
(19) United States 
(12) Patent Application Publication (10) Pub. No.: US 2003/008.4038A1 

Balogh et al. 

US 2003008.4038A1 

(43) Pub. Date: May 1, 2003 

(54) 

(75) 

(73) 

(21) 

(22) 

(60) 

TRANSACTIONAL MEMORY MANAGER 

Inventors: Aristotle Nicholas Balogh, Oakton, VA 
(US); William Frederick Haworth 
JR., Sherwood Forest, MD (US) 

Correspondence Address: 
KENYON & KENYON 
1500 KSTREET, N.W., SUITE 700 
WASHINGTON, DC 20005 (US) 

Assignee: VeriSign, Inc. 

Appl. No.: 10/285,544 

Filed: Nov. 1, 2002 

Related U.S. Application Data 

Provisional application No. 60/330,842, filed on Nov. 
1, 2001. Provisional application No. 60/365,169, filed 
on Mar. 19, 2002. 

Publication Classification 

(51) Int. Cl." .............................. G06F 7700; G06F 17/30 
(52) U.S. Cl. .................................................................. 707/3 

(57) ABSTRACT 

Embodiments of the present invention provide a method and 
System for high-Speed database Searching with concurrent, 
transaction-based updating for large database Systems. Spe 
cifically, a plurality of Search queries may be received over 
a network, the database may be searched, and a plurality of 
search replies may be sent over the network. While search 
ing the database, new information may be received over the 
network, a plurality of new database elements may be 
created based on the new information, a dirty bit may be Set 
within each new database element, a pointer to each new 
database element may be written to the database using a 
Single uninterruptible operation, and the dirty bit within each 
new database element may be cleared. 

Receive Search 
Queries Over 

Assign Search 
Queries to Search 

Threads 

990 

Create Update 
Thread and Plurality 
of Search Threads 

Physically Delete 
Existing Element 
From Database 

Delete Receive New 
information Over 

Add, Modify 

Create Plurality of 
New Elements Based 
on New Information 

Set Dirty Bit Within Each of 
the Plurality of New Elements 

Write Pointers 
to Database Using Single 
Uninterruptible Operation 

Clear Dirty Bit Within Each of 
the Plurality of New Elements 

w 

    

  

  

  

  

  

  

  

    

  

  

  

  

  

  

  

  



May 1, 2003 Sheet 1 of 10 US 2003/008.4038A1 Patent Application Publication 

Kuepuooas 
ZZ ), 

N-02), J??nduloo 

  

  

  

  

  

  

  

  

  



?ayoe?uodns asuodsæ>} 

992 072 

US 2003/008.4038A1 

?ayoecjuædnS ?senbaxy qax?oeduadns Jeuauas) 

May 1, 2003 Sheet 2 of 10 

seungonuys egeq 36esseW Z "SO1= 

Patent Application Publication 

  

  



May 1, 2003 Sheet 3 of 10 US 2003/008.4038A1 Patent Application Publication 

90€ 

00€ 

0,8 

aun?onugs eyeq Mouage7 36essæ W 9. "SDI 
  

  



eseqe?eq 

US 2003/008.4038A1 

: $ 

07 

May 1, 2003 Sheet 4 of 10 

7 "SDI 

Patent Application Publication 

  

  



Patent Application Publication May 1, 2003 Sheet 5 of 10 US 2003/008.4038A1 

-- 

XX X X. .|||| 
i 

3SeaSalls s 

S. 
l 
w 
O 

S. 
S 
CMD 

  



May 1, 2003. Sheet 6 of 10 US 2003/0084038A1 Patent Application Publication 

egeq uæAu3S 3 uueN 
aseqe?eq 

O 
Z 

  



May 1, 2003 Sheet 7 of 10 US 2003/008.4038A1 Patent Application Publication 

11 

081 

981 aseqe?eq 
  



018|!!!--*--------------~--~~~~, 
288 

US 2003/008.4038A1 

088 

G88 aseqe?eq?,08 008 

8 "SOIH 

Patent Application Publication 

  



Patent Application Publication May 1, 2003. Sheet 9 of 10 US 2003/008.4038A1 

Create Update 
Thread and Plurality 
of Search Threads 

Receive New Delete 

information Over 
NetWork 

Receive Search 
Queries Over 

Add, Modify 
920 970 

Assign Search 
Queries to Search 

Create Plurality of 
New Elements Based 
on New Information 

Set Dirty Bit Within Each of 
the Plurality of New Elements 

Write Pointers 
to Database Using Single 
Uninterruptible Operation 

Clear Dirty Bit Within Each of Send Replies Over 
Network the Plurality of New Elements 

Physically Delete 
Existing Element 
From Database 

990 km. 
123 

    

  

      

    

  

  

    

  

  

  

  

  

  

  

  

  

  

  

  

      

  

  

  

  

  

  



Patent Application Publication May 1, 2003 Sheet 10 of 10 US 2003/0084.038A1 

FIG. 10 

Set Dirty Bit Within Each 
Existing Element to be 

Deleted 

Write Pointers 
to Database Using Single 
Uninterruptible Operation 

Physically Delete 
Existing Element 
From Database 

  



US 2003/0O84038A1 

TRANSACTIONAL MEMORY MANAGER 

CLAIM FOR PRIORITY/CROSS REFERENCE 
TO RELATED APPLICATIONS 

0001. This non-provisional application claims the benefit 
of U.S. Provisional Patent Application Serial No. 60/330, 
842, filed Nov. 1, 2001, which is incorporated by reference 
in its entirety, and U.S. Provisional Patent Application Serial 
No. 60/365,169, filed Mar. 19, 2002, which is incorporated 
by reference in its entirety. This application is related to U.S. 
Non-Provisional Patent Application Serial Nos. Atty Dkt 
12307/100178), Atty Dkt 12307/100179), Atty Dkt 
12307/100181 and Atty Dkt 12307/100182). 

TECHNICAL FIELD 

0002 This disclosure relates to computer systems. More 
Specifically, this disclosure relates to a method and System 
for providing high-speed database Searching with concurrent 
updating for large database Systems. 

BACKGROUND OF THE INVENTION 

0003. As the Internet continues its meteoric growth, 
Scaling domain name Service (DNS) resolution for root and 
generic top level domain (gTLD) servers at reasonable price 
points is becoming increasingly difficult. The A root Server 
(i.e., a.root-server.net) maintains and distributes the Internet 
namespace root Zone file to the 12 Secondary root Servers 
geographically distributed around the world (i.e., b.root 
Server.net, c.rootserver.net, etc.), while the corresponding 
gTLD servers (i.e., a.gtld-servers.net, b.gtldservers.net, etc.) 
are similarly distributed and Support the top level domains 
(e.g., *.com, .net, .org, etc.). The ever-increasing volume 
of data coupled with the unrelenting growth in query rates is 
forcing a complete rethinking of the hardware and Software 
infrastructure needed for root and gTLD DNS service over 
the next Several years. The typical Single Server installation 
of the standard “bind' software distribution is already insuf 
ficient for the demands of the A root and will soon be unable 
to meet even gTLD needs. With the convergence of the 
public switched telephone network (PSTN) and the Internet, 
there are opportunities for a general purpose, high perfor 
mance Search mechanism to provide features normally asso 
ciated with Service Control Points (SCPs) on the PSTN’s 
SS7 Signaling network as new, advanced Services are offered 
that span the PSTN and the Internet, including Advanced 
Intelligent Network (AIN), Voice Over Internet Protocol 
(VoIP) Services, geolocation Services, etc. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0004 FIG. 1 is a system block diagram, according to an 
embodiment of the present invention. 
0005 FIG. 2 is a detailed block diagram that illustrates 
a message data structure, according to an embodiment of the 
present invention. 
0006 FIG. 3 is a detailed block diagram that illustrates 
a message latency data Structure architecture, according to 
an embodiment of the present invention. 
0007 FIG. 4 is a detailed block diagram that illustrates 
a general database architecture, according to an embodiment 
of the present invention. 

May 1, 2003 

0008 FIG. 5 is a detailed block diagram that illustrates 
a general database architecture, according to an embodiment 
of the present invention. 
0009 FIG. 6 is a detailed block diagram that illustrates 
a general database architecture, according to an embodiment 
of the present invention. 
0010 FIG. 7 is a detailed block diagram that illustrates 
a general database architecture, according to an embodiment 
of the present invention. 
0011 FIG. 8 is a detailed block diagram that illustrates a 
general database architecture, according to an embodiment 
of the present invention. 
0012 FIG. 9 is a top level flow diagram that illustrates a 
method for Searching and concurrently updating a database, 
according to an embodiment of the present invention. 
0013 FIG. 10 is a top level flow diagram that illustrates 
a method for Searching and concurrently updating a data 
base, according to an embodiment of the present invention. 

DETAILED DESCRIPTION 

0014 Embodiments of the present invention provide a 
method and System for high-Speed database Searching with 
concurrent updating for large database Systems. Specifically, 
a plurality of Search queries may be received over a network, 
the database may be Searched, and a plurality of Search 
replies may be sent over the network. While searching the 
database, new information may be received over the net 
work, a plurality of new database elements may be created 
based on the new information and a dirty bit may be set 
within each new database element. A pointer to each new 
database element may be written to the database using a 
Single uninterruptible operation and the dirty bit within each 
new database element may be cleared. 
0015 FIG. 1 is a block diagram that illustrates a system 
according to an embodiment of the present invention. Gen 
erally, System 100 may host a large, memory-resident data 
base, receive Search requests and provide Search responses 
over a network. For example, system 100 may be a sym 
metric, multiprocessing (SMP) computer, Such as, for 
example, an IBM RS/6000(R) M80 or S80 manufactured by 
International BusineSS Machines Corporation of Armonk, 
N.Y., a Sun Enterprise TM 10000 manufactured by Sun 
Microsystems, Inc. of Santa Clara, Calif., etc. System 100 
may also be a multi-processor personal computer, Such as, 
for example, a Compaq ProLiantTM ML530 (including two 
Intel Pentium(R) III 866 MHz processors) manufactured by 
Hewlett-Packard Company of Palo Alto, Calif. System 100 
may also include a multiprocessing operating System, Such 
as, for example, IBM AIX(R) 4, Sun SolarisTM 8 Operating 
Environment, Red Hat LinuxOR6.2, etc. System 100 may 
receive periodic updates over network 124, which may be 
concurrently incorporated into the database. 

0016. In an embodiment, system 100 may include at least 
one processor 102-1 coupled to bus 101. Processor 102-1 
may include an internal memory cache (e.g., an L1 cache, 
not shown for clarity). A secondary memory cache 103-1 
(e.g., an L2 cache, L2/L3 caches, etc.) may reside between 
processor 102-1 and bus 101. In a preferred embodiment, 
system 100 may include a plurality of processors 102-1 . . . 
102-P coupled to bus 101. A plurality of secondary memory 



US 2003/0O84038A1 

caches 103-1 ... 103-P may also reside between plurality of 
processors 102-1 ... 102-P and bus 101 (e.g., a look-through 
architecture), or, alternatively, at least one Secondary 
memory cache 103-1 may be coupled to bus 101 (e.g., a 
look-aside architecture). System 100 may include memory 
104, Such as, for example, random access memory (RAM), 
etc., coupled to buS 101, for Storing information and instruc 
tions to be executed by plurality of processors 102-1 . . . 
102-P, 

0017 Memory 104 may store a large database, for 
example, for translating Internet domain names into Internet 
addresses, for translating names or phone numbers into 
network addresses, for providing and updating Subscriber 
profile data, for providing and updating user presence data, 
etc. Advantageously, both the Size of the database and the 
number of translations per Second may be very large. For 
example, memory 104 may include at least 64 GB of RAM 
and may host a 500M (i.e., 500x10) record domain name 
database, a 500M record Subscriber database, a 450M record 
telephone number portability database, etc. 

0.018. On an exemplary 64-bit system architecture, such 
as, for example, a System including at least one 64-bit 
big-endian processor 102-1 coupled to at least a 64-bit bus 
101 and a 64-bit memory 104, an 8-byte pointer value may 
be written to a memory address on an 8-byte boundary (i.e., 
a memory address divisible by eight, or, e.g., 2N) using a 
Single, uninterruptible operation. Generally, the presence of 
secondary memory cache 103-1 may simply delay the 8-byte 
pointer write to memory 104. For example, in one embodi 
ment, Secondary memory cache 103-1 may be a look 
through cache operating in write-through mode, So that a 
Single, 8-byte Store instruction may move eight bytes of data 
from processor 102-1 to memory 104, without interruption, 
and in as few as two System clock cycles. In another 
embodiment, secondary memory cache 103-1 may be a 
look-through cache operating in write-back mode, So that 
the 8-byte pointer may first be written to Secondary memory 
cache 103-1, which may then write the 8-byte pointer to 
memory 104 at a later time, Such as, for example, when the 
cache line in which the 8-byte pointer is stored is written to 
memory 104 (i.e., e.g., when the particular cache line, or the 
entire Secondary memory cache, is “flushed'). 
0.019 Ultimately, from the perspective of processor 102 
1, once the data are latched onto the output pins of processor 
102-1, all eight bytes of data are written to memory 104 in 
one contiguous, uninterrupted transfer, which may be 
delayed by the effects of a secondary memory cache 103-1, 
if present. From the perspective of processors 102-2 . . . 
102-P, once the data are latched onto the output pins of 
processor 102-1, all eight bytes of data are written to 
memory 104 in one contiguous, uninterrupted transfer, 
which is enforced by the cache coherency protocol acroSS 
secondary memory caches 103-1 ... 103-P, which may delay 
the write to memory 104 if present 

0020. However, if an 8-byte pointer value is written to a 
misaligned location in memory 104, Such as a memory 
address that crosses an 8-byte boundary, all eight bytes of 
data can not be transferred from processor 102-1 using a 
Single, 8-byte Store instruction. Instead, processor 102-1 
may issue two Separate and distinct Store instructions. For 
example, if the memory address begins four bytes before an 
8-byte boundary (e.g., 8N-4), the first store instruction 

May 1, 2003 

transfers the four most significant bytes to memory 104 (e.g., 
8N-4), while the second store instruction transfers the four 
least significant bytes to memory 104 (e.g., 8N). Impor 
tantly, between these two Separate Store instructions, pro 
cessor 102-1 may be interrupted, or, processor 102-1 may 
loose control of buS 101 to another System component (e.g., 
processor 102-P, etc.). Consequently, the pointer value resid 
ing in memory 104 will be invalid until processor 102-1 can 
complete the Second Store instruction. If another component 
begins a Single, uninterruptible memory read to this memory 
location, an invalid value will be returned as a presumably 
valid one. 

0021. Similarly, a new 4-byte pointer value may be 
written to a memory address divisible by four (e.g., 4N) 
using a Single, uninterruptible operation. Note that in the 
example discussed above, a 4-byte pointer value may be 
written to the 8N-4 memory location using a Single Store 
instruction. Of course, if a 4-byte pointer value is written to 
a location that crosses a 4-byte boundary, e.g., 4-N-2, all four 
bytes of data can not be transferred from processor 102-1 
using a single Store instruction, and the pointer value resid 
ing in memory 104 may be invalid for some period of time. 

0022 System 100 may also include a read only memory 
(ROM) 106, or other static storage device, coupled to bus 
101 for storing static information and instructions for pro 
ceSSor 102-1. A Storage device 108, Such as a magnetic or 
optical disk, may be coupled to bus 101 for storing infor 
mation and instructions. System 100 may also include 
display 110 (e.g., an LCD monitor) and input device 112 
(e.g., keyboard, mouse, trackball, etc.), coupled to buS 101. 
System 100 may include a plurality of network interfaces 
114-1 . . . 114-0, which may send and receive electrical, 
electromagnetic or optical Signals that carry digital data 
Streams representing various types of information. In an 
embodiment, network interface 114-1 may be coupled to bus 
101 and local area network (LAN) 122, while network 
interface 114-0 may coupled to bus 101 and wide area 
network (WAN) 124. Plurality of network interfaces 
114-1 . . . 114-0 may support various network protocols, 
including, for example, Gigabit Ethernet (e.g., IEEE Stan 
dard 802.3-2002, published 2002), Fiber Channel (e.g., 
ANSI Standard X.3230-1994, published 1994), etc. Plurality 
of network computers 120-1. . . 120-N may be coupled to 
LAN 122 and WAN 124. In one embodiment, LAN 122 and 
WAN 124 may be physically distinct networks, while in 
another embodiment, LAN 122 and WAN 124 may be via a 
network gateway or router (not shown for clarity). Alterna 
tively, LAN 122 and WAN 124 may be the same network. 

0023. As noted above, system 100 may provide DNS 
resolution services. In a DNS resolution embodiment, DNS 
resolution Services may generally be divided between net 
work transport and data look-up functions. For example, 
system 100 may be a backend look-up engine (LUE) opti 
mized for data look-up on large data Sets, while plurality of 
network computers 120-1. . . 120-N may be a plurality of 
front-end protocol engines (PEs) optimized for network 
processing and transport. The LUE may be a powerful 
multiprocessor server that stores the entire DNS record set 
in memory 104 to facilitate high-speed, high-throughput 
Searching and updating. In an alternative embodiment, DNS 
resolution Services may be provided by a Series of powerful 
multiprocessor Servers, or LUES, each Storing a Subset of the 



US 2003/0O84038A1 

entire DNS record set in memory to facilitate high-speed, 
high-throughput Searching and updating 
0024 Conversely, the plurality of PEs may be generic, 
low profile, PC-based machines, running an efficient multi 
tasking operating System (e.g., Red Hat LinuxCE) 6.2), that 
minimize the network processing transport load on the LUE 
in order to maximize the available resources for DNS 
resolution. The PEs may handle the nuances of wire-line 
DNS protocol, respond to invalid DNS queries and multi 
plex valid DNS queries to the LUE over LAN 122. The 
number of PEs for a single LUE may be determined, for 
example, by the number of DNS queries to be processed per 
Second and the performance characteristics of the particular 
System. Other metrics may also be used to determine the 
appropriate mapping ratioS and behaviors. 
0.025 Generally, other large-volume, query-based 
embodiments may be Supported, including, for example, 
telephone number resolution, SS7 Signaling processing, 
geolocation determination, telephone number-to-Subscriber 
mapping, Subscriber location and presence determination, 
etc. 

0026. In an embodiment, a central on-line transaction 
processing (OLTP) server 140-1 may be coupled to WAN 
124 and receive additions, modifications and deletions (i.e., 
update traffic) to database 142-1 from various sources. OLTP 
server 140-1 may send updates to system 100, which 
includes a local copy of database 142-1, over WAN 124. 
OLTP server 140-1 may be optimized for processing update 
traffic in various formats and protocols, including, for 
example, HyperText Transmission Protocol (HTTP), Regis 
try Registrar Protocol (RRP), Extensible Provisioning Pro 
tocol (EPP), Service Management System/800 Mechanized 
Generic Interface (MGI), and other on-line provisioning 
protocols. A constellation of read-only LUES may be 
deployed in a hub and Spoke architecture to provide high 
Speed Search capability conjoined with high-volume, incre 
mental updates from OLTP server 140-1. 
0027. In an alternative embodiment, data may be distrib 
uted over multiple OLTP servers 140-1 ... 140-S, each of 
which may be coupled to WAN 124. OLTP servers 
140-1 . . . 140-S may receive additions, modifications, and 
deletions (i.e., update traffic) to their respective databases 
142-1 . . . 142-S (not shown for clarity) from various 
Sources. OLTP servers 140-1... 140-S may send updates to 
system 100, which may include copies of databases 
142-1 ... 142-S, other dynamically-created data, etc., Over 
WAN 124. For example, in a geolocation embodiment, 
OLTP servers 140-1 . . . 140-S may receive update traffic 
from groups of remote Sensors. In another alternative 
embodiment, plurality of network computers 120-1 . . . 
120-N may also receive additions, modifications, and dele 
tions (i.e., update traffic) from various sources over WAN 
124 or LAN 122. In this embodiment, plurality of network 
computers 120-1 . . . 120-N may send updates, as well as 
queries, to system 100. 

0028. In the DNS resolution embodiment, each PE (e.g., 
each of the plurality of network computers 120-1... 120-N) 
may combine, or multiplex, Several DNS query messages, 
received over a wide area network (e.g., WAN 124), into a 
Single Request SuperPacket and Send the Request Super 
Packet to the LUE (e.g., system 100) over a local area 
network (e.g., LAN 122). The LUE may combine, or mul 

May 1, 2003 

tiplex, Several DNS query message replies into a single 
Response SuperPacket and send the Response SuperPacket 
to the appropriate PE over the local area network. Generally, 
the maximum size of a Request or Response SuperPacket 
may be limited by the maximum transmission unit (MTU) of 
the physical network layer (e.g., Gigabit Ethernet). For 
example, typical DNS query and reply message sizes of leSS 
than 100 bytes and 200 bytes, respectively, allow for over 30 
queries to be multiplexed into a single Request SuperPacket, 
as well as over 15 replies to be multiplexed into a single 
Response SuperPacket. However, a Smaller number of que 
ries (e.g., 20 queries) may be included in a single Request 
SuperPacket in order to avoid MTU overflow on the 
response (e.g., 10 replies). For larger MTU sizes, the number 
of multiplexed queries and replies may be increased accord 
ingly. 
0029. Each multitasking PE may include an inbound 
thread and an outbound thread to manage DNS queries and 
replies, respectively. For example, the inbound thread may 
un-marshal the DNS query components from the incoming 
DNS query packets received over a wide area network and 
multiplex Several milliseconds of queries into a single 
Request SuperPacket. The inbound thread may then send the 
Request SuperPacket to the LUE over a local area network. 
Conversely, the outbound thread may receive the Response 
SuperPacket from the LUE, de-multiplex the replies con 
tained therein, and marshal the various fields into a valid 
DNS reply, which may then be transmitted over the wide 
area network. Generally, as noted above, other large-Vol 
ume, query-based embodiments may be Supported. 
0030. In an embodiment, the Request SuperPacket may 
also include state information associated with each DNS 
query, Such as, for example, the Source address, the protocol 
type, etc. The LUE may include the State information, and 
associated DNS replies, within the Response SuperPacket. 
Each PE may then construct and return valid DNS reply 
messages using the information transmitted from the LUE. 
Consequently, each PE may advantageously operate as a 
stateless machine, i.e., valid DNS replies may be formed 
from the information contained in the Response Super 
Packet. Generally, the LUE may return the Response Super 
Packet to the PE from which the incoming SuperPacket 
originated; however, other variations may obviously be 
possible. 
0031. In an alternative embodiment, each PE may main 
tain the state information associated with each DNS query 
and include a reference, or handle, to the State information 
within the Request SuperPacket. The LUE may include the 
State information references, and asSociated DNS replies, 
within the Response SuperPacket. Each PE may then con 
Struct and return valid DNS reply messages using the State 
information references transmitted from the LUE, as well as 
the State information maintained thereon. In this embodi 
ment, the LUE may return the Response SuperPacket to the 
PE from which the incoming SuperPacket originated. 
0032 FIG. 2 is a detailed block diagram that illustrates 
a message data structure, according to an embodiment of the 
present invention. Generally, message 200 may include 
header 210, having a plurality of Sequence number 
211-1 . . . 211-S and a plurality of message counts 
212-1 . . . 212-S, and data payload 215. 
0033. In the DNS resolution embodiment, message 200 
may be used for Request SuperPackets and Response Super 



US 2003/0O84038A1 

Packets. For example, Request SuperPacket 220 may 
include header 230, having a plurality of Sequence number 
231-1 . . . 231-S and a plurality of message counts 
232-1 ... 232-S, and data payload 235 having multiple DNS 
queries 236-1 . . . 236-Q, accumulated by a PE over a 
predetermined period of time, Such as, for example, Several 
milliseconds. In one embodiment, each DNS query 
236-1. . . 236-Q may include state information, while in an 
alternative embodiment, each DNS query 236-1 . . . 236-Q 
may include a handle to State information. 
0034 Similarly, Response SuperPacket 240 may include 
header 250, having a plurality of Sequence number 
251-1 . . . 251-S and a plurality of message counts 
252-1 ... 252-S, and data payload 255 having multiple DNS 
replies 256-1 ... 256-R approximately corresponding to the 
multiple DNS queries contained within Request Super 
Packet 220. In one embodiment, each DNS reply 256-1. . . 
256-R may include state information associated with the 
corresponding DNS query, while in an alternative embodi 
ment, each DNS reply 256-1 ... 256-R may include a handle 
to state information associated with the corresponding DNS 
query. Occasionally, the total size of the corresponding DNS 
replies may exceed the size of data payload 255 of the 
Response SuperPacket 240. This overflow may be limited, 
for example, to a single reply, i.e., the reply associated with 
the last query contained within Request SuperPacket 220. 
Rather than Sending an additional Response SuperPacket 
240 containing only the Single reply, the overflow reply may 
be preferably included in the next Response SuperPacket 
240 corresponding to the next Request SuperPacket. Advan 
tageously, header 250 may include appropriate information 
to determine the extent of the overflow condition. Under 
peak processing conditions, more than one reply may over 
flow into the next Response SuperPacket. 

0035. For example, in Response SuperPacket 240, header 
250 may include at least two sequence numbers 251-1 and 
251-2 and at least two message counts 252-1 and 252-2, 
grouped as two pairs of complementary fields. While there 
may be “S” number of Sequence number and message count 
pairs, typically, S is a Small number, Such as, e.g., 2, 3, 4, etc. 
Thus, header 250 may include sequence number 251-1 
paired with message count 252-1, Sequence number 251-2 
paired with message count 252-2, etc. Generally, message 
count 252-1 may reflect the number of replies contained 
within data payload 255 that are associated with Sequence 
number 251-1. In an embodiment, sequence number 251-1 
may be a two-byte field, while message count 252-1 may be 
a one-byte field. 

0036). In a more specific example, data payload 235 of 
Request SuperPacket 220 may include seven DNS queries 
(as depicted in FIG. 2). In one embodiment, Sequence 
number 231-1 may be set to a unique value (e.g., 1024) and 
message count 232-1 may be set to Seven, while Sequence 
number 231-2 and message count 232-2 may be set to Zero. 
In another embodiment, header 230 may contain only one 
Sequence number and one message count, e.g., Sequence 
number 231-1 and message count 232-1 set to 1024 and 
seven, respectively. Typically, Request SuperPacket 220 
may contain all of the queries associated with a particular 
Sequence number. 
0037 Data payload 255 of Response SuperPacket 240 
may include Seven corresponding DNS replies (as depicted 

May 1, 2003 

in FIG. 2). In this example, header 250 may include 
information similar to Request SuperPacket 220, i.e., 
Sequence number 251-1 set to the same unique value (i.e., 
1024), message count 252-1 set to Seven, and both sequence 
number 252-2 and message count 252-2 set to zero. How 
ever, in another example, data payload 255 of Response 
SuperPacket 240 may include only five corresponding DNS 
replies, and message count 252-1 may be set to five instead. 
The remaining two responses associated with Sequence 
number 1024 may be included within the next Response 
SuperPacket 240. 
0038. The next Request SuperPacket 240 may include a 
different sequence number (e.g., 1025) and at least one DNS 
query, so that the next Response SuperPacket 240 may 
include the two previous replies associated with the 1024 
Sequence number, as well as at least one reply associated 
with the 1025 sequence number. In this example, header 250 
of the next Response SuperPacket 240 may include 
sequence number 251-1 set to 1024, message count 252-1 
Set to two, Sequence number 251-2 Set to 1025 and message 
count 252-2 set to one. Thus, Response SuperPacket 240 
may include a total of three replies associated with three 
queries contained within two different Request SuperPack 
etS. 

0039 FIG. 3 is a detailed block diagram that illustrates 
a message latency data Structure architecture, according to 
an embodiment of the present invention. Message latency 
data structure 300 may include information generally asso 
ciated with the transmission and reception of message 200. 
In the DNS resolution embodiment, message latency data 
structure 300 may include latency information about 
Request SuperPackets and Response SuperPackets; this 
latency information may be organized in a table format 
indexed according to Sequence number value (e.g., index 
301). For example, message latency data structure 300 may 
include a number of rows N equal to the total number of 
unique Sequence numbers, as illustrated, generally, by table 
elements 310,320 and 330. In an embodiment, SuperPacket 
header Sequence numbers may be two bytes in length and 
define a range of unique Sequence numbers from Zero to 
2'-1 (i.e., 65.535). In this case, N may be equal to 65,536. 
Latency information may include Request Timestamp 302, 
Request Query Count 303, Response Timestamp 304, 
Response Reply Count 305, and Response Message Count 
306. In an alternative embodiment, latency information may 
also include an Initial Response Timestamp (not shown). 
0040. In an example, table element 320 illustrates latency 
information for a Request SuperPacket 220 having a single 
Sequence number 231-1 equal to 1024. Request Timestamp 
302 may indicate when this particular Request SuperPacket 
was sent to the LUE. Request Query Count 303 may indicate 
how many queries were contained within this particular 
Request SuperPacket. Response Timestamp 304 may indi 
cate when a Response SuperPacket having a sequence 
number equal to 1024 was received at the PE (e.g., network 
computer 120-N) and may be updated if more than one 
Response SuperPacket is received at the PE. Response 
Reply Count 305 may indicate the total number of replies 
contained within all of the received Response SuperPackets 
associated with this sequence number (i.e., 1024). Response 
Message Count 306 may indicate how many Response 
SuperPackets having this sequence number (i.e., 1024) 
arrived at the PE. Replies to the queries contained within this 



US 2003/0O84038A1 

particular Request SuperPacket may be split over Several 
Response SuperPackets, in which case, Response Times 
tamp 304, Response Reply Count 305, and Response Mes 
sage Count 306 may be updated as each of the additional 
Response SuperPackets are received. In an alternative 
embodiment, the Initial Response TimeStamp may indicate 
when the first Response SuperPacket containing replies for 
this sequence number (i.e., 1024) was received at the PE. In 
this embodiment, Response Timestamp 304 may be updated 
when additional (i.e., Second and Subsequent) Response 
SuperPackets are received. 
0041 Various important latency metrics may be deter 
mined from the latency information contained within mes 
Sage latency data structure 300. For example, Simple croSS 
checking between Request Query Count 303 and Response 
Reply Count 305 for a given index 301 (i.e., sequence 
number) may indicate a number of missing replies. This 
difference may indicate the number of queries inexplicably 
dropped by the LUE. Comparing Request Timestamp 302 
and Response Timestamp 304 may indicate how well the 
particular PE/LUE combination may be performing under 
the current message load. The difference between the current 
Request SuperPacket Sequence number and the current 
Response SuperPacket Sequence number may be associated 
with the response performance of the LUE, e.g., the larger 
the difference, the slower the performance. The Response 
Message Count 306 may indicate how many Response 
SuperPackets are being used for each Request SuperPacket, 
and may be important in DNS resolution traffic analysis. As 
the latency of the queries and replies travelling between the 
PEs and LUE increases, the PEs may reduce the number of 
DNS query packets processed by the System. 

0.042 Generally, the LUE may perform a multi-threaded 
look-up on the incoming, multiplexed Request SuperPack 
ets, and may combine the replies into outgoing, multiplexed 
Response SuperPackets. For example, the LUE may spawn 
one Search thread, or process, for each active PE and route 
all the incoming Request SuperPackets from that PE to that 
Search thread. The LUE may spawn a manager thread, or 
process, to control the association of PES to Search threads, 
as well as an update thread, or process, to update the 
database located in memory 104. Each search thread may 
extract the Search queries from the incoming Request Super 
Packet, execute the various Searches, construct an outgoing 
Response SuperPacket containing the Search replies and 
send the SuperPacket to the appropriate PE. The update 
thread may receive updates to the database, from OLTP 
140-1, and incorporate the new data into the database. In an 
alternative embodiment, plurality of network computers 
120-1 . . . 120-N may send updates to system 100. These 
updates may be included, for example, within the incoming 
Request SuperPacket message Stream. 
0043. Accordingly, by virtue of the SuperPacket proto 
col, the LUE may spend less than 15% of its processor 
capacity on network processing, thereby dramatically 
increasing Search query throughput. In an embodiment, an 
IBMGR 8-way M80 may sustain search rates of 180 k to 220 
k queries per second (qps), while an IBM(R) 24-way S80 may 
sustain 400 k to 500 k qps. Doubling the search rates, i.e., 
to 500k and 1M qps, respectively, Simply requires twice as 
much hardware, i.e., e.g., two LUES with their attendant 
PES. In another embodiment, a dual Pentium(E) III 866 MHz 
multi-processor personal computer operating Red Hat 

May 1, 2003 

LinuxCE) 6.2 may Sustain update rates on the order of 
100K/sec. Of course, increases in hardware performance 
also increase Search and update rates associated with 
embodiments of the present invention, and as manufacturers 
replace these multiprocessor computers with faster-perform 
ing machines, for example, the Sustained Search and update 
rates may increase commenSurately. Generally, System 100 
is not limited to a client or Server architecture, and embodi 
ments of the present invention are not limited to any specific 
combination of hardware and/or Software. 

0044 FIG. 4 is a block diagram that illustrates a general 
database architecture according to an embodiment of the 
present invention. In this embodiment, database 400 may 
include at least one table or group of database records 401, 
and at least one corresponding Search indeX 402 with 
pointers (indices, direct byte-offsets, etc.) to individual 
records within the group of database records 401. For 
example, pointer 405 may reference database record 410. 

0045. In one embodiment, database 400 may include at 
least one hash table 403 as a search index with pointers 
(indices, direct byte-offsets, etc.) into the table or group of 
database records 401. Ahash function may map a Search key 
to an integer value which may then be used as an indeX into 
hash table 403. Because more than one search key may map 
to a single integer value, hash buckets may be created using 
a singly-linked list of hash chain pointers. For example, each 
entry within hash table 403 may contain a pointer to the first 
element of a hash bucket, and each element of the hash 
bucket may contain a hash chain pointer to the next element, 
or database record, in the linked-list. Advantageously, a hash 
chain pointer may be required only for those elements, or 
database records, that reference a Subsequent element in the 
hash bucket. 

0046 Hash table 403 may include an array of 8-byte 
pointers to individual database records 401. For example, 
hash pointer 404 within hash table 403 may reference 
database record 420 as the first element within a hash 
bucket. Database record 420 may contain a hash chain 
pointer 424 which may reference the next element, or 
database record, in the hash bucket. Database record 420 
may also include a data length 421, and associated fixed or 
variable-length data 422. In an embodiment, a null character 
423, indicating the termination of data 422, may be included. 
Additionally, database record 420 may include a data pointer 
425 which may reference another database record, either 
within the group of database records 401 or within a 
different table or group of database records (not shown), in 
which additional data may be located. 
0047 System 100 may use various, well-known algo 
rithms to Search this data Structure architecture for a given 
search term or key. Generally, database 400 may be searched 
by multiple Search processes, or threads, executing on at 
least one of the plurality of processors 102-1 . . . 102-P, 
However, modifications to database 400 may not be inte 
grally performed by an update thread (or threads) unless the 
Search thread(s) are prevented from accessing database 400 
for the period of time necessary to add, modify, or delete 
information within database 400. For example, in order to 
modify database record 430 within database 400, the group 
of database records 401 may be locked by an update thread 
to prevent the search threads from accessing database 400 
while the update thread is modifying the information within 



US 2003/0O84038A1 

database record 430. There are many well-known mecha 
nisms for locking database 400 to prevent Search access, 
including the use of spin-locks, Semaphores, mutexes, etc. 
Additionally, various off-the-shelf commercial databases 
provide Specific commands to lock all or parts of database 
400, e.g., the lock table command in the Oracle 8 Database, 
manufactured by Oracle Corporation of Redwood Shores, 
Calif., etc. 

0.048 FIG. 5 is a block diagram that illustrates a general 
database architecture according to another embodiment of 
the present invention. In this embodiment, database 500 may 
include a highly-optimized, read-only, master Snapshot file 
510 and a growing, look-aside file 520. Master Snapshot file 
510 may include at least one table or group of database 
records 511, and at least one corresponding Search indeX512 
with pointers (indices, direct byte-offsets, etc.) to individual 
records within the group of database records 511. Alterna 
tively, master Snapshot file 510 may include at least one hash 
table 513 as a search index with pointers (indices, direct 
byte-offsets, etc.) into the table or group of database records 
511. Similarly, look-aside file 520 may include at least two 
tables or groups of database records, including database 
addition records 521 and database deletion records 531. 
Corresponding search indices 522 and 532 may be provided, 
with pointers (indices, direct byte-offsets, etc.) to individual 
records within the database addition records 521 and data 
base deletion records 531. Alternatively, look-aside file 520 
may include hash tables 523 and 533 as search indices, with 
pointers (indices, direct byte-offsets, etc.) into database 
addition records 521 and database deletion records 531, 
respectively. 

0049 System 100 may use various, well-known algo 
rithms to Search this data Structure architecture for a given 
Search term or key. In a typical example, look-aside file 520 
may include all the recent changes to the data, and may be 
searched before read-only master Snapshot file 510. If the 
search key is found in look-aside file 520, the response is 
returned without accessing Snapshot file 510, but if the key 
is not found, then snapshot file 510 may be searched. 
However, when look-aside file 520 no longer fits in memory 
104 with Snapshot file 510, search query rates drop dramati 
cally, by a factor of 10 to 50, or more, for example. 
Consequently, to avoid or minimize any drop in Search query 
rates, snapshot file 510 may be periodically updated, or 
recreated, by incorporating all of the additions, deletions and 
modifications contained within look-aside file 520 

0050 Data within snapshot file 510 are not physically 
altered but logically added, modified or deleted. For 
example, data within snapshot file 510 may be deleted, or 
logically "forgotten,” by creating a corresponding delete 
record within database deletion records 531 and writing a 
pointer to the delete record to the appropriate location in 
hash table 533. Data within snapshot file 510 may be 
logically modified by copying a data record from Snapshot 
file 510 to a new data record within database addition 
records 521, modifying the data within the new entry, and 
then writing a pointer to the new entry to the appropriate 
hash table (e.g., hash table 522) or chain pointer within 
database addition records 521. Similarly, data within snap 
shot file 510 may be logically added to snapshot file 510 by 
creating a new data record within database addition records 
521 and then writing a pointer to the new entry to the 

May 1, 2003 

appropriate hash table (e.g., hash table 522) or chain pointer 
within database addition records 521. 

0051. In the DNS resolution embodiment, for example, 
Snapshot file 510 may include domain name data and name 
Server data, organized as Separate data tables, or blocks, with 
separate search indices (e.g., 511-1, 511-2, 512-1, 512-2, 
513-1, 513-2, etc., not shown for clarity). Similarly, look 
aside file 520 may include additions and modifications to 
both the domain name data and the name Server data, as well 
as deletions to both the domain name data and the name 
server data (e.g., 521-1, 521-2, 522-1, 522-2, 523-1, 523-2, 
531-1, 531-2, 532-1, 532-2, 533-1, 533-2, etc., not shown 
for clarity). 
0052 FIG. 6 is a detailed block diagram that illustrates 
a general database architecture, according to an embodiment 
of the present invention. Generally, database 600 may be 
organized into a Single, Searchable representation of the 
data. Data Set updates may be continuously incorporated 
into database 600, and deletes or modifications may be 
physically performed on the relevant database records to 
free Space within memory 104, for example, for Subsequent 
additions or modifications. The Single, Searchable represen 
tation Scales extremely well to large data Set sizes and high 
Search and update rates, and obviates the need to periodi 
cally recreate, propagate and reload Snapshot files among 
multiple Search engine computers. 

0053. In a DNS resolution embodiment, for example, 
database 600 may include domain name data 610 and name 
server data 620. Domain name data 610 and name server 
data 620 may include Search indices with pointers (indices, 
direct byte-offsets, etc.) into blocks of variable length 
records. AS discussed above, a hash function may map a 
Search key to an integer value which may then be used as an 
index into a hash table. Similarly, hash buckets may be 
created for each hash table indeX using a singly-linked list of 
hash chain pointers. Domain name data 610 may include, for 
example, a hash table 612 as a Search indeX and a block of 
variable-length domain name records 611. Hash table 612 
may include an array of 8-byte pointers to individual domain 
name records 611, Such as, for example, pointer 613 refer 
encing domain name record 620. Variable-length domain 
name record 620 may include, for example, a next record 
offset 621, a name length 622, a normalized name 623, a 
chain pointer 624 (i.e., e.g., pointing to the next record in the 
hash chain), a number of name Servers 625, and a name 
server pointer 626. The size of both chain pointer 624 and 
name server pointer 626 may be optimized to reflect the 
required block size for each particular type of data, e.g., 
eight bytes for chain pointer 624 and four bytes for name 
server pointer 626. 

0054 Name server data 630 may include, for example, a 
hash table 632 as a search index and a block of variable 
length name server records 631. Hash table 632 may include 
an array of 4-byte pointers to individual name Server records 
631, Such as, for example, pointer 633 referencing name 
server record 640. Variable-length name server record 640 
may include, for example, a next record offset 641, a name 
length 642, a normalized name 643, a chain pointer 644 (i.e., 
e.g., pointing to the next record in the hash chain), a number 
of name Server network addresses 645, a name Server 
address length 646, and a name server network address 647, 
which may be, for example, an Internet Protocol (IP) net 



US 2003/0O84038A1 

work address. Generally, name Server network addresses 
may be stored in ASCII (American Standard Code for 
Information Interchange, e.g., ISO-14962-1997, ANSI 
X3.4-1997, etc.) or binary format; in this example, name 
Server network address length 646 indicates that name Server 
network address 647 is stored in binary format (i.e., four 
bytes). The size of chain pointer 644 may also be optimized 
to reflect the required name Server data block size, e.g., four 
bytes. 

0.055 Generally, both search indices, such as hash tables, 
and variable-length data records may be structured So that 
8-byte pointers are located on 8-byte boundaries in memory. 
For example, hash table 612 may contain a contiguous array 
of 8-byte pointers to domain name records 611, and may be 
Stored at a memory address divisible by eight (i.e., an 8-byte 
boundary, or 8N). Similarly, both search indices, such as 
hash tables and variable-length data records may be struc 
tured So that 4-byte pointers are located on 4-byte bound 
aries in memory. For example, hash table 632 may contain 
a contiguous array of 4-byte pointers to name Server records 
631, and may be stored at a memory address divisible by 
four (i.e., a 4-byte boundary, or 4N). Consequently, modi 
fications to database 600 may conclude by updating a 
pointer to an aligned address in memory using a single 
uninterruptible operation, including, for example writing a 
new pointer to the Search index, Such as a hash table or 
Writing a new hash chain pointer to a variable-length data 
record. 

0056 FIG. 7 is a detailed block diagram that illustrates 
a general database architecture, according to an embodiment 
of the present invention. Generally, database 700 may also 
be organized into a single, Searchable representation of the 
data. Data set updates may be continuously incorporated 
into database 700, and deletes or modifications may be 
physically performed on the relevant database records to 
free Space within memory 104, for example, for Subsequent 
additions or modifications. The Single, Searchable represen 
tation Scales extremely well to large data Set sizes and high 
Search and update rates, and obviates the need to periodi 
cally recreate, propagate and reload Snapshot files among 
multiple Search engine computers. 

0057. Many different physical data structure organiza 
tions are possible. An exemplary organization may use an 
alternative Search indeX to hash tables for ordered, Sequen 
tial access to the data records, Such as the ternary Search tree 
(trie), or TST, which combines the features of binary search 
trees and digital Search tries. In a text-based applications 
Such as, for example, whois, domain name resolution using 
DNS Secure Extensions (Internet Engineering Taskforce 
Request for Comments: 2535), etc. TSTs advantageously 
minimize the number of comparison operations required to 
be performed, particularly in the case of a Search miss, and 
may yield Search performance metricS exceeding Search 
engine implementations with hashing. Additionally, TSTS 
may also provide advanced text Search features, Such as, 
e.g., Wildcard Searches, which may be useful in text Search 
applications, Such as, for example, whois, domain name 
resolution, Internet content Search, etc. 

0.058. In an embodiment, a TST may contain a sequence 
of nodes linked together in a hierarchical relationship. A root 
node may be located at the top of the tree, related child nodes 
and links may form branches, and leaf nodes may terminate 

May 1, 2003 

the end of each branch. Each leaf node may be associated 
with a particular Search key, and each node on the path to the 
leaf node may contain a single, Sequential element of the 
key. Each node in the tree contains a comparison character, 
or Split value, and three pointers to other Successive, or 
“child,’ nodes in the tree. These pointers reference child 
nodes whose split values are leSS than, equal to, or greater 
than the node's split value. Searching the TST for a par 
ticular key, therefore, involves traversing the tree from the 
root node to a final leaf node, Sequentially comparing each 
element, or character position, of the key with the Split 
values of the nodes along the path. Additionally, a leaf node 
may also contain a pointer to a key record, which may, in 
turn, contain at least one pointer to a terminal data record 
containing the record data associated with the key (e.g., an 
IP address). Alternatively, the key record may contain the 
record data in its entirety. Record data may be Stored in 
binary format, ASCII text format, etc. 

0059. In an embodiment, database 700 may be organized 
as a TST, including a plurality of fixed-length Search nodes 
701, a plurality of variable-length key data records 702 and 
a plurality of variable-length terminal data records 703. 
Search nodes 701 may include various types of information 
as described above, including, for example, a comparison 
character (or value) and position, branch node pointers and 
a key pointer. The size of the node pointerS may generally be 
determined by the number of nodes, while the size of the key 
pointerS may generally be determined by the size of the 
variable-length key data set. Key data records 702 may 
contain key information and terminal data information, 
including, for example, pointers to terminal data records or 
embedded record data, while terminal data records 703 may 
contain record data. 

0060. In an embodiment, each fixed-length search node 
may be 24 bytes in length. Search node 710, for example, 
may contain an eight-bit comparison character (or byte 
value) 711, a 12-bit character (or byte) position 712, and a 
12-bit node type/status (not shown for clarity); these data 
may be encoded within the first four bytes of the node. The 
comparison character 711 may be encoded within the first 
byte of the node as depicted in FIG. 7, or, alternatively, 
character position 712 may be encoded within the first 12 
bits of the node in order to optimize access to character 
position 712 using a simple shift operation. The next 12 
bytes of each Search node may contain three 32-bit pointers, 
i.e., pointer 713, pointer 714 and pointer 715, representing 
“less than,”“equal to,” and “greater than” branch node 
pointers, respectively. These pointerS may contain a counter, 
or node index, rather than a byte-offset or memory address. 
For fixed-length Search nodes, the byte-offset may be cal 
culated from the counter, or index value, and the fixed 
length, e.g., counter*length. The final four bytes may con 
tain a 40-bit key pointer 716, which may be a null value 
indicating that a corresponding key data record does not 
exist (shown) or a pointer to an existing corresponding key 
data record (not shown), as well as other data, including, for 
example, a 12-bit key length and a 12-bit pointer type/status 
field. Key pointer 716 may contain a byte offset to the 
appropriate key data record, while the key length may be 
used to optimize Search and insertion when eliminating 
one-way branching within the TST. The pointer type/status 
field may contain information used in validity checking and 
allocation data used in memory management. 



US 2003/0O84038A1 

0061. In an embodiment, key data record 750 may 
include, for example, a variable-length key 753 and at least 
one terminal data pointer. As depicted in FIG. 7, key data 
record 750 includes two terminal data pointers: terminal data 
pointer 757 and terminal data pointer 758. Key data record 
750 may be prefixed with a 12-bit key length 751 and a 
12-bit terminal pointer count/status 752, and may include 
padding (not shown for clarity) to align the terminal data 
pointer 757 and terminal data pointer 758 on an 8-byte 
boundary in memory 104. Terminal data pointer 757 and 
terminal data pointer 758 may each contain various data, 
Such as, for example, terminal data type, length, Status or 
data useful in binary record Searches. Terminal data pointer 
757 and terminal data pointer 758 may be sorted by terminal 
data type for quicker retrieval of Specific resource records 
(e.g., terminal data record 760 and terminal data record 770). 
In another embodiment, key data record 740 may include 
embedded terminal data 746 rather than, or in addition to, 
terminal data record pointers. For example, key data record 
740 may include a key length 741, a terminal pointer count 
742, a variable-length key 743, the number of embedded 
record elements 744, followed by a record element length 
745 (in bytes, for example) and embedded record data 746 
(e.g., a String, a byte sequence, etc.) for each of the number 
of embedded record elements 744. 

0.062. In an embodiment, terminal data record 760, for 
example, may include a 12-bit length 761, a 4-bit status, and 
a variable-length String 762 (e.g., an IP address). Alterna 
tively, variable length String 762 may be a byte Sequence. 
Terminal data record 760 may include padding to align each 
terminal data record to an 8-byte boundary in memory 104. 
Alternatively, terminal data record 760 may include padding 
to a 4-byte boundary, or, terminal data record 760 may not 
include any padding. Memory management algorithms may 
determine, generally, whether terminal data records 760 are 
padded to 8-byte, 4-byte, or 0-byte boundaries. Similarly, 
terminal data record 770 may include a 12-bit length 771, a 
4-bit status, and a variable-length string 772 (e.g., an IP 
address). 
0.063 Generally, both search indices, such as TSTs, and 
data records may be structured So that 8-byte pointers are 
located on 8-byte boundaries in memory. For example, key 
pointer 726 may contain an 8-byte (or less) pointer to key 
data record 740, and may be stored at a memory address 
divisible by eight (i.e., an 8-byte boundary, or 8N). Simi 
larly, both Search indices, Such as TSTs, and data records 
may be structured So that 4-byte pointers are located on 
4-byte boundaries in memory. For example, node branch 
pointer 724 may contain a 4-byte (or less) pointer to node 
730, and may be stored at a memory address divisible by 
four (i.e., a 4-byte boundary, or 4N). Consequently, modi 
fications to database 700 may conclude by updating a 
pointer to an aligned address in memory using a single 
uninterruptible operation, including, for example writing a 
new pointer to the Search index, Such as a TST node, or 
Writing a new pointer to a data record. 
0.064 FIG. 8 is a detailed block diagram that illustrates 
a general database architecture, according to an embodiment 
of the present invention. As above, database 800 may also be 
organized into a Single, Searchable representation of the 
data. Data set updates may be continuously incorporated 
into database 800, and deletes or modifications may be 
physically performed on the relevant database records to 

May 1, 2003 

free Space within memory 104, for example, for Subsequent 
additions or modifications. The Single, Searchable represen 
tation Scales extremely well to large data Set sizes and high 
Search and update rates, and obviates the need to periodi 
cally recreate, propagate and reload Snapshot files among 
multiple Search engine computers. 

0065 Other search index structures are possible for 
accessing record data, In an embodiment, database 800 may 
use an alternative ordered Search index, organized as an 
ordered access key tree (i.e., “OAK tree'). Database 800 
may include, for example, a plurality of variable-length 
search nodes 801, a plurality of variable-length key records 
802 and a plurality of variable-length terminal data records 
803. Search nodes 801 may include various types of infor 
mation as described above, Such as, for example, Search 
keys, pointers to other Search nodes, pointers to key records, 
etc. In an embodiment, plurality of search nodes 801 may 
include Vertical and horizontal nodes containing fragments 
of Search keys (e.g., Strings), as well as pointers to other 
Search nodes or key records. Vertical nodes may include, for 
example, at least one Search key, or character, pointers to 
horizontal nodes within the plurality of search nodes 801, 
pointers to key records within the plurality of key records 
802, etc. Horizontal nodes may include, for example, at least 
two Search keys, or characters, pointers to Vertical nodes 
within the plurality of search nodes 801, pointers to hori 
Zontal nodes within the plurality of search nodes 801, 
pointers to key records within the plurality of key records 
802, etc. Generally, vertical nodes may include a sequence 
of keys (e.g., characters) representing a Search key fragment 
(e.g., String), while horizontal nodes may include various 
keys (e.g., characters) that may exist at a particular position 
within the Search key fragment (e.g., String). 
0066. In an embodiment, plurality of search nodes 801 
may include vertical node 810, vertical node 820 and 
horizontal node 830. Vertical node 810 may include, for 
example, a 2-bit node type 811 (e.g., "10"), a 38-bit address 
812, an 8-bit length 813 (e.g., “8”), an 8-bit first character 
814 (e.g., “I”) and an 8-bit second character 815 (e.g., 
“null”). In this example, address 812 may point to the next 
node in the search tree, i.e., vertical node 820. In an 
embodiment, 38-bit address 812 may include a 1-bit termi 
nal/nodal indicator and a 37-bit offset address to reference 
one of the 8-byte words within a 1 Tbyte (~10' byte) 
address Space of memory 104. Accordingly, vertical node 
810 may be eight bytes (64 bits) in length, and, advanta 
geously, may be located on an 8-byte word boundary within 
memory 104. Generally, each vertical node within plurality 
of search nodes 801 may be located on an 8-byte word 
boundary within memory 104. 

0067. A vertical node may include a multi-character, 
Search key fragment (e.g., String). Generally, Search keys 
without associated key data records may be collapsed into a 
single vertical node to effectively reduce the number of 
vertical nodes required within plurality of search nodes 801. 
In an embodiment, vertical node 810 may include eight bits 
for each additional character, above two characters, within 
the Search key fragment, Such as, for example, 8-bit char 
acters 816-1, 816-2. .. 816-N (shown in phantom outline). 
Advantageously, vertical node 810 may be padded to a 
64-bit boundary within memory 104 in accordance with the 
number of additional characters located within the String 
fragment. For example, if nine characters are to be included 



US 2003/0O84038A1 

within vertical node 810, then characters one and two may 
be assigned to first character 814 and second character 815, 
respectively, and 56 bits of additional character information, 
corresponding to characters three through nine, may be 
appended to vertical node 810. An additional eight bits of 
padding may be included to align the additional character 
information on an 8-byte word boundary. 

0068. Similarly, vertical node 820 may include, for 
example, a 2-bit node type 821 (e.g., "10"), a 38-bit address 
822, an 8-bit length 823 (e.g., “8”), an 8-bit first character 
824 (e.g., “a”) and an 8-bit second character 825 (e.g., 
“null”). In this example, address 822 may point to the next 
node in the search tree, i.e., horizontal node 830. Accord 
ingly, vertical node 820 may be eight bytes in length, and, 
advantageously, may be located on an 8-byte word boundary 
within memory 104. Of course, additional information may 
also be included within vertical node 820 if required, as 
described above with reference to vertical node 810. 

0069 Horizontal node 830 may include, for example, a 
2-bit node type 831 (e.g., “01”), a 38-bit first address 832, 
an 8-bit address count 833 (e.g., 2), an 8-bit first character 
834 (e.g., “”), an 8-bit last character 835 (e.g., “w”), a 
variable-length bitmap 836 and a 38-bit second address 837. 
In this example, first character 834 may include a single 
character, “” representing the Search key fragment “la' 
defined by vertical nodes 810 and 820, while last character 
831 may include a single character “w, representing the 
search key fragment “law' defined by vertical nodes 810 and 
820, and the last character 835 of horizontal node 830. First 
address 832 may point to key data record 840, associated 
with the search key fragment “la,” while second address 837 
may point to key data record 850 associated with the search 
key fragment “law.” 

0070 Bitmap 836 may advantageously indicate which 
keys (e.g., characters) are referenced by horizontal node 
830. A “1” within a bit position in bitmap 836 indicates that 
the key, or character, is referenced by horizontal node 830, 
while a “0” within a bit position in bitmap 836 may indicate 
that the key, or character, is not referenced by horizontal 
node 830. Generally, the length of bitmap 836 may depend 
upon the number of Sequential keys, or characters, between 
first character 834 and last character 835, inclusive of these 
boundary characters. For example, if first character 834 is 
“a” and last character 835 is “z,” then bitmap 836 may be 26 
bits in length, where each bit corresponds to one of the 
characters between, and including, “a” through “Z.” In this 
example, additional 38-bit addresses would be appended to 
the end of horizontal node 830, corresponding to each of the 
characters represented within bitmap 836. Each of these 
38-bit addresses, as well as bitmap 836, may be padded to 
align each quantity on an 8-byte word boundary within 
memory 104. In an embodiment, the eight-bit ASCII char 
acter Set may be used as the Search key Space So that bitmap 
836 may be as long as 256 bits (i.e., 2 bits or 32 bytes). In 
the example depicted in FIG. 8, due to the special reference 
character “” and address count 833 of “2,” bitmap 836 may 
be two bits in length and may include a “1” in each bit 
position corresponding to last character 835. 

0071. In an embodiment, and as discussed with reference 
to key data record 750 (FIG. 7), key data record 850 may 
include, for example, a variable-length key 853 and at least 
one terminal data pointer. As depicted in FIG. 8, key data 

May 1, 2003 

record 850 includes two terminal data pointers, terminal data 
pointer 857 and terminal data pointer 858. Key data record 
850 may be prefixed with a 12-bit key length 851 and a 
12-bit terminal pointer count/status 852, and may include 
padding (not shown for clarity) to align the terminal data 
pointer 857 and terminal data pointer 858 on an 8-byte 
boundary in memory 104. Terminal data pointer 857 and 
terminal data pointer 858 may each contain a 10-bit terminal 
data type and other data, Such as, for example, length, Status 
or data useful in binary record Searches. Terminal data 
pointer 857 and terminal data pointer 858 may be sorted by 
terminal data type for quicker retrieval of Specific resource 
records (e.g., terminal data record 860 and terminal data 
record 870). 
0072. In another embodiment, and as discussed with 
reference to key data record 740 (FIG. 7), key data record 
840 may include embedded terminal data 846 rather than a 
terminal data record pointer. For example, key data record 
840 may include a key length 841, a terminal pointer count 
842, a variable-length key 843, the number of embedded 
record elements 844, followed by a record element length 
845 (in bytes, for example) and embedded record data 846 
(e.g., a String, a byte sequence, etc.) for each of the number 
of embedded record elements 844. 

0073. In another embodiment, and as discussed with 
reference to terminal data record 760 (FIG. 7), terminal data 
record 860, for example, may include a 12-bit length 861, a 
4-bit status, and a variable-length String 862 (e.g., an IP 
address). Alternatively, variable length string 862 may be a 
byte sequence. Terminal data record 860 may include pad 
ding (not shown for clarity) to align each terminal data 
record to an 8-byte boundary in memory 104. Alternatively, 
terminal data record 860 may include padding (not shown 
for clarity) to a 4-byte boundary, or, terminal data record 860 
may not include any padding. Memory management algo 
rithms may determine, generally, whether terminal data 
records 760 are padded to 8-byte, 4-byte, or 0-byte bound 
aries. Similarly, terminal data record 870 may include a 
12-bit length 871, a 4-bit status, and a variable-length string 
872 (e.g., an IP address). 
0074 Generally, both search indices, such as OAK trees, 
and data records may be structured So that 8-byte pointers 
are located on 8-byte boundaries in memory. For example, 
vertical node 810 may contain an 8-byte (or less) pointer to 
vertical node 820, and may be stored at a memory address 
divisible by eight (i.e., an 8-byte boundary, or 8N). Simi 
larly, both Search indices, Such as OAK trees, and data 
records may be Structured So that 4-byte pointers are located 
on 4-byte boundaries in memory. Consequently, modifica 
tions to database 800 may conclude by updating a pointer to 
an aligned address in memory using a Single uninterruptible 
operation, including, for example writing a new pointer to 
the Search index, Such as an OAK trees node, or writing a 
new pointer to a data record. 

0075. The various embodiments discussed above with 
reference to FIG. 8 present many advantages. For example, 
an OAK tree data Structure is extremely Space efficient and 
8-bit clean. Regular expression Searches may be used to 
Search vertical nodes containing multi-character String frag 
ments, since the 8-bit first character (e.g., first character 
814), the 8-bit second character (e.g., second character 8-15) 
and any additional 8-bit characters (e.g., additional charac 



US 2003/0O84038A1 

ters 816-1... 816-N) may be contiguously located within 
the vertical node (e.g., vertical node 810). Search misses 
may be discovered quickly, and, no more than N nodes may 
need to be traversed to Search for an N-character length 
Search String. 
0076 FIG. 9 is a top level flow diagram that illustrates a 
method for Searching and concurrently updating a database 
without the use of operating System or database table locks, 
according to embodiments of the present invention. 
0077. An update thread and a plurality of search threads 
may be created (900). In an embodiment, system 100 may 
Spawn a single update thread to incorporate updates to the 
local database received, for example, from OLTP server 
140-1 over WAN 124. In other embodiments, system 100 
may receive updates from OLTP servers 140-1 . . . 140-S 
over WAN 124, and from plurality of network computers 
120-1. . . 120-N over WAN 124 or LAN 122. System 100 
may also spawn a Search thread in response to each Session 
request received from the plurality of network computers 
120-1... 120-N. For example, a manger thread may poll one 
or more control ports, associated with one or more network 
interfaces 114-1 . . . 114-0, for session requests transmitted 
from the plurality of network computers 120-1. . . 120-N. 
Once a Session request from a particular network computer 
120-1. . . 120-N is received, the manage thread may spawn 
a Search thread and associate the Search thread with that 
particular network computer (e.g., PE). 
0078. In an alternative embodiment, system 100 may 
spawn a number of Search threads without polling for 
Session requests from the plurality of network computers 
120-1... 120-N. In this embodiment, the search threads may 
not be associated with particular network computers and 
may be distributed evenly among the plurality of processors 
102-1 . . . 102-P. Alternatively, the search threads may 
execute on a subset of the plurality of processors 102-1 . . . 
102-P. The number of search threads may not necessarily 
match the number of network computers (e.g., N). 
0079 A plurality of search queries may be received (910) 
over the network. In an embodiment, plurality of network 
computers 120-1. . . 120-N may send the plurality of search 
queries to system 100 over LAN 122, or, alternatively, WAN 
124. The plurality of Search queries may contain, for 
example, a Search term or key, as well as State information 
that may be associated with each query (e.g., query Source 
address, protocol type, etc.). State information may be 
explicitly maintained by system 100, or, alternatively, a state 
information handle may be provided. In a preferred embodi 
ment, each of the plurality of network computers 120-1. . . 
120-N may multiplex a predetermined number of search 
queries into a Single network packet for transmission to 
system 100 (e.g., a Request SuperPacket 220 as depicted in 
FIG. 2). 
0080. In an alternative embodiment, a plurality of search 
queries and the new information may be received (910, 960) 
concurrently over the network. For example, plurality of 
network computers 120-1 ... 120-N may send the plurality 
of search queries and the new information to system 100 
over LAN 122, or, alternatively, WAN 124. The plurality of 
Search queries may contain, for example, a Search term or 
key, as well as State information that may be associated with 
each query (e.g., query Source address, protocol type, etc.). 
The new information may include, for example, additions, 

May 1, 2003 

modifications or deletions to database, and may be grouped 
together as a transaction with an associated identifier. For 
example, in an embodiment, each of the plurality of network 
computers 120-1. . . 120-N may multiplex a predetermined 
number of Search queries and new information into a single 
network packet for transmission to system 100, such as, for 
example, a single Request SuperPacket 220 (new informa 
tion not depicted for clarity). For those queries that depend 
upon new information within the transaction, the State 
information associated with those queries may include the 
transaction identifier, and, typically, may be maintained by 
system 100. When the update thread applies the transaction 
to the database (i.e., e.g., an ongoing transaction), Search 
queries that depend upon the transaction will pend until the 
update thread Successfully completes and commits the trans 
action. 

0081) Each search query may be assigned (920) to one of 
the Search threads for processing. In an embodiment, each 
Search thread may be associated with one of the plurality of 
network computers 120-1 . . . 120-N and all of the search 
queries received from that particular network computer may 
be assigned (920) to the search thread. In other words, one 
Search thread may process all of the Search queries arriving 
from a single network computer (e.g., a single PE). In an 
embodiment, each Search thread may extract individual 
Search queries from a single, multiplexed network packet 
(e.g., Request SuperPacket 220 as depicted in FIG. 2), or, 
alternatively, the extraction may be performed by a different 
process or thread. 

0082 In another embodiment, the search queries received 
from each of the plurality of network computers 120-1 . . . 
120-N may be assigned (920) to different search threads. In 
this embodiment, the multi-thread assignment may be based 
on an optimal distribution function which may incorporate 
various System parameters including, for example, processor 
loading. Of course, the assignment of Search queries to 
Search threads may change over time, based upon various 
System parameters, including processor availability, System 
component performance, etc. Various mechanisms may be 
used to convey Search queries to assigned Search threads 
within System 100, Such as, for example, Shared memory, 
inter-proceSS messages, tokens, Semaphores, etc. 

0083) Each search thread may search (930) the database 
based on the assigned Search queries. In an embodiment, 
each Search thread may extract individual Search queries 
from a single, multiplexed network packet (e.g., Request 
SuperPacket 220 as depicted in FIG. 2), or, alternatively, the 
extraction may be performed by a different proceSS or 
thread. Clearly, Searching the database may depend upon the 
underlying Structure of the database. In an embodiment, 
Searching the database may depend upon the modifications 
contained within a particular transaction for those Search 
queries dependent upon the transaction. 

0084. Referring to the database embodiment illustrated in 
FIG. 4, database 400 may be searched (930) for the search 
key. The data record (e.g., database record 420) correspond 
ing to the Search key may then be determined. Referring to 
the database embodiment illustrated in FIG. 5, look-aside 
file 520 may first be searched (930) for the search key, and, 
if a match is not determined, then Snapshot file 510 may be 
searched (930). The data record corresponding to the search 
key may then be determined. 



US 2003/0O84038A1 

0085. Referring to the database embodiment illustrated in 
FIG. 6, domain name data 610 may first be searched (930) 
for the Search key, and then the resource data within name 
Server data 630, corresponding to the Search key, may then 
be determined. For example, for the "la.com Search key, a 
match may be determined with domain name record 620 in 
domain name data 610. The appropriate information may be 
extracted, including, for example, name Server pointer 626. 
Then, the appropriate name server record 640 may be 
indexed using name Server pointer 626, and name Server 
network address 647 may be extracted. 

0.086 Referring to the database embodiment illustrated in 
FIG. 7, the TST may be searched (930) for the search key, 
from which the resource data may be determined. For 
example, for the “law.com' search key, search nodes 701 
may be searched (930), and a match determined with node 
730. Key pointer 736 may be extracted, from which the key 
data record 750 may be determined. The number of terminal 
data pointers 752 may then be identified and each terminal 
data pointer may be extracted. For example, terminal data 
pointer 757 may reference terminal data record 760 and 
terminal data pointer 758 may reference and terminal data 
record 770. The variable-length resource data, e.g., name 
server network address 762 and name server network 
address 772, may then be extracted from each terminal data 
record using the length 761 and 771, respectively. 

0.087 Referring to the database embodiment illustrated in 
FIG. 8, the OAK tree may be searched (930) for the search 
key, from which the resource data may be determined. For 
example, for the “law.com' search key, search nodes 801 
may be searched (930), and a match determined with node 
830. Second address 837 may be extracted, from which the 
key data record 850 may be determined. The number of 
terminal data pointers 852 may then be identified and each 
terminal data pointer may be extracted. For example, ter 
minal data pointer 857 may reference terminal data record 
860 and terminal data pointer 858 may reference and ter 
minal data record 870. The variable-length resource data, 
e.g., name Server network address 862 and name Server 
network address 872, may then be extracted from each 
terminal data record using the length 861 and 871, respec 
tively. 

0088. Each search thread may create (940) a plurality of 
Search replies corresponding to the assigned Search queries. 
If a match is not found for a particular Search key, the reply 
may include an appropriate indication, Such as, for example 
the null character. Referring to FIGS. 6-8, for example, a 
Search key might be “law.com” and the corresponding 
resource data might be “180.1.1.1". More than one name 
Server network address may be associated with a Search key, 
in which case, more than one name Server network address 
may be determined. 

0089. The replies may be sent (950) over the network. In 
an embodiment, each Search thread may multiplex the 
appropriate replies into a single network packet (e.g., 
Response SuperPacket 240) corresponding to the single 
network packet containing the original queries (e.g., Request 
SuperPacket 220). Alternatively, a different process or 
thread may multiplex the appropriate replies into the Single 
network packet. The response network packet may then be 
sent (950) to the appropriate network computer within the 
plurality of network computers 120-1 . . . 120-N via LAN 

May 1, 2003 

122, or alternatively, WAN 124. In one embodiment, the 
response packets may be sent to the same network computer 
from which the request packets originated, while in another 
embodiment, the response packets may be sent to a different 
network computer. 
0090 The update thread may receive (960) new infor 
mation over the network. In an embodiment, new informa 
tion may be sent, for example, from the OLTP server 140-1 
to system 100 over WAN 124. In other embodiments, system 
100 may receive updates from OLTP servers 140-1... 140-S 
over WAN 124, and from plurality of network computers 
120-1. . . 120-N over WAN 124 or LAN 122. As discussed 
above, in an embodiment, plurality of network computers 
120-1... 120-N may send the plurality of search queries and 
the new information to system 100 over LAN 122, or, 
alternatively, WAN 124. Consequently, in this embodiment, 
the plurality of Search queries and the new information may 
be received (910, 960) concurrently over the network. 
0091. In the DNS resolution embodiment, for example, 
the new information may include new domain name data, 
new name Server data, a new name Server for an existing 
domain name, etc. Alternatively, the new information may 
indicate that a domain name record, name Server record, etc., 
may be deleted from the database. Generally, any informa 
tion contained within the database may be added, modified 
or deleted, as appropriate. In an embodiment, Several modi 
fications to the database may be grouped together as a 
transaction and applied to the database as a consistent 
modification Set. 

0092 For example, a transaction may include various 
combinations of database record additions, modifications or 
deletions. Because Search access to the database is not 
restricted, an indicator field, (e.g., “dirty bit) may be 
provided within each database record to notify the Search 
threads that, when the dirty bit is Set for a particular database 
record, database modifications associated with a transaction 
are in progreSS and a Subsequent query-retry of that particu 
lar database record is required. Once the transaction has 
been applied and the modifications are complete, the dirty 
bits may be cleared for all the new database elements 
effected by the transaction. In Some Sense, the new infor 
mation may be considered to be “committed.” Thus, the 
database may be transformed from one valid State to another 
valid State without restricting Search access to the database. 
0093 Advantageously, no operating system or database 
table locks are required to prevent Search queries from 
accessing the database during these update periods. A slight 
performance penalty is incurred, because a Search query may 
need to be repeated if the dirty bit is determined to be set for 
any particular database record. The dirty bit may be located 
within the most Significant word of the database record, So 
that the bit may be inspected as Soon as this word is 
transferred from memory 104 to processor 102-1, for 
example. Additional memory transferS associated with the 
remaining portion of the database record may thus be 
avoided if the dirty bit is determined to be set. The query 
retry period may be on the order of nano-Seconds for the 
exemplary System embodiments discussed with reference to 
FIG. 1. Typically, the dirty bit may be cleared before the 
query-retry accesses the particular database record again. 
0094. Alternately, or when a dirty bit is set for during 
ongoing transaction, the point-in-time consistent query 



US 2003/0O84038A1 

result may be reconstructed from the contents of the redo 
log, or log manager, for example, as is common practice in 
transactional databases Systems. For Search queries that may 
encounter a dirty bit due to a single in-progreSS modification 
that is not part of an ongoing transaction, repeating the query 
may usually incur a lesser performance penalty than recon 
Structing the query result from the log manager. Where the 
dirty bit is due to an ongoing transaction with an extended 
Set of modifications received over an extended period of 
time, reconstructing the query result from the log manager 
may be preferred, So that the query result may not be unduly 
delayed. 

0.095 While the number of database record modifications 
within a single transaction is generally unlimited, typically, 
a transaction includes Sufficient information to maintain the 
atomicity, consistency, isolation and durability of the data 
base. Many different transactions may be envisioned for 
each database embodiment depicted within FIGS. 4 and 
6-8. Referring to FIG. 4, for example, a transaction may 
include modifying database records 410 and 420, modifying 
database record 420 and adding a new database record (e.g., 
database record 430), modifying database record 420 and 
deleting a database record (e.g., database record 410), etc. 
Referring to FIG. 6, for example, a transaction may include 
modifying domain name record 620 and name Server record 
640, deleting domain name record 620 and adding domain 
name record 615, etc. Referring to FIG. 7, for example, a 
transaction may include modifying key data record 750 and 
terminal data record 760 and deleting terminal data record 
770, adding key data record 780 and deleting key data record 
740, etc. Similarly, referring to FIG. 8, for example, a 
transaction may include modifying key data record 850 and 
terminal data record 860 and deleting terminal data record 
870, adding key data record 880 and deleting key data record 
840, etc. 
0096) The update thread may create (970) a plurality of 
new elements based on the new information. Typically, 
modifications to the information contained within an exist 
ing element of the database may be incorporated by creating 
a new element based on the existing element and then 
modifying the new element to include the new information. 
During this process, the new element may not be visible to 
the Search threads or processes currently executing on 
system 100 until a pointer to the new element has been 
written to the database. Generally, additions to the database 
may be accomplished in a similar fashion, without neces 
Sarily using information contained within an existing ele 
ment. In one embodiment, the deletion of an existing ele 
ment from the database may be accomplished by adding a 
new, explicit “delete' element to the database. In another 
embodiment, the deletion of an existing element from the 
database may be accomplished by overwriting a pointer to 
the existing element with an appropriate indicator (e.g., a 
null pointer, etc.). In this embodiment, the update thread 
does not create a new element in the database containing 
new information 

0097. Referring to FIG. 4, for example, memory space 
for a new data record (e.g., data record 430) may be 
allocated from a memory pool associated with database 
records 401. New information may be copied to data 432 of 
data record 430, and other information may be calculated 
and added to data record 430, Such as, for example, chain 
pointer 434, data pointer 435, etc. A dirty bit 408 may also 

May 1, 2003 

be included within new data record 430. Referring to the 
database embodiments depicted in FIGS. 6-8, for example, 
the new information may include new domain names and/or 
domain name Servers to be added to the database. 

0098 Referring to FIG. 6, for example, memory space 
for a new domain name record 615 may be allocated from 
a memory pool associated with the domain name records 
611, or, alternatively, from a general memory pool associ 
ated with domain name data 610. The new domain name 
may be normalized and copied to the new domain name 
record 615, a pointer to an existing name server (e.g., name 
server record 655) may be determined and copied to the new 
domain name record 615. A dirty bit 618 may be included 
within new domain name record 615. Other information 
may be calculated and added to new domain name record 
615, Such as, for example, a number of name Servers, a chain 
pointer, etc. In more complicated examples, the new infor 
mation may include a new Search key with corresponding 
resource data. 

0099 Referring to FIG. 7, in a more complicated 
example, a new Search node 705, as well as a new key data 
record 780, may be created. In this example, the new search 
node 705 may include a comparison character (“m”), in the 
first position, that is greater than the comparison character 
(“I’), in the first position, of existing search node 710. 
Consequently, search node 705 may be inserted in the TST 
at the same “level” (i.e., 1" character position) as search 
node 710. Before Search node 705 is committed to the 
database, the 4-byte “greater than” pointer 715 of search 
node 710 may contain a “null' pointer. Search node 705 may 
also include a 4-byte key pointer 706 which may contain a 
40-bit pointer to the new key data record 780. Key data 
record 780 may include a key length 781 (e.g., “5”) and type 
782 (e.g., indicating embedded resource data), a variable 
length key 783 (e.g., “m.com”), a number of embedded 
resources 784 (e.g., “1”), a resource length 785 (e.g., “9”), 
a variable-length resource String 786 or byte Sequence (e.g., 
“180.1.1.1") and dirty bit 707. Memory space may be 
allocated for search node 705 from a memory pool associ 
ated with TST nodes 701, while memory space may be 
allocated for the key data record 770 from a memory pool 
associated with plurality of key data records 702. 

0100 Referring to FIG. 8, for example, a new search 
node 890, as well as a new key data record 880, may be 
created. In this example, the new search node 890 may be a 
horizontal node including, for example, a two-bit node type 
891 (e.g., “01”), a 38-bit first address 892, an eight-bit 
address count 893 (e.g., 2), an eight-bit first character 894 
(e.g., “I”), an eight-bit last character 895 (e.g., “m”), a 
variable-length bitmap 896 and a 38-bit second address 897. 
First address 892 may point to vertical node 820, the next 
Vertical node in the “I-. . . >' Search String path, while 
second address 897 may point to key data record 880 
asSociated with the Search key fragment “m.” Key data 
record 880 may include a key length 881 (e.g., “5”) and type 
882 (e.g., indicating embedded resource data), a variable 
length key 883 (e.g., “m.com”), a number of embedded 
resources 884 (e.g., “1”), a resource length 885 (e.g., “9”), 
a variable-length resource String 886 or byte Sequence (e.g., 
“180.1.1.1") and dirty bit 807. Memory space may be 
allocated for search node 890 from a memory pool associ 
ated with plurality of search nodes 801, while memory space 



US 2003/0O84038A1 

may be allocated for key data record 880 from a memory 
pool associated with plurality of key data records 802. 
0101 The new information may also include several 
modifications to existing records within the database. Refer 
ring to FIG. 4, the new information may include modifica 
tions to data record 410. In this example, new data record 
420 may be created and the information from data record 
410 copied thereto. AS above, memory Space for data record 
420 may be allocated from a memory pool associated with 
database records 401. The modifications may then be 
applied to data 422. Data records 410 and 420 may also 
include dirty bits 406 and 407, respectively. 
0102 Referring to FIG. 6, the new information may 
include modifications to name server record 640, Such as, for 
example, a new IP address (e.g., “180.2.1.2). In this 
example, new name Server record 660 may be created and 
the information from old name server record 640 copied 
thereto. As above, memory space for name server record 660 
may be allocated from a memory pool associated with the 
name Server records 631, or, alternatively, from a general 
memory pool associated with name server data 630. The 
new name server IP address may then be copied to the 
appropriate field within name Server record 660, i.e., e.g., 
name server IP address 667. A dirty bit 668 may be included 
within new name server record 660. Similar modifications to 
the various elements within the database embodiments 
described with reference to FIGS. 7 and 8 are also con 
templated. 

0103) The new information may also include the deletion 
of at least one existing element within the database. In one 
embodiment, no new element may be created, but the dirty 
bit of the element to be deleted may be set by the update 
thread. In another embodiment, a new, explicit “delete' 
element may be created, with the dirty bit Set, indicating that 
the former element has been removed from the database. 
Referring to FIG. 4, for example, the new information may 
include the deletion of data record 410, which may include 
dirty bit 407. Referring to FIG. 6, for example, the new 
information may include the deletion of domain name record 
670, which may include dirty bit 678. Similar deletions to 
the various elements within the database embodiments 
described with reference to FIGS. 7 and 8 are also con 
templated. 

0104) The update thread may set (975) a dirty bit within 
each of the plurality of new elements. AS noted above, the 
dirty bit may notify the search threads that the particular 
database record is associated with a current transaction, and 
that a Subsequent query-retry of the database should be 
performed. Thus, each of the database records effected by a 
transaction may be identified. Referring to FIGS. 4 and 6-8, 
for example, the update thread may set a dirty bit within each 
of the database records affected by the transaction. Dirty bit 
408 may be set to “1” for new data record 430 and dirty bits 
407 and 406 may be set to “1” for modified data records 410 
and 420, respectively. Dirty bit 618 may be set to “1” for 
new domain name record 615 and dirty bits 606 and 668 
may be set to “1” for modified name server records 640 and 
660, respectively. Dirty bits 707 and 807 may be set to “1” 
for new key data records 780 and 880, respectively. 
0105 For clarity, the top level flow diagram illustrated in 
FIG. 9 is extended to FIG. 10 though flow diagram con 
nection symbol “A.” Referring to FIG. 10, for database 

May 1, 2003 

records to be deleted, the update thread may also set (1075) 
a dirty bit within the appropriate database records. For 
example, dirty bit 407 may be set to “1” for deleted data 
record 410 and dirty bit 678 may be set to “1” for deleted 
domain name record 670. Data record 420 and 430, domain 
name record 615, name server record 660 and key data 
records 780 and 880 may be considered to be “new” 
elements within the database, while modified data record 
410, modified name server record 640, deleted data record 
410 and deleted domain name record 670 may be considered 
to be “old” elements within the database. In these examples, 
data record 410 is used as both a “modified” data record and 
as a “deleted” data record. 

0106) The update thread may write (980) a pointer to the 
database using a single uninterruptible operation. Generally, 
a new element may be committed to the database, (i.e., 
become instantaneously visible to the Search threads, or 
processes), by writing a pointer to the new element to the 
appropriate location within the database. AS discussed 
above, this appropriate location may be aligned in memory, 
So that the Single operation includes a Single Store instruction 
of an appropriate length. Even though the new elements may 
be visible to the search threads after the pointer write, the 
“set' dirty bit notifies the search threads that each new 
database element may be part of a current transaction, and 
that a Subsequent query-retry, or reconstruction from the 
redo log, may be necessary. For database embodiments 
containing multiple indices, it may be possible for one index 
to contain pointers to “old” elements while another index to 
contain pointers to “new” elements. Consequently, in the 
DNS resolution embodiment, for example, two domain 
name records with the same domain name, or primary key, 
may exist within the Search Space Simultaneously, but only 
during a transaction involving that record for a unique indeX. 
0107 Referring to FIG. 4, an 8-byte pointer correspond 
ing to new data record 430 may be written to hash table 403. 
Referring to FIG. 6, an 8-byte pointer corresponding to new 
domain name record 615 may be written to hash table 612. 
Importantly, these hash table entries may be aligned on 
8-byte boundaries in memory 104 to ensure that a single, 
8-byte store instruction is used to update this value. Refer 
ring to FIG. 7, a 4-byte pointer corresponding to the new 
search node 705 may be written to the 4-byte “greater-than” 
node pointer 715 within search node 710. Importantly, the 
node pointer 715 may be aligned on a 4-byte boundary in 
memory 104 to ensure that a Single, 4-byte Store instruction 
may be used to update this value. Referring to FIG. 8, 
plurality of search nodes 801 may also include a top-of-tree 
address 899, which may be aligned on an 8-byte word 
boundary in memory 104 and may reference the first node 
within plurality of search nodes 801 (i.e., e.g., vertical node 
810). An 8-byte pointer corresponding to the new search 
node 890 may be written to the top-of-tree address 899 using 
a single Store instruction. In each of these embodiments, just 
prior to the Store instruction, the new data are not visible to 
the Search threads, while just after the Store instruction, the 
new data are visible to the search threads. Thus, with a 
Single, uninterruptible operation, the new data may be 
committed to the database without the use of operating 
System or database table lockS. 
0108) Referring to FIG. 10, for database records to be 
deleted from the database, in an embodiment, a pointer, or 
pointers, to the existing record may be written (1080) with 



US 2003/0O84038A1 

a null pointer using a single uninterruptible operation. The 
null pointer may de-reference the existing record and indi 
cate that the existing record has been deleted from the 
database. Referring to FIG. 4, for example, data record 410 
may be deleted from database 400 by overwriting the 
appropriate entry within hash table 403 with an 8-byte null 
pointer. Referring to FIG. 6, for example, domain name 
record 670 may be deleted from database 600 by overwriting 
the appropriate entry within hash table 612 with an 8-byte 
null pointer. In an alternative embodiment, an 8-byte pointer 
to a new, “explicit delete record, corresponding to a 
“deleted” domain name record 670, may be written to hash 
table 613. In this embodiment, modifications, additions and 
deletions to the database may be accomplished similarly. 

0109) The update thread may clear (985) the dirty bit 
within each of the plurality of new elements. In an embodi 
ment, the dirty bit may be cleared from each new element by 
setting the dirty bit to “0.” For example, and as discussed 
with reference to FIGS. 4 and 6-8, dirty bit 406 and 408 
may be set to “0” for data records 420 and 430, respectively. 
Dirty bit 618 may be set to “0” for domain name record 615, 
dirty bits 606 and 668 may be set to “0” for name server 
records 640 and 660, respectively. Dirty bits 707 and 807 
may be set to “0” for key data records 780 and 880, 
respectively. In an embodiment, the dirty bit may be set to 
“0” for each of the new elements in any order. After the dirty 
bits within each of the new elements have been cleared 
(985), the “old,” or existing, database elements are no longer 
active, i.e., referenced within the database. In an embodi 
ment, the dirty bits within these elements may then be 
cleared by setting the dirty bit to “0,” while in an alternative 
embodiment, the dirty bits may not be cleared at all. 
0110. In an embodiment, the update thread may physi 
cally delete (990) existing database elements that have been 
modified after the dirty bits are cleared (985) from each of 
the new elements. Advantageously, the physical deletion of 
these modified elements from memory 104 may be delayed 
to preserve consistency of in-progreSS Searches. For 
example, after an existing element has been modified and the 
corresponding new element committed to the database, the 
physical deletion of the existing element from memory 104 
may be delayed So that existing Search threads that have a 
result, acquired just before the new element was committed 
to the database, may continue to use the previous State of the 
data. The update thread may physically delete (990) the 
existing element after all the Search threads that began 
before the existing element was modified have finished. 
0111 Similarly, after an existing element has been 
deleted from the database, the physical deletion of the 
existing element from memory 104 may be delayed so that 
existing Search threads that have a result, acquired just 
before the existing element was deleted from the database, 
may continue to use the previous State of the data. Referring 
to FIG. 10, the update thread may physically delete (1090) 
the existing element after all the Search threads that began 
before the existing element was deleted have finished. 
0112 Potential complications may arise from the inter 
action of methods associated with embodiments of the 
present invention and various architectural characteristics of 
system 100. For example, the processor on which the update 
thread is executing (e.g., processor 102-1, 102-2, etc.) may 
include hardware to Support out-of-order instruction execu 

May 1, 2003 

tion. In another example, System 100 may include an opti 
mizing compiler which may produce a sequence of instruc 
tions, associated with embodiments of the present invention, 
that have been optimally rearranged to exploit the parallel 
ism of the processors internal architecture (e.g., processor 
102-1, 102-2, etc.). Many other complications may readily 
be admitted by one skilled in the art. Data hazards arising 
from out-of-order instruction execution may be eliminated, 
for example, by creating dependencies between the creation 
(970) of the new element and the pointer write (980) to the 
database. 

0113. In one embodiment, these dependencies may be 
established by inserting additional arithmetic operations, 
Such as, for example, an exclusive OR (XOR) instruction, 
into the Sequence of instructions executed by processor 
102-1 to force the execution of the instructions associated 
with the creation (970) of the new element to issue, or 
complete, before the execution of the pointer write (980) to 
the database. For example, the contents of the location in 
memory 104 corresponding to the new element, and con 
taining the dirty bit, may be XOR'ed with the contents of the 
location in memory 104 corresponding to the pointer to the 
new element. Subsequently, the address of the new element 
may be written (980) to memory 104 to commit the new 
element to the database. Numerous methods to overcome 
these complications may be readily discernable to one 
skilled in the art. 

0114 Several embodiments of the present invention are 
specifically illustrated and described herein. However, it will 
be appreciated that modifications and variations of the 
present invention are covered by the above teachings and 
within the purview of the appended claims without departing 
from the Spirit and intended Scope of the invention. 

What is claimed is: 
1. A multi-threaded network database System, comprising: 
at least one processor coupled to a network, and 
a memory coupled to the processor, the memory including 

a database and instructions adapted to be executed by 
the processor to: 
create an update thread and a plurality of Search 

threads, 
assign each of a plurality of Search queries, received 

over the network, to one of the plurality of Search 
threads, 

for each Search thread: 

Search the database according to the assigned Search 
queries, 

create a plurality of Search replies corresponding to 
the assigned Search queries, and 

Send the plurality of Search replies over the network; 
and 

for the update thread: 
create a plurality of new elements according to new 

information received over the network, 

set a dirty bit within each of the plurality of new 
elements, 



US 2003/0O84038A1 

without restricting access to the database for the 
plurality of Search threads, write a pointer to each 
of the plurality of new elements to the database 
using a single uninterruptible operation, and 

clear the dirty bit within each of the plurality of new 
elements. 

2. The system of claim 1, wherein the instructions further 
include: 

for the update thread: 
Set a dirty bit within at least one existing element to be 

deleted from the database, and 
without restricting access to the database for the plu 

rality of Search threads, de-reference the existing 
element to be deleted using a single uninterruptible 
operation. 

3. The system of claim 1, wherein the instructions further 
include: 

for the update thread: 
Set a dirty bit within at least one existing element to be 

modified in the database before the pointer is written 
to corresponding new element, and 

clear the dirty bit within the existing element after the 
pointer is written to the corresponding new element. 

4. The System of claim 1, wherein the Single uninterrupt 
ible operation is a Store instruction. 

5. The system of claim 4, wherein the store instruction 
writes four bytes to a memory address located on a four byte 
boundary. 

6. The system of claim 4, wherein the store instruction 
writes eight bytes to a memory address located on an eight 
byte boundary. 

7. The system of claim 4, wherein the processor has a 
word size of at least n-bytes, the memory has a width of at 
least n-bytes and the Store instruction writeS n-bytes to a 
memory address located on an n-byte boundary. 

8. The system of claim 1, wherein the plurality of search 
queries are received within a single network packet. 

9. The system of claim 1, wherein the plurality of search 
replies are Sent within a single network packet. 

10. The System of claim 1, wherein Said restricting acceSS 
includes database locking. 

11. The System of claim 1, wherein Said restricting acceSS 
includes Spin locking. 

12. The System of claim 11, wherein Said Spin locking 
includes the use of at least one Semaphore. 

13. The System of claim 12, wherein Said Semaphore is a 
muteX Semaphore. 

14. The System of claim 1, further comprising a plurality 
of processors and a Symmetric multi-processing operating 
System. 

15. The system of claim 14, wherein the plurality of 
search threads perform at least 100,000 searches per second. 

16. The system of claim 15, wherein the update thread 
performs at least 10,000 updates per second. 

17. The system of claim 16, wherein the update thread 
performs between 50,000 and 130,000 updates per second. 

18. The system of claim 1, wherein the pointer to the new 
element is written to a Search index. 

19. The system of claim 18, wherein the search index is 
a TST. 

May 1, 2003 

20. The system of claim 1, wherein the pointer to the new 
element is written to a data record within the database. 

21. A method for Searching and concurrently updating a 
database, comprising: 

creating an update thread and a plurality of Search threads, 

assigning each of a plurality of Search queries, received 
Over the network, to one of the plurality of Search 
threads, 

for each Search thread: 

Searching the database according to the assigned Search 
queries, 

creating a plurality of Search replies corresponding to 
the assigned Search queries, and 

Sending the plurality of Search replies over the network; 
and 

for the update thread: 

creating a plurality of new elements according to new 
information received over the network, 

setting a dirty bit within each of the plurality of new 
elements, 

without restricting access to the database for the plu 
rality of Search threads, writing a pointer to each of 
the plurality of new elements to the database using a 
Single uninterruptible operation, and 

clearing the dirty bit within each of the plurality of new 
elements. 

22. The method of claim 21, wherein the instructions 
further include: 

for the update thread: 

Setting a dirty bit within at least one existing element to 
be deleted from the database, and 

without restricting access to the database for the plu 
rality of Search threads, de-referencing the existing 
element to be deleted using a single uninterruptible 
operation. 

23. The method of claim 21, further comprising: 

for the update thread: 

Setting a dirty bit within at least one existing element to 
be modified in the database before the pointer is 
written to corresponding new element, and 

clearing the dirty bit within the existing element after 
the pointer is written to the corresponding new 
element. 

24. The method of claim 21, wherein the single uninter 
ruptible operation is a Store instruction. 

25. The method of claim 23, wherein the store instruction 
writes four bytes to a memory address located on a four byte 
boundary. 

26. The method of claim 23, wherein the store instruction 
writes eight bytes to a memory address located on an eight 
byte boundary. 



US 2003/0O84038A1 

27. The method of claim 21, wherein the plurality of 
Search queries are received within a Single network packet. 

28. The method of claim 21, wherein the plurality of 
Search replies are Sent within a single network packet. 

29. The method of claim 21, wherein said restricting 
access includes database locking. 

30. The method of claim 21, wherein said restricting 
access includes Spin locking. 

31. The method of claim 30, wherein said spin locking 
includes the use of at least one Semaphore. 

32. The method of claim 31, wherein said semaphore is a 
muteX Semaphore. 

33. The method of claim 21, wherein the plurality of 
search threads perform at least 100,000 searches per second. 

34. The method of claim 21, wherein the update thread 
performs at least 10,000 updates per second. 

35. The method of claim 34, wherein the update thread 
performs between 50,000 and 130,000 updates per second. 

36. The method of claim 21, wherein the pointer to the 
new element is written to a Search indeX. 

37. The method of claim 21, wherein the pointer to the 
new element is written to a data record within the database. 

38. A computer readable medium including instructions 
adapted to be executed by at least one processor to imple 
ment a method for Searching and concurrently updating a 
database, the method comprising: 

creating an update thread and a plurality of Search threads, 
assigning each of a plurality of Search queries, received 

over the network, to one of the plurality of Search 
threads, 

for each Search thread: 

Searching a database according to the assigned Search 
queries, 

creating a plurality of Search replies corresponding to 
the assigned Search queries, and 

Sending the plurality of Search replies over the network; 
and 

for the update thread: 
creating a plurality of new elements according to new 

information received over the network, 

setting a dirty bit within each of the plurality of new 
elements, 

without restricting access to the database for the plu 
rality of Search threads, writing a pointer to each of 
the plurality of new elements to the database using a 
Single uninterruptible operation, and 

clearing the dirty bit within each of the plurality of new 
elements. 

May 1, 2003 

39. The computer readable medium of claim 38, wherein 
the method further includes: 

for the update thread: 
Setting a dirty bit within at least one element to be 

deleted from the database, and 
without restricting access to the database for the plu 

rality of Search threads, de-referencing the element 
to be deleted using a single uninterruptible operation. 

40. The computer readable medium of claim 38, wherein 
the method further includes: 

for the update thread: 
Setting a dirty bit within at least one existing element to 

be modified in the database before the pointer is 
written to corresponding new element, and 

clearing the dirty bit within the existing element after 
the pointer is written to the corresponding new 
element. 

41. The computer readable medium of claim 38, wherein 
the Single uninterruptible operation is a Store instruction. 

42. The computer readable medium of claim 41, wherein 
the Store instruction writes four bytes to a memory address 
located on a four byte boundary. 

43. The computer readable medium of claim 41, wherein 
the Store instruction writes eight bytes to a memory address 
located on an eight byte boundary. 

44. The computer readable medium of claim 38, wherein 
the plurality of Search queries are received within a Single 
network packet. 

45. The computer readable medium of claim 38, wherein 
the plurality of Search replies are Sent within a Single 
network packet. 

46. The computer readable medium of claim 38, wherein 
Said restricting acceSS includes database locking. 

47. The computer readable medium of claim 38, wherein 
Said restricting acceSS includes Spin locking. 

48. The computer readable medium of claim 47, wherein 
Said Spin locking includes the use of at least one Semaphore. 

49. The computer readable medium of claim 48, wherein 
Said Semaphore is a muteX Semaphore. 

50. The computer readable medium of claim 38, wherein 
the pointer to the new element is written to a Search index. 

51. The computer readable medium of claim 38, wherein 
the pointer to the new element is written to a data record 
within the database. 

52. The system of claim 8, wherein the new information 
is received within the Single network packet. 

53. The method of claim 27, wherein the new information 
is received within the Single network packet. 

54. The computer readable medium of claim 44, wherein 
the new information is received within the Single network 
packet. 


