用于纳米孔多核苷酸测序和其他应用的补偿膜片钳放大器
1. 一种膜片钳系统，包括：
开关，可操作地使差分放大器的反馈电路短路，其中反馈电路为反馈电阻器，并且连接
在所述差分放大器的输出端和反相输入端之间；
具有输入电容和串联电阻的传感器，电连接到所述差分放大器的反相输入端；和
命令电压电路，可操作地施加命令电压到所述差分放大器的非反相输入端，并且所述命令
电压电路响应定时信号产生阶跃命令电压，以及复位开关与阶跃命令电压的阶跃变化
同步关闭时间Tr，在所述时间Tr后，所述复位开关开启，其中所述时间Tr足以防止所述差分
放大器电路饱和；
其中，所述命令电压电路和所述开关由定时信号控制。
2. 如权利要求1所述的膜片钳系统，其特征在于，所述命令电压电路可操作地施加阶跃
电压到所述差分放大器的非反相输入端，用于补偿所述传感器和所述差分放大器的反相输
入端之间的不利电阻和所述差分放大器的非反相输入端的不利电容中的至少一个。
3. 如权利要求2所述的膜片钳系统，其特征在于，在阶跃电压的过渡时期使所述反馈电
路短路。
4. 一种膜片钳系统，包括：
差分放大器，具有反馈电路，其中所述反馈电路中的开关可操作地使所述反馈电路短
路，其中反馈电路为反馈电阻器，并且连接在所述差分放大器的输出端和反相输入端之间；
具有输入电容和串联电阻的传感器，连接到所述差分放大器的反相输入端；和
命令电压电路，可操作地施加阶跃命令电压到所述差分放大器的非反相输入端，并且
所述命令电压电路响应定时信号产生阶跃命令电压，以及复位开关与阶跃命令电压的阶跃
变化同步关闭时间Tr，在所述时间Tr后，所述复位开关开启，其中所述时间Tr足以防止所述差
分放大器电路饱和；
其中，所述命令电压电路和所述开关由产生定时信号的电路控制。
5. 一种膜片钳系统，包括：
开关，可操作地使得差分放大器的反相输入端和输出端之间的反馈电路短路，其中反
馈电路为反馈电阻器，并且连接在所述差分放大器的输出端和反相输入端之间；
具有输入电容和串联电阻的传感器，电连接到所述差分放大器的反相输入端；和
命令电压电路，可操作地施加阶跃命令电压到所述差分放大器的非反相输入端，并且
所述命令电压电路响应定时信号产生阶跃命令电压，以及复位开关与阶跃命令电压的阶跃
变化同步关闭时间Tr，在所述时间Tr后，所述复位开关开启，其中所述时间Tr足以防止所述差
分放大器电路饱和；
其中，在所述阶跃命令电压的过渡时期使所述反馈电路短路从而阻止所述差分放大器
饱和。
6. 如权利要求1-5中任一项所述的膜片钳系统，其特征在于，所述传感器是纳米孔传感
器。
7. 如权利要求1、4或5所述的膜片钳系统，其特征在于，所述反馈电路包括电阻器和电
容器。
8. 如权利要求1、4或5所述的膜片钳系统，其特征在于，所述命令电压电路包括采样保
持电路和数字-模拟转换器中的至少一种。
9. 如权利要求1、4或5所述的膜片钳系统，其特征在于，所述差分放大器为跨阻放大器和多级放大器中的至少一种。

10. 如权利要求1、4或5所述的膜片钳系统，其特征在于，所述膜片钳系统还包括：
 模拟-数字转换器，可操作地将所述差分放大器的输出信号转为数字数据；
 信号处理电路，可操作地处理所述数字数据。
用于纳米孔多核苷酸测序和其他应用的补偿膜片钳放大器

本申请是申请日为2012年07月18日，专利号为ZL201280005635.1，发明名称为“用于纳米孔多核苷酸测序和其他应用的补偿膜片钳放大器”的发明专利的分案申请。

支持声明

本发明是部分利用美国国家科学基金会（NSF）的资金完成的，NSF Career基金号为ECSS-0845766。美国联邦政府对本发明享有一定权利。

其它申请的关系

在法律允许的范围内，本申请要求2011年7月20日提交的名称为“用于固态纳米孔上DNA测序的补偿电压膜片钳放大器”的美国临时专利申请序列号为61/572,829的优先权。

发明领域

目前公开的主题直接涉及适合用于DNA测序仪以及检测和定量多核苷酸内单个核苷酸的电子装置和系统。更具体地说，本发明涉及补偿膜片钳放大器和它们在DNA测序系统的和方法以及类似应用中的用途。

发明背景

1869年瑞士科学家Friedrich Miescher首次从细胞中分离出DNA。1944年，发现脱氧核糖核酸是一种包含有细胞内微小的全部遗传学信息的化学物质。1953年，在美国剑桥大学工作的美国科学家James Watson和英国研究人员Francis Crick发现了现在著名的DNA双螺旋分子结构，为此他们获得了1962年诺贝尔奖。

在纳米孔测序中，待测序的DNA链穿过具有很小孔的离子流体填充传感器，同时在该传感器上诱导电压。由此产生的传感器电流依赖于DNA链结构。通过分析传感器电流可以测序DNA链。虽然纳米孔测序的理论框架是很好的理解的，但现有技术纳米孔测序系统和设备没有得到充分发展。纳米孔测序电流非常小，任何现实的纳米孔测序系统要求非常高的增益。运行的增益因分布电阻和电容以及内部和外部噪声而易造成阅读不稳定性。

尽管有这些问题，纳米孔测序的前景已经激起了对能够检测和定量多核苷酸内单个核苷酸的电子装置和系统的开发。在实践中，纳米孔测序器具有两个室，称为主室和反室，这些室填充有缓冲离子导电溶液（例如氯化钾）且在诸纳米孔室上施加电压。结果是，最初放置在主室的荷电DNA开始向反侧移动。当它穿过纳米孔，离子电流瞬间下降。离子电流通常是在几十到几百皮安范围内。产生的电流取决于纳米孔内和纳米孔容积上离子的数量（电荷/净电荷）。离子的数量和电荷可以由通过纳米孔（或接近纳米孔开口）的DNA核苷酸链所致。通过检测产生的电流，可以测序DNA核苷酸。

准确测量超低电流变化需要非常专业化的放大器，本文称为膜片钳。实用膜片钳包括输入探头电流到电压转换器和从探头放大电压的差分放大器。膜片钳必须满足两个非常具有挑战性的设计要求。首先，必须尽可能降低探头的输入补偿电压（V_{os})。即使是可用的最好的高增益放大器也有一些V_{os}。V_{os}的原因包括随机过程不匹配和不可避免的系统性变化。无论V_{os}怎样，它都被差分放大器放大。实际上V_{os}限制了输出动态范围。
【0012】其次,膜片静电输入寄生电容(parasitic capacitance)必须要降低,从而防止探头饱和。当施加命令电压(command voltage)V_{com}到纳米孔传感器从而产生工作电流时,该电压实际上是通过电阻施加到运算放大器(op-amp)的反相输入端。因此,命令电压V_{com}变化导致不可避免的偏离系统电容而是延时的。这将引起反相输入端和导致输出饱和的非反相输入端之间短暂的差异,直到寄生电容充电及反相输入端再次等于V_{com}。此间隔称为“死区时间”,期间的所有传入数据丢失。在纳米孔测序中,尽可能降低V_{com}和补偿输入寄生电容和电阻是主要设计问题。

【0013】现代膜片钳是相当专业高增益的,使用电阻器或电容式反馈的差分运算放大器使电路放大。图1(a)和1(b)示出这是两个基础的膜片钳电路。在任何情况下,基础膜片钳包括两组件:放大器10和补偿系统。该补偿系统包括电阻器12,参考图1(a)所示电阻反馈膜片钳电路6,或与复位开关16平行的电阻器14,参考图1(b)所示电容反馈膜片钳电路8。在两电路中,命令电压V_{com}施加到放大器10的非反相输入端17,而纳米孔传感器302(参见例如图6)上的电势施加到反相输入端18。

【0014】图1(a)中,反相输入端18上输出的电流I_{in}与反馈电阻器12的值(R_f)相一致地放大。产生的跨阻抗增益简单表示为V_{out} = R_f × I_{in}。图1(b)中,电容式反馈作为积分器,因此,在实践中放大器10之后必须有微分器。

【0015】理论上,基本膜片钳6和8是可靠的。但在实践中是有问题的。参考图1(a),使用电阻式反馈的跨阻抗膜片钳放大器在命令电压V_{com}改变后有明显的延时。参考图6所示的纳米孔传感器302,这些延迟是零极点特征(pole-zero characteristic)、比较大的反馈电阻器12(参见图1(a))、不可避免的串联电阻R_s303、纳米孔传感器302电容(C_r)305和纳米孔传感器302电阻(R_a)307所致。图1(a)所示的电阻反馈膜片钳电路6,在命令电压V_{com}刚改变后起到非反相放大器的作用,增益为(1+C_r/C_p)。由于C_r总是大于C_p,放大器10的输出变得饱和,数据丢失,直到放大器10有时间提供足够的电荷到电容,从而允许返回到正常操作。“死区时间”是非常不合需要的。

【0016】在现有技术中,复杂的补偿电路已经被用于试图避免、缩短或至少尽可能降低死区时间。这种现有技术补偿电路不仅增加基础膜片钳的复杂性,还增加输入电容,此不仅限制电阻反馈膜片钳电路,如电阻反馈膜片钳电路6的带宽,还通常导致输出电压响应阶跃输入而“振鸣”(ringing)。

【0017】至少部分开发了图1(b)所示电容反馈膜片钳电路8,从而避免电阻反馈膜片钳电路6(参见图1(a))的死区时间和系统复杂性。在复位开关16关闭的瞬间,电容反馈膜片钳电路8具有宽的带宽和有效单位增益。通过将跨越具有电容C_r的电容器14的复位开关16的闭合当于定的,非反相端17上的命令电压V_{com}变化最初不影响放大器10的输出,输出饱和得到避免。

【0018】不幸的是,当复位开关16打开,在反相输入端18的输入电容增加C_r × (1+<Lambda>),其中,<Lambda>是放大器10的增益,参考众所周知的米勒定理。随后该显著的输入电容变化限制电容性反馈膜片钳电路8的带宽。因此,使用电容反馈跨阻放大器使得非常难以施加任意命令电压V_{com}变化,因为重置频率(f_{rst})由I_{in}/(C_r × ΔV)决定,其中ΔV是反相输入端18和输出电压V_o之间的电压差。该频率不需要与命令电压V_{com}变化同步。

【0019】复位频率与命令电压V_{com}变化问题的一个解决方案是通过降低电容14的电容C_r而
简单地增加复位频率（f_{1st}），以使复位频率与命令电压V_{cmd}变化相容。无论何时施加具有不同转换周期的波形作为命令电压V_{cmd}变化时，这需要多个电容器和对它们进行适当选择作为反馈电容器14电容。结果得到更大和更复杂的脉冲放大器。

【0020】现有技术膜片钳放大器的补尝使用额外的放大器以估计串联电阻（R_s）和寄生电容（C_r），导致相当复杂的电路。

【0021】因此，期望获得避免现有技术的上述和其它限制的新膜片钳放大器电路。甚至更期望获得合用了适用于特定应用的补偿（功能）的新膜片钳放大器系统。甚至更有益的是具有可以数字控制的补偿（功能）的新膜片钳放大器系统。

发明概要

【0022】本发明的原理提供了补偿（功能）并能适用于特定应用的膜片钳放大器电路技术。新膜片钳电路使用数字控制的补偿（功能），可以用在纳米孔测序仪内测序多核苷酸。

【0023】这些原理合并在具有产生定时信号的时钟的膜片钳电路内。膜片钳电路还包括差分放大器电路，它具有非反相输入端和具有寄生电容和电极电阻的反相输入端和输出端。反馈电阻器连接在输出端和反相输入端之间。复位开关接收定时信号，并且作出响应有选择地连接输出端到反相输入端。命令电压电路接收命令电压和定时信号。命令电压电路响应定时信号，产生施加到非反相输入端的阶跃命令电压。具有输入电容和串联电阻的补偿器可操作地连接到非反相输入端。复位开关与阶跃命令电压的阶跃变化同步关闭时间TR。然后开启。时间TR足以防止阶跃变化期间拆分放大器电路的饱和，但不消除阶跃电压。选择阶跃命令电压从而补偿串联电阻和电极电阻，从而在传感器上产生预定电压。

【0024】实践中，膜片钳系统使用纳米孔传感器，而差分放大器电路可具有电流电压转换器和差分放大器。命令电压电路可能是采样保持电路（sample and hold circuit），数字-模拟转换器或充分产生阶跃电压的一些其他类型的电路。在实践中，可将输出施加于模数转换器，从而产生传感器电流的放大数字形式。数字形式可以施加于现场可编程阵列或以其他方式输入计算机。优先地，该计算机将命令电压施加于命令电压电路。

【0025】本发明的原理还使得补偿用于膜片钳系统的传感器的方法成为可能。这样的方法包括将电极的第一末梢连接到膜片钳系统的反相输入端，将电极的第二末梢连接地线，以及膜片钳系统的反相输入端和输出端之间连接反馈电阻R_f。如此能够从膜片钳获得稳态输出。然后将阶跃电压施加到膜片钳系统的非反相输入端。然后获得响应阶跃电压的膜片钳系统转换器的输出电压变化，从该输出电压变化，可测得电极串联电阻R_s。串联电阻确定后，将传感器连接在电极的第二末梢和地线之间。然后出现膜片钳系统的稳态输出并测量传感器电流。然后从测量的传感器电流I，串联电阻R_s和稳态输出确定传感器串联电阻R_s。一旦串联电阻R_s已知，通过将补偿电压施加到非反相输入端从而将预定电压施加到传感器，其中补偿电压等于预定电压加上传感器电流I乘以串联电阻R_s。

【0026】除了补偿电阻，本发明还可以用于测定寄生电容。为此，在传感器串联电阻R_s测定后，建立膜片钳系统从而产生稳态响应。然后将补偿阶跃电压施加到膜片钳系统的非反相输入端。接着建立输出的时间常数。然后使用先前获得的传感器串联电阻R_s和时间常数确定输入寄生电容。

【0027】本发明的原理还能够获得新的、有用的和非显而易见的纳米孔测序仪。这样的纳
说明

纳米孔传感器包括具有输入电阻R_{i}和输入电容C_{i}的纳米孔传感器。纳米孔传感器还包括膜片
钳电路，它具有非反相输入端，具有寄生电容C_{p}的反相输入端，和输出端。具有极性串联电
阻R_{e}的电极将纳米孔传感器连接到反相输入端。具有R_{e}值的反馈电阻器连接到输出端和反
相输入端之间。复位开关接收输入复位开关将输出端选择性地连接到反相输入端的定时信
号。数模电路接收定时的数字命令电压，并响应定时的数字命令电压施加阶跃命令电压到
非反相输入端。复位开关与阶跃命令电压的阶跃变换同步关闭时间T_{r}，然后打开。选择充足
的R_{e}以阻止膜片钳电路的饱和，而消除阶跃电压。选择阶跃命令电压以补偿纳米孔电阻R_{i}
和极性串联电阻R_{e}，以在纳米孔传感器上产生预定电压。

【0028】纳米孔传感器可以包括半导电材料，或者它可以是圆顶膜。膜片钳电路可以包括
电流电压转换器和差分放大器。优选将输出端应用于模数转换器，从而在纳米孔传感器内
产生放大的数字形式的电流。该放大的数字形式可以输入到现场可编程阵列和/或输入计
算机。优选地，计算机可操作地产生定时信号和定时的数字命令电压。

附图说明

【0029】结合附图参考以下详细描述和权利要
求，本发明的优点和特征将变得更好理
解，其中相同的元件用相同的符号标示，且其中；

【0030】图1(a)是描述现有技术电阻反馈膜片钳电路的示意图；

【0031】图1(b)描述现有技术电容反馈膜片钳电路；

【0032】图2是描述符合本发明原理的简化了的补偿膜片钳电路的示意图；

【0033】图3(a)是描述当复位开关16关闭时，图2所示补偿膜片钳电路的操作的示意图；

【0034】图3(b)是描述当复位开关16开启时，图2所示补偿膜片钳电路的操作的示意图；

【0035】图4是描述符合本发明原理的使用数模转换器(DAC)的补偿膜片钳电路的示意图；

【0036】图5示出现有技术膜片钳系统和纳米孔传感器的示意图；

【0037】图6是描述优选实施例补偿膜片钳电路的示意图；

【0038】图7是描述在初期电阻器补偿操作期间，图6所示补偿膜片钳电路的简化模式的示
意图；

【0039】图8是描述在后期电阻器补偿操作期间，图6所示补偿膜片钳电路的简化模式的示
意图；

【0040】图9是补偿纳米孔传感器电阻的操作流程图；

【0041】图10是补偿纳米孔传感器电容的操作流程图；

【0042】图11是描述在电容器补偿期间简化的优选实施例补偿膜片钳的示意图；和

【0043】图12是描述简化的优选实施例补偿电容器膜片钳电路的示意图。

【0044】图13示出用于实施本发明的三端端纳米孔传感器前端。

【0045】发明详述

【0046】下文参考示出一实施例的附图更充分地描述本发明主题。但是应理解本发明可以
有很多不同的形式，因此不应认为是限制到本文所示实施例。

【0047】在法律允许的范围内，本文提及的所有出版物出于所有目的通过引用纳入。此外，
附图中相同的数字指相同的元件。此外，本文所用的术语“一”和“一个”不表示数量的限制，
而是表示存在至少一个所引用的项目。
下文中描述、使用和补偿通用的纳米孔传感器302（参考图6）。应当理解的是纳米孔传感器302可能包括活体细胞膜或它可能包括固态纳米孔。此外，虽然随后描述所有的电路并未专门示出纳米孔传感器302，这是为了更好地示出电路操作，因此应当理解的是纳米孔传感器302是或者可以连接到不同的图示和描述的电路。还应注意，提及电极串联电阻之处，在一些实施例中有时可能会使用传感器串联电阻。

适合本发明使用的设备在，例如美国专利号USP5795782、USPN6015714、USPN6267872、USPN6627067、USPN6746594、USPN628959、USPN6617113，国际公开号WO2006/028508中描述，每一个都通过引用的方式全文并入。从本质上讲，尽管本文描述的任何单个器件可能不是新颖的，但单个器件的组合产生了新的、有用的和非显而易见的纳米孔膜片钳系统，DNA测序仪和电化学应用，以供检测生化分析浓度，如可以采用跨阻放大器或电流-电压变换器检测的葡萄糖、氧、神经递质和病原体。

纳米孔的灵敏度，特别是在固态纳米孔的情况下，由孔的尺寸和厚度确定。为识别纳米孔传感器中单链DNA的单核苷酸（≈0.35nm），纳米孔传感器直径约0.35nm或更小。这导致纳米孔电容约为：

\[C = \varepsilon_r \varepsilon_0 \frac{A}{d} \]

其中，\(\varepsilon_r \)，\(\varepsilon_0 \)，A和d分别表示相对介电常数、电常数（8.854×10^{-12} \text{F} \text{ m}^{-1}），暴露面积和厚度。当原子层，即Al₂O₃和石墨烯用作纳米孔传感器，纳米孔电容较大，这会导致在命令电压变化时死区时间较长（见下文）。这样的原子层传感器特别有利于本发明的原理。

图2示出符合本发明的基础补偿膜片钳电路100。通过合并用于选择性将反馈电阻器12短路的复位开关16以及通过合并采样保持电路102，基础补偿膜片钳电路100与电阻反馈膜片钳电路6（参见图1（a））的区别在于硬件，所述采样保持电路102设置在非反向输入端18和施加到采样保持电路102的输入端104的命令电压\(V_{cmd} \)之间。

在工作期间，复位开关16关闭，与采样保持电路102的输出端的阶跃转接同步。在实践中，通过源于时钟31的定时脉冲控制这些转换和复位开关16的同步。为了清晰解释的目的，这些定时脉冲和时钟31在随后的附图中被排除。但是应当理解，复位开关16与命令电压\(V_{cmd} \)变化同步操作，如果它们源于采样保持电路，数模转换器，或其他一些电路，并且需要一些类型的同步定时。

基础补偿膜片钳电路100具有两种操作模式：当命令电压\(V_{cmd} \)变化时，为过渡模式，在图3（a）中描述；当命令电压稳定时，为稳定模式，在图3（b）中描述。应当理解在两种操作模式中，命令电压\(V_{cmd} \)已数字化为离散阶梯。在过渡模式中，通过关闭复位开关16避免运算放大器10的饱和及相关的死区时间。然后补偿膜片钳电路100的操作与图1（b）示出的电容反馈脉冲算法相似，运算放大器10作为单位增益放大器工作。在稳定模式，复位开关16关闭，基础补偿膜片钳电路100像图1（a）所示的电阻反馈膜片钳那样操作。

由于反馈电阻14不用在基础补偿膜片钳电路100中，不需要周期复位脉冲来除去累积的电荷。此外，也不需要复杂的补偿电路，因为使用电阻反馈。除了简单硬件的复杂性，基础补偿膜片钳电路100架构还能使用复杂的命令电压\(V_{cmd} \)波形和各种停留时间。

基础补偿膜片钳电路100及其采样保持电路102代表纳米孔膜片钳电路的主要变化。基础补偿膜片钳电路100的一改进示于图4的改进的基础补偿膜片钳电路200中。改进的
补偿膜片钳电路200使用低通滤波数字-模拟转换器202来代替如图2所示的采样保持电路102。数字-模拟转换器202是一种改进，因为数字-模拟转换器202可以直接连接到计算机化系统，例如个人电脑并受其控制。随后描述了这样的计算机化系统，参考图6和其支持性描述。此外，可以由计算机或由现场可编程门阵列控制复位开关16。然而，仍然需要定时同步复位开关16操作和命令电压V_{COM}变化，虽然图2中所示的简单时钟31可以被计时的数字-模拟转换器202，获自计算机输出的定时信号或定时来代替。

[0058] 如所述，膜片钳已经用于现有技术DNA测序仪中。图5示现有技术DNA测序仪270。它具有两个“通道”：顺式通道和反式通道的纳米孔传感器272，该两通道通过半导体材料由纳米孔274分隔且保留在离子(KCl)流体填充的容器内。在顺式通道和反式通道之间流动的电流被第一运算放大器转换成电压(1-V转换)，然后被差分放大器放大。参考图1，在实践中，基础膜片钳放大器6和8被具有1-V转换相和差分放大器相的两相膜片钳放大器278代替。

[0059] 虽然基础膜片钳电路100和200本身是新的，有益的和有用的，但本发明优选的实施例是计算机化的补偿DNA测序仪300系统，如图6所示。DNA测序仪300包括纳米孔传感器302，其直接对应图5所示纳米孔传感器272，除了纳米孔传感器302可以包括细胞膜纳米孔或半导体纳米孔。为了清晰的理解，图6给出了纳米孔传感器302的电学模型，应该理解，其物理配置将纳米孔传感器272或其细胞膜对应体的配置。该电学模型包括纳米孔电容C_{0}(Cs)，纳米孔电阻(Rs)306，电极串联电阻(Rs)308和输入寄生电容(Cp)310。

[0060] 纳米孔传感器302连接包括输入(1-V)转换器314探头和差分放大器316的膜片钳电路的反相输入端18，与图5所示类似。膜片钳电路的输出端是模拟-数字转换器320的输入端，所述模拟-数字转换器将它的模拟电压输入数字化，并将它的数字输出形式作为输入应用到现场可编程门阵列324。现场可编程门阵列324将它接收的数字电压读数的适当处理形式发送到个人计算机326(或其他合适的计算机化系统)。

[0061] 个人计算机326对纳米孔传感器302读数进行数据分析。此外，个人计算机PC326将控制信号应用到现场可编程门阵列324，它随后被用来控制数字-模拟转换器330的操作。数字-模拟转换器330提供命令电压(V_{COM})到差分放大器316和输入(1-V)转换器314探头的非反相输入端17。这样DNA测序仪300的操作是由计算机控制的，其输出用于数据分析，如所示提供膜片钳补偿。

[0062] DNA测序仪300非常适合用于自补偿。图9的流程图中示出补偿操作450。该操作450开始，然后在稳态模式通过激活输入(1-V)转换器314探头和差分放大器316继续进行，步骤452。借助图6所示简化膜片钳电路360(输入(1-V)转换器314探头和差分放大器316)解释稳态模式的获得。注意示出的简化膜片钳电路360没有纳米孔传感器302，而具有电极串联电阻(Rs)308，输入寄生电容(Cp)310接地。串联电阻(Rs)308和寄生电容(Cp)310是分散的且不可避免地。将命令电压(V_{COM})设置为预定电压(标称接地)。这将导致输出端325的输出电压V_{O}变得稳定，膜片钳电路360设置于稳态模式。在不同的实施例中注意纳米孔不具有传感器串联电阻。

[0063] 一段时间后施加V_{COM}电压，步骤454，经过一段时间延迟后，将串联电阻(Rs)308和寄生电容(Cp)310上的电压V_{F}设置为V_{COM}，见步骤456。接着，测量输出电压的变化，步骤458。需要注意的是输出电压被数字化且应用到PC326。从输出电压的变化和已知的Rs12，电极串
联电阻R_s的值可以准确地测定（确定），步骤460。有关的输出电压变化和R_s的公式示于步骤458。

[0064] 接着，纳米孔传感器302应用到膜片钳放大器360，测量所得到的纳米孔电流（i），步骤462，参考图8。测量电流（i）后，PC32通过现场可编程门阵列324使得数模转换器330生成另一个，不同的命令电压V_{cmd}。其中$V_{cmd} = V_{cmd} + i \times R_s$，步骤464。这是可能的，因为先前发现$R_s$（步骤450至460）。还可从输出$V_o$的变化确定纳米孔传感器302电阻$R_s$307。结束串联电阻补偿，步骤466。由于已经确定所有纳米孔相关的电阻，可以准确知道施加在纳米孔传感器302上的实际电压，而无论串联电阻（R_s）308，寄生电容（C_r）310和纳米孔电阻307。因此，纳米孔传感器302电阻环境被准确补偿。

[0065] 除了电阻补偿，补偿电容是可能的。图10示出电容补偿的操作500。操作500开始，步骤502，通过进入过渡模式继续进行，步骤504。图11示出通过关闭复位开关16使反相输入端短接到输出端325而进入过渡模式，从而使反馈电阻R_f12短路（见图1（a））且为电容充电。接着，应用命令电压V_{cmd}阶跃（step），步骤506。监控输出端325上的输出电压V_o，测定V_o的时间常数，步骤508，在存储器中储存，步骤510。因为电极串联电阻R_s和时间常数已经确定，可以精确计算远小于纳米孔电极电容C_a的寄生电容C_r，步骤512。从计算的C_r值，可以决定最佳的复位脉冲宽度（t_r），步骤514。复位脉冲宽度应该略长于在步骤506中的时间常数，但不应该太长而消除了电压阶跃。消除意味着复位脉冲宽度太长以致在另一步骤发生之前，系统不能测定膜片钳电路对电压阶跃的响应。该复位脉冲宽度延迟补偿了输入寄生电容，包括反相输入端电极、连接电缆和纳米孔传感器以及电容器补偿端，步骤516中。

[0066] 虽然前面描述了一种新型的电阻反馈膜片钳系统，它在DNA测序中的应用，以及基于电阻膜片钳电路的自动补偿，本发明的原理也可用于电容膜片钳电路。图12有助于说明本发明的补偿技术如何用于电容反馈跨阻抗放大器。由于不可避免的泄露造成高阻抗Z_{610}，不需要周期复位脉冲。通过消除周期性复位，在输入端由于充电和时钟馈通（clock feed-through）引起的错误信号被避免。但是Z_t仍需要补偿，如寄生输入电容C_r和电极串联电阻R_s那样。通过增加与Z_t和C_r并联的复位开关16，用于电容反馈TIA的补偿程序与前述相同。

[0067] 其他实施方案和内容如下。

[0068] 本文公开的发明提供能够检测和定量多核苷酸中单个核苷酸的装置和方法。该装置可以是固态纳米孔或纳米孔，定位在当前位置，例如，在基质和/或表面上。

[0069] 本文公开的装置可用在许多应用中，包括但不限于，纳米孔系统。该系统通过具有电阻反馈的传统跨阻放大器设置开关，可以避免“死区时间”。通过使用采样/保持电路或DAC，可以产生多种离散波形并施加命令电压用于命令电压控制。通过计算机接口系统可以完全控制电压膜片钳放大器。

[0070] 本发明还公开了上文所描述的反馈电阻器的补偿方法。本发明还公开了补偿探针输入电容的方法。

[0071] 本发明可用于相对确定位置检测分子的位置和分子的数量。在实施例中，确定位置是纳米孔。可通过改变纳米孔任一侧的电势差来定位分子。分子可以是大分子，且可以进一步包括聚合物，如聚阴离子和/或聚阳离子。在实施例中，聚离子是多核苷酸。在另一实施例中，聚离子是多肽。基质和/或表面可以限定出室，可以进一步包括孔,
该孔位于基板或表面上。室之一是对空是顺式的，另一室对孔是反式的。通过改变两室之间电势差可以定位分子。优选地，分子最初在隔室内。通过检测通过孔的电流可以检测分子组成的存在和/或缺失和/或变化。本发明可以用作检测分子的传感器。本发明特别可用于以下领域：分子生物学、结构生物学、细胞生物学、分子开关、分子电路和分子计算装置，以及它们的制造。

[0072] 本发明提供装置及其使用方法。装置可以用在纳米孔装置系统或另一合适的系统。在一示例性实施例中，装置是电压膜片钳电路，包括：产生时钟信号的时钟，具有时钟转换（clock transitions）：差分放大器，具有非反相输入端、反相输入端和输出端；反馈电阻器，连接在所述输出端和所述非反相输入端之间；复位开关，接收所述时钟信号，所述复位开关用于响应所述时钟信号而将其输出端选择性地连接到所述非反相输入端；和采样保持电路，接收时钟信号和命令电压，所述采样保持电路用于响应时钟信号而数字化命令电压和将数字化电压施加于所述非反相输入端；其中，时钟转换期间内所所述复位开关以减少所述差分放大器的增益，其中所述时钟转换后开启所述复位开关以增加差分放大器的增益。

[0073] 在另一示例性实施例中，系统可以用于放大传感器内小电流变化的方法，包括以下步骤：与时钟信号一致地数字化命令电压，将来自数字化命令电压的电压施加到传感器以诱导传感器中电流变化，放大传感器中的变化，以产生输出；当时钟信号变化，减少施加于传感器中电流变化的放大倍数，从而限制饱和；和当所述时钟信号不变化时，增加施加于传感器中电流变化的放大倍数。

[0074] 在还有的另一示例性实施例中，系统可以用于补偿纳米孔传感器的串联电阻的方法，包括以下步骤：激活电流-电压转换器从而实现稳态响应；施加阶跃电压到电流-电压转换器的非反相输入端，使得所施加到电流-电压转换器的反相输入端的电压基本上与阶跃电压相同；确定电流-电压转换器相对于阶跃电压的输出电压变化；测量纳米孔传感器的串联电阻；将纳米孔传感器连接到电流-电压转换器的非反相输入端；到测量纳米孔传感器电流；和通过将某电压施加到电流-电压转换器的反相输入端来补偿纳米孔传感器，该电压等于阶跃电压加上纳米孔传感器电流乘以串联电阻。

[0075] 在又一实施例中，系统可以用于补偿细胞膜传感器的串联电阻的方法，包括以下步骤：激活电流-电压转换器从而实现稳态响应；施加阶跃电压到电流-电压转换器的非反相输入端，使得所施加到电流-电压转换器的反相输入端的电压基本上与阶跃电压相同；确定电流-电压转换器相对于阶跃电压的输出电压变化；测量细胞膜传感器的串联电阻；将细胞膜传感器连接到电流-电压转换器的非反相输入端；测量细胞膜传感器电流；和通过将某电压施加到电流-电压转换器的反相输入端来补偿细胞膜传感器，该电压等于阶跃电压加上细胞膜传感器电流乘以串联电阻。

[0076] 此外，该系统也可以用于补偿纳米孔传感器的输入寄生电容的方法，包括以下步骤：将纳米孔传感器连接到电流-电压转换器的非反相输入端；获得纳米孔传感器的串联电阻；激活电流-电压转换器从而实现稳态响应；施加阶跃电压到电流-电压转换器的非反相输入端；确定电流-电压转换器对阶跃电压的时间常数；和从纳米孔传感器的串联电阻和确定的时间常数确定纳米孔传感器的输入寄生电容。

[0077] 在备选的实施例中，该系统也可以用于补偿细胞膜传感器的输入寄生电容的方法，包括以下步骤：将细胞膜传感器连接到电流-电压转换器的非反相输入端；获得细胞膜
传感器的串联电阻；激活电流→电压转换器从而实现稳态响应；施加阶跃电压到电流→电压转换器的非反相输入端；确定电流→电压转换器对阶跃电压的时间常数；和从细胞膜传感器的串联电阻和确定的时间常数计算细胞膜传感器的输入信号电容。

【0078】纳米孔装置系统可能包括由电流通信器件连接的“顺”和“反”室。在一实施例中，所述室包括介质，介质选自下组：水性介质、非水性介质、有机介质等等。在一实施例中，介质是流体。在低频的实施例中，介质是气体。在一实施例中，电流通信器件是固态孔，包括，例如，氮化硅、双官能团烧基硫化物和/或金属或其他金属或合金。或者，顺室和反室由包括至少一个孔或通道的薄膜分隔。在一优选的实施方案中，薄膜包括具有疏水结构和亲水结构的化合物。在更优选的实施例中，薄膜包括磷脂。该装置还包括用于在顺室和反室之间施加电场的器件。在一实施例中，孔或通道容纳部分聚离子。在另一实施例中，孔或通道可容纳部分分子。在一优选的实施方案中，分子是大分子。在另一优选的实施方案中，聚离子选自：多核苷酸、多肽、磷脂、多糖和聚磷化合物。

【0079】在一实施例中，化合物包括酶。酶活性可以是，例如，但不限于，蛋白酶、激酶、磷酸酶、水解酶、氧化还原酶、异构酶、转移酶、甲基转移酶、乙酰转移酶、连接酶、裂解酶、核糖酶等的酶活性。在更优选的实施方案中，酶活性可以是DNA聚合酶、RNA聚合酶、核酸内切酶、核酸外切酶、DNA连接酶、DNA酶、尿嘧啶DNA糖苷酶、激酶、磷酸酶、甲基转移酶、乙酰转移酶、葡萄糖氧化酶、核糖酶等的酶活性。

【0080】在更感兴趣的实施方案中，孔被调节尺寸并成形从而允许活化剂通过，其中，活化剂选自ATP、NAD、NADP、甘油二酯、磷酸酰基硫胺素、类二十烷酸（eicosanoids）、视黄酸、钙化醇、抗坏血酸、神经营养、脑啡肽、内啡肽、2-氨基丁酸（GABA）、5-羟色胺（5-HT）、儿茶酚胺、乙酰辅酶A、S-腺苷甲硫氨酸、己糖、戊糖、磷酸、脂肪（lipid）、磷脂酰肌醇（GPI）以及任何其他的生物活性剂。

【0081】在某些实施例中，孔被调节尺寸并成形从而允许单体通过，其中单体选自：dATP、dGTP、dCTP、dTTP、UTP、丙氨酸、半胱氨酸、天冬氨酸、谷氨酸、丙氨酸、组氨酸、异亮氨酸、赖氨酸、亮氨酸、蛋氨酸、天冬酰胺、脯氨酸、谷氨酰胺、精氨酸、组氨酸、苏氨酸、缬氨酸、色氨酸、酪氨酸、己糖、戊糖、磷酸、脂肪（lipid）和任何其他的生物单体。

【0082】在还有的另一实施例中，孔被调节尺寸并成形从而允许辅因子通过，其中，所述辅因子选自：Mg²⁺、Mn²⁺、Ca²⁺、ATP、NAD、NADP 以及任何其他的生物辅因子。

【0083】在一重要的实施方案中，孔或通道包括生物分子，或合成修饰或改变的生物分子。这样的生物分子，例如，但不限于，离子通道，如α-溶血素，核苷通道，肽通道，糖转运体，突触通道，跨膜受体，如GPCR，受体酪氨酸激酶等，T细胞受体，MHC受体，核受体，如甾体激素受体，核受体等。

【0084】或者，化合物包含非酶生物活性。具有非酶生物活性的化合物可以是，例如，但不限于，蛋白质、肽、抗体、抗原、核酸、肽核酸（PNA）、硫核酸（LNA）、吗啡类、糖类、脂肪、糖基磷脂酰肌醇（glycosyl phosphatidylinositol）、糖基磷脂酰肌醇（glycophosphoinositol）、脂多糖等。化合物可以有抗原活性。化合物可以具有核糖酶活性。化合物可以具有选择结合性能。借此化合物在特定受控环境条件下结合到化合物，而当环境条件改变时不稳定，这样的条件可以是，例如，但不限于，[H⁺]变化、环境温度变化、严载性变化、疏水性变化、或亲水性变化。
说明 书

[0085] 在一实施例中，大分子包含酶的活性。酶的活性，可以是，例如，但不限于，蛋白酶、
激酶、磷酸酶、水解酶、氧化还原酶、异构酶、转移酶、甲基化酶、乙酰基转移酶、连接酶、裂合
酶等的酶活性。在优选的实施例中，酶活性可以是DNA聚合酶、RNA聚合酶、核酸内切酶、核
酸外切酶、DNA连接酶、RNA酶、尿嘧啶DNA糖苷酶、激酶、磷酸酶、甲基化酶、乙酰基转移酶、葡
萄糖氧化酶等的酶活性。在备选的实施例中，大分子可以包含一个以上的酶活性，例如，细
胞色素P450酶的酶活性。在另一备选的实施例中，大分子可以包含多于一种类型的酶活性，
例如，哺乳动物脂肪酸合成酶。在另一实施例中，大分子包含核酸酶活性。

[0086] 在另一实施例中，本发明提供一种化合物，其中该化合物还包括连接分子，该连接
分子选自下组；硫醇基，硫基（sulfide group），磷酸基，硫酸基，氰基，哌啶基，芳甲氧羰酰
基（Fmoc），叔丁氧羰基（Boc）。在另一实施例中，化合物选自下组；双官能烷基硫和金。

[0087] 可以用于实施本发明方法的装置在，例如，美国专利号（USPN）5795782，
USPN6105174，USPN6267872，USPN6627067，USPN6746594，USPN6428959，USPN6617113，和国
际公认号WO2006/028508中描述，其中每一个通过引用的方式全文并入。

[0088] 尽管前面已经就膜片钳描述本发明的补偿技术，它也可以用在必须避免过多死区
时间的应用中。精确的复位脉冲宽度可以减少死区时间。

[0089] 应理解，尽管附图和上面的描述已经阐明本发明，但它们仅仅是示例性的。它们并
非是详尽的或不是将本发明实现为所公开的精确形式，明显在以上启示下许多修改和变化
都是可能的。本领域其他技术人员将认识到示例的在本发明原理内的实施例的许多修改和
调整，因此，本发明仅被所附的权利要求限制。

[0090] 尽管前面已经通过传统的两电极纳米孔传感器解释本发明，但本发明的原理足够
灵活可用于其他架构。例如，图13示出三电极纳米孔传感器690前端电路700。单位增益缓
冲放大器702缓冲其反相输入端的命令电压Vcmd。它的缓冲输出端通过开关S1706连接到
轴。当命令电压Vcmd改变，开关S1706开启，注入电流充电纳米孔传感器的电容CN，直到轴
室710电势等于Vcmd，这有助于补偿死区时间。本发明的补偿技术可以应用到纳米孔应用、膜
片钳应用和电化学应用从测量生物化学分析浓度，如可以采用跨阻放大器或电流-电压
转换器检测的葡萄糖、氧、神经递质和蛋白体。
图1（现有技术）

图2
图3
图4
图5（现有技术）

图6
图9

开始

在稳态模式激活探头

通过 DAC 施加 阶跃电压到 \(V_{CMD} \)

\(V_P \approx V_{CMD} \)

\(\Delta V_O \approx (R_p/R_S) \times V_{CMD} \)

测量电流 \(R_S \) 并将它存储在 PC 的存储器上

连接纳米孔并测量电流(i)

施加具有 \(V_{CMD} + i \times R_S \) 的 \(V'_{CMD} \)

结束串联 电阻补偿
开始

在过渡模式激活探头

通过 DAC 施加 阶跃电压到 \(V_{CMD} \)

在 \(V_0 \) 测量 时间常数

将它存储在 PC 的存储器上

因为 \(R_s \) 是已知的，可以计算 \(C_p \)

根据计算决定 复位脉冲带宽(T1)

结束寄生 电容补偿

图10
图11