Inhibition of Tyrophagus putrescentiae in pet food products

A method of inhibiting the growth of Tyrophagus putrescentiae in a pet food product includes the step of adding at least 0.3% by weight conjugated linoleic acid (CLA) to the pet food product. Specifically, adding conjugated linoleic acid to the pet food product includes the steps of adding conjugated linoleic acid to a pet food meal pre-mix, extruding the conjugated linoleic acid containing premix to form the pet food product, cutting the pet food product to size, and drying the pet food product. The method can further include the step of coating the dried, cut to size pet food product with conjugated linoleic acid.
PCT

(21) International Application Number: PCT/US02/15874

(22) International Filing Date: 20 May 2002 (20.05.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 09/862,077 21 May 2001 (21.05.2001) US

(71) Applicant: NESTLE PURINA PETCARE COMPANY [US/US]; Checkerboard Square, St. Louis, MO 63164 (US).

(72) Inventors: ERNST, Thomas, J.; 4450A Arco, St. Louis, MO 63110 (US). LEPP, Robert, S.; 6239 Kings Ferry Road, St. Louis, MO 63129 (US). JACKSON, Janet, R.; 970 Forestview Drive, Columbia, IL 63026 (US).

(74) Agents: BEULICK, John, S. et al.; Armstrong Teasdale LLP, Suite 2600, One Metropolitan Square, St. Louis, MO 63102 (US).

(54) Title: INHIBITION OF (TYROPHAGUS PUTRESCENTIAE) IN PET FOOD PRODUCTS

(57) Abstract: A method of inhibiting the growth of Tyrophagus putrescentiae in a pet food product includes the step of adding at least 0.3% by weight conjugated linoleic acid (CLA) to the pet food product. Specifically, adding conjugated linoleic acid to the pet food product includes the steps of adding conjugated linoleic acid to a pet food meal pre-mix, extruding the conjugated linoleic acid containing premix to form the pet food product, cutting the pet food product to size, and drying the pet food product. The method can further include the step of coating the dried, cut to size pet food product with conjugated linoleic acid.
INHIBITION OF *TYROPHAGUS PUTRESCENTIAE* IN PET FOOD PRODUCTS

BACKGROUND OF THE INVENTION

[0001] This invention relates generally to inhibition of growth and reproduction of *Tyrophagus putrescentiae*, and more particularly, to inhibition of growth and reproduction of *Tyrophagus putrescentiae* in pet food product by conjugated linoleic acid.

[0002] Pet food products are sometimes stored in distribution centers before sale to the public, and are also typically stored in homes by pet owners after purchase and before consumption by pets. Sometimes stored pet food products can be spoiled and/or consumed by pests such as mites. One common mite classified as *Tyrophagus putrescentiae* is known to feed and propagate in some pet food products.

[0003] Preservatives incorporated in the pet food product at excess levels can be used to inhibit infestation of pet food products by organisms such as *Tyrophagus putrescentiae*. However, most preservatives used add no positive nutritional value to pet food products.

[0004] It would therefore be desirable to provide a method of protecting pet food products during storage from *Tyrophagus putrescentiae*. Also it would be desirable to provide a method of inhibiting growth and reproduction of *Tyrophagus putrescentiae* in pet food products.

BRIEF SUMMARY OF THE INVENTION

[0005] In an exemplary embodiment of the present invention, a method of inhibiting the growth of *Tyrophagus putrescentiae* in a dry pet food product includes the step of adding conjugated linoleic acid (CLA) to the dry pet food. Specifically, and in one embodiment, at least 0.3% by weight conjugated linoleic acid is added to the dry pet food product. More specifically, adding conjugated linoleic acid to the dry pet food includes the steps of adding conjugated linoleic acid to a pet food meal pre-
mix, extruding the CLA containing premix to form the pet food, cutting the pet food to size, and
drying the pet food. In one embodiment, the method further includes coating the dried, cut to size
pet food with conjugated linoleic acid. In one embodiment, the method further comprises coating
the pet food product with at least 2% by weight animal tallow.

[0001] The above described method provides a pet food that is protected during
storage from *Tyrophagus putrescentiae*. More specifically, the method provides a pet food that
includes CLA which inhibits growth and reproduction of *Tyrophagus putrescentiae* in the pet
food product. Further, the CLA adds positive nutritional value to the pet food product.

BRIEF DESCRIPTION OF THE DRAWINGS

[0002] Figure 1 is flow chart of a method of inhibiting the growth of *Tyrophagus
putrescentiae* in a dry pet food product.

DETAILED DESCRIPTION OF THE INVENTION

[0003] Referring to Figure 1, a method 10 of inhibiting the growth of *Tyrophagus
putrescentiae* in a pet food product includes the steps of adding 12 conjugated linoleic acid
(CLA) to a pet food meal pre-mix, extruding 14 the CLA containing premix to form the pet food
product, cutting 16 the pet food to size, and drying 18 the pet food product. In one embodiment,
method 10 further includes coating 20 the dried, cut to size pet food product with CLA. The
resultant finished, dried, and cut to size pet food product contains at least 0.3% by weight CLA
which inhibits the growth and reproduction of *Tyrophagus putrescentiae* in the stored pet food
product. It should be understood that the term pet food product includes dry pet food, semi-moist
pet food, and pet treats.

[0004] The step of adding 12 CLA to a meal pre-mix includes combining a plurality of
ingredients to form the meal pre-mix. The plurality of ingredients include, for example, grains,
minerals, amino acids, meat meals, additives, and the like. The plurality of ingredients are mixed
in a mixer or a series of mixers, and the temperature and moisture content are adjusted to
predetermined levels, for example, about 190°F to about 220°F and about 20% to about 35% by
weight moisture content, prior to
inputting the mixture of ingredients into an extruder. In one embodiment, the CLA is added to the plurality of ingredients in the mixer.

[0010] In the step of extruding 14 the CLA containing meal pre-mix, the ingredients are further mixed and heated in the extruder to a predetermined temperature, for example from about 200°F to about 300°F. The meal pre-mix is then extruded through an extruder diecap having a plurality of openings. The extruded product stream is then cut into pieces or kibbles of a predetermined size of, for example, about 0.1 inch to about 0.5 inch.

[0011] In the step of drying 18, the kibbles are dried in a dryer at about 290°F to about 340°F to a moisture content of, for example, about 5% to about 15%, and coated or dusted with a suitable material. The coating material is, for example, liquid animal digest, concentrated liquid animal digest, animal tallow or a dry coating such as dried yeast. The finished pet food product is then packaged for sale. In one embodiment, method 10 includes coating 20 the pet food product with CLA. In this embodiment, the coating material includes CLA.

[0012] Any suitable material containing CLA can be used in method 10. Examples of suitable conjugated linoleic acid containing materials include, but are not limited to, hydrolyzed plant oil, hydrolyzed vegetable oil, hydrolyzed animal oil, hydrolyzed animal fat and mixtures thereof. The CLA is formed by hydrolyzing the linoleic acid contained in plant oil, vegetable oil, animal oil, and animal fat, for example, tall oil, bran oil, coconut oil, corn oil, fish oil, safflower oil, soybean oil, cotton seed oil, rapeseed oil, sunflower oil, beef fat, lamb fat, rabbit fat, turkey fat, swine fat, and poultry fat. Of course, different oils and fats include different levels of linoleic acid. It is preferred that the oils and fats contain at least 50% by weight linoleic acid. Oils and fats having less than 50% linoleic acid are acceptable, but require more of the hydrolyzed material to achieve the desired levels CLA in the finished pet food product. Further, the conjugation of linoleic acid can result in a plurality of isomers. The CLA used in method 10 includes one or more of 9-Z, 11-E
linoleic acid, 10-E, 12-Z linoleic acid and all other active isomeric forms of conjugated linoleic acid.

[0013] In one embodiment, at least 0.3% CLA in the finished pet food product inhibits growth and reproduction of *Tyrophagus putrescentiae* in the pet food product. Further, the CLA adds positive nutritional value to the pet food product. Specifically, tests of pet food containing at least 0.3% by weight CLA processed in accordance with method 10 showed that the growth and reproduction of *Tyrophagus putrescentiae* was significantly less than a control pet food product that was not proceed in accordance with method 10 and that did not contain CLA.

[0014] The tests were run by placing 14 kibble pieces of a pet food product containing CLA, and processed according to method 10, were placed in each of ten 60 mm by 15 mm dishes. Each dish was inoculated with about 30 mites (*Tyrophagus putrescentiae*), and sealed with parafilm. The ten dishes formed a treatment and were placed in a tray in an environmental chamber circulating humid air of about 65% RH to about 67% RH at 76°F. The percent by weight of CLA varied from about 0.4% to about 1.5% in the test samples. Ten control dishes using a standard pet food product containing no CLA were also prepared and tested as described above. The population of mites were monitored in each test sample for five weeks, and the results showed that there was an exploding population of mites in the control sample dishes. By exploding population is meant that the population was so large it could not be counted. The population of mites in the test samples having CLA and processed according to method 10 varied from a low of 9 mites to a high of about 2500 mites.

[0015] In alternative embodiments, the CLA is added to the meal pre-mix only, or the CLA is added to the meal pre-mix and coated on the extruded kibbles, or the CLA is coated on the extruded kibbles only to produce a pet food product containing a predetermined amount of CLA.

[0016] While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
CLAIMS:

1. A method of inhibiting the growth of *Tyrophagus putrescentiae* in a pet food product, said method comprising the step of adding conjugated linoleic acid to the pet food product.

2. A method in accordance with claim 1 wherein adding conjugated linoleic acid to the pet food product comprises the steps of:
 - adding conjugated linoleic acid to a meal pre-mix;
 - extruding the conjugated linoleic acid containing pre-mix to form the pet food product;
 - cutting the pet food product to size; and
 - drying the pet food product.

3. A method according to claim 1 or claim 2 wherein adding conjugated linoleic acid to the pet food product comprises the step of adding conjugated linoleic acid to the pet food product so that the pet food product contains at least 0.3% by weight conjugated linoleic acid.

4. A method according to any one of claims 1 to 3 wherein adding conjugated linoleic acid to the pet food product further comprises the step of coating the pet food product with conjugated linoleic acid.

5. A method according to any one of claims 1 to 4 wherein adding conjugated linoleic acid to the pet food product comprises the step of adding to the pet food product a conjugated linoleic acid containing material comprising at least one of hydrolyzed plant oil, hydrolyzed vegetable oil, hydrolyzed animal oil, and hydrolyzed animal fat.

6. A method according to any one of claims 1 to 5 further comprising the step of coating the pet food product with at least 2% by weight animal tallow.

7. A method of manufacturing a pet food product, said method comprising the steps of:
 - extruding a meal pre-mix to form the pet food product;
 - cutting the pet food product to size;
 - coating the cut to size pet food product with conjugated linoleic acid; and
 - drying the pet food product to form a pet food product containing at least 0.3% by weight conjugated linoleic acid.
8. A method according to claim 7 further comprising the step of adding conjugated linoleic acid to the meal pre-mix so that the pet food product contains at least 0.3% by weight conjugated linoleic acid in the dry pet food product.

9. A method according to claim 7 further comprising the step of coating the pet food product with at least 2% by weight animal tallow.
FIGURE 1

10
→
12 Adding At Least 0.5% CLA To A Pet Food Meal Pre-Mix.
→
14 Extruding The CLA Containing Pre-Mix.
→
16 Cutting The Pet Food To Size.
→
18 Drying The Pet Food Product
→
20 Coating The Pet Food With A CLA