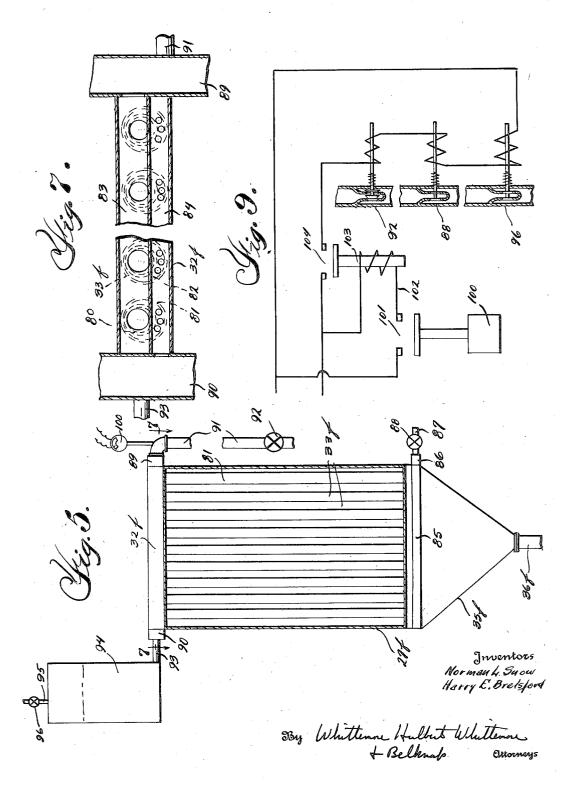

DEDUSTING APPARATUS

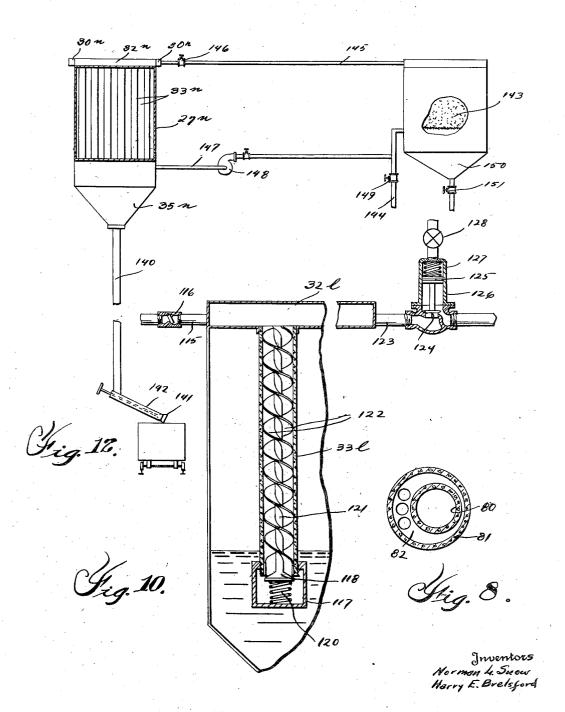


N. L. SNOW ET AL

DEDUSTING APPARATUS

Filed March 25, 1932

3 Sheets-Sheet 2



P

DEDUSTING APPARATUS

Filed March 25, 1932

3 Sheets-Sheet 3

33 Whitenow Hullest Whitemore + Belknalo automous

UNITED STATES PATENT OFFICE

2,015,355

DEDUSTING APPARATUS

Norman L. Snow, New Canaan, Conn., and Harry E. Brelsford, Birmingham, Mich., assignors to Diamond Power Specialty Corporation, Detroit, Mich., a corporation of Michigan

Application March 25, 1932, Serial No. 601,198

25 Claims. (Cl. 183-8)

This invention relates to an apparatus adapted to be installed in a gas passage to remove the dust and the like from such gases as are discharged from boilers, industrial furnaces and other dust 5 producing sources.

The invention is directed more particularly to an apparatus of the above mentioned character which includes elements disposed in the path of flow of the gas and means for wetting the surfaces of these elements so that the dust or the like will be collected on the elements.

One of the primary objects of this invention is to provide an element of the above mentioned character which will be of a porous nature whereby a liquid may be caused to pass through the element to wet the surface thereof with which the gas contacts.

The invention has as a further object to provide means for treating the liquid such as water or the like which is supplied to the porous elements to remove the impurities from this liquid to prevent these elements from becoming clogged and inoperative.

Still further the invention contemplates the provision of means for effecting a cleaning of the porous elements so that the same will always be in such a condition that the wetting liquid may pass through the same.

Numerous other objects and advantages of the invention will become more apparent as the following description proceeds, particularly when reference is had to the accompanying drawings, wherein:

Fig. 1 is a plan view with parts broken away of an apparatus constructed in accordance with the teachings of this invention;

Fig. 2 is an elevational view with parts broken away of the apparatus shown in Fig. 1;

Fig. 3 is a fragmentary sectional view through a dedusting apparatus showing associated with the same a means for cleaning the liquid supplied to the porous elements:

Fig. 4 is a view similar to Fig. 3 showing associated with the element means for effecting a cleaning of the same;

Fig. 5 is a semi-diagrammatic view of a dedusting apparatus utilizing a slightly modified form of element;

Fig. 6 is a vertical sectional view through one of the elements forming a part of the structure shown in Fig. 5;

Fig. 7 is a sectional view taken substantially on the line 7—7 of Fig. 5;

Fig. 8 is a sectional view through the element shown in Fig. 6:

Fig. 9 is a diagrammatic view showing the wiring diagram forming a part of the structure shown in Fig. 5;

Fig. 10 is a semi-diagrammatic sectional view showing a slightly modified form of porous element and cleaning means for the same;

Fig. 11 is a view similar to Fig. 10 showing a modified form of actuating mechanism for the 10 cleaning means; and

Fig. 12 is a semi-diagrammatic view of a dedusting apparatus showing means for supplying a liquid to the same.

Referring then particularly to the drawings wherein like reference characters designate corresponding parts throughout all views, there is diagrammatically illustrated in Figs. 1 and 2 a gas passage 25 adapted to receive the gases from a boiler, industrial furnace or other dust producing source. This gas passage discharges into the tapered end 26 of a casing designated generally by the reference character 27. The gases are cleaned as they pass through the casing and are discharged therefrom through the tapered end 28 which communicates with a passage 29 which may lead to a stack or the like (not shown).

Disposed in the casing 27 are porous tubular elements 33, these porous elements being preferably supported at their lower ends on I-beams 34 which extend transversely of the casing and are fixed thereto in any desired manner. It will be noted, by reference to Fig. 1 of the drawings, that these porous elements are arranged in rows 35 transversely of the casing 27 and that the elements in one row are preferably staggered relative to the elements in the next adjacent rows so that the gases passing through the casing are compelled to contact with the outer surfaces of 40 one or more of the elements 33.

A liquid such as water or the like is supplied to the interiors of the porous elements 33 as will hereinafter be more fully described and passes through these elements to provide films of liquid 45 on the outer surfaces of these elements. This liquid flows down the elements, carrying with it dust and the like which is removed from the gases, and this dust laden liquid is received in the hopper-shaped bottom 35 of the casing 27.50 A discharge pipe 36 is provided for the hopper, this pipe being controlled by a suitable valve 37.

The lower ends of the porous elements are preferably maintained partly submerged in the water, the water level being maintained at the 55

point indicated, by a suitable overflow pipe 38. It will be understood that the heavier dust particles in the liquid in hopper 35 will settle to the bottom of this hopper and into the discharge 5 pipe 36 so that the water discharged through pipe 38 will be partly clarified. This water may be discharged as waste.

As thus far described it will be apparent that water or the like supplied to the interiors of the 10 porous elements 33 will pass through the walls of these porous elements, wetting the exterior surfaces thereof, so that the dust particles and the like in the gases passing through the casing 27 will be collected by the film of water on the ex-15 terior surfaces of the porous elements. The dust laden liquid will flow down the tubular elements and into the hopper 35, the dust particles settling into the discharge 36 and the partly clarified liquid being drawn off by way of pipe 38. 20 Thus the gases discharged from the casing 27 will be freed from dust particles and the like and may be either discharged to the atmosphere or to any point of use.

Both the porous elements 33 and the casing 25 27 may be formed in various ways as will be more apparent as the following description proceeds. The showings in Figs. 1 and 2 are semi-diagrammatic only and it is to be understood that any of the porous elements and casings which are 30 about to be described may be incorporated in the

structure shown in Figs. 1 and 2.

In Fig. 3 there is disclosed one form of casing which may be utilized. In this figure of the drawings the casing designated by the reference 35 character 27c is divided into upper and lower compartments 55 and 56, respectively, by a horizontally disposed partition 57. The porous elements 33° are arranged in the portion 56 of the casing, and their lower ends are submerged in 40 the water which is in the portion 35° of the casing. The upper ends of the porous elements project through openings formed in the plate 57 to receive water or the like which is supplied to the portion 55 of the casing.

In this form of construction the portion 55 of the casing is filled with sand or other granular material as designated by the reference character 58. This material is of graduated sizes, the coarsest being in the bottom, the particles 50 gradually decreasing in size to a very finely divided material at the top of the bed. This bed constitutes a filter bed which will filter water supplied to the chamber 55 by way of pipe 59 so that all suspended material in this water will 55 be removed from the same prior to the flow of the water into the elements 33°. Thus these elements will not become clogged with sediment or the like.

For the purpose of cleaning the filter bed, one 60 or more pipes 60 are disposed adjacent the upper surface of the wall 57 and thus at the bottom of the filter bed, and these pipes are provided with discharge openings 61 directed upwardly toward the filter bed. Thus, should the filter 65 bed become clogged with sediment, water under pressure may be supplied to the pipes 60 and discharged through the openings thereof upwardly through the filter bed to wash the same, this water with the sediment contained in the same 70 being discharged by way of the pipe 62. It will be obvious that some of the water discharged from the pipes 60 will pass downwardly into the porous elements 33° so that the outer surfaces of these elements will be maintained in a 75 moist condition. After the filter bed has become

cleansed as indicated by a clearing of the water which passes out through the pipe 62, then the supply of water to the pipes 60 may be cut off and the valve 63 in pipe 59, which valve is preferably closed during the cleaning operation, may again be opened.

Thus it will be apparent that in this form of invention, means is provided for supplying cleaned water to the porous elements to prevent clogging of the same. The water passes through 10 a filter bed which may be readily cleaned by reversing the flow of water through the same when the necessity for this arises.

In Fig. 4 there is disclosed a porous element 33° mounted for communication with a chamber 15 55e. The element 33e is in this form of construction supported on a plate 70 which is provided with an opening 71. The plate 70 is in turn supported on the header 72 which is provided at its top with an opening and thus communi- 20 cates with the interior of the tubular element by way of port 71. If desired, plate 70 may constitute a part of header 72.

For closing the port 71 there is provided a valve member 73 mounted on the lower end of a stem 74 25 which passes upwardly through the porous element and which is provided at its upper end with a washer 75 which constitutes an abutment for a spring 76. The other end of the spring engages a suitable fixedly mounted plate 77 through which 30 the valve stem loosely passes, the arrangement being such that the spring 76 normally holds the valve in a position to close opening 71.

In this form of construction, should any matter be deposited from the water on the interior 35 wall of the tubular porous element, the same may be flushed off by suddenly opening valve 71, thus permitting the water to rush downwardly out of the porous element carrying with it the deposited matter. It is contemplated that this structure 40 might be used wherever water containing sediment such as sand or other particles which would not strongly adhere to the interior of the tube, was supplied to the tube.

In Figs. 5 to 9, inclusive, a further modified 45 form of construction is disclosed as comprising a casing 27f provided with a hopper section 35f and a discharge pipe 36f. Disposed across the top of the casing are headers 32f, and depending from each of these headers are a plurality of 50 porous elements 33f.

Each porous element comprises an inner porous element 80, this element being eccentrically mounted within an outer porous element 81 to provide a chamber 82 between these two elements. 55 Each header 32f is divided into compartments 83 and 84. The interior of each element 80 is in communication with the compartment 83 of its respective header, while each chamber 82 is in communication with the compartment 84 of its 60 respective header. Further, the interior of each element 80 is in communication at its lower end with a header 85, there being a plurality of these headers provided which communicate with a header 86 disposed along one lower longitudinal 65 edge of the casing 27f. A discharge pipe 87 communicates with the header 86, this pipe being controlled by a valve 88.

Carried by the casing adjacent the top thereof are headers 89 and 90, the former communicating 70 with the chambers 83 of the headers 82 and the header 90 communicating with the chambers 84 of these headers. A pipe 91 controlled by a valve 92 supplies water to the header 89, while a pipe 93 connected to the header 90 communicates 75

In Fig. 12 there is diagrammatically illustrated a system which includes a casing 27ⁿ in which are arranged porous elements 33ⁿ, water being flowed down into these elements from headers 5 30ⁿ and 32ⁿ.

The solid matter collected by the water falls into hopper 35ⁿ and from there into a standpipe 140 in which the solid matter packs, forcing the water from the same and into the upper part of the hopper. The discharge of the solid matter from the lower end of the standpipe may be controlled by a suitable valve 141 disposed at the end of a discharge 142 which is arranged at the lower end of the standpipe. If desired, the solid matter may be discharged from the standpipe into a furnace or the like to provide for fusing of the solid matter in the manner disclosed in our application Serial No. 572,676, filed November 2, 1931.

The reference character 143 designates a filter container, to the lower end of which water is supplied by a pipe 144. The water passes upwardly through the filter, the clear or purified water passing off from the top of the filter by pipe 145 which communicates with the header 30ⁿ. A valve 146 controls the flow of water through this pipe.

If desired, the partly clarified water from the upper part of the hopper may be passed through 30 the filter and then returned to the header 30n, and for this purpose there is provided the pipe 147 which is tapped into the hopper adjacent the upper end thereof. A pump 148 in this pipe draws the water from the hopper and forces the 35 same into the pipe 144 at a point above valve 149. It will be obvious that valve 149 may be actuated to regulate the quantity of fresh water supplied to the filter so that this, combined with the water returned from the hopper 147, will be sufficient to supply the header 30n. Solid particles removed from the water will settle into the hopper 150 of the filter and may be discharged therefrom by way of valve controlled discharge conduit 151.

In operation, it will be apparent that the porous elements will be supplied with pure water
and that dust collected by the flowing water will
be packed in the standpipe 140. The partly
clarified water will be added to whatever fresh
water is necessary, and this will be passed
through the filter and then supplied to the deduster casing for supply to the porous elements.

From the above it will be apparent that the invention provides a dedusting apparatus which includes means providing wetted surfaces in the path of the gas flow. For this purpose porous or like elements are provided, together with means for cleaning these elements and/or cleaning the water prior to its supply to these elements.

Further, the degree of flow of water through the walls of the elements may be varied to give the desired results in the moistening of the exterior surfaces of the elements.

While the invention has been described with some detail, it is to be understood that the description is for the purposes of illustration only and is not definitive of the limits of the inventive idea. The right is reserved to make such changes in the details of construction and arrangement of parts as will fall within the purview of the attached claims.

What we claim as our invention is:

 In an apparatus of the class described, a gas passage, a porous cylindrical element vertically
 disposed in said gas passage, a reservoir above said

element, said reservoir being provided with an inlet opening and an outlet opening communicating with said element, means for supplying water to said reservoir by way of said inlet, a filter bed in said reservoir between the inlet and outlet openings thereof to filter the water prior to its passage to the said element and means for washing said filter bed to clean the same.

2. In an apparatus of the class described, a cylindrical porous element vertically disposed in 10 a gas passage, a reservoir disposed above said tubular porous element, said reservoir having an outlet communicating with the upper end of said porous element and having an inlet by which water may be supplied to said reservoir, a filter 15 bed within—said reservoir disposed between the said inlet and outlet openings, and means associated with said reservoir for discharging a cleansing fluid through said filter bed in a direction counter to the normal flow of water therethrough 20 for cleansing said filter bed.

3. In an apparatus of the class described, a tubular porous element vertically disposed in a gas passage and provided with open upper and lower ends, means normally closing the lower end of 25 said element, a means for supplying water to the upper end of said element whereby said water will pass through the porous wall of said element to wet the outer surface thereof and means operable from outside the gas passage during the normal 30 use of the apparatus to open the lower end of said element to flush the same.

4. In an apparatus of the class described, a tubular porous element vertically disposed in a gas passage, a valve closing the lower end of said ele- 35 ment, means for supplying water to the upper end of said element, whereby said water may pass through the wall of said element to wet the outer surface thereof, and a header disposed below said element to receive the water therefrom upon the 40 opening of the valve closing the lower end of said element.

5. In an apparatus of the class described, a pair of tubular porous elements disposed one within the other, the inner element being of less diam-45 eter than the outer element to provide a space between said elements, means for supplying water to the inner of said elements, said water passing through the wall of said inner element into the space between said elements and then through 50 the wall of said outer element to wet the outer surface thereof, and means for temporarily causing the water to pass in a reverse direction through the wall of said inner element to cleanse the same.

6. In an apparatus of the class described, a pair of tubular porous elements disposed one within the other to provide a chamber between the outer surface of one of the elements and the inner surface of the other element, means for supplying 60 water to the interior of the inner element whereby said water will flow through the wall of said inner element into the space between said elements and then through the wall of said outer element to wet the outer surface thereof, a con- 65 tainer for receiving the overflow from the space between said elements, and means for periodically providing for a back-flow of the water from said container to said space and through the wall of said inner element in a direction counter to the 70 normal passage of water therethrough to clean said inner element.

7. In an apparatus of the class described, a pair of porous elements, means for normally passing water through one of said porous elements and 75

with a reservoir 94. A pipe 95 controlled by a valve 96 may be tapped into the upper end of reservoir 94 to supply compressed air to this reservoir for a purpose which will hereinafter be 5 more fully described.

During normal working conditions the valve 88 is closed and the valve 92 is opened to admit water to header 89 and thus to compartments 83 of the headers 82f. This water flows downwardly 10 to the interior of cylinders 80 and then passes through the porous walls of these cylinders to the chambers 82. A part of this water passes from each chamber 82 through the porous wall of its respective element 81 to wet the outer surface of 15 this element and thus the outer surface of its respective porous element. Some of the water, however, passes upwardly through chamber 82 into compartment 84, thence to header 90 and into reservoir 94. If valve 96 is closed, the water 20 rising in reservoir 94 causes the air in the reservoir above the water to become compressed. If, now, the wall of element 80 becomes clogged with impurities, it is contemplated that valve 92 be closed and valve 88 opened to permit a back-flow 25 of the water from the reservoir 94 down into the chamber 82, a part of this water passing outwardly through cylinder 81 and the remainder of the water passing inwardly through element 80 to the interior thereof, cleaning out the pores 30 of this element. This water carrying the sediment from element 80 is discharged into header 85 and thence to header 86 and out discharge pipe 87.

To effect an automatic actuation of this flush-35 ing or washing of the element 80, there may be provided a pressure gauge 100 in communication with the pipe 91. It will be obvious that should element 80 become clogged, pressure in pipe 91 would increase, and this increase in pres-40 sure would actuate gauge 100, causing the same to close switch 101 in a circuit 102. This circuit controls a timing relay 103 which closes a circuit designated 104, this circuit being suitably connected to a source of electrical current (not 45 shown). Arranged in circuit 104 are the solenoid valves 92, 88 and 96, the arrangement being such that when the circuit 104 is broken, valve 92 is open and valves 88 and 96 are closed. Upon energization of circuit 104, however, incident to 50 an actuation of relay 103, valve 92 is closed and valves 88 and 96 are opened, thus permitting the back-flow of water in the manner above described, the valve 96 permitting the entrance of air under pressure into reservoir 94 to more forci-55 bly effect the back-flow of the water. If desired, the valve 96 may be eliminated and the pressure built up in the chamber 94 be relied upon to give the desired force to the backflow of the water.

It will be apparent that if desired the valves 60 92, 88 and 96 might be operated hydraulically rather than electrically, the object being to provide means for effecting a back-flow of the water at intervals to effect a cleansing of the inner element 80 which constitutes a filter for the water prior to the passing of this water into the chamber 82. It will be obvious that during the backflow of the water a portion thereof will pass through the element 81 to keep the outer surface thereof wet at all times. Further, the water flow-70 ing down the outer surface of element 81 will carry with it the collected dust into the hopper 35f for discharge by way of the pipe 36f.

In Fig. 10 a further modified form of construction is disclosed as comprising a header 321 from which depends a porous tubular element 331, the wall of which may be formed in any of the manners previously described. Water is supplied to the header by way of a supply pipe 115 and disposed in this supply pipe is a check valve 116.

Disposed adjacent the lower end of the porous element is a header 117, communication between this header and the interior of the porous tube being controlled by a valve 118 which is normally held in closed position by a spring 120. A stem 10 121 is fixed to the valve and extends longitudinally of the porous element, and secured to this stem are helices 122 which loosely engage the inner surface of the porous element.

Connected into the header 321 is a supply pipe 15 123 for water under a pressure greater than that supplied by pipe 115. A valve 124 controls the flow of water through this pipe, and this valve is connected to a piston 125 reciprocable in a cylinder 126. A spring 127 disposed within the 20 cylinder tends to urge the valve to closed position, while a valve 128 controls the exhaust from the space in the cylinder above the piston.

In operation water is normally supplied to the header 321 by way of pipe 115, the valve 124 being 25 closed. This water passes through the wall of the porous element to wet the outer surface thereof in the manner described with reference to the previous constructions. As solid matter deposits on the inner surface of the porous ele- 30 ment, the pressure within header 321 rises, and this pressure may be utilized, if desired, to cause valve 128 to open to permit the pressure above piston 125 to exhaust. The pressure from the supply pipe then acting on the lower end of 35 piston 125 causes valve 124 to open, supplying water under high pressure to the header 321.

This water under high pressure forces valve 118 downwardly, causing the helices to scrape the interior of the porous element, the deposits $_{40}$ being thus scraped from the walls and flushed out of the porous element into the header 117. After the element has been cleaned, the valve 128 may be closed, with the result that pressure building up in the cylinder by leakage past the 45 piston 125 will, together with the spring 127, cause a closing of the valve 124. After this, normal operation may be automatically resumed, the water flowing into the header by way of pipe 115.

In Fig. 11 a similar arrangement is shown as comprising a porous element 33^m having its lower end adapted to communicate with a header 117m. Valve 118^m is normally held in closed position by spring 120m, and fixed to the stem 121m are 55 the helices 122m.

The valve stem passes upwardly through header 32m and is secured to a piston 130 in a cylinder 131. A pipe 132 supplies high pressure fluid to the cylinder above the piston, and the 60 flow of this fluid through this pipe is controlled by a valve 133 which may be electrically, hydraulically or otherwise actuated in dependence upon the pressure in the header 32m.

In operation, when the pressure rises in the 65 header by virtue of the depositing of sediment and the like on the interior of the wall of the element 33m, valve 133 will be caused to open, and fluid pressure will be admitted to the cylinder above the piston. This will depress the piston, 70 valve 118m and the helices, causing the latter to scrape the inner wall of the porous element, the material scraped from the element being flushed therefrom and to the header 117 by water from the header 32m.

2,015,355

then through the other of said porous elements to wet the surface of said second element most remote from said first mentioned element, and means for periodically causing a flow of water 5 through said first mentioned element counter to the normal flow of water therethrough to cleanse said first mentioned element.

8. In an apparatus of the class described, a pair of tubular porous elements disposed one within 10 the other to provide a chamber between the outer surface of the one and the inner surface of the other, headers communicating with the upper and lower ends of said inner element, a header communicating with the upper end of the space between said elements, means for supplying water by way of one of said first mentioned headers to said inner element whereby the water will flow through the wall of said inner element into the space between said elements and then partly through the wall of said outer element and partly into the header communicating with the space between said elements, means normally preventing the discharge of water from the header communicating with the lower end of said inner ele-25 ment, and means automatically operating to periodically cut off the supply of water to the header communicating with the upper end of said inner element and to provide for the discharge of water from the header communicating with the lower 30 end of said inner element whereby the water from the header communicating with the space between said elements may flow backwardly through the wall of said inner element and out by way of said header communicating with the lower end of 35 said inner element.

9. In an apparatus of the class described, a vertically disposed tubular porous element, means for supplying water to the interior of said element, means movable longitudinally of said ele-40 ment for scraping the interior of said element to remove sediment therefrom, and means to actuate the scraping means in dependence upon the pressure of the water supplied to the interior of said element.

10. In an apparatus of the class described, a vertically disposed tubular porous element, means for supplying water to the upper end of said element, a valve normally closing the lower end of said element, a stem for said valve extending 50 longitudinally of said element, helices on said stem for engaging the inner surface of said element, and means for moving said stem longitudinally of said element to open the valve and to cause said helices to scrape the sediment from 55 the inner surface of said element.

11. In an apparatus of the class described, a vertically disposed tubular porous element, means for supplying water to the upper end of said element, a valve normally closing the lower end of said element, a stem for said valve extending longitudinally of said element, helices on said stem for engaging the inner surface of said element, and means for moving said stem longitudinally of said element to open the valve and to 65 cause said helices to scrape the sediment from the inner surface of said element, said last mentioned means including a piston connected to said stem and fluid pressure means for actuating said piston.

12. In an apparatus of the class described, a casing disposed intermediate the ends of a gas passage, a plurality of tubular porous elements vertically disposed in said casing, means for supplying water to the upper ends of said element 75 whereby said water will pass through the walls

of said elements to wet the outer surface thereof, the water flowing down the outer surfaces of said elements and collecting in the bottom of said casing, a standpipe communicating with the bottom of said casing for receiving solid particles collected by the water flowing down the outer surfaces of said elements, means for maintaining a predetermined level of water in the lower end of said casing, means for withdrawing from said casing the partly clarified water from which the 10 solid particles have settled into the standpipe, means for filtering the water drawn from said casing, and means for returning the filtered water to said casing and for supply to the upper ends of said porous elements.

13. In an apparatus of the class described, a baffle element vertically disposed in a gas passage, a reservoir disposed above said baffle element, said reservoir having an outlet opening for supplying a dust collecting fluid to the upper end of said 20 baffle element and having an inlet by which a dust collecting fluid may be supplied to the reservoir, a filter bed within the reservoir between the inlet and outlet openings, and means associated with said reservoir for discharging a fluid through 25 said filter bed in a direction counter to the normal flow of fluid therethrough for cleansing said filter bed.

14. In an apparatus of the class described, a porous baffle element, means for flowing a dust 30 collecting fluid through said porous element, and means for periodically reversing the flow of fluid through said porous element to clean the same.

15. In an apparatus of the class described, a tubular porous element, means for supplying a 35 dust collecting fluid to the interior of said element, and pressure actuated means for cleaning the interior of said element.

16. In an apparatus of the class described, a baffle element disposed in a gas passage, means to 40 supply a liquid to said baffle element to wet the same, and means actuated upon a predetermined increase in the pressure of the wetting liquid to effect a cleaning of said baffle element.

17. In an apparatus of the class described, a 45 gas-passage, dust-collecting means in said gas passage in the path of the gas flow therethrough, means to supply a liquid to the dust-collecting means to wet the surfaces thereof which are contacted by the gas, the arrangement being such 50 that the liquid normally flows in a definite path through the supply means and to the surfaces of the dust-collecting means adapted to be wetted. and means for temporarily causing the liquid to flow in a path different from its normal path of 55 flow to clean one of said first two mentioned means.

18. In an apparatus of the class described, a porous dust-collecting means disposed in a gas passage, means to supply a liquid to said dust 60 collecting means to wet the same, and means for temporarily causing the liquid to flow differently than it normally flows in wetting the dust collecting means to cause the liquid to clean one of said first two mentioned means.

19. In an apparatus of the class described, a baffle element disposed in a gas passage, means to supply a liquid to said baffle element to wet the same, and a pressure actuated means arranged to be actuated upon a predetermined 70 change in the pressure of the wetting liquid to effect a cleaning of said baffle element.

20. In an apparatus of the class described, a gas passage, a tubular element disposed in said gas passage, a reservoir above said element, said 75

15 -

reservoir being provided with an inlet opening and an outlet opening communicating with said element, means for supplying a dust-collecting liquid to said reservoir by way of said inlet opening, a filter bed in said reservoir between the inlet and outlet openings thereof to filter the liquid prior to its discharge to the said element and means for washing said filter bed to clean the same.

21. In an apparatus of the class described, a tubular element disposed substantially vertically in a gas passage and provided with open upper and lower ends, means normally closing the lower end of said element, means for supplying a dust-collecting liquid to the upper end of said element, means providing for the flow of the liquid from the interior of said element to the exterior thereof to wet the latter and means operable from outside of the gas passage during the normal use of the apparatus to open the lower end of said element to flush the same.

22. In an apparatus of the class described, a tubular element disposed substantially vertically in a gas passage, a valve closing the lower end 25 of said element, means for supplying water to the upper end of said element, means providing for the passage of the water from the interior of said element to the exterior thereof to wet the latter, and a header disposed below said element to receive the water therefrom upon the opening of the valve closing the lower end of the element.

23. In an apparatus of the class described, a tubular porous element disposed within an outer tubular element, the inner element being of less diameter than the outer element to provide a space between said elements, means for supplying a liquid to the inner of said elements, said liquid passing through the wall of said inner element into the space between said elements, means providing for the flow of the liquid from the

space between said elements to the exterior of the outer element to wet the outer surface of the outer element, and means for temporarily causing the water to pass in a reverse direction through the wall of the inner element to cleanse the **5** same.

24. In an apparatus of the class described, a tubular element, means for supplying water to the interior of said element, means providing for the flow of the water from the interior of the 10 element to the exterior thereof to wet the outer surface of the element, means for scraping the interior of said element to remove sediment therefrom, and means to actuate the scraping means in dependence upon the pressure of the water 15 supplied to the interior of said element.

25. In an apparatus of the class described, a casing disposed intermediate the ends of a gas passage, a plurality of tubular elements vertically disposed in said casing, means for supplying 20 a liquid to the upper ends of said elements, means providing for the flow of the liquid from the interiors of said elements to the exteriors thereof to wet the outer surfaces of said elements the liquid flowing down the outer surfaces of said 25 elements and collecting in the bottom of said casing, a standpipe communicating with the bottom of said casing for receiving solid particles collected by the liquid flowing down the outer surfaces of said elements, means for maintain- 30 ing a predetermined level of liquid in the lower end of said casing, means for withdrawing from said casing the partly clarified liquid from which the solid particles have settled into the stand-

pipe, means for filtering the liquid drawn from 35

said casing, and means for returning the filtered

liquid to said casing and for supply to the up-

per ends of said elements.

NORMAN L. SNOW. HARRY E. BRELSFORD.

40