snoop according to the
fanout Snoop request, and send Snoop requests to each of the
plurality of agents.
0203. In at least one example, the plurality of agents is
identified from a configuration parameter identifying each
agent in a corresponding fanouot cone.
0204. In at least one example, the configuration param
eter is to identify each agent by address.
0205. In at least one example, it can be determined
whether a fanout Snoop can be used to Snoop one or more
agents.
0206. In at least one example, the agent is a home agent
and the Snoop requests can each comprise a Snoop to obtain
cache data in anyone of a forward or shared State.
0207. In at least one example, the snoop requests each
comprise a Snoop to obtain cache data in anyone of a
modified, exclusive, forward, or shared state.
0208. In at least one example, the snoop requests each
comprise a Snoop to obtain cache data in anyone of a
modified or exclusive state.
0209. In at least one example, the snoop requests each
comprise a Snoop to the cache of the respective agent,
wherein data in modified state is to be flushed to memory.
0210. In at least one example, Snoop responses can be
received for one or more of the Snoop requests.
0211 One or more examples can further provide an agent
including a layered protocol stack including a protocol layer,
wherein the protocol layer is to initiate a read invalidate
request that is to accept exclusive coherency state data.
0212. One or more examples can further provide an agent
including a layered protocol stack including a protocol layer,
wherein the protocol layer is to initiate an invalidate that is
to request exclusive ownership of a cache line without
receiving data and with an indication of writing back the
cache line.
0213. In at least one example, writing back the cache line
is within a near time frame.
0214. One or more examples can further provide an agent
including a layered protocol stack including a protocol layer,
wherein the protocol layer is to initiate a write-back flush
request that is to cause a flush of data to persistent memory.
0215 One or more examples can further provide an agent
including a layered protocol stack including a protocol layer,
wherein the protocol layer is to initiate a single fanout Snoop
request that is to cause a Snoop request to be generated to
peer agents within a fanout cone.
0216. One or more examples can further provide an agent
including a layered protocol stack including a protocol layer,
wherein the protocol layer is to initiate an explicit writeback
request with cache-push hint to a home agent that a refer
enced cache line may be pushed to a local cache without
writing the data to memory.

US 2017/01 0928.6 A1

0217. In at least one example, the cache line may be
storing in M state.
0218. One or more examples can further provide an agent
including a layered protocol stack including a protocol layer,
wherein the protocol layer is to initiate a forward of shared
data, while maintaining a forward State to be associated with
the shared data.
0219 Reference throughout this specification to “one
embodiment' or “an embodiment’ means that a particular
feature, structure, or characteristic described in connection
with the embodiment is included in at least one embodiment
of the present invention. Thus, the appearances of the
phrases “in one embodiment” or “in an embodiment” in
various places throughout this specification are not neces
sarily all referring to the same embodiment. Furthermore,
the particular features, structures, or characteristics may be
combined in any Suitable manner in one or more embodi
mentS.

0220. In the foregoing specification, a detailed descrip
tion has been given with reference to specific exemplary
embodiments. It will, however, be evident that various
modifications and changes may be made thereto without
departing from the broader spirit and scope of the invention
as set forth in the appended claims. The specification and
drawings are, accordingly, to be regarded in an illustrative
sense rather than a restrictive sense. Furthermore, the fore
going use of embodiment and other exemplarily language
does not necessarily refer to the same embodiment or the
same example, but may refer to different and distinct
embodiments, as well as potentially the same embodiment.

1-73. (canceled)
74. An apparatus comprising:
a node comprising at least one processor, a cache, and a

first coherence agent to:
receive a Snoop request, wherein the Snoop request is to
be received from a home agent, the Snoop request
comprises a Snoop invalidate request, the Snoop
request is to correspond to a request sent to the home
agent by a second coherence agent, and the Snoop
request comprises an address field encoded with a
node identifier (NID) of the home agent;

generate a Snoop response, wherein the Snoop response
comprises a command field, a destination NID field,
a home transaction identifier (TID) field, and data,
wherein the command field is to be encoded to
indicate that the Snoop response comprises an
implicit writeback, the destination NID field is
encoded with the NID of the home agent, the home
TID field is encoded to identify a resource allocated
by the home agent to process the Snoop request, and
the data is to be written back to memory;

send the Snoop response to the home agent; and
change a state of the cache based on the Snoop

response.
75. The apparatus of claim 74, wherein the state of the

cache is one of a set of defined States.
76. The apparatus of claim 75, wherein the set of defined

states comprise a modified State, an exclusive state, a shared
state, and an invalid State.

77. The apparatus of claim 74, wherein the state of cache
is changed to an invalid state.

78. The apparatus of claim 77, wherein the state of the
cache is changed from a modified State to the invalid state.

22
Apr. 20, 2017

79. The apparatus of claim 78, wherein the Snoop
response is to comprise the implicit writeback based on the
modified state.

80. The apparatus of claim 74, wherein the Snoop invali
date request is based on an exclusive directory state asso
ciated with the home agent.

81. The apparatus of claim 74, wherein the data is written
back to memory based on the implicit writeback.

82. The apparatus of claim 81, wherein the data is flushed
from the cache concurrently with the writing back of the data
to memory.

83. A method comprising:
receiving at a home agent of a memory, a read request

from a first caching agent, wherein the read request
corresponds to a particular line of the memory;

sending a Snoop request to a second caching agent respon
sive to the read request, wherein the Snoop request
comprises a command field, an address field, a desti
nation node identifier (NID) field, a requesting (NID)
field, a requesting transaction identifier (TID) field, and
a home TID field, wherein the command field of the
Snoop request is encoded to indicate that the Snoop
request comprises a Snoop invalidate and the home TID
field of the snoop request identifies a resource allocated
by the home agent to process the Snoop request;

receiving a Snoop response from the second caching agent
responsive to the Snoop request, wherein the Snoop
response comprises a command field, a destination NID
field, a home TID field, and data from a cache corre
sponding to the second caching agent, wherein the
command field of the Snoop response is encoded to
indicate that the Snoop response comprises an implicit
writeback;

writing the data to the particular line of the memory;
changing a state of the particular line of the memory to an

invalid State based on writing the data to the particular
line;

sending a completion to the first caching agent responsive
to the read request; and

changing the state of the particular line of the memory to
an exclusive state based on the completion.

84. The method of claim 83, wherein the state of the
particular line of memory is changed from an exclusive state
to the invalid state.

85. The method of claim 83, wherein the read request
comprises a request to cause the first caching agent to obtain
ownership of the particular line of the memory in an
exclusive state.

86. The method of claim 85, wherein the completion
comprises no data.

87. The method of claim 83, wherein the completion
comprises the data.

88. The method of claim 83, wherein the read request
comprises a read invalidate (Rdnv) request.

89. The method of claim 88, wherein the read invalidate
request corresponds to an unknown directory state corre
sponding to the particular line of the memory.

90. The method of claim 88, wherein the read invalidate
request indicates that an exclusive copy of the particular line
is requested.

91. At least one non-transitory machine accessible storage
medium having instructions stored thereon, the instructions
when executed on a machine, cause the machine to:

US 2017/01 0928.6 A1

receive a Snoop request, wherein the Snoop request is to
be received from a home agent, the Snoop request
comprises a Snoop invalidate request, the Snoop request
is to correspond to a request sent to the home agent by
a second coherence agent, and the Snoop request com
prises an address field encoded with a node identifier
(NID) of the home agent;

generate a Snoop response, wherein the Snoop response
comprises a command field, a destination NID field, a
home transaction identifier (TID) field, and data,
wherein the command field is to be encoded to indicate
that the Snoop response comprises an implicit write
back, the destination NID field is encoded with the NID
of the home agent, the home TID field is encoded to
identify a resource allocated by the home agent to
process the Snoop request, and the data is to be written
back to memory;

send the Snoop response to the home agent; and
change a state of the cache based on the Snoop response.
92. At least one non-transitory machine accessible storage

medium having instructions stored thereon, the instructions
when executed on a machine, cause the machine to:

Senda Snoop request to a second caching agent responsive
to the read request, wherein the Snoop request com
prises a command field, an address field, a destination
node identifier (NID) field, a requesting (NID) field, a
requesting transaction identifier (TID) field, and a
home TID field, wherein the command field of the
Snoop request is encoded to indicate that the Snoop
request comprises a Snoop invalidate and the home TID
field of the snoop request identifies a resource allocated
by the home agent to process the Snoop request;

receive a Snoop response from the second caching agent
responsive to the Snoop request, wherein the Snoop
response comprises a command field, a destination NID
field, a home TID field, and data from a cache corre
sponding to the second caching agent, wherein the
command field of the Snoop response is encoded to
indicate that the Snoop response comprises an implicit
writeback;

write the data to the particular line of the memory;
change a state of the particular line of the memory to an

invalid State based on writing the data to the particular
line;

send a completion to the first caching agent responsive to
the read request; and

change the State of the particular line of the memory to an
exclusive state based on the completion.

93. A system comprising:
a first node comprising a first processor, a first cache, and

a first caching agent;
a second node comprising a second processor, a second

cache, and a second caching agent; and

23
Apr. 20, 2017

a third node comprising a third processor, a memory, and
a third caching agent, wherein the third caching agent
comprises protocol logic to:
receive a read request from the first caching agent for

data from a particular line of the memory;
send a Snoop request to the second caching agent

responsive to the read request, wherein the Snoop
request comprises a command field encoded to indi
cate that the Snoop request comprises a Snoop invali
date;

receive a Snoop response from the second caching
agent responsive to the Snoop request, wherein the
Snoop response comprises data from the second
cache and a command field encoded to indicate that
the Snoop response comprises an implicit writeback;

write the data to the particular line of the memory
responsive to the Snoop response;

change a directory state of the particular line to an
invalid state based on the implicit writeback;

send a completion to the first caching agent responsive
to the read request, wherein the completion com
prises the data; and

change the directory state of the particular line to an
exclusive state based on sending the completion.

94. The system of claim 93, wherein the third caching
agent comprises a home agent.

95. The system of claim 93, wherein the first, second, and
third nodes are interconnected by a plurality of links in the
system.

96. The system of claim 95, wherein the plurality of links
are according to a cache coherent multilayer interconnect
protocol.

97. A system comprising:
means to receive a Snoop request, wherein the Snoop

request is to be received from a home agent, the Snoop
request comprises a Snoop invalidate request, the Snoop
request is to correspond to a request sent to the home
agent by a second coherence agent, and the Snoop
request comprises an address field encoded with a node
identifier (NID) of the home agent;

means to generate a Snoop response, wherein the Snoop
response comprises a command field, a destination NID
field, a home transaction identifier (TID) field, and
data, wherein the command field is to be encoded to
indicate that the Snoop response comprises an implicit
writeback, the destination NID field is encoded with the
NID of the home agent, the home TID field is encoded
to identify a resource allocated by the home agent to
process the Snoop request, and the data is to be written
back to memory;

means to send the Snoop response to the home agent; and
means to change a state of the cache based on the Snoop

response.

