(19) 中华人民共和国国家知识产权局

(12) 发明专利申请

(10) 申请公布号 CN 102254970 A
(43) 申请公布日 2011.11.23

(21) 申请号 201010565334.5
(22) 申请日 2010.11.26
(30) 优先权数据
10-2010-0045876 2010.05.17 KR
(71) 申请人 LG 电子株式会社
地址 韩国首尔
(72) 发明人 朴商桓
(74) 专利代理机构 北京三友知识产权代理有限公司
11127
代理人 李辉 汤俏

(51) Int. Cl.
H01L 31/042 (2006.01)
H01L 31/05 (2006.01)
H01L 31/048 (2006.01)

(54) 发明名称
太阳能电池模块

(57) 摘要
本发明涉及太阳能电池模块。该太阳能电池模块具有太阳能电池板，该太阳能电池板具有按照行设置的电桥连的太阳能电池的串，所述太阳能电池模块包括一条或多条引线，所述一条或多条引线电桥连所述串和接线盒。所述一条或多条引线被设置为，使得它们不彼此重叠，并使得这些引线中的一条或多条包括与串的互连器交叠并且不与串的互连器电连接的部分。引线包括连接到相应串的互连器的互连器连接部，并且引线的互连器连接部按直线设置。
1. 一种太阳能电池模块，该太阳能电池模块包括：
 太阳能电池板，其包括限定多个串的太阳能电池的阵列，所述多个串中的每一串包括多个太阳能电池；
 接线盒，其接收多个串产生的电流；以及
 多条引线，其将所述接线盒电耦连至所述互连器的端部，
 其中，所述多条引线被设置为彼此不交叠。
2. 根据权利要求1所述的太阳能电池模块，其中，所述多个串包括：
 位置最靠近所述太阳能电池板的两个外边缘的两个串；以及
 位于所述外串之间的多个串。
3. 根据权利要求2所述的太阳能电池模块，其中，所述多条引线中的每一条包括连接到所述串的互连器的互连器连接部，并且各引线的互连器连接部被设置为成直线。
4. 根据权利要求3所述的太阳能电池模块，其中，所述多条引线中的连接到串的互连器的引线还包括：接线盒连接部，该接线盒连接部耦连到所述接线盒；和耦连部，该耦连部耦连到所述互连器连接部和所述接线盒连接部。
5. 根据权利要求4所述的太阳能电池模块，其中，所述多条引线中的连接到串的互连器的所述引线的所述接线盒连接部和所述互连器连接部被设置为彼此正交。
6. 根据权利要求5所述的太阳能电池模块，其中，所述多条引线中的连接到串的互连器的所述引线的所述耦连部包括：
 第一耦连部，该第一耦连部耦连到所述互连器连接部，使得所述第一耦连部与所述互连器连接部正交并且与所述互连器连接部交叉；以及
 第二耦连部，该第二耦连部耦连到所述第一耦连部和所述接线盒连接部，所述第二耦连部被设置为与所述互连器连接部平行。
7. 根据权利要求6所述的太阳能电池模块，其中，所述多条引线中的连接到串的互连器的所述引线的所述互连器连接部、所述第一耦连部、所述第二耦连部和所述接线盒连接部一体地形成。
8. 根据权利要求3所述的太阳能电池模块，其中，所述多条引线中的耦连到串的互连器的引线还包括接线盒连接部，该接线盒连接部耦连到所述接线盒和所述多条引线中的耦连到串的互连器的所述引线的所述互连器连接部，使得所述接线盒连接部与所述互连器连接部正交。
9. 根据权利要求1所述的太阳能电池模块，该太阳能电池模块还包括绝缘膜，该绝缘膜用于将所述多条引线与所述互连器和所述太阳能电池绝缘。
10. 根据权利要求1所述的太阳能电池模块，其中，所述多个互连器中的至少一个被设置为横向所述太阳能电池的至少一个太阳能电池的顶部。
11. 一种安装在太阳能电池模块内的阵列结构，该阵列结构包括：
 多条引线，其中，所述多条引线中的每一条包括：
 互连器连接部，其被构建为连接到互连器；该互连器耦连所述太阳能电池模块的多个太阳能电池；以及
 接线盒连接部，其被构建为连接到太阳能电池模块的接线盒，
其中，所述多条引线被设置为，当这些引线连接到所述互连器和所述接线盒时，它们彼此不交叠。

12. 一种太阳能电池模块，该太阳能电池模块包括：

太阳能电池的阵列，其限定一平面，并且具有由该阵列的成分外围电池所限定的宽度和长度；

多个互连器，所述多个互连器中的每一个互连器串连所述阵列的在长度方向上延伸的一行太阳能电池；

多条引线，所述多条引线中的每一条引线都连到所述多个互连器中的相应互连器，并且所述多条引线中的至少一条引线的一部分在宽度方向上延伸并与所述阵列的至少一个太阳能电池交叠；

接线盒，其物理地耦连到所述多条引线中的每一条，并且通过这些引线而电耦连到所述多个互连器中的每一个；以及

绝缘层，其将所述多条引线与所述太阳能电池和所述多个互连器绝缘。

13. 根据权利要求12所述的太阳能电池模块，其中，所述绝缘层位于所述太阳能电池的阵列与所述多条引线之间。

14. 根据权利要求12所述的太阳能电池模块，该太阳能电池模块还包括背板，该背板保护所述太阳能电池模块的与光入射的表面相对的表面，其中所述多条引线印刷在所述背板上。

15. 根据权利要求12所述的太阳能电池模块，其中，所述绝缘层是不透明的。
太阳能电池模块

技术领域
[0001] 本发明涉及具有多个太阳能电池的太阳能电池模块。

背景技术
[0002] 近来，由于发现现有能源（如石油和煤）是被耗尽的，因此对于用可再生能源来代替现有能源越来越感兴趣。在这些可再生能源中，太阳能电池尤其受到关注。
[0003] 太阳能电池利用光电转换效应将太阳能转变为电能。一个太阳能电池产生通常几伏特的少量电力。因此，为了获得较大的输出，可以通过串联或并联连接多个太阳能电池而构成太阳能电池模块，使用防水材料来保护该模块的多个太阳能电池。
[0004] 在这样的太阳能电池模块中，与太阳能电池的正电极和负电极连接的导体（例如，互连器）连接到一条或更多条引线以输出太阳能电池模块产生的电力。引线与接线盒连接以通过接线盒的电力线输出电力。
[0005] 在具有这样的结构的太阳能电池模块中，引线布置在太阳能电池板中太阳能电池所在的区域之外的另外区域中。引线所要的这一外部区域并不用于发电。因此，所述另外区域导致太阳能电池板的尺寸的增加并且相关联地导致太阳能电池模块的尺寸的增加。

发明内容
[0006] 在一个方面中，一种太阳能电池模块包括：太阳能电池板，其包括限定多个串的太阳能电池的阵列，所述多个串中的每一串都包括电连接并按行排列的多个太阳能电池；多个互连器，其电连接所述串的所述多个太阳能电池；接线盒，其接收从所述多个串产生的电流；以及多条引线，其将所述接线盒电耦合到所述互连器的端部，其中所述多条引线被设置为使得它们不彼此交叉。
[0007] 所述多个串可以包括位置最靠近所述太阳能电池板的两个外边缘的两个串和位于所述外串之间的一个或更多个内串。在该情况下，可以形成偶数数量的串。因此，太阳能模块可以包括偶数数量的串，如 4, 6, 8 和 10 个串。
[0008] 所述多条引线中的每一条包括连接到相应串的互连器的互连器连接部，并且各引线的互连器连接部被设置为直线。
[0009] 即，连接到外串的互连器的外部引线的互连器连接部和连接到内串的互连器的内部引线的互连器连接部被设置为直线。因此，因为外部引线的互连器连接部和内部引线的互连器连接部串联地设置，所以与这些互连器连接部呈联地设置的情况相比，可以减少无功于发电的无效部分，因此可以减小太阳能电池板的尺寸。
[0010] 所述多条引线中的连接到外串的互连器的引线包括：接线盒连接部，该接线盒连接部通过连接至所述互连器连接部和所述接线盒连接部。
[0011] 在该情况下，所述多条引线中的连接到外串的互连器的所述引线的接线盒连接部和互连器连接部被设置为彼此正交。
[0012] 在该情况下，所述多条引线中的连接到外串的互连器的所述引线的耦合部包括：
第一耦连部，该第一耦连部耦连到所述互连器连接部，使得所述第一耦连部与所述互连器连接部正交并且与所述互连器连接部交叉；和第二耦连部，该第二耦连部耦连到所述第一耦连部和所述接线盒连接部，使得所述第二耦连部与所述互连器连接部平行。

[0013] 所述多条引线中的连接到外串的互连器的所述引线的互连器连接部、第一耦连部、第二耦连部和接线盒连接部可以一体地形成，或者，它们中的至少一个可以与其他部分分离地形成。

[0014] 作为另一示例，所述外部引线的所述互连器连接部、第一耦连部、第二耦连部和接线盒连接部可以分开地形成。在该情况下，所述外部引线的所述互连器连接部的端部可以位于所述第一耦连部的端部的下侧，并且所述接线盒连接部的端部可以位于所述第二耦连部的端部的下侧。利用该结构，在设置多条引线时，可以获得减少台阶的效果。

[0015] 所述多条引线中的耦连到内串的互连器的引线还包括接线盒连接部，该接线盒连接部耦连到所述接线盒和所述多条引线中的耦连到内串的互连器的所述引线的互连器连接部，使得所述接线盒连接部与所述互连器连接部正交。

[0016] 所述内部引线的所述互连器连接部和所述接线盒连接部可以一体地形成或可以分开地形成。当所述内部引线的所述互连器连接部和所述接线盒连接部分开地形成时，所述内部引线的所述互连器连接部可以位于所述接线盒连接部的下侧。

[0017] 所述太阳能电池模块还可以包括绝缘膜，该绝缘膜用于将所述多条引线与所述互连器和所述太阳能电池绝缘，所述绝缘膜可以由不透明材料制成。当所述绝缘膜由与背板的不透明材料相同的不透明材料制成时，所述太阳能电池模块的正面看不到所述外部引线的耦连部和接线盒连接部以及所述内部引线的耦连部和接线盒连接部，因此可以改善所述太阳能电池模块的外观。

[0018] 用于具有前述结构的太阳能电池模块的太阳能电池可以包括分别位于不同的表面上并具有不同的极性的第一电极和第二电极，或者，所述太阳能电池可以包括位于同一表面上并具有不同的极性的第一电极和第二电极。

[0019] 所述外部引线的接线盒连接部和互连器连接部可以被设置为彼此平行，并且所述耦连部可以被设置为与所述接线盒连接部和所述互连器连接部交叉。

[0020] 在该情况下，所述外部引线的接线盒连接部、耦连部和互连器连接部可以一体地形成，或者，它们中的至少一个可以被形成为与其他部分分离。

[0021] 作为另一示例，所述外部引线的互连器连接部、耦连部和接线盒连接部可以分开地形成，并且，在该情况下，所述外部引线的所述互连器连接部的端部可以位于所述耦连部的一个端部的下侧，并且所述接线盒连接部的端部可以位于所述耦连部的另一端部的下侧。

[0022] 在所述多条引线中，耦连到内串的互连器的内部引线还可以包括；耦连部，其耦连到所述互连器连接部；以及接线盒连接部，其耦连到所述耦连部。

[0023] 所述内部引线的所述接线盒连接部和所述互连器连接部可以被设置为彼此平行，并且所述耦连部可以被设置为与所述接线盒连接部和所述互连器连接部交叉。

[0024] 所述内部引线的接线盒连接部、耦连部和互连器连接部可以一体地形成，或者，它们中的至少一个可以被形成为与其他部分分离。

[0025] 作为另一示例，所述内部引线的所述互连器连接部、所述耦连部和接线盒连接部
可以分开地形成，在该情况下，所述低连器连接部的端部可以位于所述高连器的一个端部的下侧，并且所述接线盒连接部的端部可以位于所述高连器的另一端部的下侧。

【0026】所述多个互连器中的至少一个被设置为在所述太阳能电池阵列的至少一个太阳能电池的顶上横穿。

【0027】另一方面，一种引线可以包括：互连器连接部，其被构成为连接到互连器；该互连器电耦连太阳能电池模块的多个太阳能电池；和接线盒连接部，其被构成为连接到所述太阳能电模块的接线盒，其中，多条引线被设置为使得当这些引线连接到所述互连器和所述接线盒时它们不彼此交叠。所述引线还可以包括耦连部，该耦连部耦连所述互连器连接部和所述接线盒连接部，在该情况下所述耦连部可以与所述互连器连接部和所述接线盒连接部一体形成。

【0028】根据前述特征，因为外部引线的互连器连接部和内部引线的互连器串联地布置，所以与互连器连接部并联地设置的情况相比，可以减少无效面积。

【0029】一种太阳能电池模块包括：太阳能电池的阵列，其限定一平面并具有由该阵列的构成外围电池所限定的宽度和长度；多个互连器，所述多个互连器的每一个互连器电耦连所述阵列的在长度方向上延伸的一行太阳能电池；多条引线，所述多条引线中的每一条引线耦连到所述多个互连器的相应互连器，并且所述多条引线中的至少一条引线的一部分在宽度方向上延伸，并与所述阵列的至少一个太阳能电池交叠；接线盒，其物理地耦连到所述多条引线中的每一条，并且通过这些引线而电耦连到所述多个互连器中的每一个；以及绝缘层，其将所述多个引线与所述太阳能电池以及所述多个互连器绝缘。

【0030】所述绝缘层位于所述太阳能电池的阵列与所述多条引线之间。

【0031】所述绝缘层被定位为使得当从太阳能电池模块的正面观看横越长度方向的所述多条引线的完整部分时遮挡该完整部分，所述正面是光入射以产生能量的一侧。

【0032】所述太阳能电池模块还包括背板，该背板保护太阳能电池模块的与光入射的表面相对的表面，其中所述多条引线印刷在所述背板上。所述绝缘层是不透明的。

【0033】所述多条引线中的引线的至少一部分越过所述绝缘层的外围，所述引线的所述部分与互连器相连接。

附图说明

【0034】图 1 是太阳能电池模块的正面图；
【0035】图 2 是在图 1 中例示的太阳能电池板的分解立体图；
【0036】图 3 是在图 1 中例示的太阳能电池板的后视图；
【0037】图 4 是太阳能电池板的引线设计的放大图；
【0038】图 5 是在图 1 中例示的太阳能电池的一部分的立体图；
【0039】图 6 是根据图 3 的变形例的引线的放大图；
【0040】图 7 是根据图 3 的另一变形例的引线的放大图；
【0041】图 8 是具有引线的另一太阳能电池模块的后视图；
【0042】图 9 是太阳能电池板的引线的另一设计的放大图；以及
【0043】图 10 是根据图 9 的变形例的引线的放大图。
具体实施方式

[0044] 现在将参考附图详细地描述多个实现方式。在附图中，为了清楚起见，夸大了形状和尺寸，并在全部说明中将使用相同标号来表示相同或相似部件。为了清楚起见，在图中可能放大了层的厚度。另外，当将诸如层、膜、区域或板的任何部分描述为“位于另一部分上”时，这样的描述表示该部分直接位于所述另一部分上，或者具有至少一个中间或其间部分地位于所述另一部分的上方。另一方面，如果任何部分被描述为“直接位于另一部分上”，这样的描述表示在这两个部分之间不存在中间或其间部分。

[0045] 图 1 是太阳能电池模块的正面图，图 2 是在图 1 中例示的太阳能电池板的分解立体图，并且图 3 是在图 1 中例示的太阳能电池板的俯视图。

[0046] 图 4 是太阳能电池板的引线的结构的放大图，而图 5 是在图 1 中例示的太阳能电池的一部分的立体图。

[0047] 参照图 1 至图 5，太阳能电池模块 100 包括太阳能电池板 200。太阳能电池板 200 包括多个太阳能电池 210，将相邻的太阳能电池 210 电绝缘的互连器 220，保护太阳能电池 210 的保护层（如，EVA - 醋酸乙烯酯（EVA））230，布置在保护层 230 上的太阳能电池 210 的光接收表面侧的透明构件 240，和由不透明材料制成并布置在保护层 230 上的下侧（与太阳能电池 210 的光接收表面相反的一侧）的背板 250。

[0048] 太阳能电池模块 100 还包括框架 300 和接线盒 400，框架 300 用于接收通过层叠处理而集成的组件，接线盒 400 用于收集由太阳能电池 210 产生的电力。

[0049] 背板 250 对防止水汽透过太阳能电池模块 100 的表面，因此保护太阳能电池 210 免受外部环境的影响。背板 250 可以具有多层结构，包括用于防止水汽和氧气渗透的层，用于防止化学腐蚀的层，和具有电绝缘特性层。

[0050] 当布置在太阳能电池 210 的上侧和下侧时，保护层 230 通过层叠处理而与太阳能电池 210 一体。保护层 230 用于防止水汽渗透而可能引起的腐蚀并保护太阳能电池 210 不受撞击和所引起的损坏。保护层 230 可以由诸如乙烯 - 醋酸乙烯酯（EVA）的聚合物等材料制成。

[0051] 位于保护层 230 上的透明构件 240 由钢化玻璃制成，该钢化玻璃具有高透射率和优异的防损坏功能。在该情况下，钢化玻璃可以是铁含量低的低铁钢化玻璃。可以对透明构件 240 的内表面进行凹凸处理，以增强透明构件 240 的光漫射效果。

[0052] 如图 5 所示，太阳能电池板 200 的太阳能电池 210 包括基板 211 和射极板 212，射极板 212 位于基板 211 的光入射的光接收表面上。第一电极 213 包括在射极板 212 上，并且至少一个第一集流器 214 包括在射极板 212 上。防反射层 215 包括在射极板 212 上的不存在第一电极 213 和第一集流器 214 的区域上，并且第二电极 216 和第二集流器 217 包括在光接收表面的相对侧。

[0053] 太阳能电池 210 还可以包括背面场（BSF）部，该 BSF 部形成在第二电极 216 与基板 211 之间。该 BSF 部是重掺杂物与基板 211 的杂质的导电类型相同的导电类型的杂质的区域，如 p+ 区域。

[0054] BSF 部用作在基板 211 的背面的势垒。因此，可以减少电子和空穴在基板 211 的背面重组并消失的现象，因此，可以提高太阳能电池 210 的效率。

[0055] 基板 211 是由第一导电类型的硅制成的半导体基板（如，p 型导电类型硅）。在该
情况下，硅诸如可以是单晶硅、多晶硅、或非晶硅。当基板 211 具有 p 型导电类型时，它可以包含诸如硼（B）、镓（Ga）、铟（In）等的三价元素的杂质。

[0056] 处理基板 211 以使基板 211 的表面为粗糙表面。因为基板 211 的表面粗糙化，所以可以降低在基板 211 的光接收表面处的光反射率。而且，基板 211 的粗糙表面将反射光引导到太阳能电池的内部，增加光吸收率。因此，可以提高太阳能电池的效率。

[0057] 射极部 212 是掺杂有与基板 211 的导电类型相反的第二导电类型（如，n 型导电类型）的杂质的区域。射极部 212 与基板 212 形成 p-n 结。当射极部 212 为 n 型导电类型时，通过掺杂诸如磷（P）、砷（As）、锑（Sb）等的 V 族杂质而形成射极部 212。

[0058] 因此，当半导体内部的电子接收到来自入射在基板 211 上的光的能量时，电子朝向 n 型半导体迁移，同时空穴朝向 p 型半导体迁移。因此，当基板为 p 型半导体同时射极部 212 为 n 型半导体时，分离的空穴朝向基板 211 转移，并且分离的电子朝向射极部 212 转移。

[0059] 相反，基板 211 可以为 n 型导电类型并且由硅以外的半导体材料制成。当基板 211 具有 n 型导电类型时，基板 211 可以包含诸如磷（P）、砷（As）、锑（Sb）等的 V 族杂质。

[0060] 因为射极部 212 与基板 211 形成 n-p 结，所以当基板 211 具有 n 型导电类型时，射极部 212 具有 p 型导电类型。在该情况下，分离的电子朝向基板 211 移动并且分离的空穴朝向射极部 212 移动。

[0061] 当射极部 212 具有 p 型导电类型时，可以通过在基板 211 上掺杂诸如硼（B）、镓（Ga）、铟（In）等的三价元素的杂质而形成射极部 212。

[0062] 防反射层 215 可以由硅氧化物膜（SiN_x）、硅氧化物膜（SiO_y）等形成，并且位于基板 211 的射极部 212 上。防反射层 215 用于减少在太阳能电池 210 上入射的光被反射的成分并增加对特定波长区域的选择性，因此提高太阳能电池 210 的效率。防反射层 215 可以具有范围从 70nm 至 80nm 的厚度，或者在需要时可以省略。

[0063] 多个第一电极 213 位于射极部 212 上并电耦连到射极部 212。多个第一电极 213 被设置为沿着一个方向并且彼此分开。第一电极 213 收集朝向射极部 212 移动的电荷载流子（如电子）并将收集的电子传导到相应的第一集流器 214。

[0064] 多个第一电极 213 可以由至少一种导电材料制成，并且导电材料可以是从包括镍（Ni）、铜（Cu）、银（Ag）、锡（Sn）、锌（Zn）、铟（In）、钛（Ti）、金（Au）以及它们的任何组合或合金的组中选择的至少一种材料，或者也可以由任何其他导电金属材料制成。

[0065] 多个第一集流器 214 位于射极部 212 上，被称为汇流条。第一集流器 214 定位于与第一电极 213 交叉。因此，第一电极 213 和第一集流器 214 在射极部 212 上布置为彼此交叉。

[0066] 第一集流器 214 可以由至少一种导电材料制成，并且耦连到射极部 212 和第一电极 213。因此，第一集流器 214 将由第一电极 213 传导的诸如电子的载流子输出到外部设备。

[0067] 第一集流器 214 的导电金属材料可以是从包括镍（Ni）、铜（Cu）、银（Ag）、锡（Sn）、锌（Zn）、铟（In）、钛（Ti）、金（Au）以及它们的任何组合或合金的组中选择的至少一种材料，或者也可以由任何其他导电金属材料制成。而且，多个第一集流器 214 可以包含与第一电极 213 的材料相同的材料，但也可以包含不同的材料。

[0068] 第一电极 213 和第一集流器 214 可以通过在防反射层 215 上涂敷导电金属材料、
对导电金属材料进行构图而形成。接着可以烘焙导电金属材料。在该形成处理期间，可以
根据穿通操作将第一电极 213 和第一集流器 214 互调到射极部 212。另选地，第一电极
213 和第一集流器 214 可以分开地和/或通过不同的处理而形成。

【0069】
第二电极 216 与次极 211 的光接收表面的相反侧上，即，在次极 211 的背面上，
并且收集朝向集极 211 迁移的载流子（如有空穴）。

【0070】
第二电极 216 由至少一种导电材料制成。该导电材料可以是从包括镍（Ni）、铜
（Cu）、银（Ag）、钛（Sn）、锌（Zn）、钯（Pd）、钛（Ti）、金（Au）以及它们的任何组合或合金的组
中选择的至少一种材料，或者也可以由任何其他导电金属材料制成。

【0071】
多个第二集流器 217 位于第二电极 216 的下方，或者位于形成第二电极 216 的相
同表面上。第二集流器 217 与第一电极 213 交叉，并且第二集流器 217 可以与第一集流器
214 平行。

【0072】
第二集流器 217 可以由至少一种导电材料制成并电耦连到第二电极 216。因此，第
二集流器 217 将从第二电极 216 传导的载流子（如有空穴）输出到外部设备或另一导体。

【0073】
第二集流器 217 的导电金属材料可以是从包括镍（Ni）、铜（Cu）、银（Ag）、钛（Sn）、
锌（Zn）、钯（Pd）、钛（Ti）、金（Au）以及它们的任何组合或合金的组中选择的至少一种材料，
或者还可以由任何其他导电金属材料制成。

【0074】
将参照图 2 至图 4 详细地描述太阳能电池板的电连接结构。在图 3 中，为了说明
的目的，放大了太阳能电池 210 之间的空间，但是实质上，相邻的太阳能电池 210 按照特定
间隔布置（比如，按照 3 毫米或更小的狭窄间隔），如图 1 所示。

【0075】
在太阳能电池板 200 中设置的多个太阳能电池 210 按照多个“串”的形式设置。这
里，“串”指按照并列设置并彼此串联地电连接的多个太阳能电池。因此，在图 1 至图 3 中例
示的太阳能电池板 200 具有 4 个串，即第一至第四串 S1、S2、S3 和 S4。如图所示出的，这些串
按长度方向设置，并且与相邻的串接地方并排列在宽度方向上。下面，将位于太阳能电池板
200 的角部的第一串 S1 和第四串 S4 称为外串，并且将位于第一串 S1 和第四串 S4 之间
的第二串 S2 和第三串 S3 称为内串。

【0076】
设置在各串 S1 至 S4 处的多个太阳能电池 210 通过互连器 220 而电耦连。详细地
说，一个串（如，第一串 S1）内的在垂直方向上彼此相邻地设置的多个太阳能电池中的一个
太阳能电池的第一集流器（图 5 中的 214）通过互连器 220a 与相邻的太阳能电池的第二集
流器（图 5 中的 217）电耦连。

【0077】
位于第一串 S1 的一个端部处的互连器 220a 通过互连器 220 与位于第二串 S2 的
一个端部处的互连器 220b 连接。类似地，位于第三串 S3 的一个端部处的互连器 220c 通过
互连器 222 与位于第四串 S4 的一个端部处的互连器 220d 连接。

【0078】
用于将从太阳能电池 210 产生的电力传输到接线盒 400 的引线（LW）耦连到位于
串 S1 至 S4 的另一端部处的互连器 220a、220b、220c 和 220d。

【0079】
在下面的描述中，将耦连到外串（即，第一串 S1 和第四串 S4）的互连器 220a 和
220d 的引线称为外部引线（OLW），并且将耦连到内串（即，第二串 S2 和第三串 S3）的互连
器 220b 和 220c 的引线称为内部引线（ILW）。

【0080】
将耦连到第一串 S1 的互连器 220a 的引线称为第一外部引线 OLW1，将耦连到第四
串 S4 的互连器 220d 的引线称为第二外部引线 OLW2，将耦连到第二串 S2 的互连器 220b 的
引线称为第一内部引线 IWL1，将耦连到第三串 S3 的互连器 220c 的引线称为第二内部引线 IWL2。

[0081] 要特别注意的是，第一外部引线 OWL1 和第二外部引线 OWL2 不与第一内部引线 IWL1 和第二内部引线 IWL2 交叠。因此，在外部引线 OWL1 和 OWL2 与内部引线 IWL1 和 IWL2 之间不存在电连接或其他交叠或干扰。

[0082] 详细地说，并且如图 5 所示，第一外部引线 OWL1 包括连接到互连器 220a 的互连器连接部 OLW1-1 和连接到互连器连接部 OLW1-2 的一个端部的耦连部 OLW1-2 和连接到耦连部 OLW1-2 的另一端部的接线盒连接部 OLW1-3。同样，第二外部引线 OWL2 包括连接到互连器 220d 的互连器连接部 OLW2-1 和连接到互连器连接部 OLW2-1 的一个端部的耦连部 OLW2-2 和连接到耦连部 OLW2-2 的另一端部的接线盒连接部 OLW2-3。

[0083] 第一内部引线 IWL1 包括连接到对应互连器 220b 的互连器连接部 IWL1-1 和连接到互连器连接部 IWL1-1 的一个端部的接线盒连接部 IWL1-2。同样，第二内部引线 IWL2 包括连接到对应互连器 220c 的互连器连接部 IWL2-1 和连接到互连器连接部 IWL2-1 的一个端部的接线盒连接部 IWL2-2。

[0084] 连接到互连器 (220a、220b、220c 和 220d) 的每个引线的互连器连接部 (OLW1-1、OLW2-1、ILW1-1 和 ILW2-1) 也称为“汇流（条）带”或“汇流（条）互连器”。

[0085] 第一外部引线 OWL1 和第二外部引线 OWL2 的互连器连接部 OLW1-1 和 OLW2-1 分别被设置为与对应互连器 220a 和 220d 交叉，并且接线盒连接部 OLW1-3 和 OLW2-3 分别被设置为与互连器连接部 OLW1-1 和 OLW2-1 交叉，即，分别被设置为平行于互连器 220a 和 220d。

[0086] 同样，第一内部引线 IWL1 和第二内部引线 IWL2 的互连器连接部 IWL1-1 和 IWL2-1 分别被设置为与对应互连器 220b 和 220c 交叉，并且接线盒连接部 IWL1-2 和 IWL2-2 分别被设置为与互连器连接部 IWL1-1 和 IWL2-1 交叉。

[0087] 另外，第一外部引线 OWL1 的互连器连接部 OLW1-1 被设置为与第一内部引线 IWL1 的互连器连接部 IWL1-1 大体成直线。同样，第二内部引线 IWL2 的互连器连接部 IWL2-1 被设置为与第二外部引线 OWL2 的互连器连接部 OLW2-1 大体成直线。

[0088] 第一外部引线 OWL1 的互连器连接部 OLW1-1、第一内部引线 IWL1 的互连器连接部 IWL1-1、第二内部引线 IWL2 的互连器连接部 IWL2-1 和第二外部引线 OWL2 的互连器连接部 OLW2-1 总体上大体设置为直线。

[0089] 根据这样的特性，因为第一外部引线 OWL1 的互连器连接部 OLW1-1 和第二外部引线 OWL2 的互连器连接部 OLW2-1 被设置为与第一内部引线 IWL1 的互连器连接部 IWL1-1 以及第二内部引线 IWL2 的互连器连接部 IWL2-1 重合，所以与互连器连接部布置在彼此旁边的现有技术相比，可以减少太阳能电池板 200 的不用于产生能量的区域（即，布置了引线 LW 的部分）。

[0090] 耦连第一外部引线 OWL1 的互连器连接部 OLW1-1 和接线盒连接部 OLW1-3 的耦连部 OLW1-2 包括第一耦连部 OLW1-2-1 和第二耦连部 OLW1-2-2，第一耦连部 OLW1-2-1 耦连到互连器连接部 OLW1-1 的端部，使得它与互连器连接部 OLW1-1 交叉，第二耦连部 OLW1-2-2 耦连到第二耦连部 OLW1-2-1 以及接线盒连接部 OLW1-3，使得它与互连器连接部 OLW1-1 平行。利用这样的结构，按照台阶方式设置第一外部引线 OWL1。

[0091] 具体地说，在台阶式设置中，第一外部引线 OWL1 的互连器连接部 OLW1-1 的端部位
于第一耦合连 OLW1-2-1 的端部的下面，并且接线盒连接部 OLW1-3 的端部位于第二耦合连
OLW1-2-2 的端部的下面。在一些实现方式中，第一内部引线 OLW1 的互连器连接部 OLW1-1、
第一耦合连 OLW1-2-1、第二耦合连 OLW1-2-2 和接线盒连接部 OLW1-3 中的一个或更多个可以
形成为一体化构件，并且其对应于这些部件的部分可以通过一体化构件的弯曲、接合、或其他
转变而形成。

[0092] 同样，耦合第二外部引线 OLW2 的互连器连接部 OLW2-1 和接线盒连接部 OLW2-3 的
耦合连 OLW2-2 包括第一耦合连 OLW2-2-1 和第二耦合连 OLW2-2-2，第一耦合连 OLW2-2-1
耦合到互连器连接部 OLW2-1 的端部，使得它与互连器连接部 OLW2-1 交叉，第二耦合连
OLW2-2-2 耦合到第一耦合连 OLW2-2-1 和接线盒连接部 OLW2-3，使得它与互连器连接部
OLW2-1 平行。利用这样的结，按照台阶方式设置第二外部引线 OLW2。

[0093] 在该设置中，第二外部引线 OLW2 的互连器连接部 OLW2-1 的端部位于第一耦合连
OLW2-2-1 的端部的下面，并且接线盒连接部 OLW2-3 的端部位于第二耦合连 OLW2-2-2 的端
部的下面。在一些实现方式中，第二外部引线 OLW2 的互连器连接部 OLW2-1、第一耦合连
OLW2-2-1、第二耦合连 OLW2-2-2 和接线盒连接部 OLW2-3 中的一个或更多个可以形成一
体化构件，并且其对应于这些部件的部分可以通过一体化构件的弯曲、接合、或其他
转变而形成。

[0094] 相对于内部引线 ILW1 和 ILW2，互连器连接部 ILW1-1 和 ILW2-1 位于接线盒连接部
ILW1-2 和 ILW2-2 的下面。

[0095] 利用引线 LW 的这样的设置，尽管引线分为几段，但可以减少用于生产太阳能电池板
200 所需要的步骤。

[0096] 根据前述结构，第一外部引线 OLW1 不与第一内部引线 ILW1 交叠，并且第二外部
引线 OLW2 不与第二内部引线 ILW2 交叠。另外，在外部引线 OLW1、OLW2 与内部引线 ILW1、
ILW2 之间，不存在将与电荷载流子在每条引线内的传导发生干扰的连接。另外，因为引线不
交叠，所以在外引线 OLW1、OLW2 与内部引线 ILW1、ILW2 之间不需要包括绝缘膜。

[0097] 在现有技术描述的设计中，其中，外部引线 OLW1、OLW2 的互连器连接部 OLW1-1、
OLW1-1 以及内部引线 ILW1、ILW2 的互连器连接部 ILW1-1、ILW1-2 布置在彼此旁边，需要在
外部引线 OLW1、OLW2 与内部引线 ILW1、ILW2 之间布置绝缘膜，以防止外部引线 OLW1、OLW2
的耦合连 OLW1-2、OLW2-2 与内部引线 ILW1、ILW2 的互连器连接部 ILW1-1、ILW1-2 在交叠
部分发生接触。

[0098] 因此，当外部引线 OLW1、OLW2 的互连器连接部 OLW1-1、OLW1-1 以及内部引线 ILW1、
ILW1 的互连器连接部 ILW1-1、ILW2-1 大体按照直线设置，并且外部引线 OLW1、OLW2 按照
台阶结构设置时，不需要为了将外部引线 OLW1、OLW2 与内部引线 ILW1、ILW2 彼此绝缘而包
括绝缘膜或其他电绝缘材料，因此可以降低太阳能电池板 200 的制造成本和制造处理的数
量。

[0099] 同时，用于将外部引线 OLW1、OLW2 和内部引线 ILW1、ILW2 与太阳能电池 210 和互
连器绝缘的绝缘膜 260 被形成为具有足够的尺寸，足以覆盖外部引线 OLW1 和 OLW2 的耦合
连 OLW1-2 和 OLW2-2 的全部，接线盒连接部 OLW1-3 和 OLW2-3 的一部分，以及内部引线 ILW1
和 ILW2 的接线盒连接部 ILW1-2 和 ILW2-2 的一部分。绝缘膜 260 位于太阳能电池 210 的
背面上，并且位于引线 OLW1、OLW2、ILW1 和 ILW2 之间的空间中。
在该情况下，绝缘膜260由与背板250的不透明材料相似或相同的不透明材料制成。因为绝缘膜260的材料是不透明的，所以在太阳能电池模块100的背侧部分可以看到引线OLW1、OLW2、ILW1和ILW2的互连器连接部OLW1-1、OLW2-1、ILW1-1和ILW2-1，因此可以改善外观和绝缘特性。另外，因为引线不延伸超过互连器连接部OLW1-1、OLW2-1、ILW1-1和ILW2-1，所以在太阳能电池模块100的正背侧部分可以看到引线OLW1、OLW2、ILW1和ILW2的互连器连接部OLW1-1、OLW2-1、ILW1-1和ILW2-1。

在前述示例中，外部引线OLW1和OLW2的互连器连接部OLW1-1和OLW2-1，第一耦连部OLW1-2-1和OLW2-2-1，第二耦连部OLW1-2-2和OLW2-2-2，以及接线盒连接部OLW1-3和OLW2-3被描述为是分开的（即，分离的引线）。同样，内部引线ILW1和ILW2的互连器连接部ILW1-1和ILW2-1以及接线盒连接部ILW1-2和ILW2-2被描述为是分开的（即，分离的引线）。

但是，太阳能电池模块100的设计不限于此，引线OLW1、OLW2、ILW1和ILW2可以一体地形成。

现在参照图6将描述这样的引线的设计，图6是根据图3的引线的变型例的引线的放大图。如图所示的，外部引线OLW1和OLW2各自被构成为单个主体，并且每个主体都包括互连器连接部OLW1-1和OLW2-2，第一耦连部OLW1-2-1和OLW2-2-1，第二耦连部OLW1-2-2和OLW2-2-2，以及接线盒连接部OLW1-3和OLW2-3。同样，内部引线ILW1和ILW2各自被构成为单个主体，并且每个主体都包括互连器连接部ILW1-1和ILW2-1以及接线盒连接部ILW1-2和ILW2-2。

外部引线OLW1和OLW2以及内部引线ILW1和ILW2可以分别被构成为单个主体。另选地，尽管未示出，但是外部引线OLW1和OLW2的互连器连接部OLW1-1和OLW2-1，第一耦连部OLW1-2-1和OLW2-2-1，第二耦连部OLW1-2-2和OLW2-2-2，以及接线盒连接部OLW1-3和OLW2-3中的至少一个可以被形成为与其他部分分开的构件。

另外，引线可以被构成为具有与在图3和图6中示例的实施方式的形式不同的形式。现在将参照图7来对此进行描述。图7是根据图3的引线的另一变型例的引线的放大图。如所例示的，当接线盒400（图1和图3中示出的）的连接部沿着太阳能电池板200的串的方向布置时，可以使用在图7中示例的变型例，这在引线结构方面不同于上述实现方式中的那些引线结构，上述实现方式中的那些引线结构是当接线盒的连接到引线的连接部沿着与太阳能板的串交叉的方向布置时使用的。

详细介绍，关于图7，外部引线OLW1和OLW2的接线盒连接部OLW1-3和OLW2-3以及互连器连接部OLW1-1和OLW2-1被设置为平行，使得它们与互连器交叉，并且耦连互连器连接部OLW1-1和OLW2-1与接线盒连接部OLW1-3和OLW2-3的耦连部OLW1-2和OLW2-2线性地形成，被设置为平行于互连器。

内部引线ILW1和ILW2的接线盒连接部ILW1-2和ILW2-2以及互连器连接部ILW1-1和ILW2-1被设置为彼此平行，使得它们与互连器交叉，并且耦连互连器连接部ILW1-1和ILW2-1与接线盒连接部ILW1-2和ILW2-2的耦连部ILW1-3和ILW2-3被设置为平行于互连器。

如图7所示，第一内部引线ILW1的耦连部ILW1-3在串的方向上的长度L1和第二内部引线ILW2的耦连部ILW2-3在串的方向上的长度L2可以不同，但是第一外部引线OLW1
的耦合并部 OLW1–2 在串的方向上的长度 L3 和第二外部引线 OLW2 的耦合并部 OLW2–2 在串的方向上的长度 L4 可以不同。

【0109】在图 7 中，示了如下情况：第一内部引线 ILW1 的耦合并部 ILW1–3 的长度 L1 和第一外部引线 OLW1 的耦合并部 OLW1–2 的长度 L3 短于第二内部引线 ILW2 的耦合并部 ILW2–3 的长度 L2 和第二外部引线 OLW2 的耦合并部 OLW2–2 的长度 L4。但是，第一内部引线 ILW1 的耦合并部 ILW1–3 的长度 L1 和第一外部引线 OLW1 的耦合并部 OLW1–2 的长度 L3 可以长于第二内部引线 ILW2 的耦合并部 ILW2–3 的长度 L2 和第二外部引线 OLW2 的耦合并部 OLW2–2 的长度 L4。

【0110】对于具有这种结构的引线，与上述实现方式类似，至少一个部分可以被形成为与其他部分分离，或者所有的部分可以被形成为单体。

【0111】图 8 是根据太阳能电池模块的另一实现方式的具有引线的太阳能电池的后视图。根据图 8 的实现方式的太阳能电池模块包括 6 个串，即，第一至第六串 S1、S2、S3、S4、S5 和 S6。因此，第一串 S1 和第六串 S6 是外串，并且第二至第五串 S2、S3、S4 和 S5 是内串。

【0112】用于具有图 8 的结构的太阳能电池模块的引线被构成为具有与图 3、图 4 和图 6 的实施方式的引线的形状和结构相似的整体形状和结构，不同之处在于，第一内部引线 ILW1 的互连器连接部 ILW1–1 被形成为其长度足以与第二串 S2 的互连器 220b 和第三串 S3 的互连器 220c 二者连接。同样，第二内部引线 ILW2 的互连器连接部 ILW2–1 被形成为其长度足以与第四串 S4 的互连器 220d 和第五串 S5 的互连器 220e 二者连接。图 8 中的标号 OLW1–1 和 OLW2–1 分别表示第一外部引线 OLW1 和第二外部引线 OLW2 的互连器连接部。

【0113】在一些实施方式中，太阳能电池模块可以包括其他数量的太阳能电池串。例如，太阳能电池模块可以包括第一至第八串。第一和第八串构成外串，而其他剩余的串（即，第二至第七串）构成内串。因此，如图 9 和图 10 所示，在包括八个串的太阳能电池模块中，引线可以包括：与第一串的互连器连接的第一外部引线 OLW1、与第二和第三串的互连器连接的第一内部引线 ILW1 与第四串的互连器连接的第二内部引线 ILW2、与第五串的互连器连接的第三内部引线 ILW3、与第六和第七串的互连器连接的第四内部引线 ILW4、以及与第八串的互连器连接的第二外部引线 OLW2。

【0114】与第一串的互连器连接的第一外部引线 OLW1 以及与第八串的互连器连接的第二外部引线 OLW2 可以被形成为具有与第一内部引线 ILW1（其同时连接第二串并第三串的互连器）和第四内部引线 ILW4（其同时连接第六和第七串的互连器）的结构相同的结构，如图 9 所示，或者可以形成为具有如图 10 所示的这种结构。

【0115】按照该方式，可以按照多个各种不同结构之一来设置引线，使得它们彼此不交叠。因此，可以不需要在引线的交叠部分之间包括绝缘材料。还有，如上所述，可以选择引线的结构，以便于引线不延伸超过互连器连接部。

【0116】尽管前面的公开包括许多示例性实现方式，但应该理解，可以有落入本公开的原理的范围内的大量其他变型和变化。更具体地说，在组成部件的数量、材料、组成部件的生产方式和/or 组装方式、和/or 组成部件的设置这些方面，可以有变型和变化。
图 1
图 6

图 7