发明名称
一种控制十字轴渗碳淬火变形的加工工艺

摘要
本发明涉及一种控制十字轴渗碳淬火变形的加工工艺，属于汽车配件热处理工艺及方法。第一，采用较低的渗碳和淬火温度，配合特殊的渗碳夹持工装，以减少部件自身在加热过程因重力造成的弯曲变形；第二，将经过热处理的十字轴放置在偏摆仪上测量垂直度，超过公差范围采用返修工艺处理，未超差工件标示出垂直度变形量，方便下个工序加工；第三，将十字轴放在中心带孔的平台上，用塞尺逐一定位四轴平面度，将超差值的进行标示，并在压力机上矫正至公差范围内；第四，将合格工件的十字轴，采用倾斜孔定位，将每两个相对的轴在磨床上磨削加工至成品尺寸，本发明的优点在于，通过简要、明确的加工步骤，提高产品合格率，避免返工浪费。
1. 一种控制十字轴渗碳淬火变形的加工工艺，其特征在于，该加工工艺由四个步骤组成，其中，第一步：采用830~870℃较低的渗碳和淬火温度，配合特殊的渗碳夹持工装，以保证十字轴的四轴轴线在加热过程中呈水平状态，以减少部件自身重力造成的弯曲变形；第二步：将经过热处理的十字轴放置在偏摆仪上测量垂直度，超过公差范围采用返修工艺处理，未超过公差范围的标示出垂直度变形量，方便下个工序加工；第三步：将十字轴放在中心带孔的平台上，用塞尺逐一检测四轴平面度，将超差值的进行标示，并在压力机上矫正至公差范围内；第四步：将合格公差范围的十字轴，用顶针孔定位，将每个相对的轴在磨床上磨削加工至成品尺寸；

所述的渗碳夹持工装是一个带有底座的垂直竖轴，轴的直径可刚好穿入十字轴中部的通孔，依次穿入该夹持工装的十字轴工件的四轴呈水平方向，且排列紧凑，所占空间小；

所述的中心带孔的平台是一个检测十字轴四轴平面度的检测平台，中心的圆形通孔可放入十字轴中部带孔的圆形凸台，使四轴外表面与平面上平面贴合，以检测四轴外圆表面与平台之间的间隙，确定四轴平面精度。
说明书

一种控制十字轴渗碳淬火变形的加工工艺

技术领域
[0001] 本发明涉及一种控制十字轴渗碳淬火变形的加工工艺，属于汽车配件制造及热处理工艺及方法技术领域。

背景技术
[0002] 目前采用的十字轴加工工艺由：锻造毛坯成型、正火、机加工、渗碳淬火热处理、精磨四轴等工序组成。由于十字轴最重要的质量指标是：四轴轴线的相对位置公差，每相对的两轴与另外两轴相互垂直并相交于一个平面内，因此，十字轴在热处理前的机加工完成后，已经形成了较高的位置精度和尺寸精度；即相对的两轴轴端面顶针孔连线与相应外圆的轴线重合，并与另外两轴的顶针孔连线垂直相交，而且四轴经过磨削加工后，直径的尺寸公差控制在0.01mm内。十字轴在渗碳炉内装夹有四轴水平摆放和吊挂式摆放甚至堆放等几种摆放方式，吊挂式摆放是用工装上的承载轴水平插入十字轴孔内，使得四轴所在平面垂直于水平面；这种方式都不应避免其四轴沿重力方向发生下垂弯曲变形，造成部分十字轴四轴的位置度公差超差。热处理后的精磨加工，采用的是以两个相对轴的顶针孔定位磨二轴外圆，该工艺无法消除四轴间的定位公差超差，而且返修时，无法采用压力机校直工艺，还需要将十字轴进行高温回火软化处理，然后重新整形、再加热淬火，返修工序多、周期长，生产效率低，影响产品合格率，增加了生产和返修成本。

发明内容
[0003] 本发明针对现有技术的不足，提供了一种设计合理、工艺科学，可靠性高的控制十字轴渗碳淬火变形的加工工艺，提高了产品合格率和生产工艺的可靠性。
[0004] 本发明的目的是通过以下技术方案来实现的：一种控制十字轴渗碳淬火变形的加工工艺，由四个工艺步骤组成：步骤一，将经过机加工后的十字轴，以其四轴所在的平面水平放置于渗碳淬火工装上进行低温渗碳并保温淬火的热处理，以保证十字轴的四轴轴线在加热过程中呈水平状态，由于部件自身重力造成的弯曲变形主要以破坏四轴平面度为主，以减少四轴相互间沿垂直度方向的变形量，后者造成的返修加工是一种相对复杂的工艺；步骤二：经过热处理的十字轴放置在偏摆仪上测量垂直度，将合格与不合格产品分别标识；步骤三：合格的十字轴置于中心带孔的平台上，用塞尺检查四轴平面度，将合格与不合格产品分别标识，不合格的将另行处理；步骤四：对合格公差范围的十字轴，两个相对的轴用顶针孔定位，在磨床上磨削加工至成品尺寸，本发明的优点在于，通过简要、明确的加工步骤，提高产品合格率，避免返工浪费。
[0005] 所述的步骤一中所指的热处理，即包括采用870℃×4h渗碳，降温至830℃×0.5h后淬火，淬火后温度为60~80℃，180℃×2h回火。
[0006] 所述的步骤二中所说的“在偏摆仪上测量垂直度”，是分别用偏摆仪顶尖顶住相对两轴的顶针孔，用百分表测量其轴端外圆相对另一轴的跳动。
[0007] 所述的步骤二，产生的不合格的十字轴采用返修工艺处理，将十字轴进行以
560~650℃的高温回火软化处理后，再重新整形，然后再加热淬火，返回步骤二。

[0008] 所述的步骤二中产生的不合格品，另行处理是指：将十字轴在压力机上压直，压直后将再返回步骤二，压直时，用带有“V”型凹槽的压铁的凹槽底部支住相对两轴的轴端，上部用压力机压头压中心孔的上端面，将轴四平面度压直至公差范围内；该压直工艺相对于压直相互间沿垂直度方向的变形超差后的产品，进行高温回火软化处理后的重新整形，容易和简单许多。

[0009] 所述的渗碳夹持工装是一个带有底座的垂直轴，轴的直径可刚好穿过十字轴中部的通孔，依次穿过该夹持工装的十字轴工件的四轴呈水平方向，且排列紧密，所占空间小。

[0010] 所述的中心带孔的平台是一个检测十字轴四轴平面度的检测平台，中心的圆形通孔可放入十字轴中部带孔的圆形凸台，使四轴外表面与平台上平面贴合，以检测四轴外圆表面与平台之间的间隙，确定四轴平面精度。

[0011] 本发明使用时采用四个工艺步骤：第一步：采用830~870℃较低的渗碳和淬火温度，配合特殊的渗碳夹持工装，以保证十字轴的轴四轴轴线在加热过程中呈水平状态，由于部件外重力造成的弯曲变形主要以弯曲四轴平面度为主，以减少四轴相互间沿垂直度方向的变形量；第二步：将经过热处理的十字轴放置在偏摆仪上测量垂直度，经过公差范围内采用返修工艺处理，未超过公差范围的标示出垂直度变形量，方便下个工序加工；第三步：将十字轴放在中心带孔的平台上，用塞尺逐一检测四轴平面度，将超差值的进行标示，并在压力机上压直至公差范围内；第四步：合格公差范围的十字轴，用顶针孔定位，将每两个相对的轴在磨床加工至成品长度，本发明的优点在于，通过简要、明确的加工步骤，简化了工艺，提高产品合格率，避免返工浪费。

附图说明
[0012] 附图1为渗碳夹持工装及在炉内水平放置的示意图；
[0013] 附图2为十字轴在专用平台检测示意图。

具体实施方式
[0014] 中1：渗碳夹持工装；1-1底座，1-2立柱，1-3工件；2、中间带孔平台；2-1中间带孔平台，2-2工件，2-3塞尺。

具体实施例
[0015] 实施例：
[0016] 控制十字轴渗碳淬火变形的加工工艺，结合图1、图2，十字轴材料为20CrMnTi，包括锻造毛坯成型、正火，机加工，以及以下步骤：
[0017] 第一步：将经过机加工的十字轴2水平放置在的渗碳工装1上进行870℃×4h渗碳，降温至830℃×0.5h后淬火，淬火油温度为60~80℃，180℃×2h回火，有效地降低十字轴渗碳淬火变形，减少十字轴的轴四轴沿相互垂直的方向的弯曲变形。
[0018] 第二步：检测十字轴每相对的两轴与另外两轴间的垂直度，检测方法是用偏摆仪顶顶尖顶住任意相对两轴的顶针孔，旁边架上磁力表座和百分表，手动转动十字轴的另外两轴，测量其轴端外圆相对两轴的跳动，将此值作为两轴间的垂直度，区分合格与不合格并标识，超过公差范围采用返修工艺处理，未超过公差范围的标示出垂直度变形量。
第三步：矫正工序的操作程序是根据产品要求的四轴间的相对位置公差为：
A-B ⊕ C-D 为 φ0.08。即 A-B 轴与 C-D 轴相互间的相对位置公差为 φ0.08。以任意相对两轴的轴心
线为基准，存在着一个与之相垂直并相交的一条直线，另外相对两轴的轴心线应位于与该
线为轴心，半径为 0.04 的圆柱体之内。

矫直时控制垂直度变形量与平面度要求值的相互关系应该为：
平面度要求值 = (0.08 - 四轴直径尺寸公差范围 0.01) / 2 （垂直度变形 0.07）

计算出的数值如下表：

<table>
<thead>
<tr>
<th>垂直度变形量</th>
<th>0</th>
<th>0.01</th>
<th>0.02</th>
<th>0.03</th>
<th>0.04</th>
<th>0.05</th>
<th>0.06</th>
<th>0.07</th>
<th>≥ 0.07</th>
</tr>
</thead>
<tbody>
<tr>
<td>平面度要求值</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.06</td>
<td>0.06</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
<td>0.07</td>
</tr>
</tbody>
</table>

将十字轴在其圆台状中心带孔平台 3 用塞尺检查四轴平面度，不合格的用粉笔
等进行标识便于与合格件区分开来。将不合格的标示出并在压力机上矫正，将公差值控制
在上表中的四轴平面度要求范围内。

第四步：将矫正后的十字轴，每两个相对的轴在磨床上同时磨加工。采用该工艺加工
的十字轴，提高并稳定了产品合格率。

上述虽然结合附图对发明的具体实施方式进行了描述，但并非对本发明保护范围
的限制，所属领域技术人员应该明白，在本发明的技术方案的基础上，本领域技术人员不需
要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。
附图 1