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ARCHITECTURE FOR GRAPHICS PROCESSING

Technical Field
The present invention is generally in the field of digital computer architectures
and, more specifically, is directed to circuits, systems and methodologies for digital

signal processing utilizing shared, reconfigurable memory elements.

Background of the Invention

General purpose microprocessor cores are known for implementation into
integrated circuits for a wide variety of applications. Digital Signal Processing (DSP)
cores also are known for carrying out digital signal processing tasks. DSP cores are
specially configured to efficiently process DSP algorithms. One example of a known
DSP chip is the DSP 56002 processor, commercially available from Motorola. In
order to achieve improved performance in DSP-related processing, the conventional
approach is to combine a general purpose processor core together with a DSP core.
The general purpose processor carries out Input/Output (I/O) tasks, logic functions,
address generation, etc. This is a workable but costly solution. Additionally,
evolving new applications require increasing amounts of memory and the use of
multiple conventional digital signal processors. Additionally, power dissipation
becomes a limiting factor in hardware of this type. The challenge, therefore, is to
provide for improvements in digital signal processing performance while containing

or reducing costs.
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In view of the foregoing, one object of the present invention is to provide an
improved computer architecture that utilizes available memory more efficiently in
DSP systems. Another object is to reduce the power consumption and size of DSP
systems.

A further object of the present invention is to provide for shared and
reconfigurable memory in order to reduce 1/0 processor requirements for digital
signal processing in processor and co-processor architectures. A further object is to
extend a shared, reconfigurable memory architecture to multiple memory blocks and
execution units.

Another object of the invention is utilization of novel "bit configuration
tables" in connection with shared and reconfigurable memory to use memory more
efficiently, and to improve performance by making new data continually available so
that the execution unit is never idle. A further object of the invention is to provide
improvements in memory addressing methods, architectures and circuits for
continuous DSP execution together with simultaneous, continuous Direct Memory
Access (DMA) operations.

A still further object of the invention is to provide improvements in execution
units for DSP operations, for example execution unit architectures that feature deep-
pipeline structures and local registers, and that support parallel operations. Modified
execution units can be used to improve efficiency of operation in conjunction with
reconfigurable memory.

Yet another object of the present invention is a "virtual two port" memory
structure based on a conventional, single-port memory cell. Yet another object is to
provide for implementation in both Static Random Access Memory (SRAM) and
Dynamic Random Access Memory (DRAM) configurations of the virtual two-port

memory.

Summary of the Invention
In view of the foregoing background, the present invention is directed to

improved hardware architectures for digital signal processing, and more specifically,
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is directed to "memory-centric" methods and apparatus for improved performance in
digital signal processing or "DSP" systems. As mentioned above, improvements in
DSP performance have been achieved by providing special arithmetic units or
"execution units" that are optimized to carry out the arithmetic operations that are
commonly required in DSP -- mainly multiplication and addition -- at very high
speed. One example of such an execution unit is the "DAU" (data execution unit)
provided in the WE DSP32C chip from AT&T. The AT&T execution unit, and
others like it, provide relatively fast, floating point arithmetic operations to support
computation-intensive applications such as speech, graphics and image processing.

While many improvements have been made in floating-point execution units,
pipelined architectures, decreased cycle times, etc., known DSP systems generally
work with standard memory systems. For example, DRAM integrated circuits are
used for reading input data and, on the output side, for storing output data. DSP data
is moved into and out of the DRAM memory systems using known techniques such as
multiple-ported memory, DMA hardware, buffers, and the like. While such systems
benefit from improvements in memory speed and density, data transfer remains a
relative bottleneck. I have reconsidered these known techniques and discovered that
significant gains in performance and flexibility can be achieved by focusing on the
memory, in addition to the execution unit, and by providing improvements in
methods and circuits for moving data efficiently among data sources (such as a host
processor bus or I/O channel), memory subsystems, and execution units. Since the
focus is on the memory, I coined the term "memory-centric" computing.

One aspect of the invention is a memory subsystem that is partitioned into two
or more blocks of memory space. One block of the memory communicates with an
1/0 or DMA channel to load data, while the other block of memory simultaneously
communicates with one or more execution units that carry out arithmetic operations
on data in the second block. Results are written back to the second block of memory.
Upon conclusion of that process, the memory blocks are effectively "swapped" so
that the second block, now holding processed (output) data, communicates with the

1/0 channel to output that data, while the execution unit communicates with the first
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block, which by then has been filled with new input data. Methods and apparatus are
shown for implementing this memory swapping technique in real time so that the
execution unit is never idle.

Another aspect of the invention provides for interfacing two or more address
generators to the same block of memory, so that memory block swapping can be
accomplished without the use of larger multi-ported memory cells.

The present invention is useful in a wide variety of signal processing
applications including programmable MPEG encode and decode, graphics, speech
processing, image processing, array processors, etc. In telecommunications, the
invention can be used, for example, for switching applications in which multiple I/O
channels are operated simultaneously.

A further aspect of the invention provides for partitioning the memory space
into two or more memory "segments" -- with the ability to selectively assign one or
more such segments to form a required block of memory. Thus, for example, one
block of memory can be configured to include say, four segments, and be associated
with an execution unit, while another block of memory is configured to include only
one segment and may be assigned to an I/O or DMA channel. This flexibility is
useful in matching the memory block size to the requirements of an associated
execution unit for a particular operation, say a recursive type of digital filter such as
an Infinite Impulse Response (IIR) filter. Memory segments can be of arbitrary size
as will be shown in more detail later.

Importantly, the memory is readily "reconfigurable" so that it can adapt to the
particular calculations required. Several implementations are disclosed herein. In
one embodiment, the memory reconfiguration is controlled by configuration control
signals. The configuration control signals may be generated based upon
"configuration bits" which can be downloaded from a core processor, instruction
decoder, or durable memory, for reconfiguring the memory responsive to the task at
hand. In another arrangement, the configuration bits are stored in extended bit
positions in the regular memory, so that pointers or traps can be used in software to

reconfigure the hardware. A further aspect of the invention provides for generating
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configuration control signals in an improved address generator or in a novel Memory-
centric DSP Controller ("MDSPC"). The new address generation techniques include
both reconfiguring and addressing the memory to support a particular computation in
the execution unit.

Another feature of the invention is that memory blocks can be reconfigured
both in depth, i.e. number or words or rows, as well as in width (word size). This
flexibility simplifies, and speeds, memory 1/O for various applications, and provides
great flexibility in a single DSP system, which can be implemented as a separate
"co-processor" or "on-board" with a general purpose or other core processor. For
example, the memory word size can be easily configured to match that of the 1/0
channel currently in use. The invention can be implemented in both von Neumann as
well as Harvard architectures.

A further aspect of the invention, again directed to improvements in data flow,
provides ways to interface multiple blocks of memory, in combination with one or
more execution units. In some applications, parallel execution units can be used to
advantage. Another aspect of the invention is a system that is readily configurable to
take advantage of the available execution resources. The configuration bits described
above also can include controls for directing data to and from multiple execution units
as and when appropriate.

The invention further anticipates an execution unit that can be reconfigured in
several ways, including selectable depth (number of pipeline stages) and width (i.e.
multiple word sizes concurrently). Preferably the pipelined execution unit(s) includes
internal register files with feedback. The execution unit configuration and operation
also can be controlled by execution unit configuration control signals. The execution
unit configuration control signals can be determined by "configuration bits" stored in
the memory, or stored in a separate "configuration table". The configuration table
can be downloaded by the host core processor, and/or updated under software
control. Preferably, the configuration control signals are generated by the MDSPC
controller mentioned above executing microcode. This combination of reconfigurable

memory, together with reconfigurable execution units, and the associated techniques
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for efficiently moving data between them, provides an architecture that is highly
flexible. Microcoded software can be used to take advantage of this architecture so as
to achieve new levels of performance in DSP systems. Because the circuits described
herein require only one-port or two-port memory cells, they allow higher density and
the associated advantages of lowered power dissipation, reduced capacitance, etc. in
the preferred integrated circuit embodiments, whether implemented as a stand-alone
coprocessor, or together with a standard processor core, or by way of modification of
an existing processor core design. An important feature of the architectures described
herein is that they provide a tightly coupled relationship between memory and
execution units. This feature provides the advantages of reducing internal
interconnect requirements, thereby lowering power consumption. In addition, the
invention provides for doing useful work on virtually all clock cycles. This feature
minimizes power consumption as well.

The foregoing and other objects, features and advantages of the invention will
become more readily apparent from the following detailed description of a preferred
embodiment of the invention which proceeds with reference to the accompanying

drawings.

Brief Description of the Drawings

FIG. 1 is a system level block diagram of an architecture for digital signal
processing (DSP) using shared memory according to the present invention.

FIG. 2 illustrates circuitry for selectively coupling two or moare address
generators to a single block of memory.

FIG. 3 is a block diagram illustrating portions of the memory circuitry and
address generators of Fig. 1 in a fixed-partition memory configuration.

FIG. 4 shows more detail of address and bit line connections in a two-port
memory system of the type described.

FIGS. 5A-5C illustrate selected address and control signals in a Processor
Implementation of a DSP system, i.e. a complete DSP system integrated on a single

chip.
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FIG. 6A illustrates an alternative embodiment in which a separate DSP
program counter is provided for accessing the memory.

FIG. 6B illustrates an alternative embodiment in which an MDSPC accesses
the memory.

FIGS. 7A-B are block diagrams that illustrate embodiments of the invention in
a Harvard architecture.

FIG. 8 is a conceptual diagram that illustrates a shared, reconfigurable
memory architecture according to the present invention.

FIG. 9 illustrates connection of address lines to a shared, reconfigurable
memory with selectable (granular) partitioning of the reconfigurable portion of the
memory.

FIG. 10 illustrates a system that implements a reconfigurable segment of
memory under bit selection table control.

FIG. 11A is a block diagram illustrating an example of using single-ported
RAM in a DSP computing system according to the present invention.

FIG. 11B is a table illustrating a pipelined timing sequence for addressing and
accessing the one-port memory so as to implement a “virtual two-port" memory.

FIG. 12 illustrates a block of memory having at least one reconfigurable
segment with selectable write and read data paths.

FIG. 13A is a schematic diagram showing detail of one example of the write
selection circuitry of the reconfigurable memory of Fig. 12.

FIG. 13B illustrates transistor pairs arranged for propagating or isolating bit
lines as an alternative to transistors 466 in Fig. 13A or as an alternative to the bit
select transistors 462, 464 of Fig. 13A.

FIG. 14 is a block diagram illustrating extension of the shared, reconfigurable
memory architecture to multiple segments of memory.

FIG. 15 is a simplified block diagram illustrating multiple reconfigurable
memory segments with multiple sets of sense amps.

FIGS. 16A-16D are simplified block diagrams illustrating various examples of

memory segment configurations to form memory blocks of selectable size.
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FIG. 17 is a block diagram of a DSP architecture illustrating a multiple
memory block to multiple execution unit interface scheme in which configuration is
controlled via specialized address generators.

FIGS. 18A-18C are simplified block diagrams illustrating various
configurations of segments of a memory block into association with multiple
execution units.

FIG. 19 is a simplified block diagram illustrating a shared, reconfigurable
memory system utilizing common sense amps.

FIG. 20 is a simplified block diagram illustrating a shared, reconfigurable
memory system utilizing multiple sense amps for each memory segment.

FIG. 21 is a timing diagram illustrating memory swapping cycles.

FIG. 22A is a block diagram illustrating memory swapping under bit table
control.

FIG. 22B is a block diagram illustrating memory swapping under MDSPC
control.

FIG. 23 is a simplified block diagram of an MPEG encoder/decoder
architecture according to the present invention.

FIG. 24 is a simplified block diagram of a digital signal processing ring

topology architecture according to the invention.

Detailed Description of Preferred Embodiment
FIGURE 1

Fig. 1 is a system-level block diagram of an architecture for memory and
computing-intensive applications such as digital signal processing. In Fig. 1, a
microprocessor interface 40 includes a DMA port 42 for moving data into a memory
via path 46 and reading data from the memory via path 44. Alternatively, a single,
bi-directional port could be used. The microprocessor interface 40 generically
represents an interface to any type of controller or microprocessor. The interface

partition indicated by the dashed line 45 in Fig. 1 may be a physical partition, where
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the microprocessor is in a separate integrated circuit, or it can merely indicate a
functional partition in an implementation in which all of the memory and circuitry
represented in the diagram of Fig. 1 is implemented on board a single integrated
circuit. Other types of partitioning, use of hybrid circuits, etc., can be used. The
microprocessor interface (DMA 42) also includes control signals indicated at 52. The
microprocessor or controller can also provide microcode (not shown) for memory
control and address generation, as well as control signals for configuration and
operation of the functional execution units, as described later.

Because the present invention may be integrated into an existing processor or
controller core design, so that both the core processor and the present invention
reside in the same integrated circuit, reference will be made herein to the core
processor meaning the processor that the present invention has been attached to or
integrated with.

In Fig. 1, a two-port memory comprises the first memory block 50, labeled
"A" and a second memory block 60, labeled "B." The memory is addressed by a
source address generator 70 and a destination address generator 80. A functional
execution unit 90 also is coupled to the two-port memory, left and right I/0 channels,
as illustrated at block B. Preferably, these are not conventional two-port memory 1I/0
ports; rather, they have novel structures described later.

In operation, the interface 44, 46 to the two-port memory block A is a DMA
interface that is in communication with the host processor or controller 40. Block A
receives data coefficients and optionally other parameters from the controller, and
also returns completed data to the controller that results from various DSP, graphics,
MPEG encode/decode or other operations carried out in the execution unit 90. This
output data can include, for example, FFT results, or convolution data, or graphics
rendering data, etc. Thus the single memory can alternately act as both a graphics
frame buffer and a graphics computation buffer memory.

Concurrently, the memory block "B" (60) interfaces with the functional
execution unit 90. The functional execution unit 90 receives data from the two-port

memory block B and executes on it, and then returns results ("writeback") to the
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same two-port memory structure. The source address generator 70 supplies source or
input data to the functional execution unit while the destination address generator 80
supplies addresses for writing results (or intermediate data) from the execution unit to
the memory. Put another way, source address generator 70 provides addressing
while the functional execution unit is reading input data from memory block B, and
the destination address generator 80 provides addressing to the same memory block B
while the functional execution unit 90 is writing results into the memory.

As mentioned above, when the execution unit has completed its work on the
data in block B, the memory effectively "swaps" blocks A and B, so that block B is in
communication with the DMA channel 42 to read out the results of the execution.
Conversely, and simultaneously, the execution unit proceeds to execute on the new
input data in block A. This "swapping" of memory blocks includes several aspects,
the first of which is switching the memory address generator lines so as to couple
them to the appropriate physical block of memory.

In an alternative embodiment, the system can be configured so that the entire
memory space (blocks A and B in the illustration) are accessed first by an I/O
channel, and then the entire memory swapped to be accessed by the processor or
execution unit. In general, any or all of the memory can be reconfigured as
described. The memory can be SRAM, DRAM or any other type of random access
semiconductor memory or functionally equivalent technology. DRAM refresh is
provided by address generators, or may not be required where the speed of execution

and updating the memory (access frequency) is sufficient to obviate refresh.

FIGURE 2

Figure 2 illustrates one way of addressing a memory block with two (or more)
address generators. Here, one address generator is labeled "DMA" and the other
"ADDR GEN" although they are functionally similar. As shown in Fig. 2, one of the
address generators 102 has a series of output lines, corresponding to memory word
lines. Each output line is coupled to a corresponding buffer (or word line driver or

the like), 130 to 140. Each driver has an enable input coupled to a common enable



10

15

20

25

WO 99/52040 PCT/US99/07771
11

line 142. The other address generator 104 similarly has a series of output lines
coupled to respective drivers 150 to 160. The number of word lines is at least equal
to the number of rows of the memory block 200. The second set of drivers also have
enable inputs coupled to the common enable control line 142, but note the inverter
"bubbles" on drivers 130 to 140, indicating the active-low enables of drivers 150 to
160. Accordingly, when the control line 142 is low, the DMA address generator 102
is coupled to the memory 200 row address inputs. When the control line 142 is high,
the ADDR GEN 104 is coupled to the memory 200 row address inputs. In this way,
the address inputs are "swapped" under control of a single bit. Alternative circuitry
can be used to achieve the equivalent effect. For example, the devices illustrated can
be tri-state output devices, or open collector or open drain structures can be used
where appropriate. Other alternatives include transmission gates or simple pass
transistors for coupling the selected address generator outputs to the memory address
lines. The same strategy can be extended to more than two address sources, as will

be apparent to those skilled in the art in view of this disclosure.

FIGURE 3

Figure 3 is a block diagram illustrating a physical design of portions of the
memory circuitry and address generators of Fig. 1 in a fixed-partition configuration.
By "fixed partition" I mean that the size of memory block A and the size of memory
block B cannot change dynamically. In Fig. 3, the memory block A (50) and block B
(60) correspond to the same memory blocks of Fig. 1. The memory itself preferably
is dynamic RAM, although static RAM or other solid state memory technologies
could be used as well. In memory block B, just two bits or memory cells 62 AND 64
are shown by way of illustration. In a typical implementation, the memory block is
likely to include thousands or even millions of rows, each row (or word) being
perhaps 64 or more bits wide. A typical memory block using today's technology is
likely to be one or two megabytes. The memory blocks need not be of equal size.

Neither memory depth nor word size is critical to the invention.
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Two bits are sufficient here to illustrate the concept without unduly
complicating the drawing. The source address generator 70 is coupled to both
memory blocks A and B. In block B, the top row includes a series of cells including
bit cell 62. In fact, the source address generator preferably has output lines coupled
to all of the rows of not only block B, but block A as well, although only one row
line is illustrated in block A. Note also that corresponding address lines from the AG
70 and the DMA 102 are shown as connected in common, e.g. at line 69. However,
in practice, these address lines are selectable as described above with reference to
Fig. 2.

A destination address generator 80 similarly is coupled to the row lines of
both blocks of memory. Memory cells 62 and 64 are full two-ported cells on the
same column in this example. Thus, either source AG 70 or DMA 102 address the
left port, while either destination AG 80 or DMA 100 address the right port. A write
select multiplexer 106 directs data either from the DMA (42 in Fig. 1) (or another
block of memory) or from the execution unit 90, responsive to a control signal 108.
The control signal is provided by the controller or microprocessor of Fig, 1, by a
configuration bit, or by an MDSPC. The selected write data is provided to column
amplifiers 110, 112 which in turn are connected to corresponding memory cell bit
lines. 110 and 112 are bit and /bit ("bit bar") drivers. Below cell 64 is a one-bit
sense amplifier 116. A bit output from the sense amp 116 is directed, for example, to
a latch 72. Both the DMA and the execution unit are coupled to receive data from
latch 72, depending on appropriate control, enable and clock signals (not shown
here). Or, both the DMA and the execution path may have separate latches, the
specifics being a matter of design choice. Only one sense amp is shown for
illustration, while in practice there will be at least one sense amp for each column.

Use of multiple sense amps is described later.

FIGURE 4
Fig. 4 shows more detail of the connection of cells of the memory to source

and destination address lines. This drawing shows how the source address lines
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(when asserted) couple the write bit line and its complement, i.e. input lines 110,112
respectively, to the memory cells. The destination address lines couple the cell
outputs to the read bit lines 114, 115 and thence to sense amp 116. Although only
one column is shown, in practice write and read bit lines are provided for each
column across the full width of the memory word. The address lines extend across
the full row as is conventional.

FIGURES 21, 22A AND 22B

Timin

Fig. 21 is a conceptual diagram illustrating an example for the timing of
operation of the architecture illustrated in Fig. 1. TOA, T1A, etc., are specific
instances of two operating time cycles TO and T1. The cycle length can be
predetermined, or can be a parameter downloaded to the address generators. TO
andT1 are not necessarily the same length and are defined as alternating and mutually
exclusive, i.e. a first cycle T1 starts at the end of TO, and a second cycle TO starts at
the end of the first period T1, and so on. Both TO and T1 are generally longer than
the basic clock or memory cycle time.

Fig. 22A is a block diagram of a single port architecture which will be used to
illustrate an example of functional memory swapping in the present invention during
repeating TO and T1 cyles. Execution address generator 70 addresses memory block
A (50) during TO cycles. This is indicated by the left (TO) portion of AG 70. During
T1 cycles, execution address generator 70 addresses memory block B (60), as
indicated by the right portion of 70. During T1, AG 70 also receives setup or
configuration data in preparation for again addressing Mem Block A during the next
TO cycle. Similarly, during TO, AG 70 also receives configuration data in
preparation for again addressing Mem Block B during the next T1 cycle.

DMA address generator 102 addresses memory block B (60) during TO
cycles. This is indicated by the left (TO) portion of DMA AG 102. During T1
cycles, DMA address generator 102 addresses memory block A (50), as indicated by
the right portion of 102. During T1, DMA AG 102 also receives setup or

configuration data in preparation for again addressing Mem Block B during the next
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TO cycle. Similarly, during TO, DMA 102 also receives configuration data in
preparation for again addressing Mem Block A during the next T1 cycle.

During a TO cycle, the functional execution unit (90 in Fig. 1) is operating
continuously on data in memory block A 50 under control of execution address
generator 70. Simultaneously, DMA address generator 102 is streaming data into
memory block B 60.

At the beginning of a T1 cycle, memory blocks A and B effectively swap such
that execution unit 90 will process the data in memory block B 60 under control of
execution address generator 70 and data will stream into memory block A 50 under
control of DMA address generator 102. Conversely, at the beginning of a TO cycle,
memory blocks A and B again effectively swap such that execution unit 90 will
process the data in memory block A 50 under control of execution address generator
70 and data will stream into memory block B 60 under control of DMA address
generator 102.

In Fig. 22B, the functions of the execution address generator and DMA

address generator are performed by the MDPSC 172 under microcode control.

FIGURES 5A-C
Processor Implementation

The preferred architecture for implementation in a processor application, as
distinguished from a coprocessor application, is illustrated in Figs. 5SA-C. In Fig.
5A, a two-port memory again comprises a block A (150) and a block B (160).
Memory block B is coupled to a DSP execution unit 130. An address generator 170
is coupled to memory block B 160 via address lines 162. In operation, as before, the
address generator unit is executing during a first cycle TO and during time TO is
loading parameters for subsequent execution in cycle T1. The lower memory block
A is accessed via core processor data address register 142A or core processor
instruction address register 142B. Thus, in this illustration, the data memory and the
instructional program memory are located in the same physical memory. A

microprocessor system of the Harvard architecture has separate physical memory for
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data and instructions. The present invention can be used to advantage in the Harvard
architecture environment as well, as described below with reference to Figs. 7A and

7B.

Bit Configuration Tables

Fig. 5A also includes a bit configuration table 140. The bit configuration
table can receive and store information from the memory 150 or from the core
processor, via bus 180, or from an instruction fetched via the core processor
instruction address register 142B. Information is stored in the bit configuration table
during cycle TO for controlling execution during the next subsequent cycle T1. The
bit configuration table can be loaded by a series of operations, reading information
from the memory block A via bus 180 into the bit configuration tables. This
information includes address generation parameters and opcodes. Examples of some
of the address parameters are starting address, modulo-address counting, and the
length of timing cycles TO and T1. Examples of op codes for controlling the
execution unit are the multiply and accumulate operations necessary for to perform an
FFT.

Essentially, the bit configuration table is used to generate configuration
control signal 152 which determines the position of virtual boundary 136 and,
therefore, the configuration of memory blocks A and B. It also provides the
configuration information necessary for operation of the address generator 170 and
the DSP execution unit 130 during the T1 execution cycle time. Path 174 illustrates
the execution unit/memory interface control signals from the bit configuration table
140 to the DSP execution unit 130. Path 176 illustrates the configuration control
signal to the execution unit to reconfigure the execution unit. Path 178 illustrates the
op codes sent to executionunit 130 which cause execution unit to perform the
operations necessary to process data. Path 188 shows configuration information
loaded from the configuration tables into the address generator 170.

The architecture illustrated in Fig. SA preferably would utilize the extended

instructions of a given processor architecture to allow the address register from the
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instruction memory to create the information flow into the bit configuration table. In
other words, special instructions or extended instructions in the controller or
microprocessor architecture can be used to enable this mechanism to operate as
described above. Such an implementation would provide tight coupling to the

microprocessor architecture.

Memory-centric DSP Controller

Fig. 5B illustrates an embodiment of the present invention wherein the
functions of address generator 170 and bit configuration table 140 of Fig. 5A are
performed by memory-centric DSP controller (MDSPC) 172. In the embodiment
shown in Fig. 5B, the core processor writes microcode for MDSPC 172 along with
address parameters into memory block B 150. Then, under core processor control,
the microcode and address parameters are downloaded into local memory within
MDSPC 172.

A DSP process initiated in MDPSC 172 then generates the appropriate
memory configuration control signals 152 and execution unit configuration control
signals 176 based upon the downloaded microcode to control the position of virtual
boundary 136 and structure execution unit 130 to optimize performance for the
process corresponding to the microcode. As the DSP process executes, MDSPC 172
generates addresses for memory block B 160 and controls the execution unit/memory
interface to load operands from memory into the execution unit 130 which are then
processed by execution unit 130 responsive to op codes 178 sent from MDSPC 172 to
execution unit 130. In addition, virtual boundary 136 may be adjusted responsive to
microcode during process execution in order to dynamicly optimize the memory and
execution unit configurations.

In addition, the MDSPC 172 supplies the timing and control for the interfaces
between memory and the execution unit. Further, algorithm coefficients to the
execution unit may be supplied directly from the MDSPC. The use of microcode in
the MDSPC results in execution of the DSP process that is more efficient than the

frequent downloading of bit configuration tables and address parameters associated
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with the architecture of Fig. 5A. The microcoded method represented by the
MDSPC results in fewer bits to transfer from the core processor to memory for the
DSP process and less frequent updates of this information from the core processor.
Thus, the core processor bandwidth is conserved along with the amount of bits
required to store the control information.

Fig. 5C illustrates an embodiment of the present invention wherein the
reconfigurability of memory in the present invention is used to allocate an additional
segment of memory, memory block C 190, which permits MDPSC 172 to execute
microcode and process address parameters out of memory block C 190 rather than
local memory. This saves the time required for the core processor controlled
download of microcode and address parameters to local memory in MDSPC 172 that
takes place in the embodiment of Fig. 5B. This embodiment requires an additional
set of address 192 and data 194 lines to provide the interface between memory block
C 190 and MDSPC 172 and address bus control circuitry 144 under control of
MDSPC 172 to disable the appropriate address bits from core processor register file
142. This configuration permits simultaneous access of MDSPC 172 to memory
block C 190, DSP execution unit 130 to memory block B and the core processor to
memory block A.

Similar to the embodiments shown in Figs. SA and 5B, virtual boundaries
136A and 136B are dynamically reconfigurable to optimize the memory configuration
for the DSP process executing in MDSPC 172.

The bit tables and microcode discussed above may alternatively reside in
durable store, such as ROM or flash memory. The durable store may be part of
memory block A or may reside outside of memory block A wherein the content of
durable store is transferred to memory block A or to the address generators or
MDSPC during system initialization.

Furthermore, the DSP process may be triggered by either decoding a
preselected bit pattern corresponding to a DSP function into an address in memory
block A containing the bit tables or microcode required for execution of the DSP

function. Yet another approach to triggering the DSP process is to place the bit
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tables or microcode for the DSP function at a particular location in memory block A
and the DSP process is triggered by the execution of a jump instruction to that
particular location. For instance, at system initialization, the microcode to perform a
DSP function, such as a Fast Fourier Transform (FFT) or IIR, is loaded beginning at
a specific memory location within memory block A. Thereafter, execution of a jump
instruction to that specific memory location causes execution to continue at that

location thus spawning the DSP process.

FIGURES 6A and 6B

Referring now to Fig. 6A, in an alternative embodiment, a separate program
counter 190 is provided for DSP operations. The core controller or processor (not
shown) loads information into the program counter 190 for the DSP operation and
then that program counter in turn addresses the memory block 150 to start the process
for the DSP. Information required by the DSP operations would be stored in
memory. Alternatively, any register of the core processor, such as data address
register 142A or instruction address register 142B, can be used for addressing
memory 150. Bit Configuration Table 140, in addition to generating memory
configuration signal 152, produces address enable signal 156 to control address bus
control circuitry 144 in order to select the address register which accesses memory
block A and also to selectively enable or disable address lines of the registers to
match the memory configuration (i.e. depending on the position of virtual boundary
136, address bits are enabled if the bit is needed to access all of memory block A and
disabled if block A is smaller than the memory space accessed with the address bit).

Thus, Fig. 6A shows the DSP program counter 190 being loaded by the
processor with an address to move into memory block A. In that case, the other
address sources in register file 142 are disabled, at least with respect to addressing
memory 150. In short, three different alternative mechanisms are illustrated for
accessing the memory 150 in order to fetch the bit configurations and other

parameters 140. The selection of which addressing mechanism is most advantageous
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may depend upon the particular processor architecture with which the present
invention is implemented.

Fig. 6B shows an embodiment wherein MDSPC 172 is used to generate
addresses for memory block A in place of DSP PC 190. Address enable signal 156
selects between the address lines of MDSPC 172 and those of register file 142 in
response to the microcode executed by MDSPC 172. As discussed above, if the
microcode for MDSPC 172 resides in memory block A or a portion thereof, MDSPC
172 will be executing out of memory block A and therefore requires access to the

content of memory block A.

Memory Arrangement

Referring again to Fig. 5, memory blocks A (150) and B (160) are separated
by "virtual boundary" 136. In other words, block A and block B are portions of a
single, common memory, in a preferred embodiment. The location of the "virtual
boundary" is defined by the configuration control signal generated responsive to the
bit configuration table parameters. In this regard, the memory is reconfigurable
under software control. Although this memory has a variable boundary, the memory
preferably is part of the processor memory, it is not contemplated as a separate
memory distinct from the processor architecture. In other words, in the processor
application illustrated by Figs. 5 and 6, the memory as shown and described is
essentially reconfigurable directly into the microprocessor itself. In such a preferred
embodiment, the memory block B, 160, duly configured, executes into the DSP
execution unit as shown in Fig. 5.

In regard to Fig. 5B, virtual boundary 136 is controlled based on the
microcode downloaded to MDSPC 172. Similarly, in Fig. SC, microcode determines
the position of both virtual boundary 136A and 136B to create memory block C 190.

FIGURES 7A and 7B
Fig. 7A illustrates an alternative embodiment, corresponding to Fig. 5A, of

the present invention in a Harvard-type architecture, comprising a data memory block
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A 206 and block B 204, and a separate core processor instruction memory 200. The
instruction memory 200 in addressed by a program counter 202. Instructions fetched
from the instruction memory 200 pass via path 220 to a DSP instruction decoder 222.
The instruction decoder in turn provides addresses for DSP operations, table
configurations, etc., to an address register 230. Address register 230 in turn
addresses the data memory block A 206. Data from the memory passes via path 240
to load the bit configuration tables etc. 242 which in turn configure the address
generator for addressing the data memory block B during the next execution cycle of
the DSP execution unit 250. Fig. 6 thus illustrates an alternative approach to
accessing the data memory A to fetch bit configuration data. A special instruction is
fetched from the instruction memory that includes an opcode field that indicates a
DSP operation, or more specifically, a DSP configuration operation, and includes
address information for fetching the appropriate configuration for the subroutine.

In the embodiment of Fig. 7B, corresponding to the embodiments in Figs. 5B
and 5C, MDPSC 246 replaces AG 244 and Bit Configuration Table 242. Instructions
in core processor instruction memory 200 that correspond to functions to be executed
by DSP Execution Unit 250 are replaced with a preselected bit pattern which is not
recognized as a valid instruction by the core processor. DSP Instruction Decode 222
decodes the preselected bit patterns and generates an address for DSP operations and
address parameters stored in data memory A and also generates a DSP control signal
which triggers the DSP process in MDSPC 246. DSP Instruction Decode 222 can
also be structured to be responsive to output data from data memory A 206 into
producing the addresses latched in address register 230.

The DSP Instruction Decode 222 may be reduced or eliminated if the DSP
process is initiated by an instruction causing a jump to the bit table or microcode in
memory block A pertaining to the execution of the DSP process.

To summarize, the present invention includes an architecture that features
shared, reconfigurable memory for efficient operation of one or more processors
together with one or more functional execution units such as DSP execution units.

Fig. 6A shows an implementation of a sequence of operations, much like a
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subroutine, in which a core controller or processor loads address information into a
DSP program counter, in order to fetch parameter information from the memory.
Fig. 6B shows an implementation wherein the DSP function is executed under the
control of an MDSPC under microcode control. In Figs. 5A-C, the invention is
illustrated as integrated with a von Neumann microprocessor architecture. Figs. 7A
and. 7B illustrate applications of the present invention in the context of a Harvard-
type architecture. The system of Fig. 1 illustrates an alternative stand-alone or
coprocessor implementation. Next is a description of how to implement a shared,

reconfigurable memory system.

Reconfigurable Memory Architecture
FIGURE 8

Fig. 8 is a conceptual diagram illustrating a reconfigurable memory
architecture for DSP according to another aspect of the present invention. In Fig. §,
a memory or a block of memory includes rows from O through Z. A first portion of
the memory 266, addresses 0 to X, is associated, for example, with an execution unit
(not shown). A second (hatched) portion of the memory 280 extends from addresses
from X+1 to Y. Finally, a third portion of the memory 262, extending from
addresses Y+1 to Z, is associated, for example, with a DMA or 1/O channel. By the
term "associated"” here we mean a given memory segment can be accessed directly by
the designated DMA or execution unit as further explained herein. The second
segment 280 is reconfigurable in that it can be switched so as to form a part of the
execution segment 266 or become part of the DMA segment 262 as required.

The large vertical arrows in Fig. 8 indicate that the execution portion and the
DMA portion of the memory space can be "swapped" as explained previously. The
reconfigurable segment 280 swaps together with whichever segment it is coupled to at
the time. In this block of memory, each memory word or row includes data and/or
coefficients, as indicated on the right side of the figure.

Additional "configuration control bits" are shown to the left of dashed line

267. This extended portion of the memory can be used for storing a bit configuration
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table that provides configuration control bits as described previously with reference to
the bit configuration table 140 of Figs. 5A and 6A. These selection bits can include
write enable, read enable, and other control information. So, for example, when the
execution segment 266 is swapped to provide access by the DMA channel,
configuration control bits in 266 can be used to couple the DMA channel to the I/0
port of segment 266 for data transfer. In this way, a memory access or software trap
can be used to reconfigure the system without delay.

The configuration control bits shown in Fig. 8 are one method of effecting
memory reconfiguration that relates to the use of a separate address generator and bit
configuration table as shown in Figs. 5A and 7A. This approach effectively drives an
address configuration state machine and requires considerable overhead processing to
maintain the configuration control bits in a consistent and current state.

When the MDSPC of Figs. 5B, 5C and 7B is used, the configuration control
bits are unnecessary because the MDSPC modifies the configuration of memory
algorithmically based upon the microcode executed by the MDSPC. Therefore, the
MDSPC maintains the configuration of the memory internally rather than as part of

the reconfigured memory words themselves.

FIGURE 9

Fig. 9 illustrates connection of address and data lines to a memory of the type
described in Fig. 8. Referring to Fig. 9, a DMA or I/O channel address port 102
provides sufficient address lines for accessing both the rows of the DMA block of
memory 262, indicated as bus 270, as well as the reconfigurable portion of the
memory 280, via additional address lines indicated as bus 272. When the block 280
is configured as a part of the DMA portion of the memory, the DMA memory
effectively occupies the memory space indicated by the brace 290 and the address
lines 272 are controlled by the DMA channel 102. Fig. 9 also shows an address
generator 104 that addresses the execution block of memory 266 via bus 284.
Address generator 104 also provides additional address lines for controlling the

reconfigurable block 280 via bus 272. Thus, when the entire reconfigurable segment
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280 is joined with the execution block 266, the execution block of memory has a total
size indicated by brace 294, while the DMA portion is reduced to the size of block
262.

The address lines that control the reconfigurable portion of the memory are
switched between the DMA address source 102 and address generator 104 via
switching means 296. Illustrative switching means for addressing a single block of
memory from muitiple address generators was described above, for example with
reference to Fig. 2. The particular arrangement depends in part on whether the
memory is single-ported (see Fig. 2) or multi-ported (see Figs. 3-4). Finally, Fig. 9
indicates data access ports 110 and 120. The upper data port 110 is associated with
the DMA block of memory, which, as described, is of selectable size. Similarly, port
120 accesses the execution portion of the memory. Circuitry for selection of input
(write) data sources and output (read) data destinations for a block of memory was
described earlier. Alternative structures and implementation of multiple
reconfigurable memory segments are described below.

It should be noted that the entire block need not be switched in foto to one
memory block or the other. Rather, the reconfigurable block preferably is
partitionable so that a selected portion (or all) of the block can be switched to join the
upper or lower block. The granularity of this selection (indicated by the dashed lines
in 280) is a matter of design choice, at a cost of additional hardware, e.g. sense amps,

as the granularity increases, as further explained later.

FIGURE 10

Fig. 10 illustrates a system that implements a reconfigurable segment of
memory 280 under bit selection table control. In Fig. 10, a reconfigurable memory
segment 280 receives a source address from either the AG or DMA source address
generator 274 and it receives a destination address from either the AG or DMA
destination address generator 281. Write control logic 270, for example a word wide
multiplexer, selects write input data from either the DMA channel or the execution

unit according to a control signal 272. The source address generator 274 includes bit
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table control circuitry 276. The configuration control circuitry 276, either driven by
a bit table or under microcode control, generates the write select signal 272. The
configuration control circuitry also determines which source and destination addresses
lines are coupled to the memory -- either "AG" (address generator) when the block
280 is configured as part of the an "AG" memory block for access by the execution
unit, or the "DMA" address lines when the block 280 is configured as part of the
DMA or I/0 channel memory block. Finally, the configuration control logic
provides enable and/or clock controls to the execution unit 282 and to the DMA
channel 284 for controlling which destination receives read data from the memory

output data output port 290.

FIGURE 11

Fig. 11 is a partial block/partial schematic diagram illustrating the use of a
single ported RAM in a DSP computing system according to the present invention.
In Fig. 11, a single-ported RAM 300 includes a column of memory cells 302, 304,
etc. Only a few cells of the array are shown for clarity. A source address generator
310 and destination address generator 312 are arranged for addressing the memory
300. More specifically, the address generators are arranged to assert a selected one
address line at a time to a logic high state. The term "address generator" in this
context is not limited to a conventional DSP address generator. It could be
implemented in various ways, including a microprocessor core, microcontroller,
programmable sequencer, etc. Address generation can be provided by a micro-coded
machine. Other implementations that provide DSP type of addressing are deemed
equivalents. However, known address generators do not provide control and
configuration functions such as those illustrated in Fig. 10 -- configuration bits 330.
For each row of the memory 300, the corresponding address lines from the source
and destination blocks 310, 312, are logically "ORed" together, as illustrated by OR
gate 316, with reference to the top row of the memory comprising memory cell 302.
Only one row address line is asserted at a given time. For writing to the memory, a

muitiplexer 320 selects data either from the DMA or from the execution unit,
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according to a control signal 322 responsive to the configuration bits in the source
address generator 310. The selected data is applied through drivers 326 to the
corresponding column of the memory array 300 (only one column, i.e. one pair of bit
lines, is shown in the drawing). For each column, the bit lines also are coupled to a
sense amplifier 324, which in turn provides output or write data to the execution unit
326 and to the DMA 328 via path 325. The execution unit 326 is enabled by an
execution enable control signal responsive to the configuration bits 330 in the
destination address block 312. Configuration bits 330 also provide a DMA control
enable signal at 332.

The key here is to eliminate the need for a two-ported RAM cell by using a
logical OR of the last addresses from the destination and source registers (located in
the corresponding destination or source address generators). Source and destination
operations are not simultaneous, but operation is still fast. A source write cycle
followed by a destination read cycle would take only a total time of two memory

cycles.

FIGURE 12

Fig. 12. The techniques and circuits described above for reconfigurable
memory can be extended to multiple blocks of memory so as to form a highly flexible
architecture for digital signal processing. Fig. 12 illustrates a first segment of
memory 400 and a second memory segment 460. In the first segment 400, only a few
rows and a few cells are shown for purposes of illustration. One row of the memory
begins at cell 402, a second row of the memory begins at cell 404, etc. Only a single
bit line pair, 410, is shown for illustration. At the top of the figure, a first write
select circuit such as a multiplexer 406 is provided for selecting a source of write
input data. For example, one input to the select circuit 406 may be coupled to a
DMA channel or memory block M1. A second input to the MUX 406 may be
coupled to an execution unit or another memory block M2. In this discussion, we use
the designations M1, M2, etc., to refer generically, not only to other blocks of

memory, but to execution units or other functional parts of a DSP system in general.
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The multiplexer 406 couples a selected input source to the bit lines in the memory
segment 400. The select circuit couples all, say 64 or 128 bit lines, for example, into
the memory. Preferably, the select circuit provides the same number of bits as the
word size.

The bit lines, for example bit line pair 410, extend through the memory array
segment to a second write select circuit 420. This circuit selects the input source to
the second memory segment 460. If the select circuit 420 selects the bit lines from
memory segment 400, the result is that memory segment 400 and the second memory
segment 460 are effectively coupled together to form a single block of memory.
Alternatively, the second select circuit 420 can select write data via path 422 from an
alternative input source. A source select circuit 426, for example a similar
multiplexer circuit, can be used to select this input from various other sources,
indicated as M2 and M1. When the alternative input source is coupled to the second
memory segment 460 via path 422, memory segment 460 is effectively isolated from
the first memory segment 400. In this case, the bit lines of memory segment 400 are
directed via path 430 to sense amps 440 for reading data out of the memory segment
400. When the bitlines of memory segment 400 are coupled to the second segment
460, sense amps 440 can be sent to a disable or low power standby state, since they

need not be used.

FIGURE 13

Fig. 13 shows detail of the input selection. logic for interfacing multiple
memory segments. In Fig. 13, the first memory segment bit line pair 410 is coupled
to the next memory segment 460, or conversely isolated from it, under control of pass
devices 466. When devices 466 are turned off, read data from the first memory
segment 406 is nonetheless available via lines 430 to the sense amps 440. The input
select logic 426 includes a first pair of pass transistors 426 for connecting bit lines
from source M1 to bit line drivers 470. A second pair of pass transistors 464
controllably couples an alternative input source M2 bit lines to drivers 470. The pass

devices 462, 464, and 466, are all controllable by control bits originating, for
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example, in the address generator circuitry described above with reference to Fig. 9.
Pass transistors, transmission gates or the like can be considered equivalents for

selecting input (write data) sources.

FIGURE 14

Fig. 14 is a high-level block diagram illustrating extension of the architectures
of Figs. 12 and 13 to a plurality of memory segments. Details of the selection logic
and sense amps is omitted from this drawing for clarity. In general, this drawing
illustrates how any available input source can be directed to any segment of the
memory under control of the configuration bits.

Fig. 15 is another block diagram illustrating a plurality of configurable
memory segments with selectable input sources, as in Fig. 14. In this arrangement,
multiple sense amps 482, 484, 486, are coupled to a common data output latch 480.
When multiple memory segments are configured together so as to form a single
block, fewer than all of the sense amps will be used. For example, if memory
segment 0 and memory segment 1 are configured as a single block, sense amp 484
provides read bits from that combined block, and sense amp 482 can be idle.

Figs. 16A through 16D are block diagrams illustrating various configurations
of multiple, reconfigurable blocks of memory. As before, the designations M1, M2,
M3, etc., refer generically to other blocks of memory, execution units, I/O channels,
etc. In Fig. 16A, four segments of memory are coupled together to form a single,
large block associated with input source M1. In this case, a single sense amp 500 can
be used to read data from this common block of memory (to a destination associated
with M1). In Fig. 16B, the first block of memory is associated with resource M1,
and its output is provided through sense amp 502. The other three blocks of
memory, designated M2, are configured together to form a single block of memory --
three segments long -- associated with resource M2. In this configuration, sense amp
508 provides output from the common block (3xM2), while sense amps 504 and 506
can be idle. Figs. 16C and 16D provide additional examples that are self explanatory

in view of the foregoing description. This illustration is not intended to imply that all
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memory segments are of equal size. To the contrary, they can have various sizes as

explained elsewhere herein.

Fig. 17 is a high-level block diagram illustrating a DSP system according to
the present invention in which multiple memory blocks are interfaced to multiple
execution units so as to optimize performance of the system by reconfiguring it as
necessary to execute a given task. In Fig. 17, a first block of memory M1 provides
read data via path 530 to a first execution unit ("EXEC A") and via path 532 to a
second execution unit (EXEC B"). Execution unit A outputs results via path 534
which in turn is provided both to a first multiplexer or select circuit MUX-1 and to a
second select circuit MUX-2. MUX-1 provides select write data into memory M1.

Similarly, a second segment of memory M2 provides read data via path 542 to
execution unit A and via path 540 to execution unit B. Output data or results from
execution unit B are provided via path 544 to both MUX-1 and to MUX-2. MUX-2
provides selected write data into the memory block M2. In this way, data can be read
from either memory block into either execution unit, and results can be written from
either execution unit into either memory block.

A first source address generator S1 provides source addressing to memory
block M1. Source address generator S1 also includes a selection table for
determining read/write configurations. Thus, S1 provides control bit "Select A" to
MUX--1 in order to select execution unit A as the input source for a write operation
to memory M1. S1 also provides a "Select A" control bit to MUX-2 in order to
select execution unit A as the data source for writing into memory M2.

A destination address generator D1 provides destination addressing to memory
block M1. D1 also includes selection tables which provide a "Read 1" control signal
to execution A and a second "Read 1" control signal to execution unit B. By
asserting a selected one of these control signals, the selection bits in D1 directs a
selected one of the execution units to read data from memory M1.

A second source address generator S2 provides source addressing to memory

segment M2. Address generator S2 also provides a control bit "select B" to MUX-1
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via path 550 and to MUX-2 via path 552. These signals cause the corresponding
multiplexer to select execution unit B as the input source for write back data into the
corresponding memory block. A second destination address generator D2 provides
destination addressing to memory block M2 via path 560. Address generator D2 also
provides control bits for configuring this system. D2 provides a read to signal to
execution unit A via path 562 and a read to signal to execution unit B via path 564 for

selectively causing the corresponding execution unit to read data from memory block
M2.

Fig. 18A illustrates at a high level the parallelism of memory and execution
units that becomes available utilizing the reconfigurable architecture described herein.
In Fig. 18A, a memory block, comprising for example 1,000 rows, may have, say,
256 bits and therefore 256 outputs from respective sense amplifiers, although the
word size is not critical. 64 bits may be input to each of four parallel execution units
El - E4. The memory block thus is configured into four segments, each segment
associated with a respective one of the execution units, as illustrated in Fig. 18B. As
suggested in the figure, these memory segments need not be of equal size. Fig. 18C
shows a further segmentation, and reconfiguration, so that a portion of segment M2 is
joined with segment M1 so as to form a block of memory associated with execution
unit E1. A portion of memory segment M3, designated "M3/2" is joined together
with the remainder of segment M2, designated "M2/2", to form a memory block
associated with execution unit E2, and so on.

Note, however, that the choice of one half block increments for the illustration
above is arbitrary. Segmentation of the memory may be designed to permit

reconfigurability down to the granularity of words or bits if necessary.

FIG. 19.
The use of multiple sense amps for memory segment configuration was
described previously with reference to Figs. 15 and 16. Fig. 19 illustrates an

alternative embodiment in which the read bit lines from multiple memory segments,
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for example read bit lines 604, are directed to a multiplexer circuit 606, or its
equivalent, which in turn has an output coupled to shared or common set of sense
amps 610. Sense amps 610 in turn provide output to a data output latch 612, I/O bus
or the like. The multiplexer or selection circuitry 604 is responsive to control signals
(not shown) which select which memory segment output is "tapped" to the sense
amps. This architecture reduces the number of sense amps in exchange for the
addition of selection circuitry 606.

Fig. 20. is a block diagram illustrating a memory system of multiple
configurable memory segments having multiple sense amps for each segment. This
alternative can be used to improve speed of "swapping" read data paths and reduce

interconnect overhead in some applications.

RAMDSP Design for MPEG-2 Encode/Decode
Introduction

We use “RAMDSP” as a shorthand for embedded DRAM solutions tailored
for digital signal processing applications. Full-frame video compression and
decompression requires massive amounts of computational power combined with
special operations to support efficient use of digital processing engines. Successful
single chip designs (without embedded DRAM) include Chromatic Research Mpact2
and C-Cubed DVX in the 3 to 6 million transistors range. The RAMDSP design
includes the necessary 8 MB DRAM in the same package and still uses less than 2
million logic transistors.

The RAMDSP solution combines a standard Execution Unit (EU) and three
specialized EUs in a multiprocessor arrangement with four separate memories to
support MIMD style multiprocessing. The standard EU serves to coordinate
activities and is sufficiently powerful to handle the complete decode operation. The
specialized EUs are designed to handle the especially compute intensive motion-
estimation phase of the MPEG-2 encoder, as well as general signal processing

kernels.
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MPEG-2 Characteristics

The MPEG-2 encode requirements are much more demanding that decode
requirements. Each frame must be transformed using the Discrete Cosine Transform
(DCT) and reference frames (R-frame) must be inverse transformed to give accurate
error estimates for encoding intermediate frames (I-frame). The most compute
intensive part of the encoding process is to find the “best” motion vector between the
R-frame and I-frames, the so-called Motion Estimation (ME) phase. There are a
number of algorithms available to find motion vectors, but all require difference
kernels, such as sums of absolute differences, or sums of squares of differences.

Specialized MPEG-2 encoder chips often implement highly parallel ME
engines, which can perform at rates of 6 to 12 Billion Ops Per Second (Bops). The
RAMDSP architecture has been enhanced to directly compute absolute differences in

highly parallel SIMD instructions (described below).

RAMDSP / MPEG-2 Configuration

Figure 23 shows an illustrative RAMDSP MPEG-2 configuration. One
general RAMDSP block, with 2MB DRAM serves as the supervisor and does general
Code/Decode (“Codec”) tasks. The other three RAMDSP blocks are specialized for
Motion Estimation (“ME Unit”), but can also serve other compute intensive
functions. An internal 64-bit bus connects the separate engine/memory units. This
bus is also interfaced to the outside world through a custom Bus Interface Unit (BIU).
The BIU can include high-speed SRAM buffering and certain specialized functions
such as table look-up for bit serial encode/decode.

The general purpose RAMDSP engine has standard 64-bit data paths from the
register file through the two ALUs. The specialized ME units have 128-bit data
paths. This allows twice the throughput of computational operations, without
increasing the code density or complexity. Further specialization includes reduced
need for local SRAM and micro-code store due to simplified processing requirements

of the ME kernels.
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Specialized RAMDSP Features

The RAMDSP design preferably includes several extensions to the Instruction
Set Architecture (ISA) that support MPEG-2 algorithms. An absolute difference
instruction (PABDIF) allows computing up to 16 absolute differences for 8-bit data in
parallel on the standard engine and up to 32 absolute differences on the specialized
ME engine, all in a single clock period. These differences can then be accumulated
in 16-bit precision in two additional clock periods. Other, more traditional ISAs
(e.g., Intel's MMX technology) require three or four instructions to compute the
absolute differences and unpack operands for subsequent 16-bit accumulation.

Precision control and rounding, as needed in the DCT algorithm, are
supported by a parallel add, round and shift instruction (PARS). This instruction is
not usually found in DSP or RISC processor ISAs, but it provides a 3x increase in
performance when this operation is required.

Another enhancement to the ISA involves special Adder and Multiplier path
instructions that allow interleaving operands to produce a transposition. This
primitive is used, for example, in changing from processing rows to columns in the
2D DCT. It affords an increase of 4 to 8 times traditional SIMD designs as

illustrated in the following Table:

MPEG-2 Single Chip Solutions

PCT/US99/07771

Chromatic C-CUBE TRIMEDIA RAMDSP
MPACT2 DVX TM-1000 143
Architecture VLIW DSP Core VLIW SIMD
ME CoProc RISC Core Decode Core Vector
ME CoProc
Transistors 3.0M 5.5M 5.5M 1.8M
Peak 6 Bops 1 Bop + ME 3.8 Bops 14 Bops
Performance
Memory 4 -8 MB 8 MB SDRAM 8 MB
Configuration RAMBUS SDRAM embedded
DRAM
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Notes Toshiba may MPEG-2
add 4 MB decode only
embedded
RAMDSP Ring Topology

There are numerous ways of arranging and connecting muitipile RAMDSP
engines, a RISC controller, and one or more Bus Interface Units on a single chip.
Many of these methods involve the use a bus to move data between functional units.
The disadvantage of using a bus to transfer data is that it requires both time and
power. Another method to transfer data between functional units would be to merely
switch the memory access configuration such that a different processor has access to
the data. Note that this is not really transferring the data at all, but just transferring
the right to access it. However, if every processor could access every memory
segment, then it does not take very many processors and memory segments before the
interconnect would become unwieldy. Thus, it would be of great benefit to have a
design that would allow data to be “transferred” by switching memory access and, at
the same time, keep the interconnect simple. Hence, the proposed ring topology
described below.

The basic idea is to arrange alternating RAMDSP engines (processors) and
memory blocks in a circle to form a ring as shown in Figure 24. The example in
Figure 24 uses four processors and four memory blocks - this number is arbitrary; it
can be scaled. Each memory block consists of, e.g. eight single-ported segments
such that multiple segments can be accessed simultaneously in parallel. Through the
use of a configuration register, multiplexers, and demultiplexers, several units can
access each segment as described above in the description of reconfigurable memory
blocks and segments.

Figure 24 shows four bi-directional connections to each memory block: one
to each of its two neighboring processors, one to a RISC controller in the center of
the ring, and one pointing away from the ring (labeled N, E, S, and W). The four

paths pointing away from the ring could either all go to the Bus Interface Unit (BIU)
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or to its own off-board interface. The latter would be especially suitable for the case
when there are multiple chips on a board arranged in a grid. Also, note that there is
control flow between the RISC controller and the BIU for command and status.

Each segment of each memory block need not be able to be switched to all
four connections at each block; however, that would be desirable. Each segment
could just be able to be attached to two units so long as all six possible pairs are
covered. If the processor in the clockwise direction is denoted by CW, the counter
clockwise by CCW, the RISC as RISC, and off-board as OFF, then the six
combinations are:

1. RISC-OFF

2. RISC-CW
3. RISC-CCW
4. OFF-CW

3. OFF-CCW

6. CW-CCW
The remaining two segments would probably both best be assigned to CW-CCW or
else one to OFF-CW and one to OFF-CCW.

Another configuration that should be considered is to rotate the processors 45
degrees counter clockwise on the ring such that a processor and a memory block are
integrated (just as in a normal single engine RAMDSP). In this case, one connection
to each memory segment is always to its own engine, which will be denoted as
LOCAL. Thus, the connections might be:

1. LOCAL-OFF

2. LOCAL-OFF
3. LOCAL-CW

4. LOCAL-CW

5. LOCAL-CCW
6. LOCAL-CCW
7. LOCAL-RISC
8. LOCAL-RISC
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Each processor in Figure 24 preferably is a complete RAMDSP engine less
the DMEM, which is shown separately. Therefore, each processor has its own
program in its own program store. Thus, with on the chip, the architecture is a
distributed memory MIMD. This allows tremendous flexibility in how problems can
be partitioned. Two simple examples:

1. Consider the case of doing image enhancement on a two-dimensional
array of pixel data. The array can be partitioned into strips where each strip is
assigned to a given processor in order. At the strip boundaries, each processor needs
data from its neighboring strips. With this architecture, the data in the neighboring
strips is readily available without having to move it over a bus.

2. Some algorithms partition naturally in into sequential steps. Again
consider processing a 2D array of pixel data. In this example, there are a number of
steps to the algorithm that can be done in stages. The steps might include, e.g. edge
enhancement, feature extraction, registration to another image, compare, etc. A data
flow solution works well for problems like this. Stages are assigned to processors in
a manner to balance the computational load. For simplicity, assume that there are the
same number of stages as there are processors and each stage requires the same
amount of computation. In this case, one stage is assigned to each processor and they
are assigned clockwise around the ring. As the program runs, each processor reads
its input data into its EU from the counter clockwise memory, processes it, and writes
out the results to the clockwise memory. Thus, all the processor work in parallel on
different stages of the algorithm with the data flowing around the ring without

needing any data transfers over a buss.

Evaluation of RAMDSP Technology For Graphics Acceleration
1. Introduction
Prior to 1994, realistic animated 3D graphics were only available on high-end
workstations with specialized hardware supporting the required compute- and
memory-intensive operations. With the introduction of the Pentium family of

processors, and increasingly sophisticated graphics accelerator boards and chips,
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animated 3D has arrived in the PC marketplace. The primary driver for this
technology on PC’s has to date been games; however, as the technology continues to
improve, it is expected that more serious applications (real-time simulations, etc.)
Will migrate from workstations onto PC’s as well.

As of this writing, there are still several awkward bottlenecks in 3D graphics
processing on PC platforms. The industry is taking a variety of approaches to
reducing these bottlenecks, while still keeping hardware costs low enough to support
the mass gaming market. The Stellar RMADSP chip technology, with its parallelism,
fast on-chip DRAM, and low power consumption, is potentially the centerpiece
processor for a unique and relatively low-cost solution to the bottlenecks in the PC
3D graphics pipeline.

2. The 3D Graphics Pipeline

There are many ways to define (not to mention implement) the 3D graphics
pipeline. However, there are two basic conceptual stages: geometry processing and
rendering. The operations involved in each of these stages are described in
succeeding paragraphs. Note that different authors and implementations present the
pipeline differently than it is portrayed here; the intent is simply to survey the
important operations with an eye to their implementations on Stellar RAMDSP
technology.

2.1  Geometry Processing

Geometry processing is responsible for converting a stored scene into a form
ready to be rendered onto the screen; processing takes place on polygons that
approximate the surfaces of the scene. This involves transformation of the scene data
to reflect the current user viewpoint, removal of hidden surfaces and objects lying
outside the field of view, and scaling objects so as to provide realistic perspective in a
3D scene. Geometry processing relies heavily on floating-point operations, and as
such is typically performed on the PC itself (due to the superior floating-point
performance of Pentium-class processors). The performance of geometry processing

is chiefly a function of the number of polygons. Additionally, most operations can be



10

15

20

25

30

WO 99/52040 PCT/US99/07771
37

made SIMD or MIMD parallel, since polygons and their vertices are for most
purposes independent of one another.
2.1.1 Mass Storage of 3D Graphics

3D graphics scenes are almost universally stored as polygons in one of several
standard file formats; the Drawing Exchange Format (DXF), which has developed for
CAD drawings, is a common example. While it is possible in principle to process
polygons with any number of edges, virtually all schemes exploit triangles to
minimize the mathematical complexity of geometry processing operations. Thus the
starting point fo; geometry processing is generally a list of triangles making up the
scene, each triangle being defined by the 3D coordinates of its vertices (in practice,
the list of vertices takes the form of a hierarchical tree, to avoid the redundancy of
storing and processing shared vertices). Associated with each triangle is its color
information; in some cases, precomputed surface normal vectors to the triangles may
also be stored in the file format.

2.1.2 Transformation to View Coordinates

Because the stored 3D scene can be viewed from any angle and distance, the
first step is to transform it into a coordinate space reflecting the desired view (this is
commonly referred to as “camera coordinates”). There are three basic operations
used in transformation: translation, scaling, and rotation. Translation simply
involves shifting the position of the scene within the coordinate space; it is
accomplished by adding the appropriate offset to each coordinate of each vertex.
Scaling involves changing the size of the scene within the coordinate space to reflect
different viewing distances; it is accomplished by multiplying each coordinate of each
vertex by the appropriate scaling factor. Finally, rotation of the scene allows any
arbitrary viewpoint to be realized; this requires computation or table-lookup of the
sine and cosine of the three angles that the desired viewing direction makes with the
stored coordinate axes, in addition to both addition and multiplication. Since vertices
are independent of each other from a transformation standpoint, each operation can be
made SIMD parallel on different vertices insofar as hardware allows; similarly, the

three operations can be made MIMD parallel (that is to say, pipelined).
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2.1.3 Illumination
In general, the illumination of a scene is not fixed. Hence the effects of
lighting need to be reflected in the color associated with each triangle prior to
rendering. Ambient lighting is generally handled by simply scaling the intensity of
the color relative to the ambient light level. Point light sources require that the color
intensity be scaled according to the cosine of the angle of incidence of light rays with
the face of each triangle. Directional lighting, which produces specular effects (e.g.,
highlighting) is generally ignored in animated applications on PC’s as of this writing,
since its effects are dependent on both the illumination direction and the viewing
direction, requiring considerably more computation. Since triangles are independent
of each other from an illumination standpoint, the computation of color intensity for
each polygon can be made SIMD parallel insofar as hardware allows.
2.1.4 Perspective Projection
Once the scene has been transformed into camera coordinates, perspective
correction must be applied to the constituent polygons to achieve the appearance of
3D depth. This involves multiplying each vertex’s x and y coordinate by the viewing
distance, and subsequently dividing by its z coordinate. The exponential falloff of
illumination with distance is generally ignored, since the effects on the scene are
negligible. As with previous operations, perspective projection can be made SIMD
parallel insofar as hardware allows.
2.1.5 Object Space Clipping
Object space clipping is the process of discarding those triangles that fall
entirely outside the viewing window of the scene as it has been transformed. While it
is not strictly necessary to perform this during geometry processing (since during
final rendering and rasterization pixels lying outside the field of view will in any case
not be projected on the screen; this is known as image-space clipping), it is generally
done to reduce the number of triangles that the rendering stage will have to process.
Object space clipping involves several multiplications, divides, and comparisons for
each vertex; triangles are discarded if they fall outside a six-sided viewing frustum.

Triangles that are partially within the viewing frustum may be discarded by re-
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tessellation (re-triangularization) at this stage of processing, or they may be retained
and clipped during rendering for efficiency’s sake. Object-space clipping can be
made SIMD parallel on a triangle-by-triangle basis (here vertices belonging to a
triangle are not independent of each other).
2.1.6 Backface Culling

Backface culling is the process of discarding those triangles that will be
invisible from the current viewpoint, since they lie on the far side of objects in the
scene. As with object space clipping, backface culling is performed during geometry
processing to reduce the number of triangles that the rendering stage will have to
process. Backface culling involves computing the dot product of the surface normal
of a triangle face and the view direction vector; if the resulting angle is less than zero
(hence obtuse), the triangle face is invisible from the current viewpoint. Backface

culling can be made SIMD parallel on a triangle-by-triangle basis.

2.2 Rendering

Once the desired geometry processing steps have been applied to the scene,
the resulting triangle list is passed to the rendering stage. Rendering is the process of
converting the polygon representation of the scene to a pixel image, ready to be
displayed on the screen. Rendering chiefly involves integer operations on pixels, in
contrast with the floating-point operations performed during geometry processing,
and is in general far more memory-intensive than geometry processing. The bulk of
rendering takes place on the graphics accelerator board in most modern PC systems.
In addition to the conversion from triangles to pixels, several other operations are
most conveniently performed at rendering time; these are described below. As in the
geometry processing phase, there are numerous opportunities to exploit both SIMD
and MIMD parallelism during rendering.

2.2.1 Shading

Associated with each triangle is a single color, selected based on the color of

the stored triangle in conjunction with any lighting effects applied during geometry

processing. Simply rasterizing a scene based on such triangles results in a faceted
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scene, in which the triangle edges are readily apparent. Shading, in this context, is
the process of generating non-uniform color across triangles so as to produce a
smoother, more realistic appearance. The most commonly used algorithm for
animated graphics is Gouraud shading; another algorithm, Phong shading, yields
better results but is computationally too costly to be used in animation. Gouraud
shading involves first computing the surface normals at all vertices, by averaging the
surface normals of the triangles meeting at any given vertex. Then the dot product of
each vertex’s normal and the light source is computed, resulting in an intensity value
for each vertex. Finally, the intensities of the pixels within triangles are computed by
interpolating between the values at the vertices. Shading lends itself to both SIMD
and MIMD parallelism, since the vertex normals can be computed in parallel and then
passed down the pipeline to the interpolation phase, given appropriate hardware
support.
2.2.2 Z-Buffering

Z-buffering is a technique for foolproof hidden surface removal. The hidden
surfaces that Z-buffering addresses are those that face the viewing direction, but are
obscured by other surfaces closer to the viewer. Z-buffering is generally performed
at the time that triangles are converted to pixels. A Z-buffer is conceptually a 2D
buffer with the same number of elements as the screen display; the element size is
typically 16 or 32 bits. Each x-y element of the buffer is initialized to the maximum
z value (depth) of the scene. Then as each triangle is processed, the z values of the
points within the triangle are compared to the contents of the Z-buffer at the
appropriate x-y location. If the triangle point’s z value is less than that contained in
the Z-buffer (i.e., closer to the viewer), that element of the Z-buffer is updated with
the z value of the triangle point. At the same time, the pixel corresponding to that x-
y location is written into the frame buffer. Hence, when all triangles have been
rasterized, the frame buffer contains only pixels corresponding to triangle points
visible to the viewer; at this point the Z-buffer can be discarded. Given that the
surface normal for the triangle has been pre-computed, processing each point requires

two multiplies, two additions, a divide, and a compare. Z-buffering is also memory
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intensive; for a 1280 X 1024 X 32-bit buffer, over 4 megabytes of RAM are required
in addition to the frame buffer and other ancillary data structures. Z-buffering lends
itself to SIMD processing in particular, since the end result is the same regardless of
the order in which triangles are processed.

2.2.3 Texture Mapping

As a scene becomes more and more detailed, more and more triangles are
required to represent it. Since the processing time of the 3D graphics pipeline as a
whole is strongly a function of the triangle count, it is desirable to keep the number of
triangles to a minimum. Texture mapping is a technique allowing an arbitrary
amount of detail to be incorporated into a scene, while still keeping the triangle count
reasonable. It also allows certain special effects that would be difficult to achieve
with higher triangle density. Texture mapping involves the application of pre-
generated patterns or pictures to triangle faces in the scene; a classic example is the
application of a brick pattern to a polygon, although there is no requirement that the
applied picture be regular like brickwork.

Texture maps are stored as pixel bitmaps; their elements are referred to as
texels. In applying a texture map to a given triangle in a scene, one or more
techniques are typically used to prevent aliasing artifacts. First, the texture map must
be perspective-corrected to conform to the orientation of the triangle surface in 3D
space. Second, bilinear filtering may be used to reduce the blockiness that results
from adjacent display pixels being determined by a single texel; bilinear filtering
simply uses a texel averaging scheme in which the four orthogonally adjacent texels
also contribute to the pixel’s value. MIP-mapping uses pre-computed texture maps of
various resolutions in lieu of bilinear filtering; the texture map applied to a given
triangle is then chosen based on the triangle’s size. Trilinear filtering is generally
employed along with MIP-mapping to smooth out textural discontinuities between
adjacent triangles.

Texture mapping is memory-intensive, from both size and bandwidth
standpoints. Using the MIP-mapping approach, a number of differently-scaled maps

(typically on the order of 6 or 8) must be stored for each triangle in the scene; it is
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not unusual for the memory consumed for a complex scene to approach 10 MB.
These maps must then be accessed in essentially random order, since there is no a
priori order to polygon processing, and the particular map used for a given polygon
similarly cannot be known in advance. The memory requirements of texture mapping
were in fact one of the key motivators behind Intel’s Accelerated Graphics Port
(AGP) bus (discussed below). |

3. Relevant Technologies

3.1 Intel Accelerated Graphics Port (AGP)

AGP is a new bus design, based on the PCI standard, that is aimed at
providing high bandwidth and latency in a dedicated graphics bus, along with a new
operating mode aimed specifically at reducing the texture mapping bottleneck. It is
just now finding its way onto mainstream motherboards. Ultimately, it will offer up
to 266 MHz performance, although current implementations are running at 66 MHz
(twice the speed of the PCI bus).

The bus offers two operating modes: DMA and Execution. DMA mode is
essentially just a faster, dedicated PCI bus; it is aimed at allowing higher-speed bulk
transfers of data back and forth between the host PC RAM and the accelerator
board’s RAM. Execution mode is specifically designed to accommodate the multiple
random accesses to host RAM that are typical of current texture mapping approaches.
In Execution mode, the accelerator board maps an area of the host PC’s RAM for
dedicated usage; thence it can do small transfers to and from the host via direct-
addressed transfer. Here, as in DMA mode, the faster speed of the bus is really the
advantage offered by AGP; the ability to direct address the host’s RAM is chiefly a
programming convenience.

3.2 Intel MMX

The MMX extensions to the Pentium instruction set allow an extra level of
SIMD parallelism to be applied to typical graphics operations (particularly those of
geometry processing). The MMX architecture overloads the Pentium’s floating point

registers with a second mode, in which 8, 16, and 32-bit parallel arithmetic
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operations are possible. This is a genuine performance gain during long sequences of

adds and multiples that are characteristic of geometry processing.

4. Benchmarks

There are no industry standard chip-level benchmarks for 3D graphics
accelerator chips, because graphics performance is dependent on many things besides
raw chip performance: the host PC, the accelerator board logic, the SVGA
subsystem, and so forth. There are, however, a number of generally recognized
benchmarks at the integrated system level, that primarily reflect the performance of
the accelerator board (other things being more or less equal in the overall system
configuration). Two key benchmarks are: the Ziff-Davis 3D Winbench, championed
by PC Magazine; and Wizmark, pushed by 3Dfx Interactive (the manufacturer of the
Voodoo graphics accelerator chip). The former is important because it is vendor-
independent, the latter because any new graphics accelerator approach will have to
compare itself to the forthcoming Voodoo2-based accelerator boards, widely touted as
the state of the art in 1998 (though such boards are not scheduled to ship until
March).

That said, all the accelerator chip vendors do issue various numbers intended
to reflect their standalone performance. As with all such numbers, these are part
quantitative truth and part marketing hype, and one vendor’s definition of a number is
not necessarily comparable to anothers. In any case, the numbers include billions of
operations per second (BOPS), triangles rendered per second, pixels generated per
second, and frames rendered per second. In the absence of a defined RAMDSP chip
and board architecture, it is difficult to arrive at any meaningful estimates for a
RAMDSP-based solution; however, it is believed that RAMDSP could compete

favorably in this regard once an architecture was defined.

5. RAMDSP as Graphics Accelerator
A suitably architected RAMDSP chip has the potential to be a uniquely

powerful graphics accelerator, for two key reasons: (1) Most or all of the 3D
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graphics pipeline could be implemented on-chip, with consequent savings in host PC
cycles and memory (both size and bandwidth/latency); and (2) Due to the on-chip
DRAM and multi-level parallelism of RAMDSP, several of the bottleneck operations
in the 3D pipeline (notably texture mapping) could be handled much more efficiently
than in current competing products in the PC marketplace. An additional attractive
feature of RAMDSP technology is its low power consumption, making it suitable for
powerful 3D graphics on laptops and even PDA’s; however, it is unclear at this
writing that the demand for animated 3D is strong on such platforms.

Suitably architected, in this context, means the following: The chip must
contain multiple EU’s and associated DRAM’s. The fourfold EU/DRAM ring
configuration (with a central RISC executive processor) that has been discussed would
likely be adequate to allow the entire pipeline to be chip-resident. It will be obvious
to those having skill in the art that many changes may be made to the details of the
above-described embodiment of this invention without departing from the underlying
principles thereof. The present disclosure will enable those skilled in the art to apply
the architectures described here to various designs and implementations. The scope
of the present invention should, therefore, be determined only by the following

claims.
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Claims

1. An embedded DRAM semiconductor integrated circuit architecture for
graphics processing comprising:

a plurality of processor engines;

a plurality of memory blocks; and

a RISC processor, all formed on a single integrated circuit in which the
memory blocks comprise embedded DRAM;

wherein the processor engines and the memory blocks are alternately arranged
so as to form a ring topology; and

the RISC processor has access to each of the memory blocks.

2. An embedded DRAM architecture according to claim 1 wherein the
architecture includes at least four of said processor engines and at least four of said

memory blocks arranged in the ring topology.

3. An embedded DRAM architecture according to claim 1 wherein each
of the processor engines includes a local processor and a program store for storing
instructions executable in the corresponding local processor, whereby the described
architecture defines a single-chip, distributed MIMD (multiple instruction multiple

datapath) system.

4. An embedded DRAM architecture according to claim 1 wherein at
least one of the memory blocks includes multiple segments and is reconfigurable so

that multiple of such segments are selectively accessible in parallel.

5. An embedded DRAM architecture according to claim 1 wherein said at

least one of the memory blocks includes at least eight reconfigurable segments.
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6. An embedded DRAM architecture according to claim 1 wherein each
of the memory blocks is reconfigurable to provide connection of a selected memory
segment to one or more of the other memory segments within the block thereby

forming memory sub-blocks of selected size.

7. An embedded DRAM architecture according to claim 5 and further
comprising a configuration register for controlling a configuration of at least one of

the memory blocks under software control.

8. An embedded DRAM architecture according to claim 5 wherein the
configuration register is loadable under control of software executed by the RISC

Pprocessor.

9. An embedded DRAM architecture according to claim 1 wherein each
of the processor engines is associated with a corresponding one of the memory blocks
and said corresponding memory block is configurable to provide direct access by the

correspondoing processor engine.

10.  An embedded DRAM semiconductor integrated circuit architecture for
graphics processing comprising:

a plurality of processor engines; and

a plurality of memory blocks, all formed on a single integrated circuit in
which the memory blocks comprise embedded DRAM; and

wherein the processor engines and the memory blocks are alternately arranged
so as to form a ring topology; and at least one of the reconfigurable memory blocks
includes at least two reconfigurable memory segments and the memory block is
reconfigurable so as to provide access by a selected one or both of two adjacent

processor engines .
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11.  An embedded DRAM architecture according to claim 9 and further
comprising a RISC processor and wherein the said reconfigurable memory block is
configurable so as to provide access by the RISC processor, so that the RISC
processor has access to the same memory locations as the two adjacent processor

engines.

12.  An embedded DRAM architecture according to claim 10 wherein at
least one of the memory blocks has at least one memory segment having at least four
connections that can be established under software control, said connections including
a first connection to a first adjacent processor engine, a second connection to a second

adjacent processor engine, a third connection to the RISC processor.

13. Anembedded DRAM architecture according to claim 11 wherein each
segment of the memory block is configurable so as to connect to at least a selected
two units among the adjacent processors, the RISC processor and a off-board

interface port.
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