Office de la Propriete Canadian CA 2948646 A1 2015/12/10

Intellectuelle Intellectual Property
du Canada Office (21) 2 948 646
(Lj’,[‘ng[%?rfi“esgaena i mjgtf;‘éyaﬁ; i 12y DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2015/06/01 (51) Cl.Int./Int.Cl. GO6F 9/44 (2006.01),

GO6F 17/30 (2006.01)

(71) Demandeur/Applicant:
MICROSOFT TECHNOLOGY LICENSING, LLC, US

(72) Inventeurs/Inventors:

(87) Date publication PCT/PCT Publication Date: 2015/12/10
(85) Entree phase nationale/National Entry: 2016/11/09
(86) N° demande PCT/PCT Application No.: US 2015/033554

(87) N° publication PCT/PCT Publication No.: 2015/187/567 SHAKIRZIANOV, ANTON, US:
(30) Priorités/Priorities: 2014/06/02 (US62/006,662); NARAYANAN, SURIYA, US;
2014/11/12 (US14/539,521) YU, LIANG, US;

KAMINSKI, TOMASZ, US
(74) Agent: SMART & BIGGAR

(54) Titre : ACCES A UN CONTENU SEMANTIQUE DANS UN SYSTEME DE DEVELOPPEMENT
(54) Title: SEMANTIC CONTENT ACCESSING IN A DEVELOPMENT SYSTEM

100
N\

128 INTERACTIVE DEVELOPMENT SYSTEM 102
144 114

SEARCH NAVIGATION
MODULE MODULE UTHER
112
T 110
USER
INTERFACE PROCESSOR
MODULE

SEARCH COMPONENT
STORE

SEMANTIC SEARCH
COMPONENT

-

107
APPLICATION ELEMENTS (TYPES)

131 109 111
METADATA CODE
SEARCH COMPONENT
CODE GENERATOR |FROCESSOR

MODEL STORE

152 TYPE
®
@

ER INTERFACE DISPLAY(S) 116

9
DEVELOPER
FIG. 1

(57) Abrege/Abstract:
A development system comprises, In one example, a development module sensing user development inputs and transforming
elements of the computer system based on the user development inputs. The elements comprise types modeled in the computer

rachRE f /[[
R s S t"...
% Sy S/ /S
SO TN SN CIPO
AR
L R
4
3

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

CA 2948646 A1 2015/12/10

ey 2 948 646
(13) A1

(57) Abrege(suite)/Abstract(continued):
system. A user Iinterface module generates a user interface display with a user input mechanism, and senses a user search Input

recelved through the user input mechanism indicative of a user search query for searching the elements of the computer system. A
search engine identifies a type-based search parameter for the user search query. The search engine Is controlled to activate a
type-based search component based on the type-based search parameter. The type-based search component performs an

element search to return a set of search results in the user interface display.

(43) International Publication Date
10 December 2015 (10.12.2015)

CA 02948646 2016-11-09

(19) World Intellectual Property
Organization
International Burecau

WIPOIPCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(10) International Publication Number

WO 2015/187567 Al

(1)

(21)

(22)

(25)

(26)
(30)

(71)

(72)

International Patent Classification:
GO6F 9/44 (2006.01) GO6F 17/30 (2006.01)

International Application Number:
PCT/US2015/033554

International Filing Date:
1 June 2015 (01.06.2015)

Filing Language: English
Publication Language: English
Priority Data:

62/006,662 2 June 2014 (02.06.2014) US
14/539,521 12 November 2014 (12.11.2014) US

Applicant: MICROSOFT TECHNOLOGY LICENS-
ING, LLC [US/US]; One Microsoit Way, Redmond,
Washington 98052-6399 (US).

Inventors: SHAKIRZIANOV, Anton; c/o Microsoft
Technology Licensing, LLC, LCA - International Patents
(8/1172), One Microsoft Way, Redmond, Washington
98052-6399 (US). NARAYANAN, Suriya; c/o Microsoft
Technology Licensing, LLC, LCA - International Patents
(8/1172), One Microsoft Way, Redmond, Washington
908052-6399 (US). YU, Liang; c/o Microsoft Technology
Licensing, LLC, LCA - International Patents (8/1172), One
Microsoit Way, Redmond, Washington 98052-6399 (US).
KAMINSKI, Tomasz; c/o Microsoft Technology Licens-

(81)

(84)

ing, LLC, LCA - International Patents (8/1172), One Mi-
crosoft Way, Redmond, Washington 98052-6399 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant's entitlement to apply for and be granted a
patent (Rule 4.17(ii))

[Continued on next page]

(534) Title: SEMANTIC CONTENT ACCESSING IN A DEVELOPMENT SYSTEM

WO 2015/187567 A1 [HJ 1! AP D00 00RO A

100 \
128 120 INTERACTIVE DEVELOPMENT SYSTEM]/ 102
A \ 122
- SEARCH COMPONENT e / 14
124 \\ STORE SEARCH NAVIGATION p——
T
SEMANTIC SEARCH MODULE MODULE
COMPONENT . 1
° 104 - 110
o DEVELOPMENT USER
126 o FUNCTIONALITY INTERFACE PROCESSOR
MODULE
SEMANTIC SEARCH
COMPONENT 07
APPLICATION ELEMENTS (TYPES) L~
130 ¢ 131 109 111
\ A METADATA b~ CODE |/
SEARCH COMPONENT
CODE GENERATOR |V ROCESSOR
N !
AN .
MODEL STORE USER INTERFACE DISPLAY(S) / 116
ol 132 USER INPU'T 118
™__TYPE MECHANISM(S)
® b |
. t
®
. 134 L/ 106
\i TYPE DEVELOPER FIG. 1

(57) Abstract: A development system comprises, in one example, a development module sensing user development mputs and trans -
forming elements of the computer system based on the user development mputs. The elements comprise types modeled mn the com -
puter system. A user mterface module generates a user mterface display with a user mput mechanism, and senses a user search mput
received through the user imput mechanism indicative ot a user search query for searching the elements of the computer system. A
search engine identifies a type-based search parameter for the user search query. The search engine 1s controlled to activate a type-
based search component based on the type-based search parameter. The type-based search component performs an element search to
return a set of search results in the user interface display.

CA 02948646 2016-11-09

WO 2015/187567 A1 IO A0 00 00

— as to the applicant'’s entitlement to claim the priority of — before the expiration of the time [imit for amending the
the earlier application (Rule 4.17(iii)) claims and to be republished in the event of receipt of
Published: amendments (Rule 48.2(h))

— with international search report (Art. 21(3))

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

SEMANTIC CONTENT ACCESSING IN A DEVELOPMENT SYSTEM

BACKGROUND
[0001] Computer programs are developed on various development tools. For
example, many software developers use interactive (or integrated) development
environments (IDEs) 1in order to develop software. The developers use an IDE 1n order to
develop models of types within a computer system, and 1n order to customize those
models.
10002] An exemplary interactive development environment includes a plurality of
different tools so that developers can develop and test the code that needs to be developed
and 1n order to customize a computer system as desired. By way of example, an IDE may
include a source code editor, one or more build automation tools and a debugger that allow
computer programmers to develop software. Some IDEs illustratively include a compiler,
an interpreter, or both. They may include a version control system and various tools to
simplify the construction of graphical user interfaces. They can also include a class
browser, an object browser, and a class hierarchy diagram for use with object oriented
software development. Thus, developers can use IDEs to generate the code and metadata,
along with customizations to code and metadata, which may be utilized 1n developing a
system for use in a given organization. For example, a developer can work with source
code and metadata files which relate to application elements. One application can require
creating or changing both metadata and code that consumes the metadata 1n various ways.
[0003] In generating or customizing software using an IDE, the application
developer models specific concepts (which may be represented as types) within an
application and, where necessary, writes code. Large applications, for which developers
often use IDEs, can include thousands of different types.
[0004] By way of example, some computer systems include business systems,
such as enterprise resource planning (ERP) systems, customer relations management
(CRM) systems, line-of-business (LOB) systems, among others. These types of computer
systems often have many thousands of different types that are modeled and customized.
By way of example, some such business systems often have thousands of different forms,
alone, not to mention many other types.
[0005] Business systems are not the only types of computer systems that have a

large number of types. For instance, gaming systems, or a wide varicty of other types of

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

systems, often also have many thousands of different types that are modeled in the
software system.
[0006] The discussion above 1s merely provided for general background information
and 1s not intended to be used as an aid 1n determining the scope of the claimed subject
matter.
SUMMARY

[0007] During software development, a developer secarches for clements to facilitate
the development process. A scarch architecture allows a developer to search for metadata
and code that meet certain criteria. The search architecture leverages semantic element
information to return results that are relevant to the developer’s query.
[0008] A development system comprises, 1n one example, a development module sensing
user development mnputs and transforming elements of the computer system based on the
user development inputs. The elements comprise types modeled in the computer system.
A user interface module generates a user interface display with a user input mechanism,
and senses a user search mput received through the user input mechanism indicative of a
user search query for searching the elements of the computer system. A search engine
identifies a type-based search parameter for the user search query. The search engine 18
controlled to activate a type-based search component based on the type-based search
parameter. The type-based search component performs an element search to return a set
of search results i the user intertace display.
[0009] This Summary 18 provided to introduce a selection of concepts 1n a simplified
form that are further described below 1n the Detailed Description. This Summary 1s not
intended to 1dentify key features or essential features of the claimed subject matter, nor 1S
it intended to be used as an aid 1n determining the scope of the claimed subject matter. The
claimed subject matter 1s not limited to implementations that solve any or all
disadvantages noted 1n the background.

BRIEF DESCRIPTION OF THE DRAWINGS
[0010] Figure 1 1s a block diagram of one example of a semantic search architecture.
[0011] Figure 2 1s a flow diagram 1illustrating one example of a method for generating
semantic search components.
[0012] Figure 3 1s a block diagram 1llustrating semantic search functionality, under one
example.
[0013] Figure 4 1s a flow diagram 1illustrating one example of a method for a performing a

search using semantic scarch components.

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

[0014] Figure 5 1llustrates one example of a user interface display.
[0015] Figure 6 1llustrates one example of a user interface display.
[0016] Figure 7 1s a block diagram showing one example of the architecture 1llustrated in
Figure 1, deployed 1n a cloud computing architecture.
[0017] Figures 8-12 show various examples of mobile devices that can be used with the
architecture shown in Figure 1.
[0018] Figure 13 1s a block diagram of one example computing environment.

DETAILED DESCRIPTION
[0019] Figure 1 1s a block diagram of one example of a semantic search architecture 100.
Architecture 100 1ncludes an interactive development system (e.g., an IDE) 102 having
development functionality 104. Figure 1 shows that a developer 106 interacts with system
102 to perform development and/or customization of application elements 107 that are run
in a computer system. For instance, cach of the application clements include metadata
109, and can include code 111 as well. By way of example, developer 106 uses
functionality 104 to develop elements 107 for an application, such as by creating or
changing metadata 109 and code 111. In one example, but not by way of limitation, the
clements 107 comprise objects 1n an object-oriented programming environment. Any
suitable programming language(s) can be utilized in system 102.
[0020] In the illustrated example, a model store 108 stores the metadata and code
corresponding to various different types of application e¢lements (e.g., types), and 1s
accessible, for mstance, by system 102 and a search component code generator 130. A
“type” refers to an abstraction, representing concepts modeled 1n a system. For instance,
in a business system, clement types can include forms, entities, classes, tables, menu
items, security roles, and/or permissions, to name a few. In one example, table objects
contain metadata and code for persisting application data in a database. In another
example, form objects contain metadata and code to describe information content to be
displayed in various devices for application users to consume information and interact
with the application.
[0021] In one example, when utilizing development functionality 104 to develop
application eclements 107, developer 106 1s presented with an integrated or IDE view for
coding the application clements 107. One simplified example 1s shown 1n Table 1 below

for 1llustration.

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

Table 1

public class Tablel extends common

d

/// <summary>
/1]
/// </summary>

private void Method1()

d
j

/// <summary>
/1/
/// </summary>

public void 1nsert()

d
super();

[0022] In this manner, code and metadata being authored by developer 106 to develop
application elements 107 1s presented 1n a first format, for example 1n a code editor view
that provides a user-friendly interface for coding the application elements 107. However,
while developer 106 views and authors the code and metadata in the first format,
interactive development system 102 maintains and operates on a source code
representation of the developed application elements 1n a second format that 1s different
than the first format. In one example, a serialized representation comprising code and
metadata 18 maintained by system 102 for cach element. The second format 1s machine-
readable and amenable to execution by system 102. In one example, but not by limitation,
model store 108 comprises a file system that stores the source code representations as
XML files. The metadata and code XMLs comprise serialized element structures, each
with 1ts own type. Table 2 below shows an example XML file that corresponds to the

integrated view shown 1n Table 1:

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567

Table 2

<?xml version="1.0" encoding="utf-8"?>

PCT/US2015/033554

<AxTable xmlns:1="http:// www.w3.0rg/2001/XMLSchema-instance">

<Name>Tablel</Name>
<SourceCode>

<Declaration><![CDATA|

public class Tablel extends common

d

h
|1»</Declaration>
<Methods>
<Method>

<Name>Method 1</Name>
<Source><!|{CDATA]

/// <summary>

/1/

/// </summary>

private void Method1()

d
j

11></Source>
</Method>
<Method>
<Name>1nsert</Name>
<Source><![CDATA]
/// <summary>
/1/
/// </summary>

public void 1nsert()

d
super();

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567

11></Source>
</Method>
</Methods>
</SourceCode>
<Label>@SYS1234</Label>
<DeleteActions />
<FieldGroups>
<AxTableFieldGroup>
<Name>AutoReport</Name>
<Fields />
</AxTableFieldGroup>
<AxTableFieldGroup>
<Name>AutoLookup</Name>
<Fields />
</AxTableFieldGroup>
<AxTableFieldGroup>
<Name>Autoldentification</Name>
<AutoPopulate>Y es</AutoPopulate>
<Fields />
</AxTableFieldGroup>
<AxTableFieldGroup>
<Name>AutoSummary</Name>
<Fields />
</AxTableFieldGroup>
<AxTableFieldGroup>
<Name>AutoBrowse</Name>
<Fields />
</AxTableFieldGroup>
</FieldGroups>
<Fields>
<AxTableField xmlns=""
1:.type="AxTableFieldString">
<Name>Field1</Name>

</AxTableField>

PCT/US2015/033554

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

</Fields>
<FullTextIndexes />
<Indexes />
<Mappings />
<Relations />
<StateMachines />

</AxTable>

[0023] In the above example, the metadata and code are serialized into one XML file.
That 1s, snippets of code (1.€., unstructured strings) and metadata (1.c., structured sets of
propertics and values) are interspersed 1n the XML file. However, one skilled in the art
understands that other formats can be utilized.

[0024] Developer 106 can interact with interactive development system 102 either through
a separate developer device (such as a personal computer, a tablet, another mobile device,
etc.), or directly. Developer 106 can also mteract with system 102 over a network (e.g.,
remotely). Developer 106 1s shown interacting directly (e.g., locally) with system 102 1n
Figure 1 for the sake of example only.

[0025] Interactive development system 102, 1n one example, includes a processor 110
and user interface module 112. User interface module 112 generates user interface
displays 116 with user input mechanisms 118, for interaction by developer 106.
Developer 106 interacts with user mmput mechanisms 118 i1n order to control and
manipulate interactive development system 102. In one example, developer 106 can do
this to implement development functionality 104 as well as to use a search module 120
and a navigation module 122. System 102 can include other items 114 as well.

[0026] Developer 106 can use existing code and metadata 1n model store 108, or
generate new code and metadata or a combination of existing and new code and metadata.
In doing so, existing clements 1n model store 108 may be changed or deleted, and new
clements may be added. To facilitate development, the developer 106 may desire a search
of model store 108 to find elements of interest. For instance, developer 106 may desire to
locate a particular element to customize within the application.

[0027] However, due 1n part to the size of the codebase, which 1s often quite large, it
can be difficult to find elements that meet certain developer search criteria. One searching

implementation relies on building an index ahead of time, against which the developer

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

query 1s executed. For example, there are crawlers that navigate content and build
indexes, which are then used to search. In the case of a development platform, once an
clement 1s changed or added, the index becomes out of date. Further, given the size of the
codebase, rebuilding the index repeatedly takes a great deal of time.
[0028] In the illustrated example, semantic search architecture 100 obtains search
results by using search module 120 to semantically search model 108 taking into account
the elements’ names, types, and/or properties. The search 1s semantic 1n that 1t leverages
an understanding of the structure of the element types, and a meaning of the element types
and the properties within those element types. As discussed in further detail below, the
particular structure of the clement types can be relevant to searching the clements of
model store 108. By way of illustration, but not by limitation, each element type has a
particular structure of properties, methods, and/or computations that define runtime
behavior for elements of that clement type. For example, a table element type can include
a name (¢.g., “‘customer table”) and a set of properties that i1dentify attributes for a
customer (e.g., customer 1D, address, etc.). Also, in this example, the table element type
can include a method for computing a value for the customer and/or a method for
displaying the value.
[0029] Before describing the overall operation of architecture 100 in more detail, a
briet overview will be provided. In one example, search module 120 comprises a search
engine that recerves a user search query defining search criteria in the form of one or more
tokens. The tokens define search parameters, and can include one or more characters
forming a string or term. The search engine parses the search query from developer 106 to
identify a semantic search parameter or constraint and executes the search query against
model store 108 to obtain a set of search results that are provided to developer 106. In one
example, executing the query comprises matching the one or more tokens against
properties and/or methods 1n the application elements.
[0030] The semantic search parameter can be explicitly provided 1n the search query
itself, or can be implied or derived from the search query. For instance, in the example
described below with respect to Figure 5, developer 106 enters a search query of:
type:table, method name:1nsert property:“source=crosscompany’’
[0031] Here, the semantic search parameter identified from the query comprises a
type-based constraint. That 1s, the developer 106 desires elements that are of the element
type “table”, have a method with a name matching the token ““insert”, and a source

property with a value matching the token “crosscompany”. While embodiments are herein

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

discussed in the context of type-based constraints, it noted that other semantic search
parameters or constraints can be used.

[0032] In the 1llustrated example, to perform the search, search module 120 accesses a
scarch component store 128 that stores a plurality of search components (1.¢., scarch
components 124 and 126) that have been generated by a search component code generator
130. One example of generating scarch components using scarch component code
generator 130 1s discussed m further detail below with respect to Figure 2. Brietly, search
component code generator 130 includes a processor 131 configured to generate a search
component for each different element type modeled 1n model store 108. Each search
component 1s generated for a particular one of the element types. In this manner, each
scarch component 1s specific to the structure of the particular element type for which 1t
was generated. In one example, search components are generated and stored 1n store 128
for all possible element types that can be used by developer 106. For instance, in one
example a pre-defined set of element types are available to developer 106, and any new
clement types are added to system 102 through an update to system 102.

[0033] Scarch module 120 uses the type-based secarch constraints from the secarch
query to 1dentify one or more of the search components from search component store 128
to be used to return a list of results, from the elements 1n model store 108. One example of
scarching model store 108 using the secarch components 1s discussed in further detail
below with respect to Figure 4. Brietly, secarch module 120 1dentifies a corresponding
scarch component for cach type-based search constraint. In the above example, search
module 120 1dentifies the search component (1.€., search component 124 or 126) that was
generated for the table element type. The 1dentified search component 1s mstantiated for
cach clement 1n model store 108 having the table element type, to 1dentify elements that
match the method name and property values in the search query. The search module 120
aggregates scarch results obtained from the mstantiated search component. Navigation
module 122 facilitates user navigation of the search results.

10034] Search architecture 100 thus leverages semantic information regarding the
application eclements 107 1n performing a search of model store 108, without having to
build or maintain an index ahead of time. This may reduce processing load and time, and
memory requirements 1n executing the search functionality in the development system,
and may improve search result relevancy to the user’s query.

[0035] For sake of 1illustration, 1n the example of Figure 1, for each different type of

application element, architecture 100 maintains a specific search components that 1S

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

configured to search the existing elements of model store 108 of that element type.
However, those search components are also able to search any new clements added by
developer 106 to model store 108, regardless of the type (1.¢., all element types have a pre-
defined search component) or the specific properties of the new element. Conversely, 1n
the case of an indexed search system, adding the new elements to the model store 108
would require that the index be updated to include the new elements.

[0036] For sake of further illustration, assume that model store 108 includes two
different element types (i.¢., a table element type 132 and a form element type 134). A
first secarch component 124 1s genecrated for clement type 132 and a second secarch
component 126 1s generated for element type 134. In the example of Figure 1, code
generator 130 only needs to be run once for ecach clement type. In this manner, once
scarch components 124 and 126 have been generated, code generator 130 does not need to
regenerate or modify them, even 1f existing elements of types 132 and 134 are modified 1n
model store 108 and/or new elements of types 132 and 134 are added 1n model store 108.
[0037] Scarch component 124 1s instantiated when search module 120 searches for
clements of type 132 and search component 126 1s instantiated when search module 120
scarches for elements of type 134. In one example, when both element types 132 and 134
are being searched, search components 124 and 126 can operate 1n parallel to reduce the
scarch time. It 1s noted that while only two eclement types and type-based search
components are shown in Figure 1, any number of e¢lement types and semantic search
components can be implemented.

[0038] While model store 108 and search component store 128 are 1llustrated in Figure
1 as being separate from 1nteractive development system 102, 1t 1s noted that model store
108 and/or secarch component store 128 can be part of interactive development system 102.
However, due to bandwidth and latency considerations, in some implementations model
store 108 and search component store 128 can be maintained on a same computing system,
although this 1s just one example. In this manner, while the search requests and results
may be sent over a network, search architecture 100 does not require transmission of the
model store 108. Again, this 18 just one example of an architecture.

[0039] Also, Figure 1 shows a variety of different functional blocks. It will be noted that
the blocks can be consolidated so that more functionality 1s performed by each block, or
they can be divided so that the functionality 1s further distributed.

[0040] It should also be noted that the above discussion has shown a number of data

stores, including model store 108 and search component store 128. While these are shown

10

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

as two independent data stores, they could also be formed within a single data store. In
addition, the data in those data stores can be stored 1n multiple additional data stores as
well. Also, the data stores can be local to the environments, agents, modules, and/or
components that access them, or they can be remote therefrom and accessible by those
environments, agents, modules, and/or components. Similarly, some can be local while
others are remote.

[0041] In the 1llustrated example, processors 110 and 131 comprise computer processors
with associated memory and timing circuitry (not separately shown). They are a
functional part of the agent or environment to which they belong, and are 1llustratively
activated by, and facilitate the functionality of, other items 1n that environment or agent.
[0042] Figure 2 1s a flow diagram illustrating one example of a method 200 for
generating semantic search components. For sake of 1llustration, but not by limitation,
method 200 will be described 1n the context of architecture 100 generating type-based
search components.

[0043] Method 200 can be mitiated periodically and/or in response to a condition or
cvent. For example, method 200 can be mitiated 1in response to an update to system 102
that adds or modifies the element types that are supported by system 102. In another
example, method 200 can be 1itiated 1in response to an mput from developer 106 (e.g., by
selecting a control such as open, close, save, etc. on user interface 116).

[0044] At step 202, secarch component code generator 130 accesses model store 108
and determines, at step 204, whether there are any new clement types for which to
generate a type-based search component. In one example, search component code
ogencrator 130 analyzes some (e.g., the most recent changes and additions), or all, of the
clements 1n model store 108 and compares those clements against existing or known
clement types (1.¢., types 132 and 134). For instance, search component code generator
130 1dentifies elements that have been changed or added by developer 106.

[0045] If a new clement type 1s i1dentified, secarch component code generator 130
analyzes the structure of the new clement type at step 206 to generate a type-based search
component for the new element type at step 208. In one example, search component code
generator 130 parses the structure of the new clement type into any subtypes, and
determines what propertics the type and/or subtypes contain, any child element types,
what element types derive from the element type, and an implementation for property
getters of the clement type. Each property getter defines a function for retrieving a

property of the eclement type, for example based on the location of the property in the

11

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

clement type and/or relationships to other properties. In one example, search component
code generator 130 generates different property getter code to search different portions of
the element type structure. For instance, one piece of the code can search methods 1n a
given portion of the element and one piece of the code can look at controls, etc. With
respect to the customer table element type example discussed above, one property getter
could be configured to return the “customer ID” property” and another property getter
could be configured to return the “address’ property.
[0046] Each search component 1s configured to follow a defined element pattern (e.g.,
a pattern of child elements, properties, methods, etc.), which 1s based on the element type
for which the search component 1s generated. For example, but not by limitation, 1n
Figure 1 element types 132 and 134 have different patterns of child elements from one
another. Search component 124 1s configured to call search method(s) to examine and
return values of the child clements associated with eclement type 132, and search
component 126 1s configured to call search method(s) to examine and return values of the
child elements associate with element type 134.
[0047] By way of example, one metadata element comprises a tree data structure and
1s defined by a name and a metadata element type. The metadata element type 1s further
defined by a set of properties, with each property defined by a name and a type of a
property value. The type of property value can be, for example but not by limitation,
primitive (convertible to a string (YesNo, Date, Tags, etc.)). Such property 1s referred to as
a “simple property”. Another type of property value 1s a metadata element type,
containing child metadata elements. Such property can be referred to as a “node property”.
Root mectadata clements are elements that are stored directly in metadata storage and do
not have any parents. Child metadata elements are elements that are contained 1n some of
the other element node property. A metadata path comprises a string that uniquely
identifies the metadata clement and facilitates locating the metadata element. In one
example, the form of the path 1s:
dynamics://<Root type>/<Root clement name>[/<Subtype 1>/<Subelement na
me 1>[/<Subtype 2>/<Subelement name 2>[...]]]
Where:
<Root type> - type of the root metadata element
<Root clement name> - name of the root element
<Subtype 1> - types of each child metadata element 1n a tree

<Subelement name 1> - names of each child metadata element 1n a tree

12

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

[0048] At step 210, the gencrated semantic secarch component 1s stored in search
component store 128. If any additional new element types are 1dentified at step 212, steps
206, 208, and 210 are repeated for the new element type(s).
[0049] Figure 3 1s a block diagram illustrating semantic search functionality, under
on¢ example. For sake of illustration, but not by limitation, Figure 3 will be described in
the context of semantic search functionality 1n architecture 100.
[0050] Block 250 provides an interface to interactive development system 102.
Through block 250, search module 120 receives a search query that 1s provided to a query
parser at block 252. The query provides one or more search criteria that define filter(s),
and can have any suitable syntax or grammar.
[0051] One relatively simple syntax example 1s provided below:

Scarch query 18 search string, where:

search String = empty String

search string = text without colon

search string = filter

search string = search string filter

filter = filter name:filter value

filter value = text without comma

filter value = "any text"

filter value = filter value,filter value

filter name = name OR type OR model OR property

So the scarch string consists of a set of filters 1n the general form:
<filter 1>:<filter 1 value>[<filter 2>:<filter 2 value>...[
<filter N>:<filter N value>]]

Where <filter 1> 18 on¢ of the acceptable filter names, and <filter 1 value> 1s

comma separated and possible quoted filtering values.

[0052] As 1llustrated above and shown 1n Figure 3, one example of user search criteria
1s clement name, which can specify one string or a set of strings. An clement 1S
considered to meet this criteria if the element’s name contains at least one of the strings.
Each comma scparated value can be an acceptable clement name. In one example,
clement name 15 the default filter. Thus, 1f a search query includes a single token, 1t 1s

assumed to be the element name. In this example, if no type-based constraint 1s identified,

13

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

the search architecture can instantiate the search components for all available element
types.
[0053] Another example criteria 18 element type, which can specity one element type
or a sct of element types. An element 1s considered to meet this criteria if 1t 18 of one of
the specified types. Each comma separated value can be a name of one of the element
types (1.¢. table, class, field). The search query can specity both root and subtypes as a
value. In one example, filtering logic can be as follows:

(roottype 1 OR roottype 2 OR ... OR roottype N) AND (subtype 1 OR
subtype 2 OR ... OR subtype N)

[0054] Another example criteria 1s element property, which can specify a set of key-
value pairs “property’s name - property’s value”. An element 18 considered to meet the
criteria if for cach pair it 1s true that a) the element contains a “simple” property with the
specified name, and b) this property’s value converted to a string contains the specified
value. Each comma separated value can be 1n the form property name = property value.
[0055] At block 254, one or more type-based search components (¢.g., component 124
and/or 126) arc instantiated based on 1dentified element type(s). For example, this can be
performed by accessing type information (for example from type-based search component
store 128) at block 256 based on the type filter criteria from parser block 252. Block 256
provides information about the element type(s) including, but not Imited to, what
propertics the type(s) contain, the types of child elements of the element type, what
clement types are derived from the element type, and implementation of property getters
for the element type.

[0056] In one example, block 254 uses type information provided by block 256 to
process the search options 1n order to accord types criteria with property criteria. If the
search criteria includes one or more properties, using type information block 254 can filter
out all element types that cannot contain the searched properties.

[0057] For cach clement type to be searched, the corresponding type-based search
component 1s instantiated 1 accordance with the code generated by code generator 130.
[0058] At block 258, references to elements 1n model store 108 are obtained according
to the search criteria from block 254 and the semantic secarch components instantiated at
block 256. For example, metadata clement references can facilitate getting a root
clement’s name (quick operation that 1s not connected with storage access) and/or loading

the element (relatively long operation connected with storage access).

14

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

[0059] At block 260, the element references obtained at block 258 are prioritized into
chunks based on, for example, the specified criteria of the element’s name or other
heuristics. For instance, a root element having a name that contains any of the searched
names would be processed before root elements that do not contain the name.

[0060] Block 262 processes specific elements 1n model store 108 to determine 1f they
meet the search criteria. In one example, an element i1s considered to meet the search
criteria 1f the clement’s type 1s one of the required types specified at block 254, the
clement’s name contains one of the required names or a part thercof, and for cach pair
“property’s name - property’s value™ specified by search criteria 1t 1s true that the element
contains a property with such a name, and this property’s value contains the specified
property’s value.

[0061] In one example, block 262 obtains an clement predicate function or other
information from block 264, which 1s used to determine whether an element meets search
criteria. Block 264 creates a predicate function for each of the element types, provided by
262, using information from block 256. For example, block 264 provides the element
types to block 256 and receives information on implementation of property getters for
cach eclement type.

[0062] If an element 1n model store 108 meets the search criteria, the result 1s provided
to the developer 106 through interface block 250.

[0063] Figure 4 1s a flow diagram illustrating one example of a method 300 for
performing a search using semantic search components. For sake of 1llustration, but not
by limitation, method 300 will be described 1n the context of architecture 100 performing a
scarch using type-based search components.

[0064] At step 302, a development surface 1s displayed, for example using user
interface display 116. At step 304, a search input 1s received, and at step 306, the search
input 18 parsed to 1dentify search criteria. Examples of search criteria include, but are not
limited to, type-based constraints, method names, and property values. Search module 120
then secarches model store 108 for elements that meet the search criteria.

[0065] At step 308, onec or more type-based secarch components are identified and
instantiated to search the model store 108. For example, as discussed above with respect
to FIG. 3, a type-based search constraint can be explicitly defined 1n the search mput. In
another example, a type-based search constraint can be inferred from the tokens provide in
the search input. For instance, for a property value provided in the search mput, step 308

can determine which element types have the corresponding property.

15

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

[0066] Then, the one or more type-based search components are instantiated by search
module 120 to search the elements in model store 108 based on the search query. In one
example, a separate 1nstantiation of a search component 1s created for each element of the
corresponding element type.

[0067] The instantiated search component(s) are used to search the elements in model
store 108 at step 310, and, at step 312, 1dentify clements that meet the criteria identified
from step 306. As discussed above, 1n one example, the search components can search
serialized representations (e.g., XML files) of the elements, rather than directly searching
the elements developed by developer 106.

[0068] By way of example, but not by limitation, while searching a serialized
representation of an element 1n model store 108, a search component 1dentifies a portion of
the eclement that meet the secarch criteria by finding references (e.g., line and column
number positions) to the corresponding clements in the serialized representations. The
scarch component can distinguish the code from the metadata and, for a match identified
in the serialized representation, computes the position in the code as 1f 1t searched the
integrated code view that 1s presented to the developer. Thus, from the perspective of
developer 106, the search module 120 searches and returns results within the code editor
and/or metadata editor views, rather than the serialized representation.

[0069] In one example, the search component reads the element, converts it to an
object-oriented expression, and applies 1ts property getters to identify and match a
property against a property-based scarch criteria from the search query. The search
component converts the matched property into a corresponding path that uniquely
identifies the property inside the object. For example, the path comprises a uniform
resource 1dentifier (URI), which can be a metadata path as discussed above.

[0070] At step 314, the results are returned as a set of links that mdicate element
matches to the search criteria. For example, the search component 1dentifies an clement
match by returning the corresponding URI to an aggregator component of search module
120. The aggregator URI’s are provided to user interface module 112 for presentation to
developer 106.

[0071] At step 316, a selection by developer 106 of a particular URI 1s received, for
example through user interaction such as a mouse click or other user input. Navigation
module 122 decodes the selected URI to 1identify the corresponding element location. In
onc c¢xample, the URI comprises a reference to a distinct property (e.g.,

“source=crosscompany’’), where sclection of the URI opens a metadata editor at the

16

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

location 1dentify by the URI. In another example, the URI comprises a reference to a
method body that includes a value, where selection of the URI opens a code editor.
[0072] In one example, the search results are obtained and displayed asynchronously.
This 1s represented 1n Figure 4 by arrow 320. That 1s, as the instantiated semantic search
components 1dentify an element that meets the search criteria at step 312, a URI for the
identified element 1s displayed to the developer while the search continues in the
background.
[0073] Figure 5 illustrates one example of a user interface display 400 that provides a
development surface through which developer 106 can develop application elements and
perform a search using architecture 100. For sake of illustration, but not by limitation,
user interface display 400 will be described 1n the context of architecture 100.
[0074] User interface display 400 includes a code editor view 402 that receives
developer mputs to author application elements 107 and a semantic search interface 404
that receives a developer search query. By way of example, the following search query
has been entered 1n element 404

type:table, method name:insert property:‘“‘source=crosscompany’’
[0075] Using the example syntax described with respect to Figure 3, the search query
specifies a type filter of “table”, a method name filter of “insert”, and a property name
filter of “crosscompany”. Search module 120 instantiates the type-based search component
corresponding to a table type. The search query can be executed asynchronously which
populates a results window 406 with search results URIs as they are obtained. That 1s, the
search can begin by displaying one or more scarch result URIs in window 406, and then
add additional search result URIs to window 406 as they are obtained. In this manner,
developer 106 can continue to interact with user interface display 400, for example by
clicking a desired URI, to direct view 402 to the corresponding search result while the
scarch continues to run in the background to return any additional results. In the
illustrated example, each URI includes label information 408 and location information 410
that identifies an element and a location of the element.
[0076] In one example, the search capability of scarch module 120 1s exposed as an
application programming interface (API) along with an object model, that 1s independent
of the secarch query syntax. Using the API, a scarch operation can be invoked as a service
on a network that can be consumed remotely from any of a plurality of different devices

(e.g., subject to access rights and security). The parameters for the search API are objects

17

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

in the object model and not a query string to confirm to a syntax. Thus, the search query
syntax 18 decoupled from the searcher.

[0077] By way of example, a class diagram for the object model can include a
plurality of different classes, with cach class defining one or more semantic search
constraints and methods to be called for searching and examining corresponding elements.
Examples of semantic search constraints defined by the object model classes include, but
arc not limited to, type constraints, property constraints, code constraints, and name
constraints.

[0078] Figure 6 1illustrates an example user interface 450 that renders search results
using the search API. User interface 450 includes a query mput field 452 that receives a
search query defining the search parameters and a query results field 454 that displays the
corresponding query results returned from the search module. In the 1llustrated example,
the search parameters include a code constraint class and identify a string (i.e., “while
select”) for the code constraint. The code constraint class includes methods for matching
the string, prioritizing the search, etc. The search module instantiates an object of the code
constraint class and executes the search against the model store.

[0079] In one example, a different syntax can be provided depending on the device
from which the search 1s mitiated. For instance, from a developer desktop computer with
a larger form factor screen, the developer can be allowed to enter a query string in a
formal syntax. On the other hand, from a mobile device with a smaller form factor, entry
in the formal syntax may be more difficult for the developer. The search architecture can
be configured to facilitate query entry in a simpler form. For example, when using a
mobile device or the like, the developer can be presented with controls having predefined
scarch functions, such as a button assigned to a specific set of search constraints (e.g., a
specific type-based search).

[0080] The present discussion has mentioned processors and servers. In one example, the
processors and servers include computer processors with associated memory and timing
circuitry, not separately shown. They are functional parts of the systems or devices to
which they belong and are activated by, and facilitate the functionality of the other
modules, components and/or 1items 1n those systems.

[0081] Also, a number of user interface displays have been discussed. They can take a
wide variety of different forms and can have a wide variety of different user actuatable
input mechanisms disposed thercon. For instance, the user actuatable mput mechanisms

can be text boxes, check boxes, 1cons, links, drop-down menus, scarch boxes, e¢tc. They

18

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

can also be actuated 1n a wide variety of different ways. For mstance, they can be actuated
using a point and click device (such as a track ball or mouse). They can be actuated using
hardware buttons, switches, a joystick or keyboard, thumb switches or thumb pads, etc.
They can also be actuated using a virtual keyboard or other virtual actuators. In addition,
where the screen on which they are displayed 1s a touch sensitive screen, they can be
actuated using touch gestures. Also, where the device that displays them has speech
recognition components, they can be actuated using speech commands.

[0082] A number of data stores have also been discussed. It will be noted they can each
be broken into multiple data stores. All can be local to the systems accessing them, all can
be remote, or some can be local while others are remote. All of these configurations are
contemplated herein.

[0083] Also, the figures show a number of blocks with functionality ascribed to cach
block. It will be noted that fewer blocks can be used so the functionality 1s performed by
fewer components. Also, more blocks can be used with the functionality distributed
among more components.

[0084] Figure 7 1s a block diagram of architecture 100, shown 1n Figure 1, except
that 1ts clements are disposed 1n a cloud computing architecture 500. Cloud computing
provides computation, software, data access, and storage services that do not require end-
user knowledge of the physical location or configuration of the system that delivers the
services. In various examples, cloud computing delivers the services over a wide arca
network, such as the internet, using appropriate protocols. For instance, cloud computing
providers deliver applications over a wide area network and they can be accessed through
a web browser or any other computing component. Software, modules, or components of
architecture 100 as well as the corresponding data, can be stored on servers at a remote
location. The computing resources in a cloud computing environment can be consolidated
at a remote data center location or they can be dispersed. Cloud computing infrastructures
can deliver services through shared data centers, even though they appear as a single point
of access for the user. Thus, the modules, components and functions described herein can
be provided from a service provider at a remote location using a cloud computing
architecture. Alternatively, they can be provided from a conventional server, or they can
be installed on client devices directly, or in other ways.

[0085] The description 1s intended to include both public cloud computing and

private cloud computing. Cloud computing (both public and private) provides

19

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

substantially secamless pooling of resources, as well as a reduced need to manage and
configure underlying hardware infrastructure.

[0086] A public cloud 1s managed by a vendor and typically supports multiple
consumers using the same infrastructure. Also, a public cloud, as opposed to a private
cloud, can free up the end users from managing the hardware. A private cloud may be
managed by the organization itself and the infrastructure 1s typically not shared with other
organizations. The organization still maintains the hardware to some extent, such as
installations and repairs, etc.

[0087] In the example shown 1n Figure 7, some items are similar to those shown 1n
Figure 1 and they are similarly numbered. Figure 7 specifically shows that interactive
development system 102, model store 108, search component store 128, and search
component code generator 130 can be located 1n cloud 502 (which can be public, private,
or a combination where portions are public while others are private). Therefore, developer
106 uses a user device 504 to access those systems through cloud 502.

[0088] Figure 7 also depicts another example of a cloud architecture. Figure 7
shows that 1t 18 also contemplated that some elements of architecture 100 can be disposed
in cloud 502 while others are not. By way of example, model store 108 can be disposed
outside of cloud 502, and accessed through cloud 502. In another example, search
component store 128 can also be outside of cloud 502. In another example, search
component code generator 130 can also be outside of cloud 502. Regardless of where they
arc located, they can be accessed directly by device 504, through a network (either a wide
arca nctwork or a local areca network), they can be hosted at a remote site by a service, or
they can be provided as a service through a cloud or accessed by a connection service that
resides 1n the cloud. All of these architectures are contemplated herein.

[0089] It will also be noted that architecture 100, or portions of 1t, can be disposed
on a wide variety of different devices. Some of those devices include servers, desktop
computers, laptop computers, tablet computers, or other mobile devices, such as palm top
computers, cell phones, smart phones, multimedia players, personal digital assistants, etc.
[0090] Figure 8 1s a simplified block diagram of one example of a handheld or
mobile computing device that can be used as a user’s or client’s hand held device 16, 1n
which the present system (or parts of 1t) can be deployed. Figures 9-12 are examples of
handheld or mobile devices.

[0091] Figure 8 provides a general block diagram of the components of a client

device 16 that can run modules or components of architecture 100 or that interacts with

20

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

architecture 100, or both. In the device 16, a communications link 13 1s provided that
allows the handheld device to communicate with other computing devices and 1n some
examples provides a channel for receirving information automatically, such as by scanning.
Examples of communications link 13 include an infrared port, a serial/USB port, a cable
network port such as an Ethernet port, and a wireless network port allowing
communication though one or more communication protocols including General Packet
Radio Service (GPRS), LTE, HSPA, HSPA+ and other 3G and 4G radio protocols, 1Xrtt,
and Short Message Service, which are wireless services used to provide cellular access to
a network, as well as 802.11 and 802.11b (Wi1-F1) protocols, and Bluetooth protocol,
which provide local wireless connections to networks.

[0092] In other examples, applications or systems are received on a removable
Secure Digital (SD) card that 1s connected to a SD card interface 15. SD card interface 15
and communication links 13 communicate with a processor 17 (which can also embody
processors 110 from Figure 1) along a bus 19 that 1s also connected to memory 21 and
input/output (I/0) components 23, as well as clock 25 and location system 27.

[0093] I/O components 23, in one e¢xample, are provided to facilitate input and
output operations. I/O components 23 for various examples of the device 16 can include
input components such as buttons, touch sensors, multi-touch sensors, optical or video
Sensors, voice sensors, touch screens, proximity sensors, microphones, tilt sensors, and
gravity switches and output components such as a display device, a speaker, and or a
printer port. Other I/O components 23 can be used as well.

[0094] Clock 25 comprises a real time clock component that outputs a time and
date. It can also provide timing functions for processor 17.

[0095] Location system 27 includes a component that outputs a current
geographical location of device 16. This can include, for instance, a global positioning
system (GPS) receiver, a LORAN system, a dead reckoning system, a cellular
triangulation system, or other positioning system. It can also include, for example,
mapping software or navigation software that generates desired maps, navigation routes
and other geographic functions.

[0096] Memory 21 stores operating system 29, network settings 31, applications
33, application configuration settings 35, data store 37, communication drivers 39, and
communication configuration settings 41. It can also store a client system 24 which can be
part or all of architecture 100. Memory 21 can include all types of tangible volatile and

non-volatile computer-readable memory devices. It can also include computer storage

21

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

media (described below). Memory 21 stores computer readable instructions that, when
executed by processor 17, cause the processor to perform computer-implemented steps or
functions according to the mstructions. Processor 17 can be activated by other modules or
components to facilitate their functionality as well.

[0097] Examples of the network settings 31 1nclude things such as proxy
information, Internet connection information, and mappings. Application configuration
settings 35 include settings that tailor the application for a specific enterprise or user.
Communication configuration scttings 41 provide parameters for communicating with
other computers and include 1tems such as GPRS parameters, SMS parameters, connection
user names and passwords.

[0098] Applications 33 can be applications that have previously been stored on the
device 16 or applications that are installed during use, although these can be part of
operating system 29, or hosted external to device 16, as well.

[0099] Figure 9 shows one example 1n which device 16 1s a tablet computer 600.
In Figure 9, computer 600 1s shown with user interface display screen 602. Screen 602
can be a touch screen (so touch gestures from a user’s finger can be used to interact with
the application) or a pen-enabled interface that receives inputs from a pen or stylus. It can
also use an on-screen virtual keyboard. Of course, 1t might also be attached to a keyboard
or other user mput device through a suitable attachment mechanism, such as a wireless
link or USB port, for instance. Computer 600 can also receive voice mputs as well.
[00100] Figures 10 and 11 provide additional examples of devices 16 that can be
used, although others can be used as well. In Figure 10, a feature phone, smart phone or
mobile phone 45 15 provided as the device 16. Phone 45 includes a set of keypads 47 for
dialing phone numbers, a display 49 capable of displaying images including application
images, icons, web pages, photographs, and video, and control buttons 51 for selecting
items shown on the display. The phone includes an antenna 53 for receiving cellular
phone signals such as General Packet Radio Service (GPRS) and 1Xrtt, and Short
Message Service (SMS) signals. In some examples, phone 45 also includes a Secure
Digital (SD) card slot 55 that accepts a SD card 57.

[00101] The mobile device of Figure 11 18 a personal digital assistant (PDA) 59 or a
multimedia player or a tablet computing device, etc. (heremafter referred to as PDA 59).
PDA 59 includes an inductive screen 61 that senses the position of a stylus 63 (or other
pointers, such as a user’s finger) when the stylus 1s positioned over the screen. This

allows the user to select, highlight, and move items on the screen as well as draw and

22

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

write. PDA 59 also includes a number of user input keys or buttons (such as button 65)
which allow the user to scroll through menu options or other display options which are
displayed on display 61, and allow the user to change applications or select user input
functions, without contacting display 61. Although not shown, PDA 59 can include an
internal antenna and an infrared transmitter/receiver that allow for wireless
communication with other computers as well as connection ports that allow for hardware
connections to other computing devices. Such hardware connections are typically made
through a cradle that connects to the other computer through a serial or USB port. As
such, these connections are non-network connections. In one example, mobile device 59
also includes a SD card slot 67 that accepts a SD card 69.

[00102] Figure 12 1s stmilar to Figure 10 except that the phone 1s a smart phone 71.
Smart phone 71 has a touch sensitive display 73 that displays icons or tiles or other user
input mechanisms 75. Mechanisms 75 can be used by a user to run applications, make
calls, perform data transfer operations, etc. In general, smart phone 71 1s built on a mobile
operating system and offers more advanced computing capability and connectivity than a
feature phone.

[00103] Note that other forms of the devices 16 are possible.

[00104] Figure 13 1s one example of a computing environment in which architecture
100, or parts of it, (for example) can be deployed. With reference to Figure 13, an
exemplary system for implementing some examples mcludes a general-purpose computing
device 1n the form of a computer 810. Components of computer 810 may include, but are
not limited to, a processing unit 820 (which can comprise processor 110), a system
memory 830, and a system bus 821 that couples various system components including the
system memory to the processing unit 820. The system bus 821 may be any of several
types of bus structures including a memory bus or memory controller, a peripheral bus,
and a local bus using any of a variety of bus architectures. By way of example, and not
[imitation, such architectures include Industry Standard Architecture (ISA) bus, Micro
Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also
known as Mezzanine bus. Memory and programs described with respect to Figure 1 can
be deployed 1n corresponding portions of Figure 13.

[00105] Computer 810 typically includes a variety of computer readable media.
Computer readable media can be any available media that can be accessed by computer

810 and includes both volatile and nonvolatile media, removable and non-removable

23

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

media. By way of example, and not limitation, computer readable media may comprise
computer storage media and communication media. Computer storage media 1s different
from, and does not include, a modulated data signal or carrier wave. It includes hardware
storage media including both volatile and nonvolatile, removable and non-removable
media 1implemented 1n any method or technology for storage of information such as
computer readable instructions, data structures, program modules or other data. Computer
storage media includes, but 1s not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk
storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic
storage devices, or any other medium which can be used to store the desired information
and which can be accessed by computer 810. Communication media typically embodies
computer readable instructions, data structures, program modules or other data in a
transport mechanism and includes any information delivery media. The term “modulated
data signal” means a signal that has one or more of its characteristics set or changed 1n
such a manner as to encode information in the signal. By way of example, and not
limitation, communication media includes wired media such as a wired network or direct-
wired connection, and wireless media such as acoustic, RF, infrared and other wireless
media. Combinations of any of the above should also be included within the scope of
computer readable media.

[00106] The system memory 830 includes computer storage media in the form of
volatile and/or nonvolatile memory such as read only memory (ROM) 831 and random
access memory (RAM) 832. A basic input/output system 833 (BIOS), containing the
basic routines that help to transfer information between eclements within computer 810,
such as during start-up, 1s typically stored in ROM 831. RAM 832 typically contains data
and/or program modules that are immediately accessible to and/or presently being
opcrated on by processing unit 820. By way of example, and not limitation, Figure 13
illustrates operating system 834, application programs 835, other program modules 836,
and program data 837.

[00107] The computer 810 may also include other removable/non-removable
volatile/nonvolatile computer storage media. By way of example only, Figure 13
llustrates a hard disk drive 841 that reads from or writes to non-removable, nonvolatile
magnetic media, and an optical disk drive 855 that reads from or writes to a removable,
nonvolatile optical disk 856 such as a CD ROM or other optical media. Other

removable/non-removable, volatile/nonvolatile computer storage media that can be used 1n

24

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

the exemplary operating environment include, but are not limited to, magnetic tape
cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM,
solid statc ROM, and the like. The hard disk drive 841 1s typically connected to the
system bus 821 through a non-removable memory interface such as interface 840, and
optical disk drive 855 are typically connected to the system bus 821 by a removable
memory interface, such as interface 850.

[00108] Alternatively, or in addition, the functionality described herein can be
performed, at least in part, by one or more hardware logic components. For example, and
without limitation, types of hardware logic components that can be used include Field-
programmable Gate Arrays (FPGAs), Program-specific Integrated Circuits (ASICs),
Program-specific Standard Products (ASSPs), System-on-a-chip systems (SOCs),
Complex Programmable Logic Devices (CPLDs), etc.

[00109] The drives and their associated computer storage media discussed above
and 1llustrated 1n Figure 13, provide storage of computer rcadable instructions, data
structures, program modules and other data for the computer 810. In Figure 13, for
example, hard disk drive 841 1s illustrated as storing operating system 844, application
programs 845, other program modules 846, and program data 847. Note that these
components can cither be the same as or different from operating system 834, application
programs 835, other program modules 836, and program data 837. Operating system 844,
application programs 845, other program modules 846, and program data 847 are given
different numbers here to 1llustrate that, at a mimimum, they are different copies.

[00110] A user may enter commands and information into the computer &10
through mput devices such as a keyboard 862, a microphone 863, and a pointing device
861, such as a mouse, trackball or touch pad. Other mput devices (not shown) may
include a joystick, game pad, satellite dish, scanner, or the like. These and other mput
devices are often connected to the processing unit 820 through a user input interface 860
that 1s coupled to the system bus, but may be connected by other interface and bus
structures, such as a parallel port, game port or a universal serial bus (USB). A visual
display 891 or other type of display device 1s also connected to the system bus 821 via an
interface, such as a video interface 890. In addition to the monitor, computers may also
include other peripheral output devices such as speakers 897 and printer 896, which may
be connected through an output peripheral interface 895.

[00111] The computer 810 1s operated 1n a networked environment using logical

connections to one or more remote computers, such as a remote computer 880. The

25

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

remote computer 880 may be a personal computer, a hand-held device, a server, a router, a
network PC, a peer device or other common network node, and typically includes many or
all of the elements described above relative to the computer 810. The logical connections
depicted 1in Figure 13 include a local area network (LAN) 871 and a wide areca network
(WAN) 773, but may also include other networks. Such networking environments are
commonplace 1n offices, enterprise-wide computer networks, intranets and the Internet.
[00112] When used 1n a LAN networking environment, the computer 810 1s
connected to the LAN 871 through a network interface or adapter 870. When used 1n a
WAN networking environment, the computer 810 typically includes a modem 872 or other
means for establishing communications over the WAN 873, such as the Internet. The
modem 872, which may be internal or external, may be connected to the system bus 821
via the user mput interface 860, or other appropriate mechanism. In a networked
environment, program modules depicted relative to the computer 810, or portions thereof,
may be stored in the remote memory storage device. By way of example, and not
[imitation, Figure 13 1llustrates remote application programs 885 as residing on remote
computer 880. It will be appreciated that the network connections shown are exemplary
and other means of establishing a communications link between the computers may be
used.

[00113] It should also be noted that the different embodiments described herein can be
combined 1n different ways. That 1s, parts of one or more embodiments can be combined
with parts of one or more other embodiments. All of this 1s contemplated herein.

[00114] Example 1 1s a development system comprising a development module sensing
user development inputs and transforming elements of the computer system based on the
user development inputs. The elements comprise types modeled in the computer system.
A user interface module generates a user interface display with a user input mechanism,
and senses a user search mput received through the user input mechanism indicative of a
user search query for searching the elements of the computer system. A search engine
identifies a type-based search parameter for the user search query. The search engine 18
controlled to activate a type-based search component based on the type-based search
parameter. The type-based search component performs an element search to return a set
of search results i the user interface display.

[00115] Example 2 1s the development system of any or all previous examples,

wherein the development module 1s part of an interactive development environment (IDE).

26

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

[00116] Example 3 1s the development system of any or all previous examples,
wherein the user 1s a developer, and the elements of the computer system comprise
application clements that are customized by the developer.

[00117] Example 4 1s the development system of any or all previous examples,
wherein the type-based search parameter identifies a particular element type selected from
the types modeled 1n the computer system, and the search engine 1s controlled to constrain
the element search to elements having the particular element type.

[00118] Example 5 1s the development system of any or all previous examples,
wherein the user search query includes a character string and the particular element type.
[00119] Example 6 1s the development system of any or all previous examples,
wherein the set of search results comprise elements of the particular element type that
have property values that match the character string.

[00120] Example 7 1s the development system of any or all previous examples,
wherein the elements of the computer system comprise a plurality of different types, cach
type having a set of propertics and methods that define run-time behavior for clements of
that clement type. The system further comprises a scarch component store storing a
plurality of secarch components, cach scarch component corresponding to a given one of
the different types and being configured to search the set of properties and methods for
clements of the given type.

[00121] Example 8 1s the development system of any or all previous examples,
wherein the search engine identifies the type-based secarch component from the search
component store that corresponds to the particular element type, identifies cach of a
plurality of eclements of the computer system that has the particular element type, and
scarches the 1dentified elements based on the user search query using the 1dentified search
component.

[00122] Example 9 1s the development system of any or all previous examples,
wherein the identified search component i1s instantiated for each of the plurality of
identified elements having the particular element type, and the search engine obtains the
set of search results by aggregating search results from the plurality of instantiated search
components, and displays the aggregated search results 1n the user interface display.
[00123] Example 10 1s the development system of any or all previous examples,
wherein the set of search results are obtained and displayed asynchronously.

[00124] Example 11 1s the development system of any or all previous examples, and

further comprising a model store storing, for cach of the clements, a serialized

27

10

15

20

25

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

representation of the element comprising code and metadata of the element. The search
engine performs the element search by accessing the serialized representations in the
model store.

[00125] Example 12 1s the development system of any or all previous examples,
wherein the search engine identifies a particular serialized representation in the model
store, corresponding to a given one of the clements, based on the type-based search
parameter, and searches the particular serialized representation based on the user search
query.

[00126] Example 13 1s the development system of any or all previous examples,
wherein the search engine i1dentifies a portion of the given element, from the particular
serialized representation, that matches the user search query, and identifies path
information that uniquely 1dentifies the portion of the given element.

[00127] Example 14 1s the development system of any or all previous examples,
wherein the path information comprises a uniform resource identifier (URI), the user
interface module generates a user selectable representation of the URI, that 1s selectable to
present the portion of the given element 1n an editor user interface.

[00128] Example 15 1s a development system comprising a data store that models a
plurality of different element types, a development module sensing developer inputs and
transforming application elements of the different element types based on the developer
inputs, and a search component generator generating a different search component for
cach of the clement types modeled in the data store. The development system also
comprises a scarch component store storing the search components generated by the
scarch component generator for the plurality of element types, and a search engine sensing
a user scarch iput and being controlled to activate a selected one of the search
components to search the application elements of a given one of the element types.

[00129] Example 16 1s the development system of any or all previous examples,
wherein the search component generator 1s configured to generate cach search component
by analyzing a structure of a given one¢ of the element types and generating corresponding
search functions based on the structure of the given element type.

[00130] Example 17 1s the development system of any or all previous examples,
wherein the structure of the given element type 1s defined by a set of properties and
methods that define runtime behavior of elements having the given element type.

[00131] Example 18 1s the development system of any or all previous examples,

wherein the search engine receives a search query having at least one secarch term,

28

10

15

20

25

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

identifies a type-based search parameter for the search query, and identifies one of the
scarch components from the search component store based on the type-based search
parameter. The 1dentified search component 1s instantiated to search one or more of the
application clements based on the search term.

[00132] Example 19 1s a computer-implemented method for developing elements of
a computer system and controlling a secarch of the clements. The method comprises
sensing development user inputs and transforming elements of the computer system based
on the development user inputs. The computer system comprises a plurality of different
clement types, cach element type being defined by a property structure for elements of the
clement type. The method comprises generating a search interface display and sensing a
user input, through the search interface display, indicative of a user search query to search
the elements of the computer system. The method comprises controlling a search of the
clements of the computer system based on the user search query and a semantic search
constraint that 1s based on the property structures of the elements of a computer system.
The method comprises returning search results from the search and generating a results
display that displays the search results.

[00133] Example 20 1s the computer-implemented method of any or all previous
examples, and further comprising accessing a data store that models a plurality of different
clement types, and for each different element type, generating a corresponding type-based
scarch component based on a property structure of the e¢lement type. The method
comprises using at least one of the generated type-based search components, that is
selected based on the semantic search constraint, to search the data store based on the user
secarch query.

[00134] Although the subject matter has been described in language specific to
structural features and/or methodological acts, 1t 1s to be understood that the subject matter
defined 1n the appended claims 1s not necessarily limited to the specific features or acts
described above. Rather, the specific features and acts described above are disclosed as
example forms of implementing the claims and other equivalent features and acts are

intended to be within the scope of the claims.

29

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

CLAIMS

1. A development system for developing elements of a computer system and controlling a
search of the elements, the development system comprising:

a development module sensing user development imnputs and transforming elements
of the computer system based on the user development inputs, the elements
comprising types modeled 1in the computer system,;

a user interface module generating a user interface display with a user input
mechanism, and sensing a user search input received through the user mput
mechanism 1indicative of a user secarch query for searching the elements of
the computer system; and

a scarch engine 1dentifying a type-based secarch parameter for the user search
query, the search engine being controlled to activate a type-based search
component based on the type-based search parameter, the type-based
scarch component performing an element search to return a set of search
results 1n the user interface display.

2. The development system of claim 1, wherein the development module 1s part of an
interactive development environment (IDE).

3. The development system of claim 1, wherein the user 18 a developer, and the elements
of the computer system comprise application clements that are customized by the
developer.

4. The development system of claim 1, wherein the type-based search parameter 1dentifies
a particular element type sclected from the types modeled in the computer system, and the
scarch engine 18 controlled to constrain the clement search to clements having the
particular element type.

5. The development system of claim 4, wherein the user search query includes a
character string and the particular element type, and wherein the set of search results
comprise clements of the particular element type that have property values that match the
character string.

6. The development system of claim 4, wherein the elements of the computer system
comprise a plurality of different types, each type having a set of propertics and methods
that define run-time behavior for clements of that element type, the system further
comprising:

a scarch component store storing a plurality of search components, each search

component corresponding to a given one of the different types and being

30

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

configured to search the set of properties and methods for elements of the
given type.
7. The development system of claim 6, the search engine identifying the type-based
scarch component from the search component store that corresponds to the particular
clement type, 1dentifying each of a plurality of elements of the computer system that has
the particular element type, and searching the 1dentified elements based on the user search
query using the 1dentified search component.
8. The development system of claim 7, wherein the identified type-based search
component 18 instantiated for cach of the plurality of identified elements having the
particular element type, and the search engine obtains the set of secarch results by
aggregating scarch results from the plurality of instantiated search components, and
displays the aggregated search results 1n the user intertace display.
9. The development system of claim &, wherein the set of search results are obtained and
displayed asynchronously.
10. The development system of claim 1, and further comprising:
a model store storing, for cach of the eclements, a serialized representation of the
clement comprising code and metadata of the element; and
the scarch engine performing the eclement secarch by accessing the serialized
representations in the model store.
11. The development system of claim 10, the search engine identifying a particular
serialized representation in the model store, corresponding to a given one of the elements,
based on the type-based search parameter, and scarching the particular serialized
representation based on the user search query.
12. The development system of claim 11, the search engine 1dentifying a portion of the
given element, from the particular serialized representation, that matches the user search
query, and 1dentifying path information that uniquely identifies the portion of the given
clement.
13. The development system of claim 12, wherein the path information comprises a
uniform resource identifier (URI), the user interface module generating a user selectable
representation of the URI, that 1s selectable to present the portion of the given element 1n

an editor user imterface.

31

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

14. A development system comprising:
a data store that models a plurality of different element types;
a development module sensing developer inputs and transforming application
clements of the different element types based on the developer inputs;
a secarch component generator generating a different search component for each of
the element types modeled 1n the data store;
a scarch component store storing the search components generated by the search
component generator for the plurality of element types; and
a scarch engine sensing a user search mput and being controlled to activate a
selected one of the secarch components to search the application elements of
a given one of the element types.
15. A computer-implemented method for developing elements of a computer system and
controlling a search of the elements, the method comprising:
sensing development user mputs and transforming clements of the computer
system based on the development user puts, the computer system
comprising a plurality of different element types, each element type being
defined by a property structure for elements of the element type;
generating a search interface display;
sensing a user input, through the search intertface display, indicative of a user
scarch query to search the elements of the computer system;
controlling a search of the clements of the computer system based on the user
search query and a semantic search constraint that 1s based on the property
structures of the elements of a computer system;
returning search results from the search; and

generating a results display that displays the search results.

32

CA 02948646 2016-11-09

PCT/US2015/033554

WO 2015/187567

1/13

0l

PO o
901

(S)YINSINVHDAN
LOdNI ¥ASN

OT (S)AVIASIA ADVIIALNI ¥dSN

4d0D V.LIVAV.LdN
L11 601

(SHdAL SINAWATA NOLLVIOI'1ddV

LO]
H 11O
MOSSAD0Nd IOV IIAINI ALI'TVNOLLONI(1A
AASI] LNANJO TAAAA
Ol1 - O
H T 1AOIN HI11AOIN
e — NOILLVDIAVN HOUVAS
Pl 771

NALSAS INTNIOTIATA ALLDVIALNI Ocl

Ad AL
Pel

®
®
dd AL
cel

H40OLS THAOW

HJOLVIANAD 4dOD
d055400dd LNANOdNOD HOAVHS

LNANOdNOO
HOAVHS OLLNVINAS

- 071

INANOJINOD
HOUVAS DLLNVINAS ‘

AJOLS

LNANOdINOD HOAVHS vel

3C1

/ 001

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

2/13

200
\ START
ACCESS MODEL STORE

204

202

IDENTIFY A NEW
ELEMENT TYPE

206

208

GENERATE TYPE-BASED SEARCH
COMPONENT FOR NEW ELEMENT TYPE

Y
ANALYSE STRUCTURE OF NEW
ELEMENT TYPE

210

STORE TYPE-BASED SEARCH
COMPONENT IN SEARCH COMPONENT

STORE

212

ANY ADDITIONA
NEW ELEMENT
TYPES?

END

FI1G. 2

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

3/13

INTEGRATED 230
DEVELOPMENT SYSTEM
INTERFACE
SEARCH QUERY
252
SEARCH QUERY PARSER
| I PROP]IERTY-
NAMES TYPES
VALUE 256
TYPE
PREPROCESSOR PROVIDER
CONTAINED
TYPES AND
754 SEARCH
OPTIONS PROPERTIES
258
ELEMENT ACCESS
INTERFACE
ELEMENT S PROPERTY
REFERENCES GETTERS
260
SEARCH PRIORITIZATION
HEURISTICS
ROOT
RESULT BT EMENTS 64
262
TYPE ELEMENT
ELEMENT PROCESSOR PREDICATE
FACTORY
ELEMENT
PREDICATE

FIG. 3

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

4/13

START
300 \
302

DISPLAY A DEVELOPMENT SURFACE

304
RECEIVE SEARCH INPUT
306
PARSE SEARCH INPUT TO IDENTIFY
CRITERIA
INSTANTIATE SEMANTIC SEARCH 308
COMPONENTS BASED ON TYPE
CRITERIA
310
SEARCH MODEL STORE USING
INSTANTIATED SEMANTIC SEARCH
COMPONENTS
320 312

IDENTITY ELEMENT(S) THAT MEET

CRITERIA

314
DISPLAY SEARCH RESULT(S)
316
RECEIVING SELECTION OF A
PARTICULAR RESULT

NAVIGATE TO LOCATION OF ELEMENT] / >1°

CORRESPONDING TO SELECTED
RESULT

FIG. 4

END

CA 02948646 2016-11-09

PCT/US2015/033554

WO 2015/187567

S/13

S DIA

d'THH MOUNIM

TANT SEoNIISNUSSLEQY | &

SNI TUd TI0D I1U] Apedy
SIINSAY [OQUIAS PUL [SINSY pur] mding) MOPUIA\ BIPIWW] ST JSB], IS JOLI
ég.—!
SongmRes] s 00
/POUISIN/X I IIULL] [BIST[TRIY/I[qR L //:SOIeUuAp (7T T7) 0T Z0%
STOLA LG LWUEEN A RREN |
/POYISIN/ L€ IOIULIJ[BOSTI[TRIY/Sqe [//:SOTeUAp (8T “CT) Q0% .
STOLA LY LWEEN DA RREN | i
— SOIOUOI] 1XB] [OPOINIUSWNOO(J[BIST[18IY /A[qB] //:SOTWRUAD (T CT) 001]
A SSB]) “wWed] njoN “BY) Y 0)) J[qBLIB[NGIYO J)IdsUu]
LX® L Z[OPOAIUSWNOO[BOSTI[TeIY /AR [//:0TWeUAD (3] “CT)
YO LA P LLGEN CARREN | { [PPOUOTIEIARIY(Y
. . : [PPODUONEIASI((Y
SUITC[SPOINFURUINIO(T[EISL[IEIY /A qe.L//:SOMUIBUAP (TT “TT) \M OTITLIO) IO B Y
J[qe LIB[NSIY O [)1dsu] huojy mou 2O IO USSR Y
QUITZ[OPOJANIUSWNIO(T[BISTJ[TRINY /(R I,//-SOTWRUADP (RT°€T) } IST) SOURULIOJIS]
d[qe LI1B[N3YO 113suy jeys orgnd OIDTIA[SS00VBIR(]
ccruodn SIA/AUI TOOTOAUTOIUBAPYIST)Z))/[G L //:SOTURUAD (97 “GET) oL Y s
QIUII9J9Y O JIdSUI pH)UOUIDILQY SSB[) PO
J19SUL/POYIIA/UOTIBID0SS 7ISB)/ [//:SOTWRUAD (9T ‘61 1) <ATeUIWnS />/// [OPOIA BIR(]
UONBOSSYIUWAIBJIISUI P> WIO] 3U) SUNy/// sodA T vIR(
 Auedwoass010=201n0S, :A1radord 1rasur:aweu poyoura[qe):adA <Arewrunss/// LOV

onQ) 131 e 121Uy
A JJOTUXYH UONEIIUAY

n__u_u_u__un__n_n__u_u__u_n__g uEmi_ J 4l ooro@ @

14017

[ZA'TVNY JUdLOALIHOdY LSHL S T100L WVHL DNddd d'1INd LOd10Odd MAIA LIAdd d1I4

X

001

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

6/13

450

'y 452

Metadata search A
Code: “while select”

[] DataAccessMicrobenchmark
(36, 9) dynamics://Class/ DataAccessMicrobenchmark
[] AifAdapterManager
(364, 9) dynamics://Class/AifAdapterManager
[] AifAdapterManager
(367, 9) dynamics://Class/AifAdapterManager
[] AifAppShareManager
(201, 9) dynamics://Class/AifAppSharecManager
[] AifChangeTrackingConfiguration
454 (472, 9) dynamics://Class/A1fChangeTrackingConfiguration
[] AifChangeTrackingConfiguration
(449, 9) dynamics://Class/AifChangeTrackingConfiguration
] AifDataPolicyFilter
(62, 9) dynamics//Class/A1fDataPolicyFilter
[] AifDataPolicyFilter
(50, 9) dynamics://Class/AifDataPolicyFilter

FI1G. 6

CA 02948646 2016-11-09

PCT/US2015/033554

WO 2015/187567

7/13

| TIOLS
_ INANOJINOD
RT1 HOYVAS

| TI0LS THAOW g

(R — RN ———

301

L DId

dddOTHAHd

901

AV’'1dS1d
HAIVAdHLNI

AddS[]
OL1

0s

e HAOLS

LNANOdNOD
HOYUVHS 3CI

HJOLVIANAD HAOD

LNANOdNOD HOUdVHS

Otl
A40OLS THAOW

Q01 c0¢

INHLSAS

LNANdOTdAHd
ALV IDALNI

0l

Ao

00¢

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

8/13

16 15

SD CARD
INTERFACE

MEMORY
oS 29 27
SETTINGS 31 SYSTEM
17
PROCESSOR
APPLICATIONS
33 25

CLIENT SYSTEM
24
DATA STORE 37

COMMUNICATION

DRIVERS
39

CONFIG.

SETTINGS
41

23

19

COMMUNICATION

LINKS

21

13

WO 2015/187567

CA 02948646 2016-11-09

9/13

602

PCT/US2015/033554

FI1G. 9

CA 02948646 2016-11-09

WO 2015/187567 PCT/US2015/033554

10/13
5
D 55 . 53
/ _—
———
. |
0

>l

FIG. 10

WO 2015/187567

05

03

FIG. 11

CA 02948646 2016-11-09

PCT/US2015/033554

11/13

69

o’/

OO @ OO0

71

n =™ u"n u™n &
e
et

#ﬁﬂﬁ#4
o e e
[k o o o

o e e o
oo e e o o
e e
e e e o 2
e o
e o
o e e e
e e e o 2
e o
e o e e e
o e e
[e e o

e o e o

e
e

#ﬁﬂﬁ#4
o e e
[k o o o

o e e o
g e e e
e e
e e e o 2
e o
e o
o e e e
e e e o 2
e o
e o e e e
o e e
[e e o

e o e o

et
oo e o e
gy

& oo o o
F###ﬂﬁ

byt
o
e
gt
et
oo e o e
e
gt
et
oo e o
ey
gy

i

et
oo e o e
gy

BT
ey
iy
ey
oo e o e
e
gt
et
oo e o e
e
gt
et
oo e o e
ey
ki

ey
o o o

e
byt
et
byt
o e

WO 2015/187567

03

-
—

O
‘<r
—
.
.
.

73

@
O
>
A
Q
)
@
C
O
c
0

CA 02948646 2016-11-09

12/13

Music & Video

Bonus Apps

PCT/US2015/033554

FI1G. 12

PCT/US2015/033554
13/13

CA 02948646 2016-11-09

WO 2015/187567

mzomw@wmoi ¢l DIA

C8Y
SINVIDOUd

NOILLVOI'IddV 198

HOIAHA
ONILLNIOd

(y8 viiva | PV >d1NAdON i py8 INTLSAS

A LOWHY NVID0dd SINVAdDOUdd

NVIDOUd IO NOTTVA gy | ONILVAEdO

033

YA LNdNOD 93
TT1OWNTN ddVOd A

L3 VIV

TOVIdAIN NVaHOdd

moﬁmmt/: >mozm2 .>m9.zm2 omwmmqDQoE
LNdNI TOA-NON TOA-NON INVIDOMJ
MIOMIAN | AASN HTdVAONTY MAH 1O

vAIV TVOOT HT9dVAONTYI

| ce8 SINVIDO0Ud
NOLLVOITddV

Pe8 INHLSAS

HOVAHdALNI

AOVAdHLNI
AJOMLAN

SAHAVHIS

ONLLYVIIdO
HIVddd.LNI OV TIALNI LINN ~7e8 (AVY) “
JHLNId 1vddidlddd | 063 OAAIA ONISSADOU ce2 SO _
1LNdLNO
163 568 ___ 18 (NOW) |
AV1dSId 0€S AJOWAIN WALSASH

lvisln r-—-———#—/1-—"—"7F———"™""™"™"™""""¥7™"—7"—7"7 77 77— 7 — ——

100
N

128 INTERACTIVE DEVELOPMENT SYSTEM 102

120
122 114
4| SEARCH COMPONENT
STORE SEARCH NAVIGATION —
N SEMANTIC SEARCH MODULE MODULE
COMPONENT
104

112
DEVELOPMENT USER
FUNCTIONALITY INTERFACE PROCESSOR
MODULE

APPLICATION ELEMENTS (TYPES)

126 .
SEMANTIC SEARCH
COMPONENT
SEARCH COMPONENT
CODE GENERATOR [PROCESSOR

MODEL STORE

109 111
METADATA CODE

USER INTERFACE DISPLAY(S) 116

USER INPUT 118
MECHANISM(S)
B
DEVELOPER
FIG. 1

132
TYPE

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - abstract drawing

