
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0337523 A1

Curtis et al.

US 20140337523A1

(43) Pub. Date: Nov. 13, 2014

(54)

(71)

(72)

(21)

(22)

(63)

SESSION-BASED SERVERTRANSACTION
STORM CONTROLS

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: John D. Curtis, Milford, MA (US);
Russell Holden, Boxborough, MA (US);
Albert J. Morello, Meford, MA (US)

Appl. No.: 14/445,414

Filed: Jul. 29, 2014

Related U.S. Application Data
Continuation of application No. 13/841.284, filed on
Mar. 15, 2013.

106 a

CLIENT

TRANSACON
STORM

DETECTION
ENGINE

Publication Classification

(51) Int. Cl.
H04L 2/26 (2006.01)
H04L 12/24 (2006.01)

(52) U.S. Cl.
CPC H04L 43/0876 (2013.01); H04L 4I/06

(2013.01)
USPC .. 709/224

(57) ABSTRACT
Transaction storm detection includes receiving a series of
transactions in a data stream for an authenticated network
session. A detection engine determines whether the transac
tions form a transaction storm. In response to determining
that the transactions are a transaction storm, metrics associ
ated with the transaction Storm are presented. One or more
actions may be specified to be applied in a Subsequently
detected transaction storm.

SERVER

TRANSACTION
STORMACON

ENGINE

SERVICE

TRANSACTION
STORM

MANAGEMENT
UNIT

SERVER

RANSACTION
O8

Patent Application Publication Nov. 13, 2014 Sheet 1 of 10 US 2014/0337523 A1

106 a

114 1 16

CENT SERVER

y
C. £) g? s
2C) 9, $ 3

s S Co
o K

1 O2

TRANSACTION TRANSACTION
STORM STORMACTION

DETECTION ENGINE
ENGINE

SERVICE

SERVER

TRANSACTION 1 12
STORM

MANAGEMENT
UNIT

TRANSACTION
DB

FIG. 1

Patent Application Publication Nov. 13, 2014 Sheet 2 of 10 US 2014/0337523 A1

206 in

RECEIVE TRANSACTIONS IN ADATA STREAM
2O2

FOR AN AUTHENTCATED NETWORKSESSION

204

DO
RANSACTIONS
FORMA NO

TRANSACTION
STORM2

YES

PRESENT METRICS ASSOCATED WITH 2O6
TRANSACTION STORM

RECEIVE INDICATION OF ACTIONS TO APPLY IN
SUBSEQUENTY DETECTED TRANSACTION 208

STORM

FIG 2

Patent Application Publication Nov. 13, 2014 Sheet 3 of 10 US 2014/0337523 A1

RECEIVE TRANSACTIONS IN A DATASTREAM 302
FOR AN AUTHENTCATED NETWORKSESSION

304

DO
RANSACTIONS

MATCH
TRANSACTION

STORM?

NO

YES

BEGIN REMEDIATON 306
ACTIONS

INTRODUCE

DELAY IN ONE

ORMORE
TRANSACTIONS

RETURNERROR

CODE FOR ONE
ORMORE

TRANSACTIONS

31 O

FIG. 3

US 2014/0337523 A1 Nov. 13, 2014 Sheet 4 of 10

w_007

Patent Application Publication

US 2014/0337523 A1 Sheet S of 10 Nov. 13, 2014 Patent Application Publication

z09

US 2014/0337523 A1 Nov. 13, 2014 Sheet 6 of 10 Patent Application Publication

US 2014/0337523 A1 Nov. 13, 2014 Sheet 7 of 10 Patent Application Publication

US 2014/0337523 A1 Nov. 13, 2014 Sheet 8 of 10 Patent Application Publication

})(809

v_008

US 2014/0337523 A1

BLONT?T?hwTBLYGdn BK] B1ONTNEdOD OHNITB1ONTL39 []

Nov. 13, 2014 Sheet 9 of 10

w_006

Patent Application Publication

Patent Application Publication

1 OO1

PROCESSOR
UNIT

MEMORY

TRANSACTION
STORM DETECTION

ENGINE

TRANSACTION
STORM ACTION

ENGINE

Nov. 13, 2014 Sheet 10 of 10

fy1003

FIG. 10

US 2014/0337523 A1

1005

NEWORK
INTERFACE

STORAGE
DEVICE(S)

1009

US 2014/0337523 A1

SESSION-BASED SERVERTRANSACTION
STORM CONTROLS

RELATED APPLICATIONS

0001. This application is a Continuation of and claims the
priority benefit of U.S. of America application Ser. No.
13/841,284 filed Mar 15, 2013.

BACKGROUND

0002 Embodiments of the inventive subject matter gener
ally relate to the field of transactional computer systems, and,
more particularly, to controlling transaction storms on trans
actional computer systems.
0003. It is common for database applications, enterprise
messaging and collaboration applications to have streams
sending units of work (i.e., transactions) to various types of
services resident on servers. It is possible that services can be
overwhelmed by the load caused by high numbers of trans
actions, which can cause and have caused catastrophic fail
ure. In hosting these solutions in Software as a Service (SaaS)
offerings, sessions and streams can persist and the sources of
potentially destructive load increase in number. Servers, even
clustered servers, typically have hard, finite resources and
when the available resources are inequitably consumed, nor
mal production throughput is endangered. Service outages
can be quite costly to a business. For example, in a typical
SaaS business where up time is linked directly to revenue, the
cost of Such outages can be high. During these outages, soft
ware support and on-premise administrative personnel can
struggle to determine where the offending stream is originat
ing and then attempt to determine both tactical and strategic
approaches to alleviate it. The proliferation of third-party
middleware and custom solutions creates variations of con
figurations that can make it difficult to describe or contain the
flow of transactions such that resources are equitably con
Sumed.

SUMMARY

0004. A method includes receiving a series of transactions
in a data stream for an authenticated network session. A
detection engine determines whether the transactions form a
transaction storm. In response to determining that the trans
actions are a transaction storm, metrics associated with the
transaction storm are presented along with actions that can be
applied. One or more actions may be selected to be applied in
a Subsequently detected transaction storm.

BRIEF DESCRIPTION OF THE DRAWINGS

0005. The present embodiments may be better under
stood, and numerous objects, features, and advantages made
apparent to those skilled in the art by referencing the accom
panying drawings.
0006 FIG. 1 depicts components of a system for detecting
and controlling transaction storms.
0007 FIG. 2 is a flowchart illustrating a method for detect
ing transaction storms.
0008 FIG. 3 is a flowchart illustrating a method for con

trolling transaction storms.
0009 FIG. 4 illustrates an example user interface form
used to configure various parameters for use in detecting
transaction storms.
0010 FIG. 5 illustrates an example user interface for pre
senting information related to a transaction storm.

Nov. 13, 2014

0011 FIG. 6 illustrates an example user interface form for
presenting detail information related to a transaction storm.
0012 FIG. 7 illustrates an example user interface form
that may be used to provide input parameters specifying
remediation actions to be performed upon detection of a
transaction storm.
0013 FIG. 8 illustrates an example user interface form
providing transaction sequence information.
0014 FIG. 9 is an example user interface form that illus
trates further actions that may be specified and stored for
application to transaction storms.
0015 FIG. 10 depicts an example computer system.

DESCRIPTION OF EMBODIMENT(S)
0016. The description that follows includes exemplary
systems, methods, techniques, instruction sequences and
computer program products that embody techniques of the
present inventive subject matter. However, it is understood
that the described embodiments may be practiced without
these specific details. In other instances, well-known instruc
tion instances, protocols, structures and techniques have not
been shown in detail in order not to obfuscate the description.
0017. In general, the embodiments of the invention detect
transaction storms in data streams associated with authenti
cated network sessions, and apply actions designed to reme
diate or mitigate the effect of a transaction Storm. A transac
tion storm is a series or stream of closely packed transactions
where the frequency and resource consumption of the series
of transactions has the potential to cause deleterious effects
within a system. Such deleterious effects can include reduced
response times caused by overuse of resources due to the
transaction storm or service outages when processor, memory
or network resources become unavailable due to a transaction
Storm.

0018 FIG. 1 depicts components of a system 100 for
detecting and controlling transaction storms. In some
embodiments, system 100 includes a server 102, a transaction
storm management unit 110 and a transaction database 112.
Server 102 includes service 104, transaction storm detection
engine 106 and transaction storm action engine 108. Service
104 can be any type of service that Supports transactions.
Examples of such services include database services, middle
ware services, etc. For the purposes of this specification, a
transaction is a atomic set of one or more operations that are
to be completed as a single unit of work. If any of the opera
tions of the transaction fail, the whole transaction fails and
none of the operations in the transaction have any effect.
Examples of transactions include database transactions and
remote procedure calls (RPC). However, the embodiments
are not limited to any particular type of transaction.
0019 Clients 114 and servers 116 may make use of service
104. For example, an application running on client 114 or
server 116 may make use of a database service running on
server 102. In order to make use of service 104, a client 114 or
server 116 establishes an authenticated session with service
104. An authenticated session is a network session in which a
user of an application on client 114 or server 116 that initiates
transactions for service 104 has been positively identified.
Typically such authentication takes place via a user identifi
cation and password combination. Authentication may also
include authenticating a machine identification of client 114
or server 116.
0020. After authentication, applications on client 114 or
server 116 may send transactions for processing on service

US 2014/0337523 A1

104. Transaction storm detection engine 106 monitors the
transaction requests issued by a client 114 or server 116 and
stores attributes of the transactions to transaction database
112. Transaction storm detection engine 106 applies rules and
heuristics to the transaction data in transaction database 112
to determine if a transaction Storm is detected within an
authenticated session. The rules for detecting a transaction
storm may be configured by a system administrator or other
party using transaction storm management unit 110 and
stored in transaction database 112.
0021. Upon detecting a transaction storm, transaction
detection engine may store details about the transaction storm
in transaction database 112. A user at transaction storm man
agement unit 110 may be presented with a user interface that
indicates the transaction storms that have been detected. In
addition, transaction storm management unit 110 may pro
vide a user interface allowing a user to configure actions to be
applied in Subsequently detected transaction storms.
0022. In some embodiments, transaction storm action
engine 108 receives an indication of a transaction storm in
progress and applies actions configured using transaction
storm management unit 110 to attempt to mitigate the impact
of the transaction storm.
0023 Monitoring of transactions in an authenticated net
work session and applying actions to transactions may take
place at several levels. For example, in Some embodiments,
detection engine 106 and action engine 108 may interceptand
inspect packets prior to delivery to service 104 or after issu
ance by service 104. In such embodiments, detection engine
104 and action engine 106 have knowledge of the application
layer data formats of data packets exchanged between client
114 and service 104 or server 116 and service 104. Further,
detection engine 106 and action engine 108 may maintain
state information regarding the network session between a
client 114 or server 116 and service 104. Such state informa
tion is thus maintained separately from the application or
service that is intended to receive the transaction and execute
the transaction.
0024. In alternative embodiments, service 104 may pro
vide an API (application program interface) for use by detec
tion engine 106 and action engine 108 in detecting transac
tions and determining session state.
0.025 Various combinations of the elements illustrated in
FIG.1 may be possible as will be appreciated by one of skill
in the art having the benefit of the disclosure. For example,
although one service is illustrated in server 102, multiple
services could be present on a server 10. Similarly, multiple
clients and servers may interact with a service and detection
engine 106 and action engine 108 may monitor multiple
authenticated sessions. Further, either or both of detection
engine 106 and action engine 108 may be implemented as
proxy services on a computer system between a client 114 or
server 116 and service 104.
0026. Further details on the operation of example embodi
ments are provided below with respect to FIGS. 2-10.
0027 FIG. 2 is a flowchart illustrating a method 200 for
detecting transaction storms. Method 200 begins at block 202
with receiving transactions in a data stream for an authenti
cated network session. As an example, a detection engine 106
may inspect packets between a client and a service (or a server
and a service). As packets containing transaction data are
received, attributes regarding the transactions and the state of
transactions may be maintained. Such data may include the
Source of the transaction, a time that the transaction occurred,

Nov. 13, 2014

the duration of a transaction, a number of transactions, a time
interval between transactions etc. The data may be stored in a
database for analysis by detection engine 106 or other com
ponents.
0028. At block 204, a decision is made as to whether
transactions received at block 202 form a transaction storm.
In some embodiments, various rules may be implemented to
determine if a set of transactions form a transaction storm. In
Some embodiments, the rules may be implemented as a means
for determining ifa set of transactions were each generated by
a human operator or generated by an automated operator on
the assumption that transactions generated by a human opera
tor should not be interfered with, but operations generated by
an automated operator that may cause a transaction storm can
be interfered with. As an example, a rule may specify that if
the average interval between a predetermined or configurable
number of transactions are less than a predetermined or con
figurable threshold, then a transaction Storm exists. For
instance, a rule may be configured such that if 100 transac
tions arrive during an authenticated session where the average
time is less than fifty milliseconds between transactions, then
a transaction Storm exists for that session. It is unlikely that a
human operator can generate such a transaction Volume,
therefore an automated process is likely the source of the
transactions. It should be noted that a human operator may
initiate automated operations that cause a transaction storm.
0029. In some embodiments, a default set of rules operates
to detect transaction storms. The default set of rules and
parameters may be overridden by user input as will be further
described below.

0030 FIG. 4 illustrates an example user interface form
400 used to configure various parameters for use in detecting
transaction storms. Input elements are indicated in bold and
are underlined in FIG. 4. As shown in FIG. 4, a system
administrator or other use may provide data specifying a
server name on which transaction storm detection is to be
implemented. A user may specify a specific server name or
provide wildcard indicators to specify that all servers in a
system are to monitor transactions for the existence of trans
action storms. One or more wildcard characters can be
included along with text partially specifying a name. For
instance, a server name prefix or suffix can be included with
one or more wildcard characters to match a set of servers that
can be a Subset of the servers in an enterprise. In some
embodiments, regular expressions may be used to specify a
server name. The example user interface form 400 includes
input parameters specifying a number of consecutive trans
actions and an average time between transactions that upon
occurrence, triggers a transaction storm detection. Further, a
consumed processing time may be configured Such that if the
processing time consumed by the number of transactions
specified on the form exceeds the indicated amount, the trans
actions will be indicated to be a transaction storm. Other
attributes that may be configured include an attribute speci
fying that the source of the transactions be a client, a server, or
either. A particular user or system name may be specified as
Source filter of transactions, or alternatively, one or more
wildcard characters may be specified indicating any user or
server name may be a source of a detected transaction storm.
As described above, one or more wildcard characters may be
included with text partially specifying a user or server name
Such that a Subset of user names or server names may be
selected according to a match with the text. The input text
specifying the user or server name may be a regular expres

US 2014/0337523 A1

Sion. Additionally, a time period may be specified use in
determining whether a transaction storm exists. Transactions
outside of the specified time period may be ignored for pur
poses of detecting a transaction storm. Other parameters and
rules may be configured for use in detecting transaction
storms as will be appreciated by one of skill in the art having
the benefit of the disclosure.
0031 Returning to FIG. 2, if a transaction storm is not
detected, the method returns to block 202 to continue moni
toring incoming transactions. If a transaction storm is
detected, flow continues to block 206.
0032. At block 206, metrics associated with the detected
transaction storm may be stored for presentation to a user, for
example, a system administrator using a transaction storm
management unit.
0033 FIG. 5 illustrates an example user interface 500 for
presenting information related to a transaction Storm that may
be presented as part of the operations performed at block 206.
In some embodiments, a user interface screen 502 presents
information including a transaction storm identifier assigned
by the system to a detected transaction storm, a server iden
tifier of the server affected by the transaction storm, a source
identifier or originator of the transaction storm and a time
interval during which the transaction storm occurred.
Example user interface 500 includes a transaction storm
selection interface 504that provides various options for view
ing and specifying actions related to transaction storms. In
some embodiments, selection interface 504 includes a view
storm option, a define action option, a view storm details
option and an advance action option. Each of the selected
options may apply to a currently selected transaction storm
provided on user interface screen 502. Thus in the example
illustrated in FIG.5, the actions in selection screen 504 will be
applied to the transaction storm having the storm identifier
“TSID 10017.

0034 FIG. 6 illustrates an example user interface form
600 that is presented upon selection of “View Storm’ from
selection interface 504 (FIG. 5). In some embodiments, infor
mation presented about a transaction storm includes a trans
action storm identifier that is used to identify a particular
transaction storm; a server experiencing the transaction
storm; the time the transaction storm occurred; the number of
transactions within the storm and the average time between
transactions; the total processing seconds consumed by the
transactions in the transaction storm; whether the storm
occurred in a data stream initiated by a client, a server or both;
and an identifier of a user or server that initiated the data
stream that included the transaction storm. In some embodi
ments, the processing seconds are wall clock seconds. In
alternative embodiments, other time measurements can be
used, including processor times if available. Those of skill in
the art having the benefit of the disclosure will appreciate that
other data could be included on form 600.
0035 Returning to FIG.2, at block 208, an indication of an
action to be applied to Subsequently detected Storms is
received. In some embodiments, actions to be applied to
Subsequently detected Storms include introducing a delay
between transactions. In further embodiments, the actions
may include causing a transaction to return a predetermined
or configured error code to the transaction initiator without
submitting the transaction to a service 104.
0036 FIG. 7 illustrates an example user interface form
700 that may be used to provide input parameters specifying
remediation actions to be performed upon detection of a

Nov. 13, 2014

transaction storm in a data stream for a session. In some
embodiments, user interface form 700 includes input param
eters specifying a time delay to be introduced between trans
actions. Checkboxes 702 and 704 can be used to indicate that
the delay is to be introduced before or after a transaction. User
interface form 700 also includes an input parameter specify
ing that an error code is to be returned in place of executing
the transaction. User interface form 700 also includes param
eters that are used to detect a transaction storm. In some
embodiments, the parameters can be supplied by inputting a
transaction storm identifier (e.g., “TSID10017 in the
example shown in FIG. 7). The parameters used to determine
what actions will be applied to a Subsequently detected trans
action storm may be different from the parameters used to
initially detect a transaction storm. User input form 700 pro
vides input parameters used to specify new values or modify
existing values of parameters. For example, similar to storm
detection parameters illustrated in FIG.4, input parameters in
user interface form 700 may include a server name on which
transaction storm remediation actions are to be applied. The
example user interface form 700 includes input parameters
specifying a number of consecutive transactions and an aver
age time between transactions that upon occurrence, triggers
the transaction storm remediation actions specified on the
form. Further, a consumed processing time may be config
ured Such that if the processing time consumed by the number
of transactions specified on the form exceeds the indicated
amount, the transaction storm remediation actions will be
initiated. Other attributes that may be configured include an
attribute specifying that the source of the transactions be a
client, a server, or either. A particular user or system name
may be specified as being Subject to the transaction storm
remediation actions, or alternatively, one or more wildcard
characters may be specified indicating any user or server
name may be subject to transaction storm remediation
actions. As described above, the one or more wildcard char
acters may be included with text that partially specifies a user
or server name Such that a Subset of user names or server
names in an enterprise may be specified. Additionally, a time
period may be specified use in determining when to apply
transaction storm remediation actions. Other parameters and
rules may be configured for use in initiating transaction storm
remediation actions as will be appreciated by one of skill in
the art having the benefit of the disclosure.
0037 FIG. 3 is a flowchart illustrating a method 300 for
controlling transaction Storms. In some embodiments,
method 300 is initiated when rules for applying actions to
detected transaction Storms have been Supplied. Like method
200 described above, method 300 begins by receiving trans
actions in a data stream for an authenticated network session.
In some embodiments, packet data is inspected and data
regarding transactions and transaction states may be main
tained.

0038. At block304, the data regarding the transactions and
transaction states is compared against rules that have been
specified for detecting actionable transaction storms to deter
mine if an actionable transaction storm is detected. If no
actionable transaction storm is detected, the method returns to
bock 302 to receive further transactions for the data stream in
the network session.

0039. If the check at block 304 determines that an action
able transaction storm is detected, then at block 306 remedia

US 2014/0337523 A1

tion actions are initiated. In some embodiments, the remedia
tion actions at either or both of blocks 308 and 310 may be
performed.
0040. At block 308, a delay is introduced into one or more
transactions. The magnitude of the delay may be predeter
mined or configurable. Further, the delay may be introduced
before the transaction is presented to a service, or after a
response to the transaction has been generated by the service
for return to the transaction initiator (e.g., client 114 or server
116 of FIG. 1). In some embodiments, a default delay of one
millisecond is introduced either before or after a transaction
executes. The method then returns to block 302 to receive and
analyzed further transactions, either for the current session to
determine if the transaction storm continues in the session, or
in other sessions to determine if other transaction storms are
occurring.
0041 At block 310, an error code is returned to a transac
tion initiator in place of delivering the transaction request to a
service. The error code to be returned may be predetermined
or configurable. Upon receiving the error code, the transac
tion initiator may interpret the error code and take whatever
action the transaction initiator determines appropriate for the
error code. For example, an error code may be configured that
is known to cause a transaction initiator to retry the transac
tion at a later time. Alternatively, the error code may be one
that causes the transaction initiator to stop sending transac
tions. The transaction Storm caused by the transaction initia
tor can be halted, because the transaction initiator ceases
sending transactions as a result of the error code. The method
then returns to block 302 to receive and analyze further trans
actions and data streams that may be part of other session to
determine if a transaction storm exists in other sessions.
0042. In some embodiments, transaction sequences may
be identified within a storm and isolated by a detection engine
106. It is often the case that a transaction sequence will
include a single instance of a first type of transaction followed
by multiple instances of other types of transactions. The
sequence may, but not necessarily be terminated by a single
instance of a third type of transaction. In some embodiments,
detection engine 106 can analyze transaction data in a trans
action database to determine the presence of such sequences.
The remedial actions can be tailored to Such sequences as will
be illustrated in FIGS. 8 and 9.

0043 FIG. 8 illustrates an example user interface form
800 that in some embodiments may be presented in response
to selection of a “Storm Detail menu element from selection
interface 504 of FIG. 5. Example user interface 800 includes
a transaction Storm Summary portion 802, a transaction Sum
mary portion 804, and transaction sequence Summaries
including a first transaction sequence Summary 806 and a
second transaction sequence Summary 808. Transaction
storm Summary portion 802 includes the same information as
has been described above regarding FIG. 4.
0044) Transaction summary portion 804 includes infor
mation about various types of transactions that were a part of
the selected transaction Storm. Such information can include
the transaction type, a count of the number of times the
transaction type occurred during the transaction storm, the
total processing seconds associated with transactions having
the transaction type, and disk reads and writes associated with
transactions having the indicated transaction type. Those of
skill in the art having the benefit of the disclosure will appre
ciate that other information could be gathered and included in
the transaction Summary portion.

Nov. 13, 2014

0045. As noted above, example user interface 800
includes information regarding transaction sequences that
were detected in a selected transaction storm. In the example
shown in FIG. 8, two transaction sequences were detected in
the selected transaction storm. For each transaction sequence,
information can be presented regarding the sequence. For
example, the number of times a transaction sequence occurs
can be provided. In addition, a relative ordering of transac
tions in the sequence can be indicated and a minimum and
maximum count of the number of times a particular transac
tion occurs in the sequences can be provided. As an example,
in a first transaction sequence Summarized in transaction
sequence summary portion 806, the form indicates that the
sequence occurred 73 times. The sequence begins with a
single
“OPEN COLLECTION’ transaction, followed by repeated
“GET NOTE INFO and “OPEN NOTE transactions.
The transaction sequence ends with a “UPDATE MULT
NOTE' transaction, which occurred a minimum of once dur
ing a sequence and a maximum of 47 times during a sequence.
0046. In the example presented in FIG. 8, it can be seen
that the UPDATE MULT NOTE transaction, though having
relatively few invocations, is the biggest consumer of the
measured system resources. It can also be seen that detection
engine 106 determined that an OPEN COLLECTION trans
action begins both types of typical sequences as illustrated in
transaction sequence summaries 806 and 808.
0047 FIG. 9 is an example user interface form 900 that
illustrates further actions that may be specified and stored for
application to transaction storms. Similar to the interface
illustrated in FIG. 5, user interface form 900 includes input
parameters that allow a delay to be introduced either before or
after transactions. However, user interface form 900 provides
further control for actions by providing for specification of
particular types of transactions to delay. In the example illus
trated in FIG.9, user interface form 900 presents a list of the
types of transactions detected during a selected Storm. A user
can specify which types of transactions are to be delayed, and
whether the delay is to occur before or after the transaction
type is executed. Thus actions can be specified that occur at
the beginning or end of a loop that processes a series of
transaction in a detected transaction sequence, thereby
increasing the chances of completing units of work within the
detected sequence. This also increases the probability that the
transaction sequence itself will complete Successfully. In
addition, a user interface element is provided allowing a user
to specify a frequency for introducing a delay (e.g., introduce
a delay every fifth execution of the transaction type).
0048 Similarly, user interface form 900 provides user
interface elements allowing a user to specify a value to be
returned by specific transaction types. Upon enabling such a
rule, the value is returned to the transaction initiator and the
transaction is not executed.

0049. As will be appreciated by one skilled in the art,
aspects of the present inventive Subject matter may be embod
ied as a system, method or computer program product.
Accordingly, aspects of the present inventive subject matter
may take the form of an entirely hardware embodiment, an
entirely software embodiment (including firmware, resident
Software, micro-code, etc.) or an embodiment combining
Software and hardware aspects that may all generally be
referred to herein as a “circuit.” “module' or “system.” Fur
thermore, aspects of the present inventive subject matter may
take the form of a computer program product embodied in one

US 2014/0337523 A1

or more computer readable medium(s) having computer read
able program code embodied thereon.
0050. Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any Suitable com
bination of the foregoing. More specific examples (a non
exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.
0051. A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0052 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0053 Computer program code for carrying out operations
for aspects of the present inventive subject matter may be
written in any combination of one or more programming
languages, including an object oriented programming lan
guage Such as Java, Smalltalk, C++ or the like and conven
tional procedural programming languages. Such as the “C”
programming language or similar programming languages.
The program code may execute entirely on the user's com
puter, partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user's computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service Pro
vider).
0054 Aspects of the present inventive subject matter are
described with reference to flowchart illustrations and/or
block diagrams of methods, apparatus (systems) and com
puter program products according to embodiments of the
inventive subject matter. It will be understood that each block
of the flowchart illustrations and/or block diagrams, and com
binations of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc
tions. These computer program instructions may be provided

Nov. 13, 2014

to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program
mable data processing apparatus, create means for imple
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.
0055. These computer program instructions may also be
stored in a computer readable medium that can direct a com
puter, other programmable data processing apparatus, or
other devices to function in a particular manner, such that the
instructions stored in the computer readable medium produce
an article of manufacture including instructions which imple
ment the function/act specified in the flowchart and/or block
diagram block or blocks.
0056. The computer program instructions may also be
loaded onto a computer, other programmable data processing
apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0057 FIG. 10 depicts an example computer system. A
computer system includes a processor unit 1001 (possibly
including multiple processors, multiple cores, multiple
nodes, and/or implementing multi-threading, etc.). The com
puter system includes memory 1007. The memory 1007 may
be system memory (e.g., one or more of cache, SRAM,
DRAM, Zero capacitor RAM, Twin Transistor RAM,
eDRAM, EDO RAM, DDR RAM, EEPROM, NRAM,
RRAM, SONOS, PRAM, etc.) or any one or more of the
above already described possible realizations of machine
readable media. The computer system also includes a bus
1003 (e.g., PCI, ISA, PCI-Express, HyperTransport(R), Infini
BandR, NuBus, etc.), a network interface 1005 (e.g., an ATM
interface, an Ethernet interface, a Frame Relay interface,
SONET interface, wireless interface, etc.), and a storage
device(s) 1009 (e.g., optical storage, magnetic storage, etc.).
The system memory 1007 embodies functionality to imple
ment embodiments described above. The system memory
1007 may include one or more functionalities that facilitate
detecting transaction storms and performing actions to reme
diate transaction storms. For example, system memory 1007
may include code for a transaction storm detection engine
1010 and a transaction storm action engine 1012. Any one of
these functionalities may be partially (or entirely) imple
mented in hardware and/or on the processing unit 1001. For
example, the functionality may be implemented with an
application specific integrated circuit, in logic implemented
in the processing unit 1001, in a co-processor on a peripheral
device or card, etc. Further, realizations may include fewer or
additional components not illustrated in FIG. 10 (e.g., video
cards, audio cards, additional network interfaces, peripheral
devices, etc.). The processor unit 1001, the storage device(s)
1009, and the network interface 1005 are coupled to the bus
1003. Although illustrated as being coupled to the bus 1003,
the memory 1007 may be coupled to the processor unit 1001.
0058 While the embodiments are described with refer
ence to various implementations and exploitations, it will be
understood that these embodiments are illustrative and that
the scope of the inventive subject matter is not limited to
them. In general, techniques for detecting and remediating

US 2014/0337523 A1

transaction storms as described herein may be implemented
with facilities consistent with any hardware system or hard
ware systems. Many variations, modifications, additions, and
improvements are possible.
0059 Plural instances may be provided for components,
operations or structures described herein as a single instance.
Finally, boundaries between various components, operations
and data stores are somewhat arbitrary, and particular opera
tions are illustrated in the context of specific illustrative con
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the inventive subject matter.
In general, structures and functionality presented as separate
components in the exemplary configurations may be imple
mented as a combined structure or component. Similarly,
structures and functionality presented as a single component
may be implemented as separate components. These and
other variations, modifications, additions, and improvements
may fall within the scope of the inventive subject matter.
What is claimed is:
1. A method comprising:
receiving a plurality of transactions in a data stream for an

authenticated network session;
determining, by one or more processors, whether the plu

rality of transactions comprise a transaction storm;
in response to determining that the plurality of transactions

comprise the transaction storm, presenting metrics asso
ciated with the transaction storm and a set of one or more
actions; and

receiving an indication to apply at least one of the set of one
or more actions in a Subsequently detected transaction
Storm.

Nov. 13, 2014

2. The method of claim 1, whereindetermining whether the
plurality of transactions comprise the transaction storm
includes one or more of:

determining whetheran average interval between consecu
tive transactions of the plurality of transactions is less
than a first threshold; and

determining whether consumed processing time for the
plurality of transactions exceeds a second threshold.

3. The method of claim 2, whereindetermining whether the
plurality of transactions comprise the transaction storm
includes one or more of:

determining an originator identifier of the data stream; and
determining that the plurality of transactions in the data

stream occur during a configured time interval.
4. The method of claim 1, further comprising applying the

at least one of the set of one or more actions in the Subse
quently detected transaction storm.

5. The method of claim 4, wherein applying the at least one
of the set of one or more actions includes one or more of

adding a delay to one or more transactions of the plurality
of transactions in the data stream; and

returning a value in response to detecting a transaction
having a predetermined transaction type.

6. The method of claim 5, further comprising determining
a transaction sequence within the plurality of transactions,
and wherein adding the delay to one or more transactions
comprises adding the delay to a transaction in accordance
with a transaction type of the transaction.

k k k k k

