(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property Organization
International Bureau
(43) International Publication Date
26 May 2017 (26.05.2017)

(51) International Patent Classification:
C05G 3/00 (2006.01) C05G 3/04 (2006.01)
B01J 2/30 (2006.01) C05G 3/10 (2006.01)

(21) International Application Number:
PCT/US20 16/061486

(22) International Filing Date:
11 November 2016 (11.11.2016)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
62/415,825 1 November 2016 (01.11.2016) US

(71) Applicant: SABIC GLOBAL TECHNOLOGIES B.V.
[NL/NL]; Plasticslaan 1, 4612 PX Bergen op Zoom (NL).

(72) Inventor:

(71) Applicant (for BZ only): KANNAN, Ganesh [US/US];
1600 Industrial Boulevard, Sugar Land, Texas 77478 (US).

(72) Inventors: POSADA, Christina; 1600 Industrial Boulevard,
Sugar Land, Texas 77478 (US). HAIGH, James; 1600 Industrial Boulevard, Sugar Land, Texas 77478 (US). HARPER, Travis; 1600 Industrial Boulevard, Sugar Land, Texas 77478 (US). KANAGALINGAM, Sabeshan; P.O. Box 42503, Riyadh, 11551 (SA).

(74) Agent: KOSTIEW, Krista A.; Cantor Colburn LLP, 20
Church Street, 22nd Floor, Hartford, Connecticut 06103
(US).

(54) Title: COATED GRANULAR FERTILIZERS, METHODS OF MANUFACTURE THEREOF, AND USES THEREOF

(57) Abstract: A coated fertilizer comprising a fertilizer granule and a coating disposed on a surface of the fertilizer granule, wherein the coating comprises interpenetrating domains comprising polymer domains and wax domains. A method of making the coated fertilizer is also disclosed.

Fig. 1A
COATED GRANULAR FERTILIZERS, METHODS OF MANUFACTURE THEREOF, AND USES THEREOF

BACKGROUND

[0001] Granular fertilizers can be coated to reduce dust production and to slow the release of nutrients into the soil. To improve fertilizer uptake by the plant, the available fertilizer concentration in the soil should match the plant growth need. Since plants typically follow a sigmoidal growth pattern, the fertilizer availability should be similar to the plant growth rate. Due to various parameters such as soil erosion, volatilization of ammonia, and leaching of nitrates, only about 40% of currently available fertilizers like urea are absorbed by the plant and the remainder is lost to the environment. Hence, there remains a need in the art for improved coated fertilizer which allows for a higher utilization of the fertilizer by the plant.

SUMMARY

[0002] Described herein is a coated fertilizer comprising a fertilizer granule and a coating disposed on a surface of the fertilizer granule, wherein the coating comprises interpenetrating domains comprising polymer domains and wax domains.

[0003] A process of manufacturing the coated fertilizer comprises at least partially dissolving a polymer and a wax in an organic solvent to form a coating composition; contacting the coating composition with a plurality of fertilizer granules to form at least partially coated fertilizer granules; evaporating the organic solvent from the at least partially coated fertilizer granules to form dried at least partially coated fertilizer granules; and heating the dried at least partially coated fertilizer granules at a temperature effective to at least partially melt the wax to form a coating comprising interpenetrating domains comprising polymer domains and wax domains.

[0004] Alternatively, a process of manufacturing the coated fertilizer comprises at least partially dissolving a first structural polymer in a first solvent having a first boiling point to form a first solution; at least partially dissolving a second polymer and a wax in a second solvent having a second boiling point to form a second solution, wherein the second boiling point is different from the first boiling point; contacting the first solution and the second solution with a plurality of fertilizer granules to form at least partially coated fertilizer granules; evaporating the first solvent and the second solvent from the at least partially coated fertilizer granules to form dried at least partially coated fertilizer granules; and heating the
dried at least partially coated fertilizer granules at a temperature effective to at least partially melt the wax to form a coating comprising interpenetrating domains comprising polymer domains and wax domains.

[0005] The above described and other features are further set forth in the following figures, detailed description, and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The following is a brief description of the drawings wherein like elements are numbered alike and which are presented for the purposes of illustrating the exemplary embodiments disclosed herein and not for the purposes of limiting the same.

[0007] FIG. 1A is a scanning electron microscopic image of a sample at 500 times magnification with no pre-treatment.

[0008] FIG. 1B is a scanning electron microscopic image of the sample of FIG. 1A at 2000 times magnification with no pre-treatment.

[0009] FIG. 2A is a scanning electron microscopic image of a sample at 500 times magnification with 5 hours of pre-treatment.

[0010] FIG. 2B is a scanning electron microscopic image of the sample of FIG. 2A at 2000 times magnification with 5 hours of pre-treatment.

[0011] FIG. 3A is a scanning electron microscopic image of a sample at 500 times magnification with 10 hours of pre-treatment.

[0012] FIG. 3B is a scanning electron microscopic image of the sample of FIG. 3A at 2000 times magnification with 10 hours of pre-treatment.

[0013] FIG. 4A is a scanning electron microscopic image of a sample at 500 times magnification with 15 hours of pre-treatment.

[0014] FIG. 4B is a scanning electron microscopic image of the sample of FIG. 4A at 2000 times magnification with 15 hours of pre-treatment.

DETAILED DESCRIPTION

[0015] The coated fertilizer comprising a fertilizer granule and a coating comprising interpenetrating domains of polymer domains and wax domains has a release rate which more closely matches plant growth rate and as a result has a higher utilization rate than coated fertilizer without the interpenetrating domains. Interpenetrating domains, as used herein, describe domains of different materials which penetrate each other mutually creating a morphology demonstrating distinct domains of separate materials which border one or more
domains of a different material. These domains may be irregular in shape. A useful visual analogy is puzzle pieces in which adjoining pieces are domains formed from different materials. Without being bound by theory it is believed that when the polymer is applied it forms a non-continuous coating of polymer domains on the granules and at least some of the gaps in the polymer domains are filled with wax domains when the wax is applied.

[0016] The embodiments described herein relate to a coated fertilizer granule. The coating comprises interpenetrating domains of at least one polymer and at least one wax. The fertilizer granule is at least partially coated with a coating that comprises interpenetrating domains of at least one polymer and at least one wax.

[0017] It is desirable to improve the mechanical strength of the at least partially coated fertilizer granules. Mechanical strength can affect the ability of the fertilizer granules to withstand the normal handling procedures and can increase the effectiveness of the coating. It has surprisingly been discovered that pre-treating a surface of the fertilizer granule before applying the coating can improve the mechanical properties of the at least partially coated fertilizer granules as well as can improve the adherence of the coating to the fertilizer granule. The pre-treating, among other things, can include smoothing a surface of the fertilizer granule. The pre-treatment can occur after the fertilizer granule has been formed. Coated fertilizers containing a pre-treated fertilizer granule can have a significantly lower percent nitrogen release after 7 days as compared to coated fertilizers not containing a pre-treated fertilizer granule. For example, the pre-treated fertilizer granule can have a percent nitrogen release after 7 days of less than or equal to 70%, for example, less than or equal to 65%, for example, less than or equal to 60%. Pre-treatment can include smoothing of the fertilizer granule surface by pre-heating the granule to a temperature greater than or equal to 90°C. For example, the temperature can be greater than or equal to 100°C, for example, greater than or equal to 105°C, for example, greater than or equal to 125°C. The pre-treatment time can be greater than or equal to 5 hours, for example, greater than or equal to 10 hours, for example, greater than or equal to 15 hours, for example, greater than or equal to 20 hours.

[0018] After a coating has been applied (e.g. a 2% coating), the coated fertilizer containing the pre-treated fertilizer granule can be post-treated and weight loss measured. The 2% coating generally refers to a 2% polymer coating by weight. The coating can be applied by the processes described herein and gives a control sample allowing observation of the effect of the pre-treatment. Weight loss can be less for coated fertilizers containing the pre-treated fertilizer granule as compared to coated fertilizers not containing the pre-treated
fertilizer granule. Post-treatment can include heating the pre-treated, at least partially coated granules at various temperatures and then measuring percent weight loss. Heating can include temperatures greater than or equal to 50°C, for example, greater than or equal to 60°C, for example, greater than or equal to 70°C, for example, greater than or equal to 80°C, for example, greater than or equal to 90°C, for example, greater than or equal to 100°C. The post-treatment heating time can be greater than or equal to 5 hours, for example, greater than or equal to 10 hours, for example, greater than or equal to 15 hours, for example, greater than or equal to 20 hours. The coated fertilizer containing the pre-treated fertilizer granule can have a percent weight loss of less than or equal to 0.20% after post-treatment, for example, less than or equal to 0.15%, for example, less than or equal to 0.10%.

[0019] The fertilizer granules can comprise nitrogen, phosphorus, or potassium sources such as ammonium nitrate, ammonium sulfate, ammonium sulfate nitrate, calcium nitrate, calcium ammonium nitrate, urea, urea-formaldehyde, monoammonium phosphate ("MAP"), diammonium phosphate, polyphosphate compounds, phosphate rock, single superphosphate ("SSP"), triple super phosphate, potassium nitrate, potassium chloride, potassium sulfate ("SOP" or potash), or a combination comprising at least one of the foregoing. In some embodiments, the fertilizer granules comprise urea. The amounts of nitrogen, phosphorus, or potassium sources included in the final fertilizer granules depends on the intended end use, and can be 0 to 60 wt.% for each component, based on the total weight of the fertilizer granule.

[0020] Additionally, magnesium sulfate and a source of one or more trace elements, i.e., micronutrients can be included, for example boron, calcium, chlorine, cobalt, copper, iron, manganese, molybdenum, nickel, sodium, zinc, or a combination comprising at least one of the foregoing can be present. These nutrients may be supplied in elemental form or in the form of salts, for example as sulfates, nitrates, or halides. The amount of plant micronutrients depends on the intended end use and can be, for example, 0.1 to 5 weight percent (wt.%), based on the total weight of the fertilizer granule.

[0021] Fillers can further be present in the granule, for example bentonite, calcite, calcium oxide, calcium sulfate (anhydrous or hemihydrate), dolomite, talc, sand, or a combination comprising at least one of the foregoing fillers.

[0022] Other components of granular fertilizers can include, for example, surfactants, nucleation agents, or recycled fertilizer particles, which can act as a source of nucleating agents, nucleating soil conditioners such as calcium carbonate, activated carbon, elemental sulfur, biocides such as pesticides, herbicides, or fungicides, wicking agents, wetting agents,
heat stabilizers, adhesives such as cellulose, polyvinyl alcohols, fats, oils, gum arabics,
vinyldene ultraviolet stabilizers, antioxidants, reducing agents, colorants, binders (i.e.,
organochlorides, zeins, gelatins, chitosan, polyethylene oxide polymers, and acrylamide
polymers and copolymers), and the like, as well as combinations comprising at least one of
the foregoing.

[0023] The fertilizer granules can have any shape or size desired for their intended
use. In some embodiments the fertilizer granules are substantially spherical. The fertilizer
granules have an average particle diameter of 1.0 to 4.0 millimeters (mm). Within this range
the average particle diameter can be greater than or equal to 1.5, or greater than or equal to
2.0 mm. Also within this range the average particle diameter can be less than or equal to 3.5,
or less than or equal to 3.0 mm. In some embodiments at least 90% by weight of the fertilizer
granules have a particle diameter of 2.0 to 4.0 mm. Particle diameter is determined according
to "Size Analysis - Sieve Method" IFDC S-107 issued by International Fertilizer
Development Center (IFDC) which is the most common and internationally approved method
used to determine fertilizer particle size.

[0024] The coating on the fertilizer granule comprises interpenetrating domains
comprising polymer domains and wax domains. The polymer domains have a rate of
biodegradation which differs from the rate of biodegradation of the wax domains when
subjected to the same conditions. When the polymer domains comprise two or more
polymers, each polymer has a different rate of biodegradation when subjected to the same
conditions.

[0025] In some embodiments the polymer domains comprise a biopolymer.
Exemplary polymers include polysaccharides, polyesters, lignin, and combinations
comprising at least one of the foregoing. Exemplary polysaccharides include cellulose
acetate, cellulose triacetate, starch acetate, or a combination comprising at least one of the
foregoing. Exemplary polyesters include poly(butylene succinate), poly(butylene adipate
terephthalate), poly(lactic acid), poly(lactic acid-co-glycolic acid), poly(butylene succinate),
poly(caprolactone), poly(glycolide), poly(hydroxybutyrate), poly(hydroxybutyrate-co-
hydroxy valerate), or a combination comprising at least one of the foregoing.

[0026] The cellulose acetate can have a weight average molecular weight (M_w) of
25,000 to 120,000 grams per mol (g/mol), for example, 35,000 to 70,000 g/mol.

[0027] The cellulose triacetate can have a M_w of 100,000 to 350,000 g/mol, for
example, 125,000 to 300,000 g/mol, for example, 200,000 to 275,000 g/mol.
[0028] Starch acetate is a starch that has been acetylated to a degree of substitution (DS) of 1 to 3 with an acetyl value of 20% to 70%. As used herein, "acetyl value" refers to the weight percent (wt %) of acetic per unit measure of starch acetate. For example, an acetyl value of approximately 62.5 is equivalent to a DS of 3.0.

[0029] The poly(butylene succinate) (PBS) can have a M_w of 70,000 to 160,000 g/mol. In some embodiments the poly(butylene succinate) can have an M_w of 100,000 to 150,000 g/mol, for example, 120,000 to 140,000 g/mol. In some embodiments the poly(butylene succinate) can have a M_w of 75,000 to 125,000 g/mol, for example, 90,000 to 110,000 g/mol.

[0030] The poly(butylene adipate-terephthalate) (ECOFLEX™) can have a weight average molecular weight (M_w) of 30,000 to 120,000 g/mol, for example, 50,000 to 100,000 g/mol.

[0031] The poly(lactic acid) (PLA) can have a weight average molecular weight (M_w) of 30,000 to 250,000 g/mol. The PLA can comprise recycled PLA, scrap PLA or a combination comprising at least one of the foregoing. In some embodiments the poly(lactic acid) can have a M_w of 150,000 to 210,000 g/mol, for example, 175,000 to 190,000 g/mol. In some embodiments the poly(lactic acid) can have a M_w of 30,000 to 70,000 g/mol, for example, 40,000 to 65,000 g/mol.

[0032] The poly(lactic acid-co-glycolic acid) can have a M_w of 5,000 to 300,000 g/mol, for example, 10,000 to 250,000 g/mol, for example, 40,000 to 150,000 g/mol.

[0033] The poly(caprolactone) can have a M_w of 500 to 80,000 g/mol, for example, 5,000 to 70,000 g/mol, for example, 15,000 to 60,000 g/mol.

[0034] The poly(glycolide) can have a M_w of 500 to 60,000 g/mol, for example, 5,000 to 50,000 g/mol, for example, 20,000 to 40,000 g/mol.

[0035] The poly(hydroxybutyrate) can have a M_w of 10,000 to 500,000 g/mol, for example, 30,000 to 400,000 g/mol, for example, 75,000 to 350,000 g/mol.

[0036] The poly(hydroxybutyrate-co-hydroxy valerate) can have a M_w of 10,000 to 600,000 g/mol, for example, 30,000 to 500,000 g/mol, for example, 100,000 to 400,000 g/mol.

[0037] Lignin is a polymer of aromatic alcohols most commonly derived from wood. Lignin can be obtained by the Kraft process. Exemplary lignin includes Kraft lignin marketed under the name of INDULIN™ A T or PROTOBIND™ 1000.
[0038] In some embodiments, the polymer domains comprise at least two polymers. These polymers may be miscible so as to form a single domain together or may be immiscible and form separate polymer domains.

[0039] The coating comprises polymer domains in an amount of 50 to 80 wt%, based on the total weight of the coating.

[0040] The wax domains comprise a C5-C35 wax, polyethylene wax, mineral wax, biobased wax, shellac, or a combination comprising at least one of the foregoing. Waxes are liquid at 110 to 200°F (43 to 95°C). Exemplary waxes include natural petroleum waxes, including paraffin waxes (hard, crystalline, brittle waxes composed primarily of unbranched alkanes, typically having melting points of 48 to 70°C), microcrystalline waxes (soft, amorphous, malleable waxes composed primarily of branched alkanes, typically having melting points of 54 to 95°C), and fully refined paraffin waxes. Synthetic waxes can also be used, including polyethylene waxes having, for example, a degree of polymerization of 10 to 18 carbon atoms. Exemplary waxes that are commercially available include a petroleum wax, C30+ from Chevron Phillips Chemical (CP-Chem), 7089A, R-4408, and R-3053A available from International Group, Inc.

[0041] The coating comprises wax domains in an amount of 20 to 50 wt%, based on the total weight of the coating.

[0042] When coated on the fertilizer granules, the amount of the coating is less than or equal to 6 wt.%, for example, 0.1 to 6 wt.%, 0.5 to 5 wt.%, 2 to 5 wt.%, or 3 to 5 wt.%, based on the total weight of the coated fertilizer.

[0043] In any of the foregoing embodiments, the coatings can further comprise an adjuvant as known in the art, for example a colorant, an adhesion promoter, or a surfactant, provided that the adjuvant does not significantly adversely affect the desired properties of the coated fertilizer. For example, a surfactant can include a primary and secondary \((\text{C}_6-\text{C}_{30})\)alkylamine, a \((\text{C}_6-\text{C}_{30})\)fatty acid amide of a primary \((\text{C}_6-\text{C}_{30})\)alkylamine, or a \((\text{C}_6-\text{C}_{30})\)fatty acid ester of a \((\text{C}_6-\text{C}_{30})\)alkanol. Examples of the foregoing surfactants include cetyl amine, stearyl amine, arachidyl amine, behenyl amine, dicetyl amine, distearyl amine, diarachidyl amine, dibehenyl amine, di(hydrogenated tallow) amine, cetyl stearamide, stearyl stearamide, stearyl erucamide, erucyl erucamide.

[0044] Further, in any of the foregoing embodiments, the coating is disposed directly on the granule or other layers, that is, no intervening layers are present other than those described. The coating can be continuous or discontinuous. To optimize the sustained
release features of the coated fertilizer, the coating covers 90 to 100% of the surface area of the fertilizer granule.

[0045] The thickness of the coating is adjusted to provide the desired sustained release and protection properties. In some embodiments, the total thickness of the coating is 20 to 70 micrometers. For example, the thickness can be greater than or equal to 25, or greater than or equal to 30 micrometers. For example, the thickness can be less than or equal to 65, or less than or equal to 60 micrometers.

[0046] A process of manufacturing the coated fertilizer comprises at least partially dissolving a polymer and a wax in an organic solvent to form a coating composition; contacting the coating composition with a plurality of fertilizer granules to form at least partially coated fertilizer granules; evaporating the organic solvent from the at least partially coated fertilizer granules to form dried at least partially coated fertilizer granules; and heating the dried at least partially coated fertilizer granules at a temperature effective to at least partially melt the wax to form a coating comprising interpenetrating domains comprising polymer domains and wax domains. The temperature effective to at least partially melt the wax can be 30°C to 130°C. Additional wax may be applied during heating. The coating composition may further comprise an additional polymer. It is further contemplated that an additional coating composition may be used to at least partially coat the plurality of fertilizer granules. The additional coating composition may be applied simultaneously or sequentially with the coating composition. The additional coating composition may comprise the same components as the coating composition but in different amounts or the additional coating composition may comprise only a part of the components found in the coating composition. The term "at least partially dissolving" is inclusive of suspending a material in a solvent. It is also inclusive of forming an emulsion.

[0047] The process can further include pre-treating the fertilizer granule before the coating is applied. Pre-treating the fertilizer granule can assist in providing greater adherence of the coating to the fertilizer granule and in improving the ability of the coated fertilizer to withstand post formation tests as previously described herein. Pre-treating the fertilizer granule can include smoothing the surface of the fertilizer granule.

[0048] Smoothing the plurality of fertilizer granules can be achieved by heating, e.g., heating in a rotating drum or fluid bed. It is further contemplated that mechanical methods such as ball milling could also be used to smooth the plurality of fertilizer granules. In an exemplary method, a plurality of fertilizer granules are heated to a temperature greater than or equal to 90 °C for less than or equal to 15 hours. The temperature can be less than or equal
to 110 °C. For example, the temperature can be 90 °C to 100 °C, or 100 °C to 110 °C. The time can be 1 hour to 5 hours, or 5 hours to 15 hours. The fertilizer granules can be heated in an oven, a forced air oven, disc dryer, paddle dryer, rotary dryer, conveyor dryer, fluid bed dryer, or a combination comprising at least one of the foregoing. Optionally, the fertilizer granules can be cooled before coating.

[0049] Contacting the coating composition with a plurality of fertilizer granules can be achieved by spray coating (for example, top, bottom, or side spray coating), drum coating, pan coating, fluid bed coating, continuous pour coating, or any other method known to those of skill in the art. This coating can be done in a batch or in a continuous process. The granules can be coated with a single layer in a single coating application, or the granules can be coated with multiple layers of the same coating material, such as, 2, 3, 4, 5, or more layers. Evaporating and heating the at least partially coated fertilizer granules can occur in the same step or in sequential steps. Exemplary devices include a rotary evaporator, an oven, or the like.

[0050] Exemplary organic solvents include chloroform, toluene, methylene chloride, or a combination comprising one or more of the foregoing.

[0051] Alternatively, a process of manufacturing the coated fertilizer comprises at least partially dissolving a first polymer in a first solvent having a first boiling point to form a first solution; at least partially dissolving a second polymer and a wax in a second solvent having a second boiling point to form a second solution, wherein the second boiling point is different from the first boiling point; contacting the first solution and the second solution with a plurality of fertilizer granules to form at least partially coated fertilizer granules; evaporating the first solvent and the second solvent from the at least partially coated fertilizer granules to form dried at least partially coated fertilizer granules; and heating the dried at least partially coated fertilizer granules at a temperature effective to at least partially melt the wax to form a coating comprising interpenetrating domains comprising polymer domains and wax domains. The temperature effective to at least partially melt the wax is in the range of 30°C to 130°C. Additional wax may be applied during heating. Contacting the coating composition with a plurality of fertilizer granules can be achieved by spray coating (for example, top, bottom, or side spray coating), drum coating, pan coating, fluid bed coating, continuous pour coating, or any other method known to those of skill in the art. This coating can be done in a batch or in a continuous process. The granules can be coated with a single layer in a single coating application, or the granules can be coated with multiple layers of the same coating material, such as, 2, 3, 4, 5, or more layers. Evaporating and heating the at least
partially coated fertilizer granules can occur in the same step or in sequential steps. Exemplary devices include a rotary evaporator, an oven, or the like.

[0052] The process can further include pre-treating the fertilizer granule before the first solution and the second solution are contacted with the fertilizer granule. Pre-treating the fertilizer granule can assist in providing greater adherence of the first solution and/or the second solution to the fertilizer granule and in improving the ability of the coated fertilizer to withstand post formation tests as previously described herein. Pre-treating the fertilizer granule can include smoothing the surface of the fertilizer granule.

[0053] It is also contemplated that the coated fertilizer described herein may be mixed with uncoated fertilizer granules or with a coated fertilizer having a coating comprising a polymer but free of wax.

[0054] In use, the coated fertilizer is applied to the locus of a plant or seed, in particular the soil of a plant or seed to be fertilized.

[0055] The coated fertilizers having sustained release properties are further illustrated by the following non-limiting examples.

EXAMPLES
Example 1

[0056] The materials used in Example 1 are described in Table 1.

<table>
<thead>
<tr>
<th>Component</th>
<th>Chemical Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS A</td>
<td>Poly(butylene succinate) 18127</td>
<td>Danimer</td>
</tr>
<tr>
<td>PBS B</td>
<td>Poly(butylene succinate) 1020MD</td>
<td>Showa Denko</td>
</tr>
<tr>
<td>PLA</td>
<td>Poly(lactic acid) 2003D</td>
<td>Natureworks</td>
</tr>
<tr>
<td>C30+</td>
<td>Alpha-olefin wax</td>
<td>Chevron Phillips</td>
</tr>
<tr>
<td>Chloroform</td>
<td></td>
<td>Aldrich</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td></td>
<td>Aldrich</td>
</tr>
<tr>
<td>Toluene</td>
<td></td>
<td>Aldrich</td>
</tr>
</tbody>
</table>

General Procedures

[0057] Urea granulation. In urea granulation, seed particles, or recycled urea prills, are rotated through a central agglomeration tube via a high velocity air stream. A spray nozzle at the bottom of the agglomeration tube sprays urea melt onto the particles. Because the urea melt droplets are supplied at high velocities with air constantly passing through the
granulator, the seeds are wetted and dried efficiently. As more urea melt is supplied by the spray nozzles, the urea particles grow in diameter and the process is concluded when the desired size has been achieved.

[0058] Preparation of coating formulations. Coating solutions were made using the formulations shown in Table 2 and Table 3. In Tables 2 and 3, "g" is the abbreviation for grams.

[0059] Coating procedure. The coating solutions were applied to the fertilizer granules using an air atomized spray in a rotating drum. For the examples in Table 2 additional C30+ wax was melted and applied to the partially coated particles using a rotary evaporator rotating at 20-30 revolutions per minute (rpm) in an oil bath. For the examples in Table 3, all the wax was applied using the solutions which were applied using an air atomized spray. The examples in Table 3 were further subjected to thermal conditioning using either a rotary evaporator at a temperature of 95-101°C for 20 minutes, or maintained in a 70°C oven for 1 or 2 hours.

[0060] Urea release test. The test is used to mimic a release profile of urea at given time intervals. The time intervals that samples were taken and analyzed were 24 hours, 7 days, and 14 days. 5 grams of coated granules were placed in 95 grams of deionized water at room temperature for the specified time period. The water was analyzed for nitrogen content at the end of the time period, measured in percent. The urea release test gives information allowing for a calculation of how much urea is no longer bound by the coating. In Table 2, in Sample 1, 31.8% of the initial amount of coated urea used in the test has been released in 7 days. Stated another way Sample 1 demonstrates that about 70% of the urea was still entrapped by the coating (after 7 days) and gradually diffusing.

Table 2.

Sample #	Solution 1	Solution 2	Rotovap C30+ N release	24 h N release	7 day N release	14 day N release
1	9g PBS A, 21g PLA, in 900 g methylene chloride	21g PBS A, 9g PLA, 30g C30+, in 900 g methylene chloride	0.25g	5.3	31.8	-
2	9g PBS B, 21g PLA, in 900 g methylene chloride	21g PBS B, 9g PLA, 22.5 C30+, in 900 g methylene chloride	0.37g	0	11.9	-
Table 2 shows that a mixed solvent approach improved the quality of coating significantly resulting in a much slower release. Examples 3-5 show slower nitrogen release than Examples 1 and 2. Without being bound by theory, it is believed that the mixture containing various boiling point solvents helped in keeping the solution coating more uniform before evaporation. Further, it was also discovered that by thermal conditioning of the

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Solution 1</th>
<th>Solution 2</th>
<th>24 h N release before conditioning</th>
<th>24 h N release after Rotovap</th>
<th>24 h N release after oven at 70°C for 1 hour</th>
<th>24 h N release after oven at 70°C for 2 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9g PBS A, 21g PLA, in 720g methylene chloride and 180g toluene</td>
<td>21g PBS A, 9g PLA, 22.5g C30+, in 650g methylene chloride, 250g toluene</td>
<td>0.37g C30+</td>
<td>0.52</td>
<td>3.17</td>
<td>7.92</td>
</tr>
<tr>
<td>4</td>
<td>9g PBS A, 21g PLA, in 720g methylene chloride, 180g toluene</td>
<td>21g PBS A, 9g PLA, 15g C30+, in 650g methylene chloride, 250g toluene</td>
<td>0.5g C30+</td>
<td>0.13</td>
<td>1.0</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>9g PBS A, 21g PLA, in 720g methylene chloride, 180g toluene</td>
<td>21g PBS A, 9g PLA, 22.5g C30+, in 650g methylene chloride, 250g toluene</td>
<td>0.37g C30+</td>
<td>0.06</td>
<td>1.38</td>
<td>4.09</td>
</tr>
<tr>
<td>6</td>
<td>9g PBS A, 21g PLA, 15g C30+, in 900g methylene chloride</td>
<td>9g PBS A, 21g PLA, 30g C30+, in 900g methylene chloride</td>
<td>43.5</td>
<td>37.4</td>
<td>17.9</td>
<td>5.98</td>
</tr>
<tr>
<td>7</td>
<td>12g PBS A, 18g PLA, 15g C30+, in 900g methylene chloride</td>
<td>12g PBS A, 18g PLA, 30g C30+, in 900g methylene chloride</td>
<td>35.6</td>
<td>-</td>
<td>23.7</td>
<td>19.95</td>
</tr>
<tr>
<td>8</td>
<td>15g PBS A, 15g PLA, 15g C30+, in 900g methylene chloride</td>
<td>15g PBS A, 15g PLA, 30g C30+, in 900g methylene chloride</td>
<td>29.81</td>
<td>-</td>
<td>19.92</td>
<td>11.91</td>
</tr>
</tbody>
</table>
granule having a coating containing wax along with the polymer results in an improved (i.e., slower) release rate (Table 3). Without wishing to be bound by theory, this is due to the wax in the interpenetrating domains flowing due to thermal conditioning thus sealing the polymer from defects such as pinholes, cracks, etc. Wax within the coating as opposed to outside the coating (overcoat) also likely increases the hydrophobicity of the coating layer, thus reducing water permeability.

Example 2

[0062] The materials used in Example 2 are described in Table 4.

<table>
<thead>
<tr>
<th>Component</th>
<th>Chemical Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>Poly(butylene succinate) 1020MD</td>
<td>Showa Denko</td>
</tr>
<tr>
<td>PLA</td>
<td>Poly(lactic acid) 2003D</td>
<td>Natureworks</td>
</tr>
<tr>
<td>Chloroform</td>
<td></td>
<td>Aldrich</td>
</tr>
<tr>
<td>Toluene</td>
<td></td>
<td>Aldrich</td>
</tr>
<tr>
<td>Urea</td>
<td>Granular</td>
<td>SABIC</td>
</tr>
</tbody>
</table>

[0063] Formulations for the coatings are shown in Table 5.

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Solution 1</th>
<th>Solution 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PLA (g)</td>
<td>PBS (g)</td>
</tr>
<tr>
<td>9</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>15</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>16</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>17</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>18</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>19</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>22</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>23</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>24</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>25</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>26</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>27</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>28</td>
<td>21</td>
<td>9</td>
</tr>
<tr>
<td>29</td>
<td>21</td>
<td>9</td>
</tr>
</tbody>
</table>
The fertilizer granules were placed in a stainless steel pan, which was then placed in a forced-air convection oven set to a temperature of 90-110°C for up to 15 hours. At different time intervals up to 15 hours, a small aliquot of approximately 5 grams of urea was collected and SEM images taken. Figures 1A-4B show the differences in the surface after pre-heating. After the urea was in the oven for a given time frame, the urea was then spray coated in a rotating drum with biopolymers that were dissolved in organic solvents. The solvent was evaporated, leaving behind the coating material on the surface of the fertilizer granule. Once the coating was deposited, the samples were again placed in a stainless steel pan and placed in a forced-air convection oven that is set to 70-90°C for up to 15 hours to remove residual solvent that remains on the coated fertilizer granule. After a given time frame, approximately 5 grams of the coated fertilizer granule was placed in 95 grams of deionized water at room temperature (19-25°C) and the percent nitrogen (%N) release was measured using a refractometer after 24 hours.

Additional samples from each batch were tested for abrasion resistance. The abrasion resistance tests consisted of placing a number of equally sized stainless steel balls and 100 mL of the coated fertilizer into a stainless steel drum having equally spaced flights. The drum was closed and then rotated at 30 revolutions per minute for 5 minutes. After 5 minutes, the stainless steel balls were separated from the coated fertilizer using a sieve at which point approximately 5 grams of the abraded coated urea was placed in 95 grams of deionized water at room temperature and the %N release was measured using a refractometer after 24 hours. Although described herein with respect to a force-air convection oven, other devices can be used, including, but not limited to, disc dryers, drum dryers, paddle dryers, rotary dryers, conveyor dryers, and/or fluid bed dryers.

Table 6 shows the %N release for before and after the abrasion test along with the pre- and post- heat treatment. Temperatures are listed in °C and time in hours.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>None</td>
<td>0</td>
<td>70</td>
<td>15</td>
<td>21.06</td>
<td>55.49</td>
<td>34.43</td>
</tr>
<tr>
<td>10</td>
<td>None</td>
<td>0</td>
<td>70</td>
<td>15</td>
<td>28.04</td>
<td>51.13</td>
<td>23.09</td>
</tr>
<tr>
<td>11</td>
<td>None</td>
<td>0</td>
<td>70</td>
<td>15</td>
<td>16.12</td>
<td>40.23</td>
<td>24.11</td>
</tr>
<tr>
<td>12</td>
<td>None</td>
<td>0</td>
<td>70</td>
<td>15</td>
<td>11.31</td>
<td>25.31</td>
<td>14.00</td>
</tr>
<tr>
<td>13</td>
<td>None</td>
<td>0</td>
<td>70</td>
<td>15</td>
<td>29.47</td>
<td>67.62</td>
<td>38.15</td>
</tr>
<tr>
<td>17</td>
<td>None</td>
<td>0</td>
<td>70</td>
<td>15</td>
<td>19.39</td>
<td>65.93</td>
<td>46.54</td>
</tr>
<tr>
<td>18</td>
<td>None</td>
<td>0</td>
<td>70</td>
<td>15</td>
<td>22.94</td>
<td>62.35</td>
<td>39.41</td>
</tr>
</tbody>
</table>
As can be seen in Figures 1A-4B, the pre-treatment of a surface of the fertilizer granule provides a smoother surface of the fertilizer granule. Figures 1A, 2A, 3A, and 4 are at 500 times magnification, while Figures 1B, 2B, 3B, and 4B are at 2,000 times magnification. Figures 1A and 1B are the control sample with no pre-treatment. Figures 2A and 2B are a sample after pre-heating for 5 hours. Figures 3A and 3B are the sample in Figure 2A and 2B after pre-heating for 10 hours. Figure 4A and 4B are the sample in Figures 2A and 2B after pre-heating for 15 hours. As can be seen in the figures, a smoother surface is achieved with the longer heating. Figures 1A-4B further demonstrate that the surface morphology of the fertilizer granule undergoes transformation after it is heated in the forced-air convection oven. The sample in Figure 1A and 1B, which was not treated with heat, does not have a smooth surface compared to the samples that were heated for a period of time in Figures 2A-4B.

This transformation also appears to affect the %N release observed after the abrasion test after 34 hours as shown in Table 6. The %N release between the before abrasion and after abrasion test varies between 14.00% and 46.54% for samples that were not pre-heated. The %N release difference between samples that were pre-heated varies from no change to 7.36%.

The samples in Table 7 were also measured for %N release after 7 days and the percent weight loss after post-heat treatment.

Table 7.

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Pre-Heat T</th>
<th>Pre-Heat Time</th>
<th>1 day</th>
<th>7 days</th>
<th>Post-Heat T</th>
<th>Post-Heat Time</th>
<th>% Wt. Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>None</td>
<td>0</td>
<td>21.36</td>
<td>81.62</td>
<td>70</td>
<td>15</td>
<td>0.40</td>
</tr>
<tr>
<td>15</td>
<td>None</td>
<td>0</td>
<td>18.90</td>
<td>77.00</td>
<td>70</td>
<td>15</td>
<td>0.37</td>
</tr>
<tr>
<td>16</td>
<td>None</td>
<td>0</td>
<td>19.78</td>
<td>79.09</td>
<td>70</td>
<td>15</td>
<td>0.24</td>
</tr>
<tr>
<td>26</td>
<td>105</td>
<td>15</td>
<td>25.87</td>
<td>69.00</td>
<td>70</td>
<td>15</td>
<td>0.06</td>
</tr>
<tr>
<td>27</td>
<td>105</td>
<td>15</td>
<td>18.58</td>
<td>69.29</td>
<td>70</td>
<td>15</td>
<td>0.10</td>
</tr>
<tr>
<td>28</td>
<td>105</td>
<td>15</td>
<td>13.55</td>
<td>65.18</td>
<td>70</td>
<td>15</td>
<td>0.10</td>
</tr>
<tr>
<td>29</td>
<td>105</td>
<td>15</td>
<td>17.86</td>
<td>56.26</td>
<td>70</td>
<td>15</td>
<td>0.06</td>
</tr>
</tbody>
</table>
As shown in Table 7, the samples that were pre-heated had a significantly lower %N release after 7 days as compared to the non-pre-heated samples. Furthermore, the post-heated (i.e., dried) samples which contained the pre-heated fertilizer granules after a 2% coating was applied had a significantly lower % weight loss as compared to the post-heated samples without the pre-heated fertilizer granule.

Embodiment 1: A coated fertilizer, comprising: a fertilizer granule; and a coating disposed on a surface of the fertilizer granule, wherein the coating comprises interpenetrating domains comprising polymer domains and wax domains.

Embodiment 2: The coated fertilizer of Embodiment 1, wherein the fertilizer granule comprises urea.

Embodiment 3: The coated fertilizer of Embodiment 1 or Embodiment 2, wherein the fertilizer granule is a pre-treated fertilizer granule having improved adherence properties to the coating.

Embodiment 4: The coated fertilizer of any of Embodiments 1-3, wherein the pre-treated fertilizer granule comprises a smoothed surface.

Embodiment 5: The coated fertilizer of any of Embodiments 1-4, wherein the polymer domains comprise at least two polymers.

Embodiment 6: The coated fertilizer of any of Embodiments 1-5, wherein the polymer domains comprise a biopolymer.

Embodiment 7: The coated fertilizer of Embodiment 6, wherein the biopolymer is a polysaccharide, a polyester, lignin or a combination comprising at least one of the foregoing.

Embodiment 8: The coated fertilizer of any of Embodiments 1-7, wherein the wax domains comprise a C5-C35 wax.

Embodiment 9: The coated fertilizer of any of Embodiments 1-8, wherein the polymer domains have a first rate of biodegradation and the wax domains have a second rate of biodegradation that differs from the first rate under the same conditions.

Embodiment 10: The coated fertilizer of Embodiment 9, wherein the polymer domains comprise at least two polymers, each having a different rate of biodegradation under the same conditions.

Embodiment 11: The coated fertilizer of any of Embodiments 3-10, wherein the pre-treated fertilizer granule has a percent nitrogen release after 7 days of less than or equal to 70%, preferably, less than or equal to 65%, more preferably, less than or equal to 60%.
[0082] Embodiment 12: A process of manufacturing the coated fertilizer of any of Embodiments 1-11, comprising: at least partially dissolving a polymer and a wax in an organic solvent to form a coating composition; contacting the coating composition with a plurality of fertilizer granules to form at least partially coated fertilizer granules; evaporating the organic solvent from the at least partially coated fertilizer granules to form dried at least partially coated fertilizer granules; and heating the dried at least partially coated fertilizer granules at a temperature effective to at least partially melt the wax to form a coating comprising interpenetrating domains comprising polymer domains and wax domains.

[0083] Embodiment 13: The process of Embodiment 12, wherein the coating composition further comprises an additional polymer.

[0084] Embodiment 14: The process of Embodiment 12 or Embodiment 13, further comprising forming an additional coating composition free of wax comprising the polymers and organic solvent of the coating composition and wherein the plurality of fertilizer granules is also contacted with the additional coating composition prior to evaporating the organic solvent.

[0085] Embodiment 15: The process of Embodiment 14, wherein the coating composition and the additional coating composition comprise the polymers in differing amounts.

[0086] Embodiment 16: The process of Embodiment 13, further comprising forming an additional coating composition having the same components as the coating composition and the wax is present in the additional coating composition in an amount different from the coating composition and wherein the plurality of fertilizer granules is also contacted with the additional coating composition prior to evaporating the organic solvent.

[0087] Embodiment 17: The process of any of Embodiments 12-16, further comprising applying additional wax while heating the dried at least partially coated fertilizer granules at a temperature effective to at least partially melt the wax.

[0088] Embodiment 18: The process of any of Embodiments 12-17, wherein the organic solvent comprises a combination comprising at least two organic solvents, each having a different boiling point.

[0089] Embodiment 19: The process of any of Embodiments 12-18, wherein the organic solvent comprises chloroform, toluene, methylene chloride, or a combination comprising at least one of the foregoing.

[0090] Embodiment 20: A process of manufacturing the coated fertilizer of any of Embodiments 1-11, comprising: at least partially dissolving a first structural polymer in a
first solvent having a first boiling point to form a first solution; at least partially dissolving a
second polymer and a wax in a second solvent having a second boiling point to form a second
solution, wherein the second boiling point is different from the first boiling point; contacting
the first solution and the second solution with a plurality of fertilizer granules to form at least
partially coated fertilizer granules; evaporating the first solvent and the second solvent from
the at least partially coated fertilizer granules to form dried at least partially coated fertilizer
granules; and heating the dried at least partially coated fertilizer granules at a temperature
effective to at least partially melt the wax to form a coating comprising interpenetrating
domains comprising polymer domains and wax domains.

[0091] Embodiment 21: The process of any of Embodiments 12-20, wherein the
temperature effective to at least partially melt the wax is 30 °C to 130°C.

[0092] Embodiment 22: The process of any of Embodiment 12-21, further
comprising using a rotating drum to contact the coating on the fertilizer granule.

[0093] Embodiment 23: The process of any of Embodiments 12-22, further
comprising adding additional amounts of wax during heating the dried at least partially
coated fertilizer granules.

[0094] Embodiment 24: The process of any of Embodiments 12-23, further
comprising pre-treating the fertilizer granule by heating to a temperature greater than or equal
to 90°C, for a time period of greater than or equal to 5 hours.

[0095] The singular forms "a," "an," and "the" include plural referents unless the
context clearly dictates otherwise. "Or" means "and/or." The endpoints of all ranges
directed to the same component or property are inclusive and independently combinable. The
suffix "(s)" as used herein is intended to include both the singular and the plural of the term
that it modifies, thereby including at least one of that term (e.g., "colorant(s)" includes at
least one colorant). "Optional" or "optionally" means that the subsequently described event
or circumstance can or cannot occur, and that the description includes instances where the
event occurs and instances where it does not. Unless defined otherwise, technical and
scientific terms used herein have the same meaning as is commonly understood by one of
skill in the art to which this invention belongs. Substantially as described herein generally
refers to greater than or equal to 75%, for example, greater than or equal to 75%, for
example, greater than or equal to 95%.

[0096] As used herein, a "combination" is inclusive of blends, mixtures, alloys,
reaction products, and the like. Compounds are described using standard nomenclature. For
example, any position not substituted by any indicated group is understood to have its
valency filled by a bond as indicated, or a hydrogen atom. A dash ("-") that is not between
two letters or symbols is used to indicate a point of attachment for a substituent. For
example, -CHO is attached through carbon of the carbonyl group.

[0097] All references cited herein are incorporated by reference in their entirety.

While typical embodiments have been set forth for the purpose of illustration, the foregoing
descriptions should not be deemed to be a limitation on the scope herein. Accordingly,
various modifications, adaptations, and alternatives can occur to one skilled in the art without
departing from the spirit and scope herein.
CLAIMS:
What is claimed is:

1. A coated fertilizer, comprising:
 a fertilizer granule; and
 a coating disposed on a surface of the fertilizer granule, wherein the coating
 comprises interpenetrating domains comprising polymer domains and wax domains.

2. The coated fertilizer of Claim 1, wherein the fertilizer granule comprises urea.

3. The coated fertilizer of Claim 1 or Claim 2, wherein the fertilizer granule is a
 pre-treated fertilizer granule having improved adherence properties to the coating.

4. The coated fertilizer of Claim 3, wherein the pre-treated fertilizer granule
 comprises a smoothed surface.

5. The coated fertilizer of any of Claims 1-4, wherein the polymer domains
 comprise at least two polymers.

6. The coated fertilizer of any of Claims 1-5, wherein the polymer domains
 comprise a biopolymer.

7. The coated fertilizer of any of Claims 1-6, wherein the wax domains comprise
 a C₅-C₃₅ wax.

8. The coated fertilizer of any of Claims 1-7, wherein the polymer domains have
 a first rate of biodegradation and the wax domains have a second rate of biodegradation that
 differs from the first rate under the same conditions.

9. The coated fertilizer of Claim 8, wherein the polymer domains comprise at
 least two polymers, each having a different rate of biodegradation under the same conditions.

10. The coated fertilizer of any of Claims 3-9, wherein the pre-treated fertilizer
 granule has a percent nitrogen release after 7 days of less than or equal to 70%, preferably,
 less than or equal to 65%, more preferably, less than or equal to 60%.

11. A process of manufacturing the coated fertilizer of any of Claims 1-10,
 comprising:
 at least partially dissolving a polymer and a wax in an organic solvent to form a
 coating composition;
 contacting the coating composition with a plurality of fertilizer granules to form at
 least partially coated fertilizer granules;
 evaporating the organic solvent from the at least partially coated fertilizer granules to
 form dried at least partially coated fertilizer granules; and
heating the dried at least partially coated fertilizer granules at a temperature effective to at least partially melt the wax to form a coating comprising interpenetrating domains comprising polymer domains and wax domains.

12. The process of Claim 11, wherein the coating composition further comprises an additional polymer.

13. The process of Claim 12, further comprising forming an additional coating composition free of wax comprising the polymers and organic solvent of the coating composition and wherein the plurality of fertilizer granules is also contacted with the additional coating composition prior to evaporating the organic solvent, wherein the coating composition and the additional coating composition comprise the polymers in differing amounts.

14. The process of Claim 12, further comprising forming an additional coating composition having the same components as the coating composition and the wax is present in the additional coating composition in an amount different from the coating composition and wherein the plurality of fertilizer granules is also contacted with the additional coating composition prior to evaporating the organic solvent.

15. The process of any of Claims 11-14, further comprising applying additional wax while heating the dried at least partially coated fertilizer granules at a temperature effective to at least partially melt the wax.

16. A process of manufacturing the coated fertilizer of any of Claims 1-10, comprising:
 at least partially dissolving a first structural polymer in a first solvent having a first boiling point to form a first solution;
 at least partially dissolving a second polymer and a wax in a second solvent having a second boiling point to form a second solution, wherein the second boiling point is different from the first boiling point;
 contacting the first solution and the second solution with a plurality of fertilizer granules to form at least partially coated fertilizer granules;
 evaporating the first solvent and the second solvent from the at least partially coated fertilizer granules to form dried at least partially coated fertilizer granules; and
 heating the dried at least partially coated fertilizer granules at a temperature effective to at least partially melt the wax to form a coating comprising interpenetrating domains comprising polymer domains and wax domains.
17. The process of any of Claims 11-16, wherein the temperature effective to at least partially melt the wax is 30°C to 130°C.

18. The process of any of Claims 11-17, further comprising using a rotating drum to contact the coating on the fertilizer granule.

19. The process of any of Claims 11-18, further comprising adding additional amounts of wax during heating the dried at least partially coated fertilizer granules.

20. The process of any of Claims 11-19, further comprising pre-treating the fertilizer granule by heating to a temperature greater than or equal to 90°C, for a time period of greater than or equal to 5 hours.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

IPC (8) - C05G 3/00; B01J 2/30; C05G 3/04; C05G 3/10 (2016.01)
CPC - C05G 3/001; B01J 2/006; B01J 2/30; C05G 3/0029; C05G 3/0035 (2016.11)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC - B01J 2/30; C05G 3/00; C05G 3/04; C05G 3/10
CPC - B01J 2006; B01J 2/30; C05G 3/001; C05G 3/0029; C05G 3/0035

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

USPC - 71/64.07; 118/303; 264/7

(keyword delimited)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Patbase, Google Patents, Google, Google Scholar

Search terms used: coated fertilizer, polymer, wax, interpenetrating, smooth, adhere

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>US 5,300,135 A (HUDSON et al) 05 April 1994 (05.04.1994) entire document</td>
<td>1-4</td>
</tr>
<tr>
<td>A</td>
<td>US 6,391,454 B1 (MAO et a1) 21 May 2002 (21.05.2002) entire document</td>
<td>1-4</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents.

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier application or patent but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search: 26 December 2016

Date of mailing of the international search report: 25 JAN 2017

Authorized officer: Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT O&S: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)
INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2016/061486

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. □ Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. □ Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. □ Claims Nos.: 5-20 because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. □ As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.

2. □ As all searchable claims could be searched without effort justifying additional fees, this Authority did not invite payment of additional fees.

3. □ As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. □ No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest □ The additional search fees were accompanied by the applicant’s protest and, where applicable, the payment of a protest fee.

□ The additional search fees were accompanied by the applicant’s protest but the applicable protest fee was not paid within the time limit specified in the invitation.

□ No protest accompanied the payment of additional search fees.

Form PCT/ISA/210 (continuation of first sheet (2)) (January 2015)