

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2016/128335 A1

(43) International Publication Date
18 August 2016 (18.08.2016)

WIPO | PCT

(51) International Patent Classification:
C07D 471/04 (2006.01) *A61P 31/12* (2006.01)
A61K 31/4375 (2006.01)

(21) International Application Number:
PCT/EP2016/052585

(22) International Filing Date:
8 February 2016 (08.02.2016)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
PCT/CN2015/072741
11 February 2015 (11.02.2015) CN

(71) Applicant (for all designated States except US): **F. HOFFMANN-LA ROCHE AG** [CH/CH]; Grenzacherstrasse 124, 4070 Basel (CH).

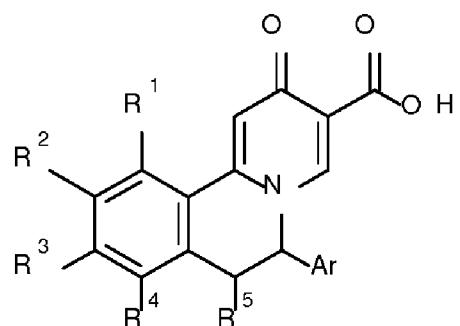
(71) Applicant (for US only): **HOFFMANN-LA ROCHE INC.** [US/US]; Great Notch, 150 Clove Road, 8th Floor, Little Falls, New Jersey 07424 (US).

(72) Inventors: **HAN, Xingchun**; Building No.5, Lane 720 Cailun Road, Shanghai 201203 (CN). **JIANG, Min**; Building No.5, Lane 720 Cailun Road, Shanghai 201203 (CN). **YANG, Song**; Building No.5, Lane 720 Cailun Road, Shanghai 201203 (CN).

(74) Agent: **SAUER, Frank**; Grenzacherstrasse 124, 4070 Basel (CH).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).


Declarations under Rule 4.17:

— of inventorship (Rule 4.17(iv))

Published:

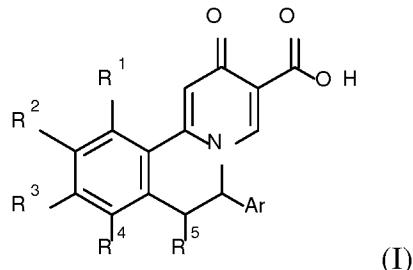
— with international search report (Art. 21(3))

(54) Title: NOVEL 2-OXO-6,7-DIHYDROBENZO[A]QUINOLIZINE-3-CARBOXYLIC ACID DERIVATIVES FOR THE TREATMENT AND PROPHYLAXIS OF HEPATITIS B VIRUS INFECTION

(I)

(57) Abstract: The invention provides novel compounds having the general formula (I), wherein R¹, R², R³, R⁴, R⁵ and Ar are as described herein, compositions including compounds and methods of using the compounds.

WO 2016/128335 A1


**Novel 2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid derivatives
for the treatment and prophylaxis of hepatitis B virus infection**

The present invention relates to organic compounds useful for therapy and/or prophylaxis in a mammal, and in particular to HBsAg (HBV Surface antigen) inhibitors and HBV DNA production inhibitors useful for treating HBV infection.

5 FIELD OF THE INVENTION

The present invention relates to novel 2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid derivatives having pharmaceutical activity, their manufacture, pharmaceutical compositions containing them and their potential use as medicaments.

The present invention relates to compounds of formula I

wherein R¹ to R⁵ and Ar are as described below, or to pharmaceutically acceptable salts, or to enantiomers thereof.

The hepatitis B virus (HBV) is an enveloped, partially double-stranded DNA virus. The compact 3.2 kb HBV genome consists of four overlapping open reading frames (ORF), which encode for the core, polymerase (Pol), envelope and X-proteins. The Pol ORF is the longest and the envelope ORF is located within it, while the X and core ORFs overlap with the Pol ORF. The lifecycle of HBV has two main events: 1) generation of closed circular DNA (cccDNA) from relaxed circular (RC DNA), and 2) reverse transcription of pregenomic RNA (pgRNA) to produce RC DNA. Prior to the infection of host cells, the HBV genome exists within the virion as RC DNA. It has been determined that HBV virions are able to gain entry into host cells by non-specifically binding to the negatively charged proteoglycans present on the surface of human hepatocytes (Schulze, A., P. Gripon & S. Urban. *Hepatology*, 46, (2007), 1759-68) and via the specific binding of HBV surface antigens (HBsAg) to the hepatocyte sodium-

taurocholate cotransporting polypeptide (NTCP) receptor (Yan, H. et al. *J Virol*, 87, (2013), 7977-91). Once the virion has entered the cell, the viral cores and the encapsidated RC DNA are transported by host factors, via a nuclear localization signal, into the nucleus through the Imp β /Imp α nuclear transport receptors. Inside the nucleus, host DNA repair enzymes convert the

5 RC DNA into cccDNA. cccDNA acts as the template for all viral mRNAs and as such, is responsible for HBV persistence in infected individuals. The transcripts produced from cccDNA are grouped into two categories; Pregenomic RNA (pgRNA) and subgenomic RNA. Subgenomic transcripts encode for the three envelopes (L, M and S) and X proteins, and pgRNA encodes for Pre-Core, Core, and Pol proteins (Quasdorff, M. & U. Protzer. *J Viral Hepat*, 17, (2010), 527-10 36). Inhibition of HBV gene expression or HBV RNA synthesis leads to the inhibition of HBV viral replication and antigens production (Mao, R. et al. *PLoS Pathog*, 9, (2013), e1003494; Mao, R. et al. *J Virol*, 85, (2011), 1048-57). For instance, IFN- α was shown to inhibit HBV replication and viral HBsAg production by decreasing the transcription of pgRNA and subgenomic RNA from the HBV covalently closed circular DNA (cccDNA) minichromosome. (Belloni, L. et al. *J 15 Clin Invest*, 122, (2012), 529-37; Mao, R. et al. *J Virol*, 85, (2011), 1048-57). All HBV viral mRNAs are capped and polyadenylated, and then exported to the cytoplasm for translation. In the cytoplasm, the assembly of new virions is initiated and nascent pgRNA is packaged with viral Pol so that reverse transcription of pgRNA, via a single stranded DNA intermediate, into RC 20 DNA can commence. The mature nucleocapsids containing RC DNA are enveloped with cellular lipids and viral L, M, and S proteins and then the infectious HBV particles are then released by budding at the intracellular membrane (Locarnini, S. *Semin Liver Dis*, (2005), 25 Suppl 1, 9-19). Interestingly, non-infectious particles are also produced that greatly outnumber the infectious virions. These empty, enveloped particles (L, M and S) are referred to as subviral particles. Importantly, since subviral particles share the same envelope proteins and as infectious particles, 25 it has been surmised that they act as decoys to the host immune system and have been used for HBV vaccines. The S, M, and L envelope proteins are expressed from a single ORF that contains three different start codons. All three proteins share a 226aa sequence, the S-domain, at their C-termini. M and L have additional pre-S domains, Pre-S2 and Pre-S2 and Pre-S1, respectively. However, it is the S-domain that has the HBsAg epitope (Lambert, C. & R. Prange. *Virol J*, 30 (2007), 4, 45).

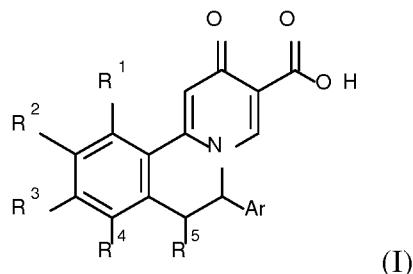
The control of viral infection needs a tight surveillance of the host innate immune system which could respond within minutes to hours after infection to impact on the initial growth of the virus and limit the development of a chronic and persistent infection. Despite the available

current treatments based on IFN and nucleos(t)ide analogues, the Hepatitis B virus (HBV) infection remains a major health problem worldwide which concerns an estimated 350 million chronic carriers who have a higher risk of liver cirrhosis and hepatocellular carcinoma.

The secretion of antiviral cytokines in response to HBV infection by the hepatocytes

5 and/or the intra-hepatic immune cells plays a central role in the viral clearance of infected liver. However, chronically infected patients only display a weak immune response due to various escape strategies adopted by the virus to counteract the host cell recognition systems and the subsequent antiviral responses.

Many observations showed that several HBV viral proteins could counteract the initial host


10 cellular response by interfering with the viral recognition signaling system and subsequently the interferon (IFN) antiviral activity. Among these, the excessive secretion of HBV empty subviral particles (SVPs, HBsAg) may participate to the maintenance of the immunological tolerant state observed in chronically infected patients (CHB). The persistent exposure to HBsAg and other viral antigens can lead to HBV-specific T-cell deletion or to progressive functional impairment
15 (Kondo et al. *Journal of Immunology* (1993), 150, 4659–4671; Kondo et al. *Journal of Medical Virology* (2004), 74, 425–433; Fisicaro et al. *Gastroenterology*, (2010), 138, 682-93;). Moreover HBsAg has been reported to suppress the function of immune cells such as monocytes, dendritic cells (DCs) and natural killer (NK) cells by direct interaction (Op den Brouw et al. *Immunology*, (2009b), 126, 280-9; Woltman et al. *PLoS One*, (2011), 6, e15324; Shi et al. *J Viral Hepat.*
20 (2012), 19, e26-33; Kondo et al. *ISRN Gasteroenterology*, (2013), Article ID 935295).

HBsAg quantification is a significant biomarker for prognosis and treatment response in chronic hepatitis B. However the achievement of HBsAg loss and seroconversion is rarely observed in chronically infected patients but remains the ultimate goal of therapy. Current therapy such as Nucleos(t)ide analogues are molecules that inhibit HBV DNA synthesis but are

25 not directed at reducing HBsAg level. Nucleos(t)ide analogs, even with prolonged therapy, have demonstrated rates of HBsAg clearance comparable to those observed naturally (between -1%–2%) (Janssen et al. *Lancet*, (2005), 365, 123-9; Marcellin et al. *N. Engl. J. Med.*, (2004), 351, 1206-17; Buster et al. *Hepatology*, (2007), 46, 388-94). Therefore, targeting HBsAg together with HBV DNA levels in CHB patients may significantly improve CHB patient immune
30 reactivation and remission (Wieland, S. F. & F. V. Chisari. *J Virol*, (2005), 79, 9369-80; Kumar et al. *J Virol*, (2011), 85, 987-95; Woltman et al. *PLoS One*, (2011), 6, e15324; Op den Brouw et al. *Immunology*, (2009b), 126, 280-9).

SUMMARY OF THE INVENTION

The present invention relates to compounds of formula I

wherein

5 R¹, R², R³ and R⁴ are independently selected from C₁₋₆alkyl, haloC₁₋₆alkyl, hydrogen, halogen, cyano, amino, C₁₋₆alkylamino, diC₁₋₆alkylamino, pyrrolidinyl and OR⁶;

10 R⁵ is hydrogen or C₁₋₆alkyl;

15 R⁶ is hydrogen; C₁₋₆alkyl; haloC₁₋₆alkyl; C₃₋₇cycloalkylC₁₋₆alkyl; phenylC₁₋₆alkyl; C₁₋₆alkylsulfonylC₁₋₆alkyl; cyanoC₁₋₆alkyl; aminoC₁₋₆alkyl; C₁₋₆alkylaminoC₁₋₆alkyl; diC₁₋₆alkylaminoC₁₋₆alkyl; C₁₋₆alkylcarbonylaminoC₁₋₆alkyl; C₁₋₆alkylsulfonylaminoC₁₋₆alkyl; C₁₋₆alkoxycarbonylaminoC₁₋₆alkyl; pyrazolylC₁₋₆alkyl; triazolylC₁₋₆alkyl or heterocycloalkylC₁₋₆alkyl, wherein heterocycloalkyl is N-containing monocyclic heterocycloalkyl;

20 Ar is phenyl; phenyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; thienyl; thienyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; benzothiophenyl; benzothiophenyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; pyridinyl; pyridinyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; pyrimidinyl; pyrimidinyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; pyrrolyl; pyrrolyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; pyrazolyl; pyrazolyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; thiazolyl; or thiazolyl substituted by one, two or three groups

independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy;

or pharmaceutically acceptable salts, or enantiomers thereof.

5

DETAILED DESCRIPTION OF THE INVENTION

DEFINITIONS

As used herein, the term “C₁₋₆alkyl” alone or in combination signifies a saturated, linear- or branched chain alkyl group containing 1 to 6, particularly 1 to 4 carbon atoms, for example 10 methyl, ethyl, propyl, isopropyl, 1-butyl, 2-butyl, *tert*-butyl and the like. Particular “C₁₋₆alkyl” groups are methyl, ethyl, isopropyl and *tert*-butyl.

The term “C₃₋₇cycloalkyl”, alone or in combination, refers to a saturated carbon ring containing from 3 to 7 carbon atoms, particularly from 3 to 6 carbon atoms, for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and the like. Particular “C₃₋₇cycloalkyl” groups are cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

The term “C₁₋₆alkoxy” alone or in combination signifies a group C₁₋₆alkyl-O-, wherein the “C₁₋₆alkyl” is as defined above; examples for C₁₋₆alkoxy are methoxy, ethoxy, propoxy, *iso*-propoxy, *n*-butoxy, *iso*-butoxy, 2-butoxy, *tert*-butoxy and the like. Particular “C₁₋₆alkoxy” groups are methoxy and ethoxy and more particularly methoxy.

20 The term “halogen” means fluorine, chlorine, bromine or iodine.

The term “haloC₁₋₆alkyl” denotes a C₁₋₆alkyl group wherein at least one of the hydrogen atoms of the C₁₋₆alkyl group has been replaced by same or different halogen atoms, particularly fluoro atoms. Examples of “haloC₁₋₆alkyl” include monofluoro-, difluoro- or trifluoro-methyl, -ethyl or -propyl, for example 3,3,3-trifluoropropyl, 3,3- difluoropropyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, fluoromethyl, difluoromethyl or trifluoromethyl. Particular “haloC₁₋₆alkyl” group is difluoromethyl or trifluoromethyl.

The term “monocyclic heterocycloalkyl” is a monovalent saturated or partly unsaturated monocyclic ring system of 4 to 7 ring atoms, comprising 1, 2, or 3 ring heteroatoms selected from N, O and S, the remaining ring atoms being carbon. Examples for monocyclic 30 heterocycloalkyl are aziridinyl, oxiranyl, azetidinyl, oxetanyl, pyrrolidinyl, 2-oxo-pyrrolidinyl, tetrahydrofuran, tetrahydro-thienyl, pyrazolidinyl, imidazolidinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, piperidinyl, tetrahydropyran, tetrahydrothiopyran, piperazinyl, morpholinyl,

thiomorpholinyl, 1,1-dioxo-thiomorpholin-4-yl, azepanyl, diazepanyl, homopiperazinyl, or oxazepanyl. Particular “monocyclic heterocycloalkyl” groups are piperidinyl, morpholinyl, 2-oxo-pyrrolidinyl, and pyrrolidinyl.

The term “N-containing monocyclic heterocycloalkyl” is a “monocyclic heterocycloalkyl”

5 as defined above wherein at least one of the heteroatoms is N. Examples for “N-containing monocyclic heterocycloalkyl” are aziridinyl, azetidinyl, pyrrolidinyl, 2-oxo-pyrrolidinyl, pyrazolidinyl, imidazolidinyl, oxazolidinyl, isoxazolidinyl, thiazolidinyl, piperidinyl, piperazinyl, morpholinyl, thiomorpholinyl, 1,1-dioxo-thiomorpholin-4-yl, azepanyl, diazepanyl, homopiperazinyl, or oxazepanyl. Particular “N-containing monocyclic heterocycloalkyl” groups
10 are piperidinyl, morpholinyl, 2-oxo-pyrrolidinyl and pyrrolidinyl.

The term “amino” denotes a group of the formula -NR’R” wherein R’ and R” are independently hydrogen, C₁₋₆alkyl, C₁₋₆alkoxy, C₃₋₇cycloalkyl, heteroC₃₋₇cycloalkyl, aryl or heteroaryl. Alternatively, R’ and R”, together with the nitrogen to which they are attached, can form a heteroC₃₋₇cycloalkyl.

15 The term “carbonyl” alone or in combination refers to the group -C(O)-.

The term “cyano” alone or in combination refers to the group -CN.

The term “C₁₋₆alkylsulfanyl” denotes the group -S-R’, wherein R’ is a C₁₋₆alkyl group as defined above.

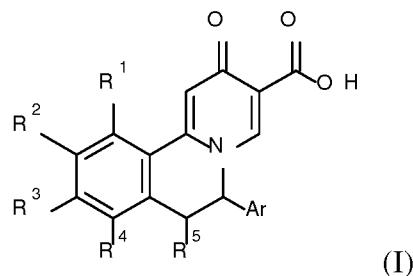
The term “C₁₋₆alkylsulfonyl” denotes a group -SO₂-R’, wherein R’ is a C₁₋₆alkyl group as
20 defined above. Examples of C₁₋₆alkylsulfonyl include methylsulfonyl and ethylsulfonyl.

The term “enantiomer” denotes two stereoisomers of a compound which are non-superimposable mirror images of one another.

The term “diastereomer” denotes a stereoisomer with two or more centers of chirality and whose molecules are not mirror images of one another. Diastereomers have different physical
25 properties, e.g. melting points, boiling points, spectral properties, and reactivities.

The compounds according to the present invention may exist in the form of their pharmaceutically acceptable salts. The term “pharmaceutically acceptable salt” refers to conventional acid-addition salts or base-addition salts that retain the biological effectiveness and properties of the compounds of formula I and are formed from suitable non-toxic organic or
30 inorganic acids or organic or inorganic bases. Acid-addition salts include for example those derived from inorganic acids such as hydrochloric acid, hydrobromic acid, hydroiodic acid, sulfuric acid, sulfamic acid, phosphoric acid and nitric acid, and those derived from organic acids such as *p*-toluenesulfonic acid, salicylic acid, methanesulfonic acid, oxalic acid, succinic acid,

citric acid, malic acid, lactic acid, fumaric acid, and the like. Base-addition salts include those derived from ammonium, potassium, sodium and, quaternary ammonium hydroxides, such as for example, tetramethyl ammonium hydroxide. The chemical modification of a pharmaceutical compound into a salt is a technique well known to pharmaceutical chemists in order to obtain


5 improved physical and chemical stability, hygroscopicity, flowability and solubility of compounds. It is for example described in Bastin R.J., *et al.*, *Organic Process Research & Development* 2000, 4, 427-435; or in Ansel, H., *et al.*, In: *Pharmaceutical Dosage Forms and Drug Delivery Systems*, 6th ed. (1995), pp. 196 and 1456-1457. Particular are the sodium salts of the compounds of formula I.

10 Compounds of the general formula I which contain one or several chiral centers can either be present as racemates, diastereomeric mixtures, or optically active single isomers. The racemates can be separated according to known methods into the enantiomers. Particularly, diastereomeric salts which can be separated by crystallization are formed from the racemic mixtures by reaction with an optically active acid such as e.g. D- or L-tartaric acid, mandelic acid, malic acid, lactic acid or camphorsulfonic acid.

15

INHIBITORS OF HBsAg

The present invention provides (i) novel compounds having the general formula I:

20 wherein

R¹, R², R³ and R⁴ are independently selected from C₁₋₆alkyl, haloC₁₋₆alkyl, hydrogen, halogen, cyano, amino, C₁₋₆alkylamino, diC₁₋₆alkylamino, pyrrolidinyl and OR⁶;

R⁵ is hydrogen or C₁₋₆alkyl;

R⁶ is hydrogen; C₁₋₆alkyl; haloC₁₋₆alkyl; C₃₋₇cycloalkylC₁₋₆alkyl; phenylC₁₋₆alkyl;

25 hydroxyC₁₋₆alkyl; C₁₋₆alkoxyC₁₋₆alkyl; carboxyC₁₋₆alkyl; C₁₋₆alkylsulfanylC₁₋₆alkyl; C₁₋₆alkylsulfonylC₁₋₆alkyl; cyanoC₁₋₆alkyl; aminoC₁₋₆alkyl; C₁₋₆alkylaminoC₁₋₆alkyl; diC₁₋₆alkylaminoC₁₋₆alkyl; C₁₋₆alkylcarbonylaminoC₁₋₆alkyl; C₁₋₆alkylsulfonylaminoC₁₋₆alkyl; C₁₋₆alkoxycarbonylaminoC₁₋₆alkyl; pyrazolylC₁₋₆alkyl; triazolylC₁₋₆alkyl or

heterocycloalkylC₁₋₆alkyl, wherein heterocycloalkyl is N-containing monocyclic heterocycloalkyl;

Ar is phenyl; phenyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; thienyl; thienyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; benzothiophenyl; benzothiophenyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; pyridinyl; pyridinyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; pyrimidinyl; pyrimidinyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; pyrrolyl; pyrrolyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; pyrazolyl; pyrazolyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; thiazolyl; or thiazolyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy;

or pharmaceutically acceptable salts, or enantiomers thereof.

Further embodiment of present invention is (ii) a compound of formula I, wherein

R¹ is hydrogen;

R² is hydrogen, halogen or C₁₋₆alkoxy;

R³ is C₁₋₆alkyl, pyrrolidinyl or OR⁶;

R⁴ is C₁₋₆alkyl or hydrogen;

R⁵ is hydrogen;

R⁶ is C₁₋₆alkyl, haloC₁₋₆alkyl, C₃₋₇cycloalkylC₁₋₆alkyl, phenylC₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkoxyC₁₋₆alkyl, carboxyC₁₋₆alkyl, C₁₋₆alkylsulfanylC₁₋₆alkyl, C₁₋₆alkylsulfonylC₁₋₆alkyl, cyanoC₁₋₆alkyl, aminoC₁₋₆alkyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, C₁₋₆alkylsulfonylaminoC₁₋₆alkyl, C₁₋₆alkoxycarbonylaminoC₁₋₆alkyl, pyrazolylC₁₋₆alkyl,

triazolylC₁₋₆alkyl, piperidylC₁₋₆alkyl, morpholinylC₁₋₆alkyl or 2-oxopyrrolidinylC₁₋₆alkyl;

Ar is phenyl; phenyl substituted by C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen or phenylC₁₋₆alkoxy; thienyl; thienyl substituted by C₁₋₆alkyl; or benzothiophenyl;

or pharmaceutically acceptable salts, or enantiomers thereof.

Another embodiment of present invention is (iii) a compound of formula I as defined above, or pharmaceutically acceptable salts, or enantiomers thereof, wherein R¹ is hydrogen, R⁴ is hydrogen, R⁵ is hydrogen, and all remaining substituents have the significances given herein
5 before.

Another embodiment of present invention is (iv) a compound of formula I as defined above, or pharmaceutically acceptable salts, or enantiomers thereof, wherein R² is C₁₋₆alkoxy, and all remaining substituents have the significances given herein before.

10

A further embodiment of present invention is (v) a compound of formula I as defined above, or pharmaceutically acceptable salts, or enantiomers thereof, wherein R² is methoxy, and all remaining substituents have the significances given herein before.

15 Another embodiment of present invention is (vi) a compound of formula I as defined above, or pharmaceutically acceptable salts, or enantiomers thereof, wherein R³ is pyrrolidinyl or OR⁶, wherein R⁶ is C₁₋₆alkyl, haloC₁₋₆alkyl, C₃₋₇cycloalkylC₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkoxyC₁₋₆alkyl, carboxyC₁₋₆alkyl, C₁₋₆alkylsulfanylC₁₋₆alkyl, cyanoC₁₋₆alkyl, aminoC₁₋₆alkyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, C₁₋₆alkylsulfonylaminoC₁₋₆alkyl or C₁₋₆alkoxycarbonylaminoC₁₋₆alkyl, and all remaining substituents have the significances given herein before.

20

Further embodiment of present invention is (vii) a compound of formula I as defined above, or pharmaceutically acceptable salts, or enantiomers thereof, wherein R³ is OR⁶, wherein R⁶ is methyl, isobutyl, trifluoroethyl, cyclopropylmethyl, cyanopropyl, hydroxypropyl, hydroxyhexyl, 25 hydroxydimethylpropyl, methoxypropyl, carboxypropyl, methylsulfanylpropyl, aminohexyl, methylcarbonylaminohexyl, methylsulfonylaminohexyl or methoxycarbonylaminohexyl, and all remaining substituents have the significances given herein before.

30

Another embodiment of present invention is (viii) a compound of formula I as defined above, or pharmaceutically acceptable salts, or enantiomers thereof, wherein Ar is phenyl, phenyl substituted by C₁₋₆alkyl or halogen, thienyl or thienyl substituted by C₁₋₆alkyl, and all remaining substituents have the significances given herein before.

Further embodiment of present invention is (ix) a compound of formula I as defined above, or pharmaceutically acceptable salts, or enantiomers thereof, wherein Ar is phenyl; phenyl substituted by methyl, fluoro or chloro; thienyl or thienyl substituted by methyl, and all remaining substituents have the significances given herein before.

5

Another embodiment of present invention is (x) a compound of formula I, wherein

R^1 is hydrogen;

R^2 is C_{1-6} alkoxy;

R^3 is pyrrolidinyl or OR^6 ;

10 R^4 is hydrogen;

R^5 is hydrogen;

R^6 is C_{1-6} alkyl, halo C_{1-6} alkyl, C_{3-7} cycloalkyl C_{1-6} alkyl, hydroxy C_{1-6} alkyl, C_{1-6} alkoxy C_{1-6} alkyl or C_{1-6} alkylsulfanyl C_{1-6} alkyl;

Ar is phenyl substituted by C_{1-6} alkyl, or thienyl;

15 or pharmaceutically acceptable salts, or enantiomers thereof.

A further embodiment of present invention is (x) a compound of formula I, wherein

R^1 is hydrogen;

R^2 is methoxy;

20 R^3 is pyrrolidinyl or OR^6 ;

R^4 is hydrogen;

R^5 is hydrogen;

R^6 is isobutyl, trifluoroethyl, cyclopropylmethyl, hydroxydimethylpropyl, methoxypropyl or methylsulfanylpropyl;

25 Ar is phenyl substituted by methyl or thienyl;

or pharmaceutically acceptable salts, or enantiomers thereof.

Particular compounds of formula I according to the invention are the following:

10-Methoxy-9-(3-methoxypropoxy)-2-oxo-6-phenyl-6,7-dihydrobenzo[a]quinolizine-3-

30 carboxylic acid;

10-Methoxy-9-(3-methoxypropoxy)-2-oxo-6-(3-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-9-(3-methoxypropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

6-(4-Hydroxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

5 10-Methoxy-6-(4-methoxyphenyl)-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

6-(4-Benzylxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-9-(3-methoxypropoxy)-6-(4-methyl-2-thienyl)-2-oxo-6,7-

10 dihydrobenzo[a]quinolizine-3-carboxylic acid;

6-(3-Chlorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

6-(4-Fluorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

15 10-Methoxy-9-(3-methoxypropoxy)-6-(o-tolyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-Methoxy-8-methyl-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

20 9-Benzylxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9,10-Dimethoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-Isobutoxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-(Cyclopropylmethoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-

25 dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-2-oxo-9-(3-pyrazol-1-ylpropoxy)-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-(3-Hydroxypropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

30 10-Methoxy-2-oxo-9-[3-(1-piperidyl)propoxy]-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid formate;

9-(3-Cyanopropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-2-oxo-9-[2-(2-oxopyrrolidin-1-yl)ethoxy]-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-[6-(*tert*-Butoxycarbonylamino)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

5 9-(6-Aminohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid formate;

9-(6-Acetamidohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-[6-(Methanesulfonamido)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-

10 dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-(6-Hydroxyhexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-(3-Hydroxy-2,2-dimethyl-propoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

15 10-Methoxy-2-oxo-6-(2-thienyl)-9-(2,2,2-trifluoroethoxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-9-(3-morpholinopropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate;

10-Methoxy-2-oxo-6-(2-thienyl)-9-[3-(1,2,4-triazol-1-yl)propoxy]-6,7-

20 dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-(3-Carboxypropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-9-(3-methylsulfanylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

25 10-Methoxy-9-(3-methylsulfonylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-9-methyl-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-Ethyl-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic

30 acid;

10-Methoxy-2-oxo-9-propyl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-2-oxo-9-pyrrolidin-1-yl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

6-(Benzothiophen-2-yl)-10-chloro-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

5 or pharmaceutically acceptable salts, or enantiomers thereof.

More particularly, the invention relates to the following compounds of formula I:

10-Methoxy-9-(3-methoxypropoxy)-2-oxo-6-(3-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10 10-Methoxy-9-(3-methoxypropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-9-(3-methoxypropoxy)-6-(*o*-tolyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

15 9-Isobutoxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-(Cyclopropylmethoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

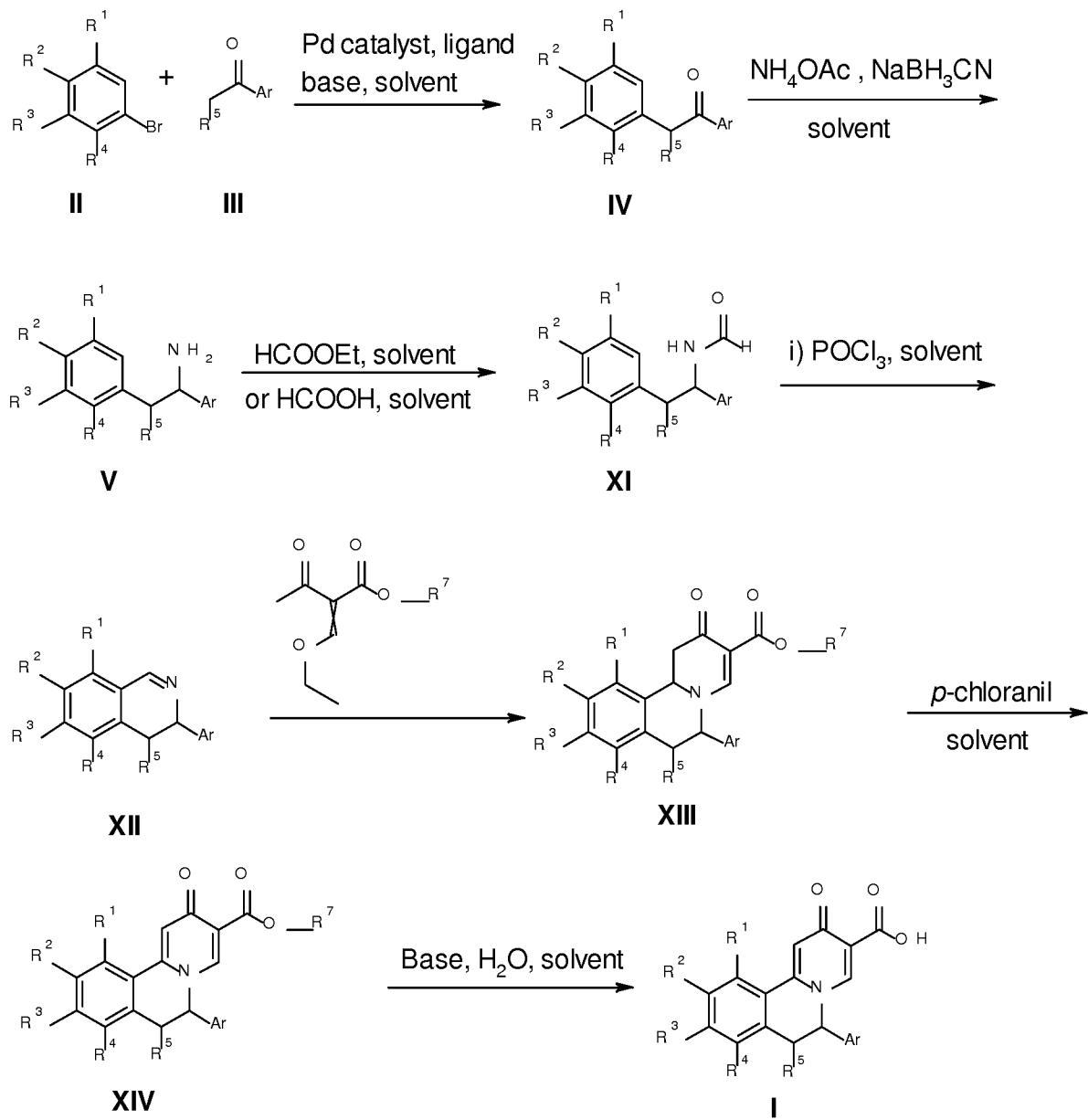
9-(3-Hydroxy-2,2-dimethyl-propoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

20 10-Methoxy-2-oxo-6-(2-thienyl)-9-(2,2,2-trifluoroethoxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-9-(3-methylsulfanylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

25 10-Methoxy-2-oxo-9-pyrrolidin-1-yl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

or pharmaceutically acceptable salts, or enantiomers thereof.

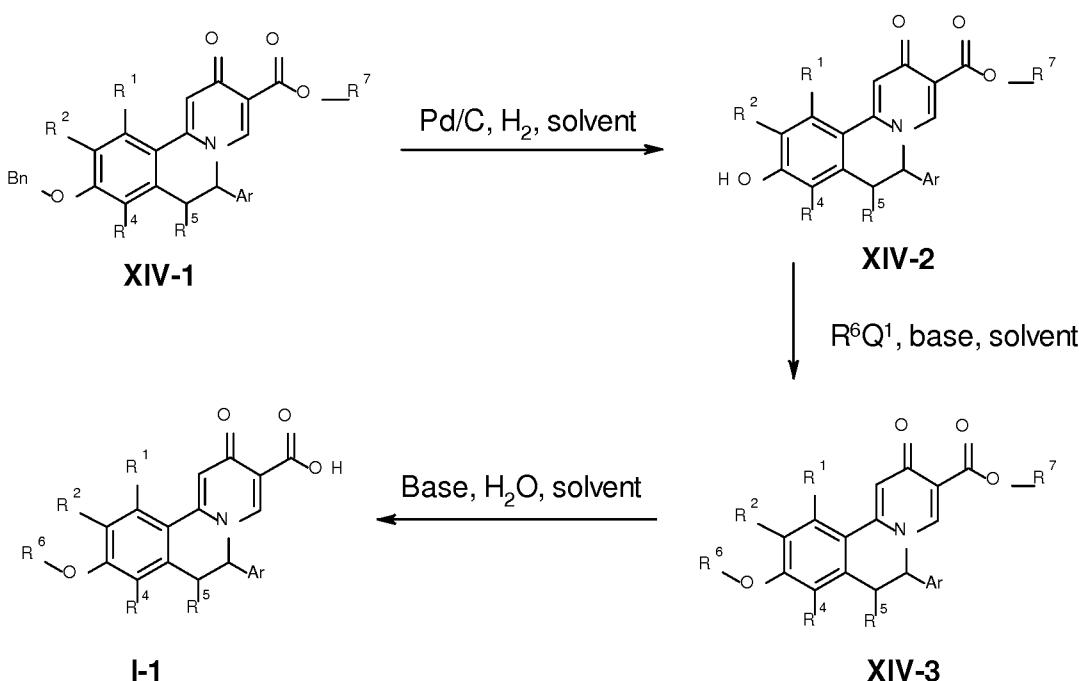

SYNTHESIS

The compounds of the present invention can be prepared by any conventional means.

30 Suitable processes for synthesizing these compounds as well as their starting materials are provided in the schemes below and in the examples. All substituents, in particular, R¹ to R⁵ and Ar are as defined above unless otherwise indicated. Furthermore, and unless explicitly otherwise stated, all reactions, reaction conditions, abbreviations and symbols have the meanings well known to a person of ordinary skill in organic chemistry.

General synthetic route for Compounds **I** (Scheme 1)

Scheme 1

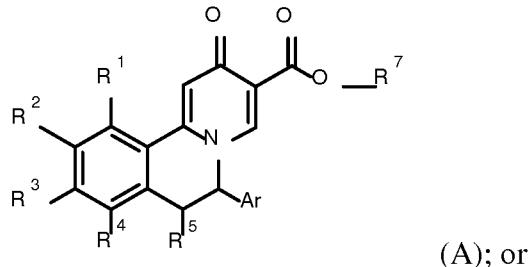

The compound of formula **I** can be prepared according to Scheme 1. Coupling reaction of bromo-benzene **II** with ketone **III** affords Compound **IV**. The reaction can be carried out in the presence of a Pd catalyst such as $\text{Pd}_2(\text{dba})_3$, $\text{Pd}(\text{PPh}_3)_4$ or $\text{PdCl}_2(\text{PPh}_3)_2$, a ligand such as Xantphos, and a suitable base such as $t\text{-BuONa}$, Na_2CO_3 or Cs_2CO_3 , in a suitable solvent such as THF, toluene or 1,4-dioxane at a temperature between room temperature and 130°C .
10 Reductive amination of Compound **IV** affords Compound **V**. Compound **V** is heated with ethyl

formate or formic acid in a solvent such as ethanol or dioxane to afford Compound **XI**. Compound **XI** is treated with POCl_3 in a suitable solvent such as acetonitrile or DCM at a temperature between room temperature and 100°C to give Compound **XII**. Compound **XII** reacts with C_{1-6} alkyl 2-(ethoxymethylene)-3-oxo-butanoate in a solvent such as ethanol to give

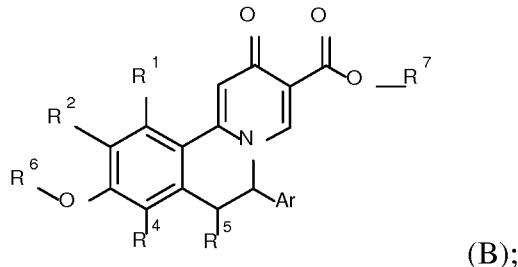
5 Compound **XIII**. Compound **XIV** is obtained by dehydrogenation of compound **XIII** by using *p*-chloranil. Hydrolyzation of Compound **XIV** with a base such as lithium hydroxide or sodium hydroxide in a suitable solvent such as $\text{THF}/\text{H}_2\text{O}$, $\text{EtOH}/\text{H}_2\text{O}$ or $\text{MeOH}/\text{H}_2\text{O}$ affords the compound of formula **I**.

10 General synthetic route for Compounds **I-1** (Scheme 2)

Scheme 2


Q^1 is halogen, $-\text{O}-\text{S}(\text{O})_2\text{CH}_3$ or $-\text{O}-\text{S}(\text{O})_2-(4-\text{CH}_3-\text{Ph})$.

R^7 is C_{1-6} alkyl


The compound of formula **I-1** can be prepared according to Scheme 2. Debenzylation of Compound **XIV-1** by hydrogenation is carried out in the presence of Pd/C in a solvent such as ethanol, THF, methanol to afford Compound **XIV-2**. Then Compound **XIV-2** reacts with halides, mesylates or tosylates in the presence of a base such as K_2CO_3 in a solvent such as acetone or DMF to give **XIV-3**. Hydrolyzation of Compound **XIV** with a base such as lithium hydroxide or sodium hydroxide in a suitable solvent such as $\text{THF}/\text{H}_2\text{O}$, $\text{EtOH}/\text{H}_2\text{O}$ or $\text{MeOH}/\text{H}_2\text{O}$ affords the compound of formula **I-1**.

This invention also relates to a process for the preparation of a compound of formula I comprising

(a) hydrolysis of a compound of formula (A)

(b) hydrolysis of a compound of formula (B)

wherein R¹ to R⁷ and Ar are defined above unless otherwise indicated.

In step (a) and step (b) a base such as lithium hydroxide or sodium hydroxide can be for

10 example used.

A compound of formula I when manufactured according to the above process is also an object of the invention.

15 PHARMACEUTICAL COMPOSITIONS AND ADMINISTRATION

The invention also relates to a compound of formula I for use as therapeutically active substance.

Another embodiment provides pharmaceutical compositions or medicaments containing 20 the compounds of the invention and a therapeutically inert carrier, diluent or excipient, as well as methods of using the compounds of the invention to prepare such compositions and medicaments. In one example, compounds of formula I may be formulated by mixing at ambient temperature at the appropriate pH, and at the desired degree of purity, with physiologically acceptable carriers, i.e., carriers that are non-toxic to recipients at the dosages and concentrations employed into a

galenical administration form. The pH of the formulation depends mainly on the particular use and the concentration of compound, but preferably ranges anywhere from about 3 to about 8. In one example, a compound of formula I is formulated in an acetate buffer, at pH 5. In another embodiment, the compounds of formula I are sterile. The compound may be stored, for example, 5 as a solid or amorphous composition, as a lyophilized formulation or as an aqueous solution.

Compositions are formulated, dosed, and administered in a fashion consistent with good medical practice. Factors for consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the 10 cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners. The “effective amount” of the compound to be administered will be governed by such considerations, and is the minimum amount necessary to inhibit HBsAg. For example, such amount may be below the amount that is toxic to normal cells, or the mammal as a whole.

15

In one example, the pharmaceutically effective amount of the compound of the invention administered parenterally per dose will be in the range of about 0.01 to 100 mg/kg, alternatively about 0.01 to 100 mg/kg of patient body weight per day, with the typical initial range of compound used being 0.3 to 15 mg/kg/day. In another embodiment, oral unit dosage forms, such 20 as tablets and capsules, preferably contain from about 0.1 to about 1000 mg of the compound of the invention.

The compounds of the invention may be administered by any suitable means, including oral, topical (including buccal and sublingual), rectal, vaginal, transdermal, parenteral, 25 subcutaneous, intraperitoneal, intrapulmonary, intradermal, intrathecal and epidural and intranasal, and, if desired for local treatment, intralesional administration. Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration.

The compounds of the present invention may be administered in any convenient 30 administrative form, e.g., tablets, powders, capsules, solutions, dispersions, suspensions, syrups, sprays, suppositories, gels, emulsions, patches, etc. Such compositions may contain components conventional in pharmaceutical preparations, e.g., diluents, carriers, pH modifiers, sweeteners, bulking agents, and further active agents.

A typical formulation is prepared by mixing a compound of the present invention and a carrier or excipient. Suitable carriers and excipients are well known to those skilled in the art and are described in detail in, e.g., Ansel, Howard C., et al., Ansel's Pharmaceutical Dosage

5 Forms and Drug Delivery Systems. Philadelphia: Lippincott, Williams & Wilkins, 2004; Gennaro, Alfonso R., et al. Remington: The Science and Practice of Pharmacy. Philadelphia: Lippincott, Williams & Wilkins, 2000; and Rowe, Raymond C. Handbook of Pharmaceutical Excipients. Chicago, Pharmaceutical Press, 2005. The formulations may also include one or more buffers, stabilizing agents, surfactants, wetting agents, lubricating agents, emulsifiers, 10 suspending agents, preservatives, antioxidants, opaquing agents, glidants, processing aids, colorants, sweeteners, perfuming agents, flavoring agents, diluents and other known additives to provide an elegant presentation of the drug (i.e., a compound of the present invention or pharmaceutical composition thereof) or aid in the manufacturing of the pharmaceutical product (i.e., medicament).

15

An example of a suitable oral dosage form is a tablet containing about 0.1 to 1000 mg of the compound of the invention compounded with about 0 to 2000 mg anhydrous lactose, about 0 to 2000 mg sodium croscarmellose, about 0 to 2000 mg polyvinylpyrrolidone (PVP) K30, and about 0 to 2000 mg magnesium stearate. The powdered ingredients are first mixed together and 20 then mixed with a solution of the PVP. The resulting composition can be dried, granulated, mixed with the magnesium stearate and compressed to tablet form using conventional equipment. An example of an aerosol formulation can be prepared by dissolving the compound, for example 0.1 to 1000 mg, of the invention in a suitable buffer solution, e.g. a phosphate buffer, adding a tonicifier, e.g. a salt such sodium chloride, if desired. The solution may be filtered, e.g., using a 25 0.2 micron filter, to remove impurities and contaminants.

An embodiment, therefore, includes a pharmaceutical composition comprising a compound of Formula I, or a stereoisomer or pharmaceutically acceptable salt thereof. In a further embodiment includes a pharmaceutical composition comprising a compound of Formula I, or a 30 stereoisomer or pharmaceutically acceptable salt thereof, together with a pharmaceutically acceptable carrier or excipient.

The following example A and B illustrate typical compositions of the present invention, but serve merely as representative thereof.

Example A

5 A compound of formula I can be used in a manner known per se as the active ingredient for the production of tablets of the following composition:

<u>Per tablet</u>	
Active ingredient	200 mg
Microcrystalline cellulose	155 mg
10 Corn starch	25 mg
Talc	25 mg
Hydroxypropylmethylcellulose	<u>20 mg</u>
	425 mg

15 **Example B**

A compound of formula I can be used in a manner known per se as the active ingredient for the production of capsules of the following composition:

<u>Per capsule</u>	
Active ingredient	100.0 mg
20 Corn starch	20.0 mg
Lactose	95.0 mg
Talc	4.5 mg
Magnesium stearate	<u>0.5 mg</u>
	220.0 mg

25

INDICATIONS AND METHODS OF TREATMENT

The compounds of the invention can inhibit HBsAg production or secretion and inhibit HBV gene expression. Accordingly, the compounds of the invention are useful for the treatment or prophylaxis of HBV infection.

30 The invention relates to the use of a compound of formula I for the inhibition of HBsAg production or secretion.

The invention relates to the use of a compound of formula I for the inhibition of HBV DNA production.

The invention relates to the use of a compound of formula I for the inhibition of HBV gene expression.

5 The invention relates to the use of a compound of formula I for the treatment or prophylaxis of HBV infection.

The use of a compound of formula I for the preparation of medicaments useful in the treatment or prophylaxis diseases that are related to HBV infection is an object of the invention.

10 The invention relates in particular to the use of a compound of formula I for the preparation of a medicament for the treatment or prophylaxis of HBV infection.

Another embodiment includes a method for the treatment or prophylaxis of HBV infection, which method comprises administering an effective amount of a compound of Formula I, a stereoisomer, tautomer, prodrug, conjugates or pharmaceutically acceptable salt thereof.

15 COMBINATION THERAPY

The compounds of the invention can be combined with other anti HBV agents such as interferon alpha-2b, interferon alpha-2a, and interferon alphacon-1 (pegylated and unpegylated), ribavirin, lamivudine (3TC), entecavir, tenofovir, telbivudine (LdT), adefovir, or other emerging anti HBV agents such as HBV RNA replication inhibitor, HBsAg secretion inhibitors, HBV 20 capsid inhibitors, antisense oligomer, siRNA, HBV therapeutic vaccine, HBV prophylactic vaccine, HBV antibody therapy (monoclonal or polyclonal) and TLR 2, 3, 7, 8 and 9 agonists for the treatment or prophylaxis of HBV.

EXAMPLES

25 The invention will be more fully understood by reference to the following examples. They should not, however, be construed as limiting the scope of the invention.

Abbreviations used herein are as follows:

30 μL : microliter
 μm : micrometer
 μM : micromoles per liter

	Ar:	argon
	DIPEA:	<i>N,N</i> -diisopropylethylamine
	DME:	1,2-dimethoxyethane
	DMF:	dimethylformamide
5	DMSO- <i>d</i> 6:	deuterated dimethylsulfoxide
	EtOAc:	ethyl acetate
	h or hr:	hour
	hrs:	hours
	IC ₅₀ :	the half maximal inhibitory concentration
10	HCMV:	human cytomegalovirus
	HIV:	human immunodeficiency
	HSV:	herpes simplex virus
	HPV:	human papillomavirus
	HPLC:	high performance liquid chromatography
15	LC/MS:	Liquid chromatography/mass spectrometry
	m-CPBA:	<i>m</i> -chloroperoxybenzoic acid
	MeOH:	methanol
	METHANOL-d ₄ :	perdeuteromethanol
	M:	molarity
20	mg:	milligram
	MHz:	megahertz
	min:	minute
	mL:	milliliter
	mM:	millimoles per liter
25	mm:	millimeter
	mmol:	millimole
	MS (ESI):	mass spectroscopy (electron spray ionization)
	NMR:	nuclear magnetic resonance
	N ₂ :	nitrogen
30	rt:	room temperature
	Pd/C:	palladium on activated carbon
	Pd(PPh ₃) ₄ :	tetrakis(triphenylphosphine)palladium
	Pd(dppf)Cl ₂ :	[1,1'-bis(diphenylphosphino)ferrocene]dichloropalladium(II)

PE or Pet:	petroleum ether
prep-HPLC:	preparative high performance liquid chromatography
TFA:	trifluoroacetic acid
TLC:	thin layer chromatography
5 δ:	chemical shift
Xantphos:	9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene
Pd ₂ (dba) ₃ :	tris(dibenzylideneacetone)dipalladium(0)
<i>t</i> -BuONa:	sodium <i>t</i> -butoxide

10 GENERAL EXPERIMENTAL CONDITIONS

Intermediates and final compounds were purified by flash chromatography using one of the following instruments: i) Biotage SP1 system and the Quad 12/25 Cartridge module. ii) ISCO combi-flash chromatography instrument. Silica gel Brand and pore size: i) KP-SIL 60 Å, particle size: 40-60 µm; ii) CAS registry NO: Silica Gel: 63231-67-4, particle size: 47-60 micron silica gel; iii) ZCX from Qingdao Haiyang Chemical Co., Ltd, pore: 200-300 or 300-400.

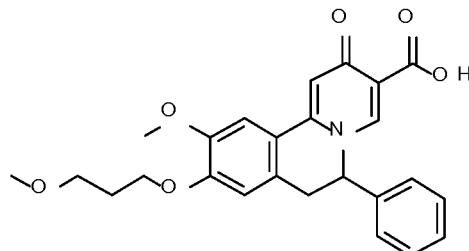
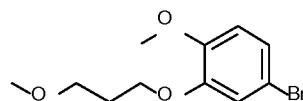
15 Intermediates and final compounds were purified by preparative HPLC on reversed phase column using X BridgeTM Perp C₁₈ (5 µm, OBDTM 30 × 100 mm) column or SunFireTM Perp C₁₈ (5 µm, OBDTM 30 × 100 mm) column.

20 LC/MS spectra were obtained using an Acquity Ultra Performance LC - 3100 Mass Detector or Acquity Ultra Performance LC - SQ Detector. Standard LC/MS conditions were as follows (running time 3 minutes):

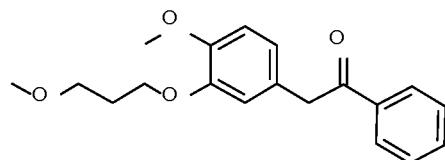
Acidic condition: A: 0.1% formic acid in H₂O; B: 0.1% formic acid in acetonitrile;

Basic condition: A: 0.05% NH₃·H₂O in H₂O; B: acetonitrile;

Neutral condition: A: H₂O; B: acetonitrile.



25 Mass spectra (MS): generally only ions which indicate the parent mass are reported, and unless otherwise stated the mass ion quoted is the positive mass ion (M+H)⁺.

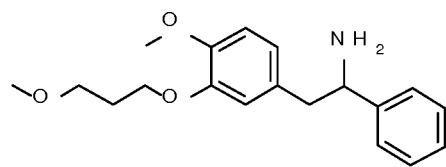
The microwave assisted reactions were carried out in a Biotage Initiator Sixty or CEM Discover.


NMR Spectra were obtained using Bruker Avance 400MHz.

30 All reactions involving air-sensitive reagents were performed under an argon atmosphere. Reagents were used as received from commercial suppliers without further purification unless otherwise noted.

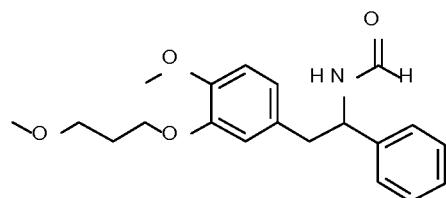
PREPARATIVE EXAMPLES

Example 1: 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-phenyl-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid5 **Step 1: Preparation of 4-bromo-1-methoxy-2-(3-methoxypropoxy)benzene**

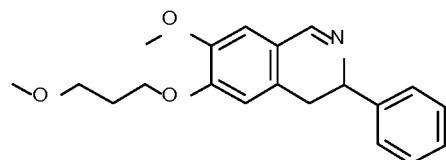

To a solution of 5-bromo-2-methoxy-phenol (10.0 g, 49.5 mmol) in MeCN (100 mL) was added Cs₂CO₃ (48.1 g, 148 mmol) and 1-bromo-3-methoxy-propane (11.3 g, 74 mmol). The mixture was refluxed for 16 hrs, and then filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by trituration with PE to give 4-bromo-1-methoxy-2-(3-methoxypropoxy)benzene (10.5 g) as a white solid.

Step 2: Preparation of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-phenylethanone

15 A mixture of 4-bromo-1-methoxy-2-(3-methoxypropoxy)benzene (10.0 g, 36.4 mmol), 1-phenylethanone (5.7 g, 47 mmol), *t*-BuONa (5.24 g, 55 mmol), Xantphos (840 mg, 1.5 mmol) and Pd₂(dba)₃ (660 mg, 0.73 mmol) in THF (100 mL) was heated with stirring at 80 °C for 5 hrs under nitrogen atmosphere. The mixture was cooled to rt and filtered. The filtrate was concentrated under reduced pressure. The residue was purified by the flash column chromatography to afford 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-phenyl-ethanone (9.5 g) as a yellow solid.


Step 3: Preparation of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-phenylethanamine

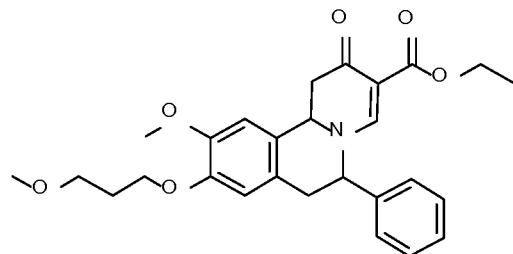
-24-


To a solution of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-phenyl-ethanone (9.5 g, 30.2 mmol) in MeOH (100 mL) was added NH₄OAc (17.2 g, 223 mmol) at 18 °C. After being stirred for 1 hr, the resulting mixture was cooled to 0 °C. Then to the cooled mixture was added 5 NaBH₃CN (4 g, 63.6 mmol) at 0 °C. The resulting mixture was then heated with stirring at 50 °C for 12 hrs. The resulting reaction mixture was concentrated under reduced pressure. The residue was diluted with H₂O (200 mL) and extracted with DCM (300 mL). The organic layer was washed with brine (200 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-phenyl-ethanamine (13.4 g) as 10 a yellow oil, which was used directly in the next step without further purification.

Step 4: Preparation of *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-phenyl-ethyl]formamide

To a solution of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-phenyl-ethanamine (13.0 g, 41.3 mmol) in dioxane (150 mL) was added formic acid (13.3 g, 289 mmol). The mixture was 15 heated with stirring at 120 °C for 12 hrs. After being cooled to rt, the resulting mixture was concentrated under reduced pressure. The residue was diluted with EtOAc (300 mL). The organic mixture was washed with H₂O (200 mL) and brine (200 mL, 2 times), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by 20 column chromatography to give *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-phenyl-ethyl]formamide (2.2 g, yield: 16%) as a yellow solid.

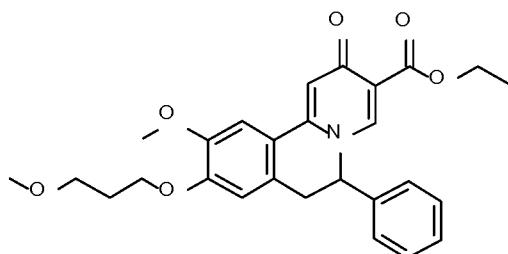
Step 5: Preparation of 7-methoxy-6-(3-methoxypropoxy)-3-phenyl-3,4-dihydroisoquinoline


25 To a solution of *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-phenyl-

ethyl]formamide (2.0 g, 5.8 mmol) in DCM (20 mL) was added POCl_3 (2.29 g, 14.9 mmol).

After being heated with stirring at 40 °C for 12 hrs, the resulting mixture was basified by ammonia water and extracted with DCM (200 mL). The organic layer was washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was

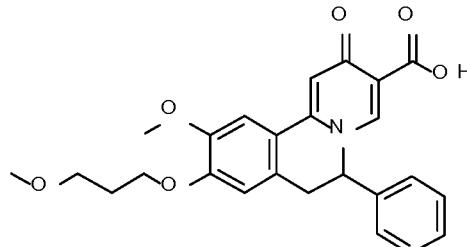
5 purified by column chromatography to give 7-methoxy-6-(3-methoxypropoxy)-3-phenyl-3,4-dihydroisoquinoline (500 mg) as a green solid.


Step 6: Preparation of ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-phenyl-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate

10 A solution of 7-methoxy-6-(3-methoxypropoxy)-3-phenyl-3,4-dihydroisoquinoline (500 mg, 1.54 mmol) and ethyl 2-(ethoxymethylene)-3-oxo-butanoate (688 mg, 3.69 mmol) in EtOH (5 mL) was heated with stirring at 100 °C for 48 hrs. After being cooled to rt, the resulting mixture was concentrated under reduced pressure to give crude ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-phenyl-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate, which

15 was used directly in the next step without further purification.

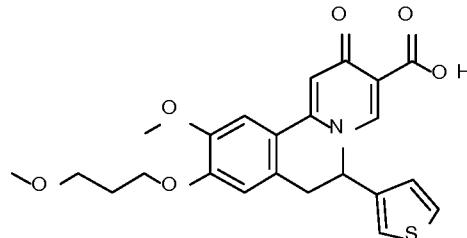
Step 7: Preparation of ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-phenyl-6,7-dihydrobenzo[a]quinolizine-3-carboxylate



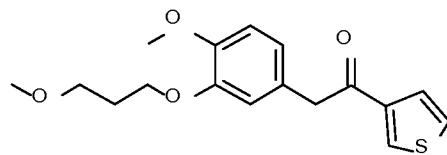
20 To a solution of ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-phenyl-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (916 mg, 1.97 mmol) in DME (10 mL) was added *p*-chloranil (486 mg, 1.97 mmol). The resulting mixture was heated with stirring at 70 °C for 3 hrs under nitrogen atmosphere. Then the mixture was filtered. The filtrate was concentrated under reduced pressure. The residue was dissolved in DCM. The resulting solution was washed with NaHCO_3 aqueous solution and brine, dried over anhydrous Na_2SO_4 and concentrated under

25 reduced pressure to afford crude ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-phenyl-6,7-

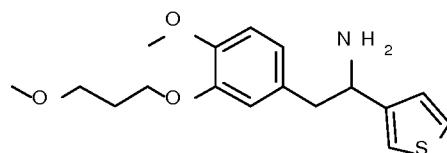
dihydrobenzo[a]quinolizine-3-carboxylate (1.2 g) as a yellow solid, which was used directly in the next step without further purification.


Step 8: Preparation of 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-phenyl-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

5


To a solution of ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-phenyl-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (1.02 g, 2.2 mmol) in MeOH (10 mL) was added 2 M NaOH aqueous solution (2.2 mL). The mixture was stirred at 18 °C for 16 hrs, and then concentrated under reduced pressure. The residue was acidified with 2 M hydrochloric acid to pH=3. Then the resulting aqueous mixture was extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-phenyl-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (5 mg) as a pale yellow solid. ¹H NMR (400 MHz, DMSO-*d*6): δ 1.87 - 1.98 (m, 2 H) 3.21 (s, 3 H) 3.42 (t, 3 H) 3.66 (dd, 1 H) 3.85 (s, 3 H) 4.00 (t, 2 H) 6.08 (br. s., 1 H) 6.93 (s, 1 H) 6.98 (d, 2 H) 7.19 - 7.33 (m, 3 H) 7.51 (s, 1 H) 7.58 (s, 1 H) 8.82 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 435.

Example 2: 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(3-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid


20

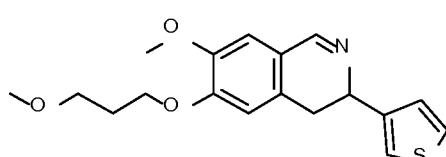
Step 1: Preparation of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(3-thienyl)ethanone

A mixture of 4-bromo-1-methoxy-2-(3-methoxypropoxy)benzene (16.5 g, 60 mmol), 1-(3-thienyl)ethanone (9.84 g, 78 mmol), *t*-BuONa (8.64 g, 90 mmol), Xantphos (1.39 g, 2.4 mmol) and Pd₂(dba)₃ (1.1 g, 1.2 mmol) in THF (200 mL) was heated at 100 °C for 1 hr. After being cooled to rt, the mixture was filtered. The filtrate was concentrated under reduced pressure and the residue was purified by the flash column chromatography to afford 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(3-thienyl)ethanone (6.8 g) as a brown oil.

Step 2: Preparation of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(3-thienyl)ethanamine

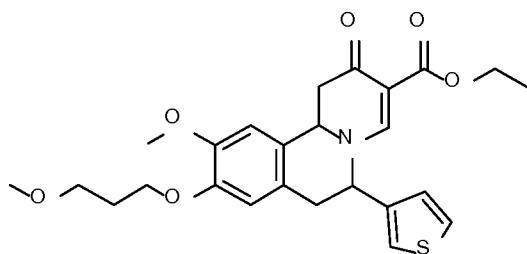
10

To a solution of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(3-thienyl)ethanone (6.8 g, 21.2 mmol) in MeOH (80 mL) was added NH₄OAc (16.4 g, 212 mmol) at rt. After being stirred for 1 hr, the resulting mixture was cooled to 0 °C. Then to the cooled mixture was added NaBH₃CN (2.67 g, 42.5 mmol) at 0 °C. Then the mixture was heated and stirred at 50 °C for 12 hrs. The mixture was concentrated under reduced pressure. The residue was diluted with H₂O (200 mL). The aqueous mixture was extracted with DCM (300 mL). The organic layer was washed with brine (200 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(3-thienyl)ethanamine (6.82 g) as a yellow oil, which was used directly in the next step without further purification.


Step 3: Preparation of *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(3-thienyl)ethyl]formamide

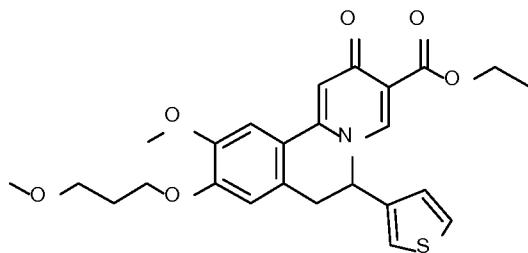
To a solution of crude 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(3-thienyl)ethanamine (6.82 g, 21.2 mmol) in dioxane (80 mL) was added formic acid (9.77 g, 212 mmol). Then the mixture was heated at 120 °C for 12 hrs. After being cooled to rt, the mixture

was concentrated under reduced pressure. The residue was diluted with EtOAc (300 mL). The organic mixture was washed with H₂O (200 mL) and brine (200 mL, 2 times), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to give *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(3-thienyl)ethyl]formamide (5.0 g) as a yellow solid.

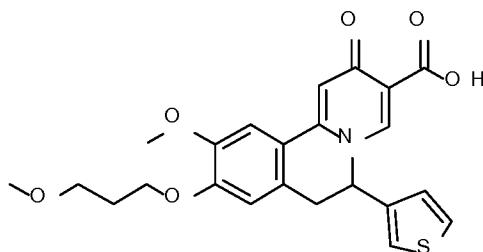

5 **Step 4: Preparation of 7-methoxy-6-(3-methoxypropoxy)-3-(3-thienyl)-3,4-dihydroisoquinoline**

To a solution of *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(3-thienyl)ethyl]formamide (5.0 g, 14.3 mmol) in DCM (50 mL) was added POCl₃ (4.51 g, 29.3 mmol).

10 The mixture was heated at 40 °C for 12 hrs and then basified with ammonia water. The resulting mixture was extracted with DCM (200 mL). The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to give 7-methoxy-6-(3-methoxypropoxy)-3-(3-thienyl)-3,4-dihydroisoquinoline (3.0 g) as a yellow solid.


15 **Step 5: Preparation of ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(3-thienyl)-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate**

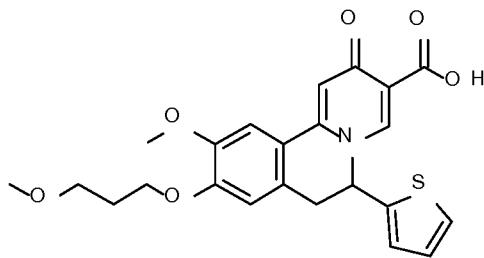
A mixture of 7-methoxy-6-(3-methoxypropoxy)-3-(3-thienyl)-3,4-dihydroisoquinoline


20 (610 mg, 1.84 mmol) and ethyl 2-(ethoxymethylene)-3-oxo-butanoate (1.03 g, 5.52 mmol) in EtOH (10 mL) was heated at 100 °C for 48 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure to give crude ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(3-thienyl)-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate, which was used directly in the next step without further purification.

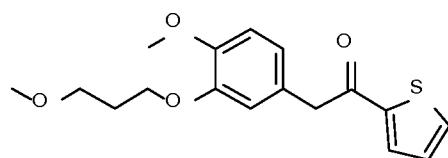
25 **Step 6: Preparation of ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(3-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate**

To a solution of ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(3-thienyl)-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (800 mg, 1.70 mmol) in DME (10 mL) was added *p*-chloranil (375 mg, 1.53 mmol). The mixture was heated at 70 °C for 3 hrs under nitrogen 5 atmosphere. Then the mixture was filtered. The filter cake was dried under reduced pressure to afford ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(3-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (250 mg) as a yellow solid.

Step 7: Preparation of 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(3-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

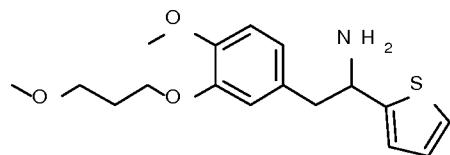


10

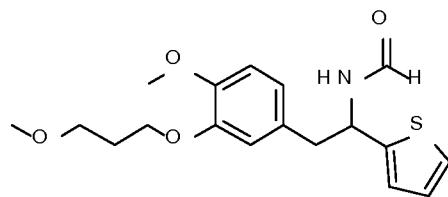

To a solution of ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(3-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (250 mg, 532 µmol) in EtOH (3 mL) was added 2 M NaOH aqueous solution (0.8 mL). The mixture was stirred at rt for 0.5 hr and then concentrated under reduced pressure to remove most of EtOH. The residue was acidified by 1 M hydrochloric 15 acid and then filtered. The filter cake was purified by column chromatography to give 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(3-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (110 mg) as a pale yellow solid. ¹H NMR (400 MHz, DMSO-*d*6): δ 1.97 (q, 2 H) 3.26 (s, 3 H) 3.36 - 3.45 (m, 1 H) 3.49 (t, 2 H) 3.59 (dd, 1 H) 3.87 (s, 3 H) 4.10 (t, 2 H) 5.99 (br. s., 1 H) 6.83 (d, 1 H) 6.99 (s, 1 H) 7.11 (br. s., 1 H) 7.26 - 7.55 (m, 3 H) 8.74 (br. s., 1 H). MS 20 obsd. (ESI⁺) [(M+H)⁺]: 442.

Example 3: 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

-30-


Step 1: Preparation of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(2-thienyl)ethanone

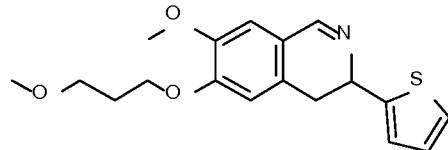
5


A mixture of 4-bromo-1-methoxy-2-(3-methoxypropoxy)benzene (5.0 g, 18.2 mmol), 1-(2-thienyl)ethanone (3.43 g, 27.2 mmol), Xantphos (440 mg), $\text{Pd}_2(\text{dba})_3$ (340 mg) and *t*-BuONa (2.61 g, 27.2 mmol) in THF (50 mL) was heated at 70 °C for 5 hrs. After being cooled to rt, the mixture was filtered. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography to give 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(2-thienyl)ethanone (2.7 g) as a yellow solid.

Step 2: Preparation of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(2-thienyl)ethanamine

15 To a solution of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(2-thienyl)ethanone (2.7 g, 8.43 mmol) in MeOH (40 mL) was added NH_4OAc (6.50 g, 84.3 mmol). After the mixture was stirred for 20 min, to the resulting mixture was added NaBH_3CN (1.06 g, 16.8 mmol). The resulting mixture was heated and stirred at 40 °C for 24 hrs and then concentrated under reduced pressure. The residue was diluted with DCM. The organic mixture was washed with water and brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to give crude 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(2-thienyl)ethanamine (2.2 g) as a yellow oil, which was used directly in the next step without further purification.

Step 3: Preparation of *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(2-thienyl)ethyl]formamide

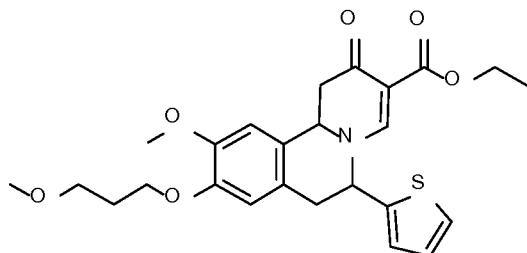


To a solution of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(2-thienyl)ethanamine (crude 2.2 g) in dioxane (30 mL) was added formic acid (1.54 g, 33.6 mmol). The mixture was refluxed for 24 hrs. After being cooled to rt, the mixture was concentrated under reduced

5 pressure. The residue was diluted with DCM. The organic mixture was washed with water and brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography to give *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(2-thienyl)ethyl]formamide (800 mg) as a gray solid.

Step 4: Preparation of 7-methoxy-6-(3-methoxypropoxy)-3-(2-thienyl)-3,4-dihydroisoquinoline

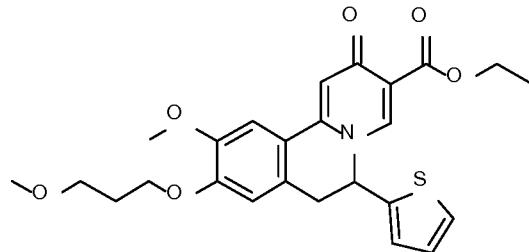
10 **dihydroisoquinoline**



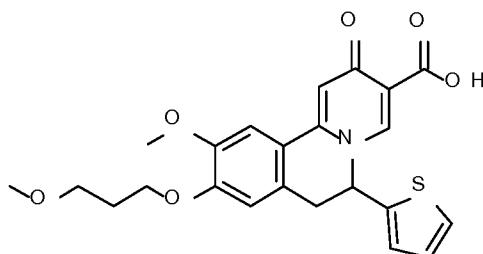
To a solution of *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(2-thienyl)ethyl]formamide (750 mg, 2.15 mmol) in DCM (10 mL) was added POCl_3 (493 mg, 3.22 mmol). The mixture was heated and stirred at 40 °C for 2 hrs, and then poured into ammonia

15 water. The resulting mixture was extracted with DCM. The organic layer was washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography to give 7-methoxy-6-(3-methoxypropoxy)-3-(2-thienyl)-3,4-dihydroisoquinoline (400 mg) as a gray solid.

Step 5: Preparation of ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(2-thienyl)-


20 **1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate**

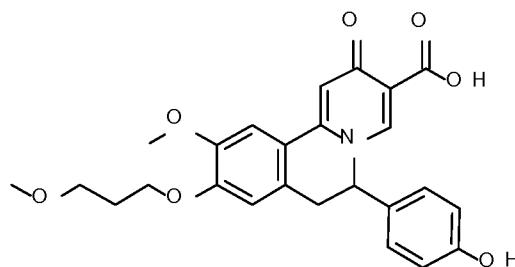
A mixture of 7-methoxy-6-(3-methoxypropoxy)-3-(2-thienyl)-3,4-dihydroisoquinoline (50 mg, 0.15 mmol) and ethyl 2-(ethoxymethylene)-3-oxo-butanoate (84 mg, 0.45 mmol) in EtOH (1


mL) was refluxed for 24 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure to give crude ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(2-thienyl)-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (70 mg), which was used directly in the next step without further purification.

5 **Step 6: Preparation of ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate**

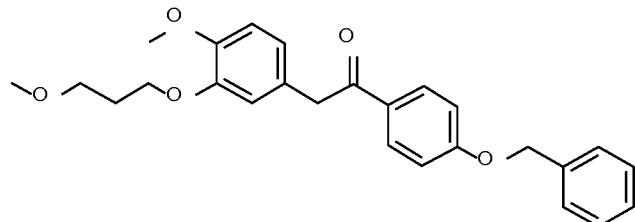
To a solution of ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(2-thienyl)-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (crude 70 mg, 0.15 mmol) in DME (1 mL) was 10 added *p*-chloranil (37 mg, 0.15 mmol). The resulting mixture was refluxed for 3 hrs, and then filtered. The filtrate was concentrated under reduced pressure. The residue was diluted with DCM. The organic mixture was washed with NaHCO₃ aqueous solution and brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (60 mg), 15 which was used directly in the next step without further purification.

Step 7: Preparation of 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid



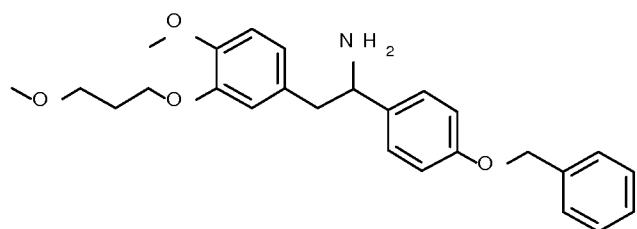
To a mixture of ethyl 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (crude 60 mg, 0.15 mmol) in MeOH (1 mL) was 20 added 2 M NaOH aqueous solution (0.15 mL, 0.3 mmol). After being stirred at rt for 16 hrs, the resulting mixture was concentrated under reduced pressure to remove most of MeOH. The residue was acidified with 2 M hydrochloric acid to pH=3, and then extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The 25 residue was purified by prep-HPLC to give 10-methoxy-9-(3-methoxypropoxy)-2-oxo-6-(2-

thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (2.4 mg) as a gray solid. ^1H NMR (400 MHz, DMSO-*d*6): δ : 8.99 (s, 1H), 7.50-7.53 (m, 2H), 7.33-7.38 (m, 1H), 7.08 (s, 1H), 7.03 (s, 1H), 6.86-7.01 (m, 1H), 6.35 (s, 1H), 4.08 (t, 2H), 3.87 (s, 3H), 3.66-3.70 (m, 1H), 3.46 (t, 2H), 3.43-3.45 (m, 2H), 3.24 (s, 3H), 1.94-2.01 (m, 2H). MS obsd. (ESI $^+$) [(M+H) $^+$]: 442.


5

Example 4: 6-(4-hydroxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

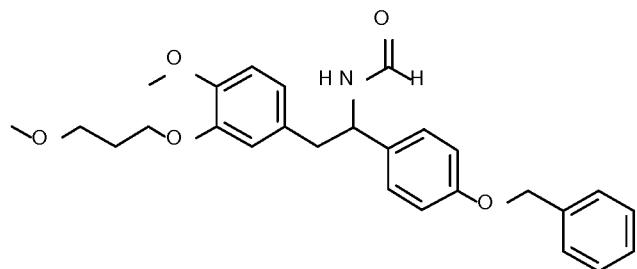
Step 1: Preparation of 1-(4-benzyloxyphenyl)-2-[4-methoxy-3-(3-


10 **methoxypropoxy)phenyl]ethanone**

To a mixture of 4-bromo-1-methoxy-2-(3-methoxypropoxy)benzene (15 g, 54.5 mmol) in THF (150 mL) was added 1-(4-benzyloxyphenyl)ethanone (16 g, 70.9 mmol), *t*-BuONa (7.86 g, 81.8 mmol), Pd₂(dba)₃ (1 g, 1.09 mmol) and Xantphos (1.26 g, 2.18 mmol). The mixture was 15 heated at 50 °C for 4 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure, and the residue was dissolved in DCM. The organic solution was washed with H₂O and brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to give 1-(4-benzyloxyphenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanone (17 g) as a yellow solid.

20 **Step 2: Preparation of 1-(4-benzyloxyphenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanamine**

-34-

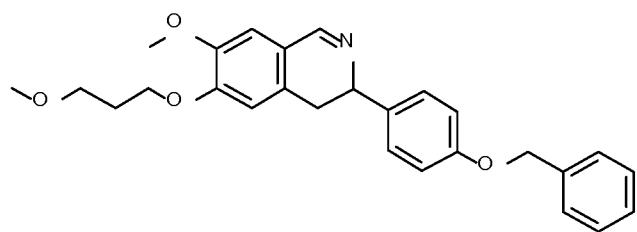


To a solution of 1-(4-benzyloxyphenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanone (17 g, 40.4 mmol) in MeOH (170 mL) was added NH₄OAc (31.2 g, 404 mmol) at 70 °C. After being heated for 1 hr, the resulting mixture was cooled to 0 °C.

5 Then to the resulting mixture was added NaBH₃CN (5.08 g, 80.9 mmol) at 0 °C. The resulting mixture was heated at 80 °C for 12 hrs and then concentrated under reduced pressure to remove most of MeOH. The residue was diluted with H₂O (100 mL) and extracted with DCM (500 mL). The organic layer was washed with brine (100 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude 1-(4-benzyloxyphenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanamine (24 g) as a yellow oil, which was used directly in the next step without further purification.

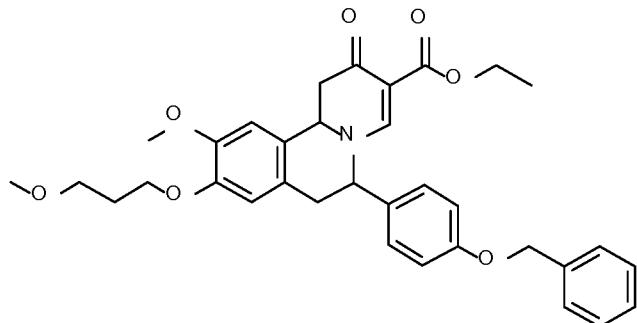
10

Step 3: Preparation of *N*-[1-(4-benzyloxyphenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethyl]formamide

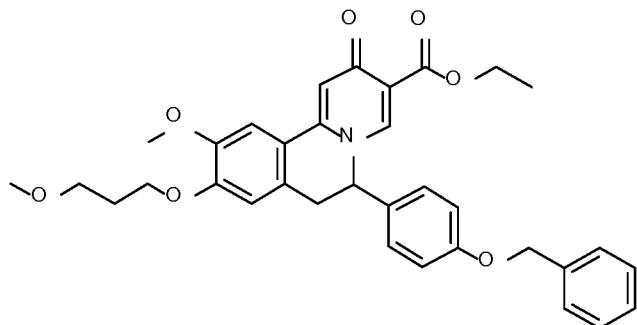


15 To a mixture of 1-(4-benzyloxyphenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanamine (24.0 g, 56.9 mmol) in dioxane (250 mL) was added formic acid (13.1 g, 285 mmol). After being heated at 120 °C for 12 hrs, the mixture was concentrated under reduced pressure to remove most of dioxane. The residue was partitioned between H₂O (200 mL) and DCM (600 mL). The organic layer was separated, washed with brine (200 mL),

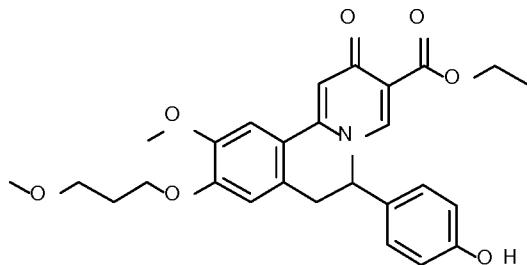
20 dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to give *N*-[1-(4-benzyloxyphenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethyl]formamide (13.0 g) as a light yellow solid.


Step 4: Preparation of 3-(4-benzyloxyphenyl)-7-methoxy-6-(3-methoxypropoxy)-3,4-dihydroisoquinoline

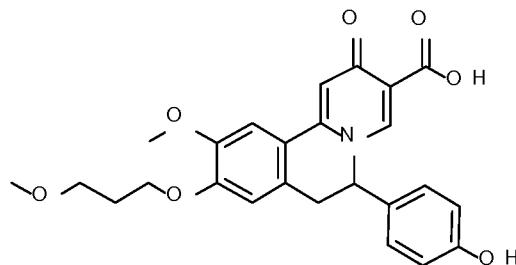
-35-


To a mixture of *N*-(1-(4-benzyloxyphenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethyl)formamide (11.0 g, 24.5 mmol) in dry DCM (120 mL) was added POCl₃ (5.75 g, 37.5 mmol) drop-wise at 0 °C. Then the mixture was refluxed for 12 hrs. After 5 being cooled to rt, the mixture was poured into a solution of ammonia water (30 mL) in H₂O (20 mL). Then the mixture was extracted with DCM (300 mL). The organic layer was washed with brine (150 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to give 3-(4-benzyloxyphenyl)-7-methoxy-6-(3-methoxypropoxy)-3,4-dihydroisoquinoline (8.4 g) as a yellow solid.

10 **Step 5: Preparation of ethyl 6-(4-benzyloxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate**

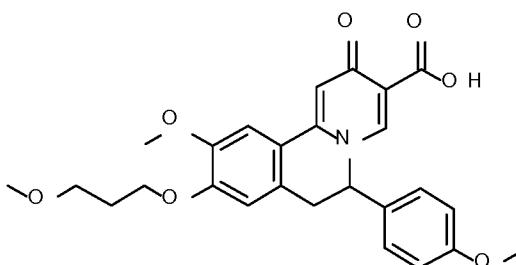

A solution of 3-(4-benzyloxyphenyl)-7-methoxy-6-(3-methoxypropoxy)-3,4-dihydroisoquinoline (4.0 g, 9.27 mmol) and ethyl 2-(ethoxymethylene)-3-oxo-butanoate (5.18 g, 15 27.8 mmol) in EtOH (50 mL) was heated in a 100 °C oil bath for 12 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure to afford crude ethyl 6-(4-benzyloxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate, which was used directly in the next step without further purification.

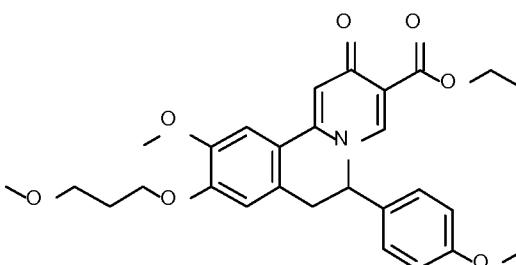
20 **Step 6: Preparation of ethyl 6-(4-benzyloxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate**


A mixture of ethyl 6-(4-benzyloxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (5.3 g, 9.27 mmol) and *p*-chloranil (1.6 g, 6.49 mmol) in DME (60 mL) was heated at 80 °C for 3 hrs. After being cooled to rt, the mixture 5 was partitioned between H₂O (150 mL) and DCM (300 mL). The organic layer was separated, washed with brine (150 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford ethyl 6-(4-benzyloxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (4 g) as a black solid.

10 **Step 7: Preparation of ethyl 6-(4-hydroxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate**

To a solution of ethyl 6-(4-benzyloxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (700 mg, 1.23 mmol) in EtOH (10 mL) was added 15 Pd/C (50 mg). Then the mixture was heated to 30 °C and stirred at 30 °C under hydrogen atmosphere (30 psi) for 12 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure to give crude ethyl 6-(4-hydroxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (650 mg) as a black solid, which was used directly in the next step without purification.

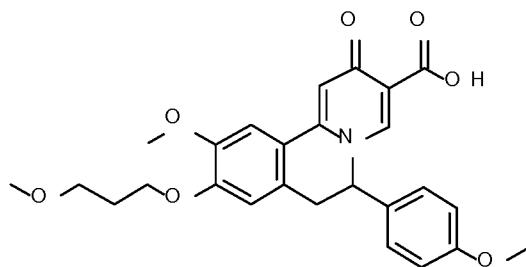

20 **Step 8: Preparation of 6-(4-hydroxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**


To a solution of ethyl 6-(4-hydroxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (200 mg, 417 μ mol) in MeOH (5 mL) was added 2 M NaOH aqueous solution (0.625 mL, 1.25 mmol). After being stirred at 25 °C for 12 hrs, the

5 resulting mixture was concentrated. The residue was diluted with H₂O (20 mL), acidified with 1 M hydrochloric acid to pH=3, and extracted with DCM (100 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to give 6-(4-hydroxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (8.2 mg) as a white 10 solid. ¹H NMR (400 MHz, METHANOL-*d*₄): δ : 1.94 - 2.10 (m, 2 H), 3.07 - 3.30 (m, 3 H), 3.33 - 3.37 (m, 1 H), 3.42 - 3.53 (m, 1 H), 3.55 (t, 2 H), 3.88 (br. s., 3 H), 4.08 (br. s., 2 H), 5.51 (br. s., 1 H), 6.64 (br. s., 2 H), 6.74 - 7.15 (m, 4 H), 7.32 (br. s., 1 H), 8.24 (br. s., 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 452.

15 **Example 5: 10-methoxy-6-(4-methoxyphenyl)-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**

Step 1: Preparation of ethyl 10-methoxy-6-(4-methoxyphenyl)-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

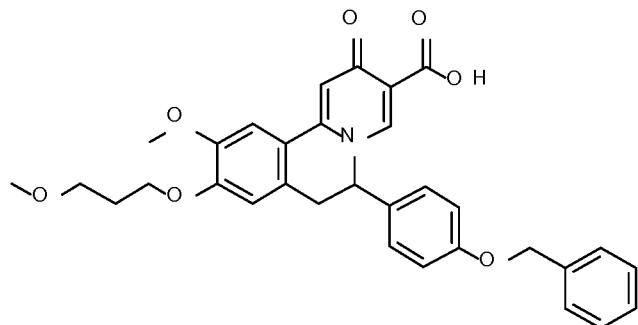

To a solution of ethyl 6-(4-hydroxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (450 mg, 938 μ mol, from step 7 of Example 4) in DMF (10 mL) was added K_2CO_3 (389 mg, 2.82 mmol) and iodomethane (2.05 g, 14.4 mmol).

The mixture was stirred at 25 °C for 24 hrs, and then partitioned between H_2O (50 mL) and

5 EtOAc (100 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to afford crude ethyl 10-methoxy-6-(4-methoxyphenyl)-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (350 mg) as a brown oil, which was used directly in the next step without further purification.

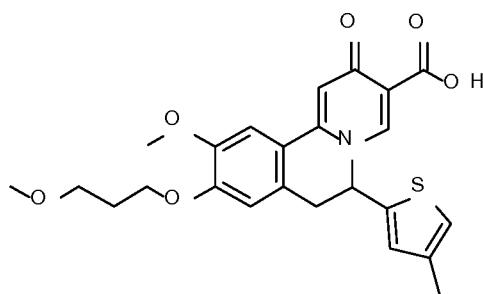
Step 2: Preparation of 10-methoxy-6-(4-methoxyphenyl)-9-(3-methoxypropoxy)-2-

10 **oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**

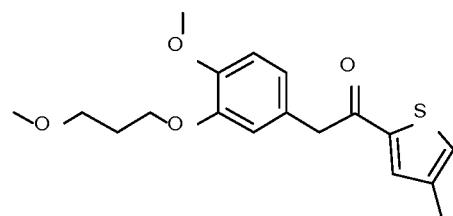


To a solution of ethyl 10-methoxy-6-(4-methoxyphenyl)-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (350 mg, 790 μ mol) in MeOH (5 mL) was added 2 M $NaOH$ aqueous solution (1.19 mL, 2.37 mmol). After being stirred at 25 °C for 12 hrs, the

15 resulting reaction mixture was diluted with H_2O (20 mL), acidified with 1 M hydrochloric acid to pH=3 and extracted with DCM (100 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 10-methoxy-6-(4-methoxyphenyl)-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (27 mg) as a yellow solid. 1H NMR (400 MHz, $CDCl_3$): δ : 2.12 (q, 2 H), 3.28 (dd, 1 H), 3.34 (s, 3 H), 3.55 (t, 3 H), 3.60 (d, 1 H), 3.77 (s, 3 H) 3.94 (s, 3 H), 4.13 (t, 2 H), 5.39 (s, 1 H), 6.69 (s, 1 H), 6.79 - 6.86 (m, 2 H), 6.88 - 6.95 (m, 2 H), 7.15 (s, 1 H), 7.20 (s, 1 H), 8.45 (s, 1 H). MS obsd. (ESI^+) $[(M+H)^+]$: 466.

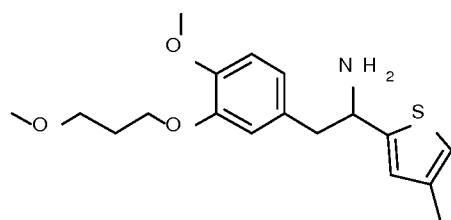

Example 6: 6-(4-benzyloxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-

25 **dihydrobenzo[a]quinolizine-3-carboxylic acid**



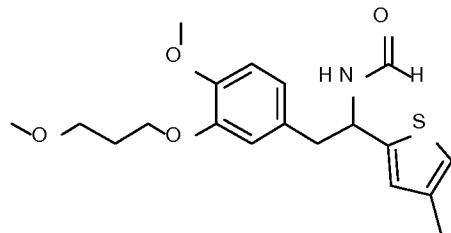
To a solution of ethyl 6-(4-benzyloxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (200 mg, 351 µmol, from step 6 of Example 4) in MeOH (5 mL) was added 2 M NaOH aqueous solution (0.526 mL, 1.05 mmol). After being 5 stirred at 25 °C for 12 hrs, the resulting mixture was diluted with H₂O (20 mL), acidified with 1 M hydrochloric acid to pH=3 and extracted with DCM (100 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 6-(4-benzyloxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (31 mg) as a white 10 solid. . ¹H NMR (400 MHz, CDCl₃): δ: 2.12 (q, 2 H), 3.28 (dd, 1 H), 3.34 (s, 3 H), 3.55 (t, 3 H), 3.93 (s, 3 H), 4.13 (t, 2 H), 5.02 (s, 2 H), 5.40 (br. s., 1 H), 6.69 (s, 1 H), 6.82 - 6.96 (m, 4 H), 7.17 (d, 2 H), 7.31 - 7.45 (m, 5 H), 8.46 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 542.

15 **Example 7: 10-methoxy-9-(3-methoxypropoxy)-6-(4-methyl-2-thienyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**



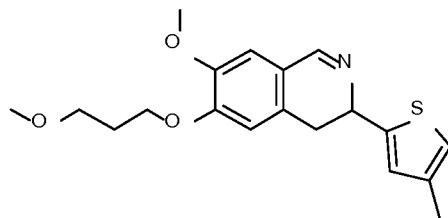
Step 1: Preparation of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(4-methyl-2-thienyl)ethanone

A mixture of 4-bromo-1-methoxy-2-(3-methoxypropoxy)benzene (5.0 g, 18.2 mmol), 1-(4-methyl-2-thienyl)ethanone (3.82 g, 27.2 mmol), *t*-BuONa (2.80 g, 29.1 mmol), Pd₂(dba)₃ (350 mg) and Xantphos (440 mg) in THF (60 mL) was heated at 80 °C for 3 hrs. After being cooled to rt, the mixture was partitioned between DCM (200 mL) and H₂O (50 mL). The organic layer was 5 separated, washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to give 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(4-methyl-2-thienyl)ethanone (3.7 g) as a yellow solid.

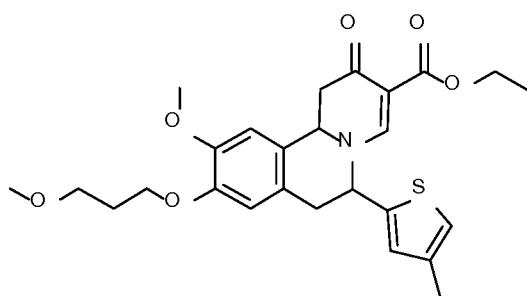

Step 2: Preparation of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(4-methyl-2-thienyl)ethanamine

10

To a mixture of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(4-methyl-2-thienyl)ethanone (3.7 g, 11.1 mmol) in MeOH (50 mL) was added NH₄OAc (8.53 g, 111 mmol). The mixture was heated at 40 °C for 1 hr. Then to the resulting mixture was added NaBH₃CN (1.39 g, 22.2 mmol). The resulting mixture was heated at 70 °C for 48 hrs, and then concentrated 15 under reduced pressure. The residue was diluted with DCM (200 mL). The organic mixture was separated, washed with water (100 mL) and brine (100 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to give crude 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(4-methyl-2-thienyl)ethanamine (2.5 g) as a yellow oil.

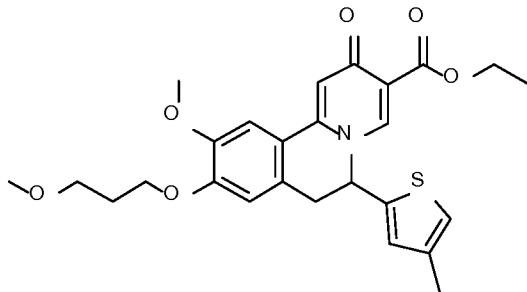

20 **Step 3: Preparation of N-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(4-methyl-2-thienyl)ethyl]formamide**

To a mixture of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(4-methyl-2-thienyl)ethanamine (2.5 g, 7.46 mmol) in dioxane (30 mL) was added formic acid (1.72 g, 37.3 mmol). The mixture was heated at reflux for 24 hrs. After being cooled to rt, the mixture was 25 concentrated under reduced pressure and the residue was diluted with DCM (100 mL). Then the

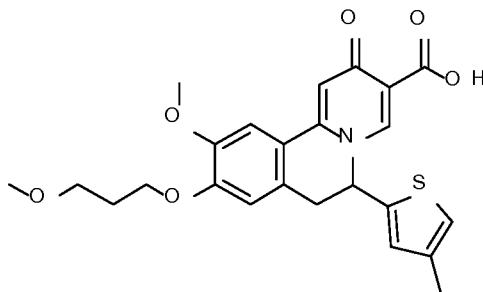

organic mixture was separated, washed with water (50 mL) and brine (50 mL), dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography to give *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(4-methyl-2-thienyl)ethyl]formamide (1.3 g) as a yellow oil.

5 **Step 4: Preparation of 7-methoxy-6-(3-methoxypropoxy)-3-(4-methyl-2-thienyl)-3,4-dihydroisoquinoline**

To a mixture of *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(4-methyl-2-thienyl)ethyl]formamide (700 mg, 1.93 mmol) in DCM (10 mL) was added POCl_3 (442 mg, 2.89 mmol). The mixture was heated under reflux for 2 hrs. After being cooled to rt, the mixture was partitioned between ammonia water (20 mL) and DCM (100 mL). The organic layer was separated, washed with water (30 mL) and brine (30 mL), dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography to give 7-methoxy-6-(3-methoxypropoxy)-3-(4-methyl-2-thienyl)-3,4-dihydroisoquinoline (390 mg) as a white solid.

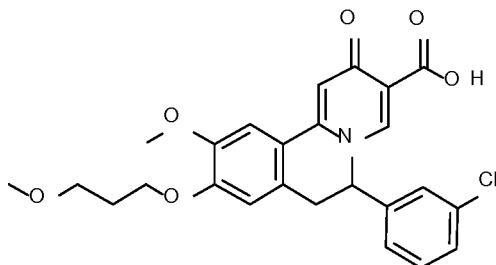

10 **Step 5: Preparation of ethyl 10-methoxy-9-(3-methoxypropoxy)-6-(4-methyl-2-thienyl)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate**

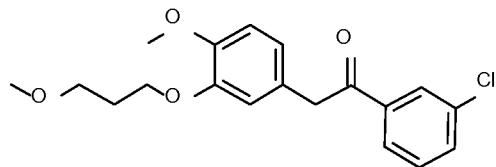
15 A mixture of 7-methoxy-6-(3-methoxypropoxy)-3-(4-methyl-2-thienyl)-3,4-dihydroisoquinoline (390 mg, 1.13 mmol) and ethyl 2-(ethoxymethylene)-3-oxo-butanoate (630 mg, 3.39 mmol) in EtOH (7 mL) was heated under reflux for 24 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure to give crude ethyl 10-methoxy-9-(3-methoxypropoxy)-6-(4-methyl-2-thienyl)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (1.0 g), which was used directly in the next step without further purification.


20 **Step 6: Preparation of ethyl 10-methoxy-9-(3-methoxypropoxy)-6-(4-methyl-2-**

thienyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

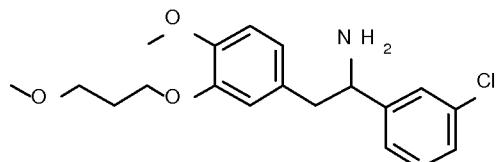
A mixture of ethyl 10-methoxy-9-(3-methoxypropoxy)-6-(4-methyl-2-thienyl)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (crude 1 g) and *p*-chloranil (277 mg, 1.13 mmol) in DME (10 mL) was heated under reflux for 3 hrs. Then the mixture was filtered. The filtrate was concentrated under reduced pressure. The residue was diluted with DCM. Then the organic mixture was washed with NaHCO₃ aqueous solution and brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude ethyl 10-methoxy-9-(3-methoxypropoxy)-6-(4-methyl-2-thienyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (1 g), which was used directly in the next step without further purification.


Step 7: Preparation of 10-methoxy-9-(3-methoxypropoxy)-6-(4-methyl-2-thienyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid


To a mixture of crude ethyl 10-methoxy-9-(3-methoxypropoxy)-6-(4-methyl-2-thienyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (1 g) in MeOH (10 mL) was added 2 M NaOH aqueous solution (1.1 mL). The mixture was stirred at 15 °C for 16 hrs. The mixture was concentrated under reduced pressure. The residue was acidified with 1 M hydrochloric acid to pH=3. The resulting aqueous mixture was extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was treated with MeOH (5 mL), and then filtered. The filter cake was purified by prep-HPLC to give 10-methoxy-9-(3-methoxypropoxy)-6-(4-methyl-2-thienyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (64 mg) as a white solid. ¹H NMR (400 MHz, DMSO-*d*6): δ 8.93 (s, 1H), 7.50-7.53 (m, 2H), 7.06 (s, 1H), 6.91 (s, 1H), 6.82 (s, 1H), 6.26 (s, 1H), 4.07 (t, *J* = 6.4 Hz, 2H),

3.87 (s, 3H), 3.66-3.70 (m, 1H), 3.46 (t, $J = 6.4$ Hz, 2H), 3.30-3.31 (m, 1H), 3.24 (s, 3H), 2.07 (s, 3H), 1.94-2.01 (m, 2H). MS obsd. (ESI^+) $[(\text{M}+\text{H})^+]$: 456.

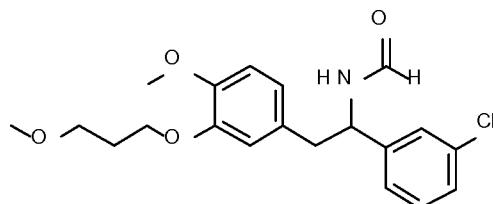
Example 8: 6-(3-chlorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid



Step 1: Preparation of 1-(3-chlorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanone

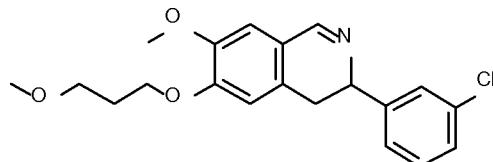
10 A mixture of 4-bromo-1-methoxy-2-(3-methoxypropoxy)benzene (10.0 g, 36.3 mmol), 1-(3-chlorophenyl)ethanone (7.3 g, 47.2 mmol), *t*-BuONa (5.24 g, 54.5 mmol), $\text{Pd}_2(\text{dba})_3$ (1.33 g, 1.45 mmol) and Xantphos (841 mg, 1.45 mmol) in THF (100 mL) was heated at 60 °C for 12 hrs under nitrogen atmosphere. After being cooled to rt, the reaction mixture was concentrated under reduced pressure. The residue was diluted with DCM (600 mL). The organic mixture was
15 washed with water and brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography to give 1-(3-chlorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanone (9.0 g) as a light yellow oil.

Step 2: Preparation of 1-(3-chlorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanamine



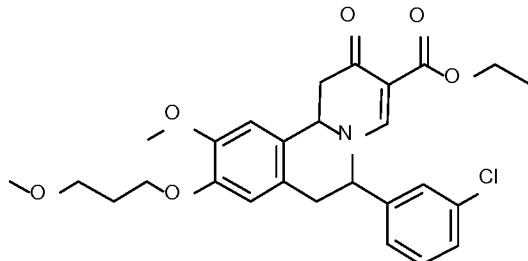
20 To a mixture of 1-(3-chlorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanone (9.0 g, 25.8 mmol) in MeOH (100 mL) was added NH_4OAc (13.9 g, 181 mmol) at 24 °C. After the mixture was stirred for 1 hr, to the mixture was added NaBH_3CN (14.2 g, 226 mmol) at 0 °C .

The resulting mixture was heated at 70 °C for 12 hrs, then cooled to rt, and concentrated under reduced pressure to remove most of MeOH. The residue was partitioned between H₂O (100 mL) and DCM (500 mL). The organic layer was washed with brine (100 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude 1-(3-chlorophenyl)-2-[4-

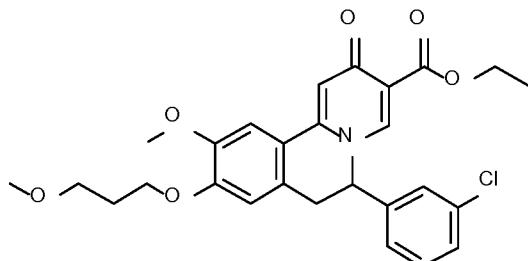

5 methoxy-3-(3-methoxypropoxy)phenyl]ethanamine (9.0 g) as a yellow oil, which was used directly in the next step without further purification.

Step 3: Preparation of *N*-[1-(3-chlorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethyl]formamide

10 To a mixture of 1-(3-chlorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanamine (9.0 g, 33.4 mmol) in dioxane (120 mL) was added formic acid (5.92 g, 129 mmol) at 24 °C. The mixture was refluxed for 12 hrs, then cooled to rt, and concentrated under reduced pressure to remove most of dioxane. The residue was partitioned between H₂O (100 mL) and DCM (500 mL). The organic layer was washed with brine (100 mL),
15 dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford *N*-[1-(3-chlorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethyl]formamide (2.0 g) as a light yellow solid.

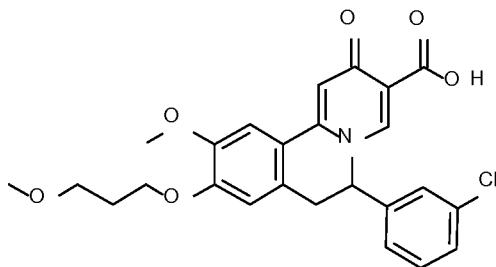

Step 4: Preparation of 3-(3-chlorophenyl)-7-methoxy-6-(3-methoxypropoxy)-3,4-dihydroisoquinoline

20 To a mixture of *N*-[1-(3-chlorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethyl]formamide (1.0 g, 2.65 mmol) in DCM (10 mL) was added POCl₃ (608 mg, 3.97 mmol). The mixture was heated under reflux for 2 hrs. After being cooled to rt, the mixture was partitioned between ammonia water (20 mL) and DCM (100 mL). The
25 organic layer was separated, washed with water (30 mL) and brine (30 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to give 3-(3-chlorophenyl)-7-methoxy-6-(3-methoxypropoxy)-3,4-


dihydroisoquinoline (600 mg) as a brown oil.

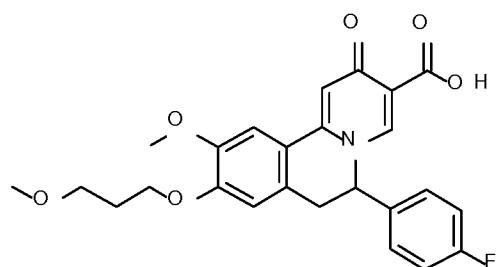
Step 5: Preparation of ethyl 6-(3-chlorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate

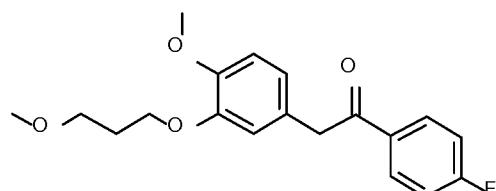
5 A mixture of 3-(3-chlorophenyl)-7-methoxy-6-(3-methoxypropoxy)-3,4-dihydroisoquinoline (600 mg, 1.67 mmol) and ethyl 2-(ethoxymethylene)-3-oxo-butanoate (930 mg, 5.00 mmol) in EtOH (10 mL) was heated under reflux for 48 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure to give crude ethyl 6-(3-chlorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate 10 (1.3 g), which was used directly in the next step without further purification.


Step 6: Preparation of ethyl 6-(3-chlorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

15 A mixture of crude ethyl 6-(3-chlorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (1.3 g) and *p*-chloranil (410 mg, 1.67 mmol) in DME (15 mL) was heated under reflux for 3 hrs. Then the mixture was filtered. The filtrate was concentrated under reduced pressure and the residue was diluted with DCM. Then the organic mixture was washed with NaHCO₃ aqueous solution and brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude ethyl 6-(3-chlorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (1.4 g), 20 which was used directly in the next step without further purification.

Step 7: Preparation of 6-(3-chlorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

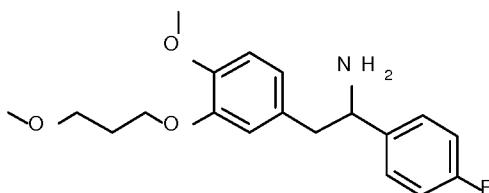

-46-


To a mixture of ethyl 6-(3-chlorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (crude 700 mg) in MeOH (7 mL) was added 2 M NaOH aqueous solution (0.8 mL). The mixture was stirred at 15 °C for 16 hrs, and then

5 concentrated under reduced pressure. The residue was acidified with 1 M hydrochloric acid to pH=3. The resulting aqueous mixture was extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was treated with MeOH (5 mL) and then filtered. The filter cake was recrystallized with DMSO/MeCN to give 6-(3-chlorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-
10 carboxylic acid (36 mg) as a white solid. ¹H NMR (400 MHz, DMSO-*d*6): δ 8.85 (s, 1H), 7.58 (s, 1H), 7.52 (s, 1H), 7.23-7.35 (m, 2H), 7.18 (s, 1H), 6.94 (s, 1H), 6.80 (d, 1H), 6.08 (d, 1H), 4.02 (t, 2H), 3.85 (s, 3H), 3.66-3.70 (m, 1H), 3.42-3.50 (m, 3H), 3.21 (s, 3H), 1.94-2.01 (m, 2H). MS obsd. (ESI⁺) [(M+H)⁺]: 470.

15 **Example 9: 6-(4-fluorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**

Step 1: Preparation of 1-(4-fluorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanone

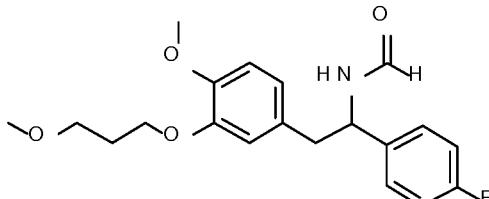


20

A mixture of 4-bromo-1-methoxy-2-(3-methoxypropoxy)benzene (8.0 g, 29.1 mmol), 1-(4-

fluorophenyl)ethanone (6.02 g, 43.6 mmol), *t*-BuONa (4.47 g, 46.5 mmol), Pd₂(dba)₃ (550 mg), Xantphos (700 mg) in THF (100 mL) was heated at 80 °C for 3 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure. The residue was partitioned between DCM (200 mL) and H₂O (50 mL). The organic layer was washed with brine (50 mL), dried over 5 anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to give 1-(4-fluorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanone (8.9 g) as a yellow solid.

Step 2: Preparation of 1-(4-fluorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanone

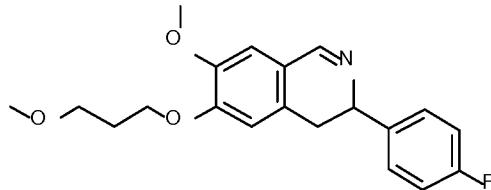

10

To a mixture of 1-(4-fluorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanone (8.9 g, 26.8 mmol) in MeOH (100 mL) was added NH₄OAc (20.6 g, 268 mmol). The mixture was stirred at 30 °C for 1 hr. Then to the mixture was added NaBH₃CN (3.38 g, 53.6 mmol). The resulting mixture was heated at 40 °C for 16 hrs, and then concentrated under reduced pressure.

15 The residue was diluted with DCM (200 mL). The organic mixture was washed with water (100 mL), brine (100 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to give 1-(4-fluorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanamine (6.0 g) as a yellow oil.

Step 3: Preparation of *N*-[1-(4-fluorophenyl)-2-[4-methoxy-3-(3-

20 **methoxypropoxy)phenyl]ethyl]formamide**

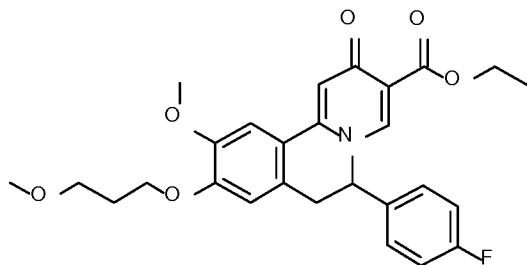


To a mixture of 1-(4-fluorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenyl]ethanamine (6.0 g, 18.0 mmol) in dioxane (80 mL) was added formic acid (4.14 g, 90.0 mmol). The mixture was heated under reflux for 48 hrs. After being cooled to 25 rt, the mixture was concentrated under reduced pressure. The residue was diluted with DCM (100 mL), and the organic mixture was washed with water (50 mL) and brine (50 mL), dried

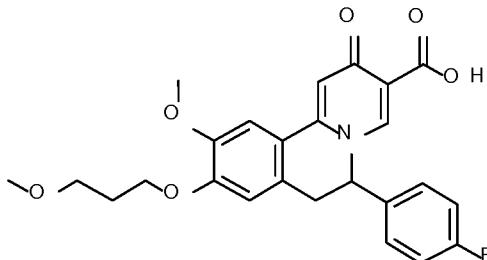
over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography to give *N*-[1-(4-fluorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenoxy]ethyl]formamide (2.6 g) as a white solid.

Step 4: Preparation of 3-(4-fluorophenyl)-7-methoxy-6-(3-methoxypropoxy)-3,4-dihydroisoquinoline

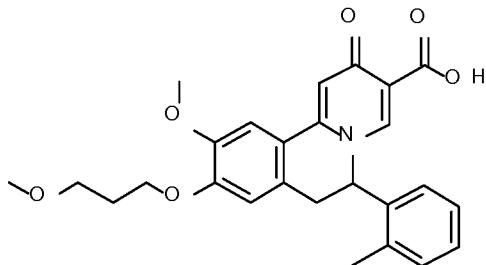
5 **dihydroisoquinoline**


To a mixture of *N*-[1-(4-fluorophenyl)-2-[4-methoxy-3-(3-methoxypropoxy)phenoxy]ethyl]formamide (1.0 g, 2.77 mmol) in DCM (10 mL) was added POCl_3 (636 mg, 4.16 mmol). The mixture was heated under reflux for 2 hrs. After being cooled to rt, the mixture was partitioned between ammonia water (20 mL) and DCM (100 mL). The organic layer was washed with water (30 mL) and brine (30 mL), dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography to give 3-(4-fluorophenyl)-7-methoxy-6-(3-methoxypropoxy)-3,4-dihydroisoquinoline (650 mg) as a yellow oil.

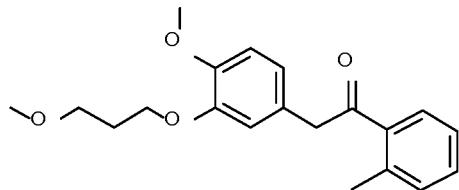
15 **Step 5: Preparation of ethyl 6-(4-fluorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate**


A mixture of 3-(4-fluorophenyl)-7-methoxy-6-(3-methoxypropoxy)-3,4-dihydroisoquinoline (650 mg, 1.89 mmol) and ethyl 2-(ethoxymethylene)-3-oxo-butanoate (1.06 g, 5.69 mmol) in EtOH (10 mL) was heated under reflux for 24 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure to give crude ethyl 6-(4-fluorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (1.2 g), which was used directly in the next step without further purification.

25 **Step 6: Preparation of ethyl 6-(4-fluorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate**


A mixture of ethyl 6-(4-fluorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (crude 1.2 g) and *p*-chloranil (410 mg, 1.67 mmol) in DME (15 mL) was heated under reflux for 3 hrs. Then the mixture was filtered, 5 and the filtrate was concentrated under reduced pressure. The residue was diluted with DCM. The organic mixture was washed with NaHCO₃ aqueous solution and brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude ethyl 6-(4-fluorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (1.4 g), which was used directly in the next step without further purification.

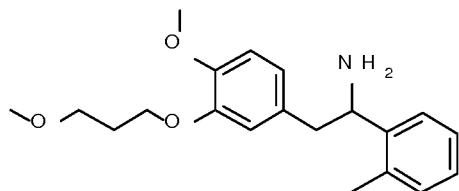
10 **Step 7: Preparation of 6-(4-fluorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**


To a mixture of ethyl 6-(4-fluorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (crude 700 mg) in MeOH (7 mL) was added 2 M NaOH aqueous solution (0.8 mL). The mixture was stirred at 15 °C for 16 hrs, and then 15 concentrated under reduced pressure. The residue was acidified with 1 M hydrochloric acid to pH=3, and extracted with DCM. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was treated with MeOH (5 mL), and then 20 filtered. The filter cake was purified by prep-HPLC to give 6-(4-fluorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (22 mg) as a white solid. ¹H NMR (400 MHz, DMSO-*d*6): δ: 8.82 (s, 1H), 7.50-7.53 (m, 2H), 7.06-7.23 (m, 4H), 6.94 (s, 1H), 6.08 (s, 1H), 4.02 (t, 2H), 3.86 (s, 3H), 3.66-3.70 (m, 1H), 3.42-3.50 (m, 4H), 3.22 (s, 3H), 1.94-2.01 (m, 2H). MS obsd. (ESI⁺) [(M+H)⁺]: 454.

Example 10: 10-methoxy-9-(3-methoxypropoxy)-6-(*o*-tolyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

Step 1: Preparation of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(*o*-tolyl)ethanone

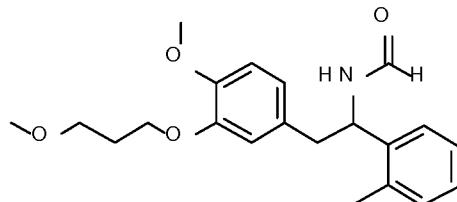
5



A mixture of 4-bromo-1-methoxy-2-(3-methoxypropoxy)benzene (41.0 g, 155 mmol), 1-(*o*-tolyl)ethanone (17.5 g, 202 mmol), *t*-BuONa (27.0 g, 280 mmol), Pd₂(dba)₃ (11.4 g, 12.5 mmol) and Xantphos (3.61 g, 6.23 mmol) in THF (500 mL) was heated at 50 °C for 12 hrs.

10 After being cooled to rt, the mixture was concentrated under reduced pressure. The residue was purified by column chromatography to give 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(*o*-tolyl)ethanone (38.0 g) as a light yellow oil.

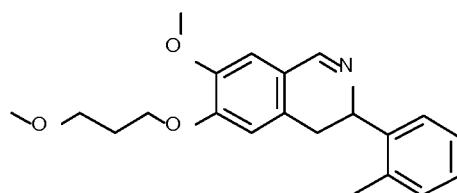
Step 2: Preparation of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(*o*-tolyl)ethanamine


15

15 To a solution of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(*o*-tolyl)ethanone (10.5 g, 32 mmol) in MeOH (120 mL) was added NH₄OAc (17.25 g, 224 mmol) at 24 °C. After the mixture was stirred for 1 hr, to the mixture was added NaBH₃CN (2.61 g, 2.61 mmol) at 0 °C. The resulting mixture was heated under reflux for 12 hrs, then cooled to rt and concentrated under reduced pressure. The residue was partitioned between H₂O (100 mL) and DCM (500 mL). The organic layer was washed with brine (100 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(*o*-

tolyl)ethanamine (11.0 g, crude) as yellow oil, which was used directly in next step without further purification.

Step 3: Preparation of *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(*o*-tolyl)ethyl]formamide

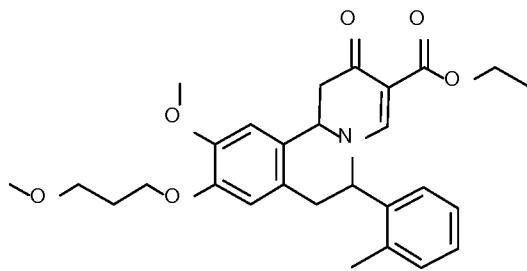


5

To a solution of 2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(*o*-tolyl)ethanamine (11.0 g, 33.4 mmol) in dioxane (120 mL) was added formic acid (7.68 g, 147 mmol). The mixture was heated under reflux for 12 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure. The residue was partitioned between H₂O (100 mL) and DCM (500 mL). The 10 organic layer was separated, washed with brine (100 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(*o*-tolyl)ethyl]formamide (5.0 g) as a light yellow solid.

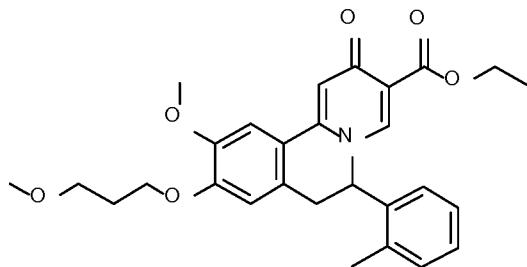
Step 4: Preparation of 7-methoxy-6-(3-methoxypropoxy)-3-(*o*-tolyl)-3,4-dihydroisoquinoline

15


To a stirred solution of *N*-[2-[4-methoxy-3-(3-methoxypropoxy)phenyl]-1-(*o*-tolyl)ethyl]formamide (2.0 g, 5.6 mmol) in DCM (40 mL) was added POCl₃ (1.7 g, 11.1 mmol). The reaction mixture was stirred at 30 °C for 8 hrs, and then poured into a stirred mixture of 20 DCM and ammonia water. The organic layer was separated, washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by the flash column chromatography to afford 7-methoxy-6-(3-methoxypropoxy)-3-(*o*-tolyl)-3,4-dihydroisoquinoline (1.12 g) as a yellow oil.

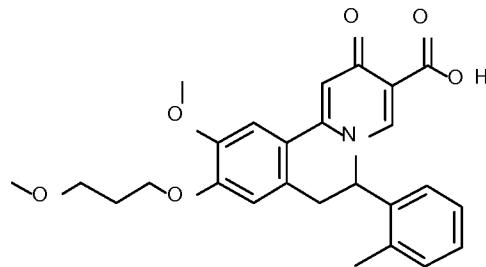
Step 5: Preparation of ethyl 10-methoxy-9-(3-methoxypropoxy)-6-(*o*-tolyl)-2-oxo-

25


1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate

-52-

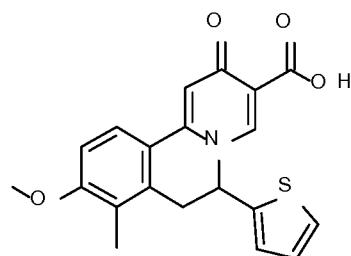
A mixture of 7-methoxy-6-(3-methoxypropoxy)-3-(*o*-tolyl)-3,4-dihydroisoquinoline (500 mg, 1.47 mmol) and ethyl 2-(ethoxymethylene)-3-oxo-butanoate (82 mg, 4.42 mmol) in EtOH (10 mL) was refluxed for 72 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure to give crude ethyl 10-methoxy-9-(3-methoxypropoxy)-6-(*o*-tolyl)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (750 mg), which was used directly in the next step without further purification.


Step 6: Preparation of ethyl 10-methoxy-9-(3-methoxypropoxy)-6-(*o*-tolyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

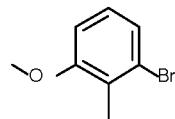
10

A mixture of ethyl 10-methoxy-9-(3-methoxypropoxy)-6-(*o*-tolyl)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (750 mg, 1.56 mmol) and *p*-chloranil (385 mg, 1.356 mmol) in DME (10 mL) was heated at 80 °C for 3 hrs. Then the reaction mixture was filtered. The filtrate was concentrated under reduced pressure to give crude ethyl 10-methoxy-9-(3-methoxypropoxy)-6-(*o*-tolyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (703 mg), which was used directly in the next step without further purification.

Step 7: Preparation of 10-methoxy-9-(3-methoxypropoxy)-6-(*o*-tolyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

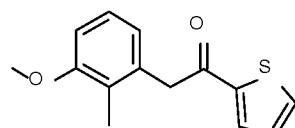

20

A mixture of crude ethyl 10-methoxy-9-(3-methoxypropoxy)-6-(*o*-tolyl)-2-oxo-6,7-

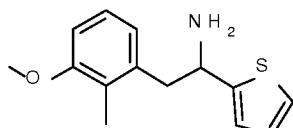

dihydrobenzo[a]quinolizine-3-carboxylate (703 mg, 1.47 mmol) and NaOH (235 mg) in a mixture solvent of H₂O (3 mL) and MeOH (10 mL) was heated at 30 °C for 16 hrs. The mixture was concentrated under reduced pressure. The residue was diluted with H₂O and acidified with 1 M hydrochloric acid to pH=3-4. The resulting mixture was filtered. The filter cake was

5 recrystallized with MeOH, and then purified by prep-HPLC to afford 10-methoxy-9-(3-methoxypropoxy)-6-(*o*-tolyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (51 mg) as a white solid. ¹H NMR (400 MHz, MeOD): δ 1.95 - 2.07 (m, 2 H), 2.53 (s, 3 H), 3.29 (s, 3 H), 3.35 (d, 1 H), 3.53 (td, 2 H), 3.62 (dd, 1 H), 3.95 (s, 3 H), 4.02 - 4.11 (m, 2 H), 4.61 (s, 1 H), 6.06 (br. s., 1 H), 6.56 (d, 1 H), 6.82 (s, 1 H), 7.00 (t, 1 H), 7.18 (t, 1 H), 7.24 - 7.31 (m, 1 H),
10 7.42 (s, 1 H), 7.51 (s, 1 H), 8.54 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 450.

Example 11: 9-methoxy-8-methyl-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

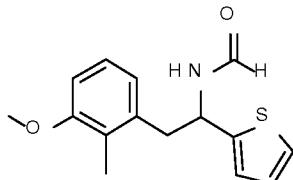


15 **Step 1: Preparation of 4-bromo-1-methoxy-2-(3-methoxypropoxy)benzene**


To a solution of 3-bromo-2-methyl-phenol (11.4 g, 60.95 mmol) in DMF (150 mL) was added K₂CO₃ (25.3 g, 183 mmol) and iodomethane (26.0 g, 183 mmol). The mixture was stirred at 25 °C for 12 hrs, and then concentrated under reduced pressure. The residue was diluted with EtOAc (200 mL). The organic mixture was washed with water and brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to give 4-bromo-1-methoxy-2-(3-methoxypropoxy)benzene (11.0 g) as a colorless oil.

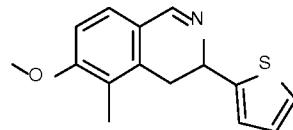
Step 2: Preparation of 2-(3-methoxy-2-methyl-phenyl)-1-(2-thienyl)ethanone

To a solution of 4-bromo-1-methoxy-2-(3-methoxypropoxy)benzene (11.0 g, 54.7 mmol) in THF (120 mL) was added 1-(2-thienyl)ethanone (8.97 g, 71.1 mmol), *t*-BuONa (7.89 g, 82.1 mmol), Pd₂(dba)₃ (1 g, 1.09 mmol) and Xantphos (633 mg, 1.09 mmol) under nitrogen atmosphere. The mixture was heated at 50 °C for 4 hrs, and then concentrated under reduced pressure. The residue was diluted with DCM (600 mL). The resulting organic mixture was washed with water and brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford 2-(3-methoxy-2-methyl-phenyl)-1-(2-thienyl)ethanone (13.0 g) as a brown oil.


Step 3: Preparation of 2-(3-methoxy-2-methyl-phenyl)-1-(2-thienyl)ethanamine

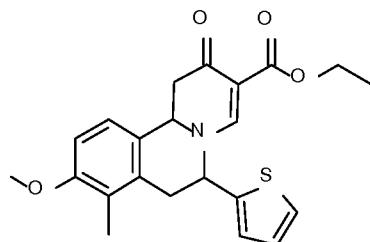
10

To a solution of 2-(3-methoxy-2-methyl-phenyl)-1-(2-thienyl)ethanone (13.0 g, 52.8 mmol) in MeOH (130 mL) was added NH₄OAc (40.7 g, 528 mmol) at 70 °C. The mixture was heated at 70 °C for 1 hr, and then cooled to 0 °C. To this mixture was added NaBH₃CN (6.63 g, 105 mmol) at 0 °C. Then the resulting mixture was heated at 80 °C for 12 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure to remove most of MeOH. The residue was partitioned between H₂O (100 mL) and DCM (500 mL). The organic layer was separated, washed with brine (100 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford 2-(3-methoxy-2-methyl-phenyl)-1-(2-thienyl)ethanamine (6.4 g, crude) as a yellow solid.

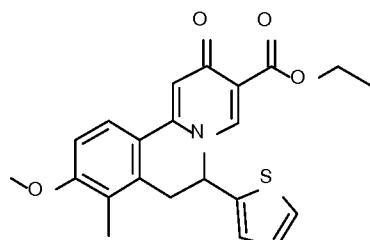

Step 4: Preparation of *N*-[2-(3-methoxy-2-methyl-phenyl)-1-(2-thienyl)ethyl]formamide

To a solution of 2-(3-methoxy-2-methyl-phenyl)-1-(2-thienyl)ethanamine (5.4 g, 21.8 mmol) in dioxane (60 mL) was added formic acid (10.05 g, 218 mmol). The mixture was heated at 120 °C for 12 hrs. After being cooled to rt, the mixture was partitioned between H₂O (200 mL) and DCM (600 mL). The organic layer was washed with brine (200 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford *N*-[2-(3-methoxy-2-methyl-phenyl)-1-(2-thienyl)ethyl]formamide (3.4

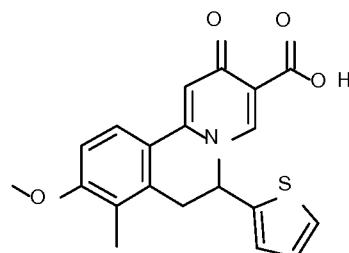
g) as a brown oil.


Step 5: Preparation of 6-methoxy-5-methyl-3-(2-thienyl)-3,4-dihydroisoquinoline

To a mixture of *N*-[2-(3-methoxy-2-methyl-phenyl)-1-(2-thienyl)ethyl]formamide (2.9 g,

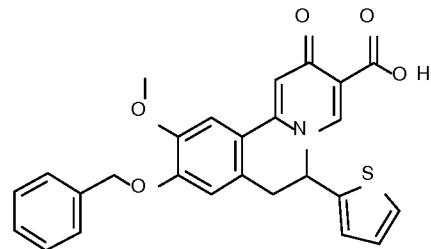

5 10.53 mmol) in dry DCM (40 mL) was added POCl₃ (5.41 g, 35.3 mmol) drop-wise at 0 °C. Then the mixture was heated under reflux for 12 hrs. After being cooled to rt, the mixture was poured into a solution of ammonia water (30 mL) in H₂O (100 mL). Then the mixture was extracted with DCM (200 mL). The organic layer was washed with brine (100 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude 6-methoxy-5-
10 methyl-3-(2-thienyl)-3,4-dihydroisoquinoline (4.0 g) as a yellow oil, which was used directly in the next step without further purification.

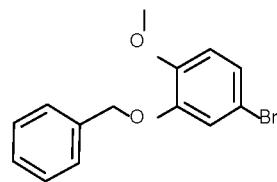
Step 6: Preparation of ethyl 9-methoxy-8-methyl-2-oxo-6-(2-thienyl)-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate


15 A solution of 6-methoxy-5-methyl-3-(2-thienyl)-3,4-dihydroisoquinoline (2.0 g, 7.77 mmol) and ethyl 2-(ethoxymethylene)-3-oxo-butanoate (4.34 g, 23.3 mmol) in EtOH (30 mL) was heated at 100 °C for 48 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure to give crude ethyl 9-methoxy-8-methyl-2-oxo-6-(2-thienyl)-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate, which was used directly in the next step without
20 further purification.

Step 7: Preparation of ethyl 9-methoxy-8-methyl-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

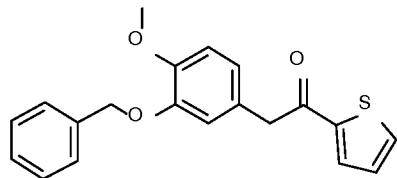
A solution of ethyl 9-methoxy-8-methyl-2-oxo-6-(2-thienyl)-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (3.0 g, 7.55 mmol) and *p*-chloranil (1.3 g, 5.28 mmol) in DME (30 mL) was heated at 80 °C for 3 hrs under nitrogen atmosphere. After being cooled to rt, the mixture was filtered. The filter cake was dried under reduced pressure to give 5 ethyl 9-methoxy-8-methyl-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (1.3 g) as a yellow solid.


Step 8: Preparation of 9-methoxy-8-methyl-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

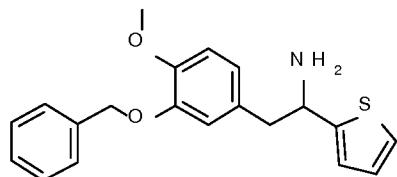

10 To a solution of ethyl 9-methoxy-8-methyl-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (200 mg, 506 µmol) in MeOH (2 mL) was added 2 M NaOH aqueous solution (0.76 mL, 1.5 mmol). The mixture was stirred at 25 °C for 12 hrs, then diluted with H₂O (20 mL) and acidified with 1 M hydrochloric acid to pH=3. The mixture was extracted with DCM (100 mL). The organic layer was washed with brine (50 mL), dried over 15 anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 9-methoxy-8-methyl-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (12 mg) as a yellow solid. ¹H NMR (400 MHz, CDCl₃): δ: 2.22 (s, 3 H), 3.37 - 3.69 (m, 2 H), 3.93 (s, 3 H), 5.73 (br. s., 1 H), 6.81 (d, 1 H), 6.85 - 6.91 (m, 1 H), 6.95 (d, 1 H), 7.12 (s, 1 H), 7.18 (d, 1 H), 7.66 (d, 1 H), 8.59 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 368.

20

Example 12: 9-benzyloxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

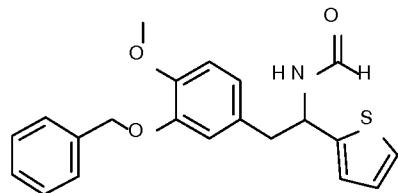

Step 1: Preparation of 2-benzyloxy-4-bromo-1-methoxy-benzene

A mixture of 5-bromo-2-methoxy-phenol (100.0 g, 0.49 mol), K_2CO_3 (102.0 g, 0.74 mol) and bromomethylbenzene (101.0 g, 0.59 mol) in acetone (1.5 L) was heated under reflux for 16 hrs. After being cooled to rt, the mixture was filtered. The filtrate was concentrated under

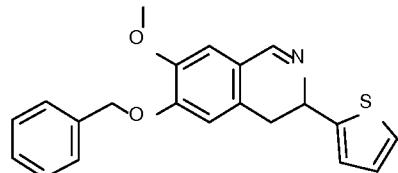

5 reduced pressure. The residue was purified by trituration (PE, 300 mL) to give 2-benzyloxy-4-bromo-1-methoxy-benzene (140.0 g) as a white solid.

Step 2: Preparation of 2-(3-benzyloxy-4-methoxy-phenyl)-1-(2-thienyl)ethanone

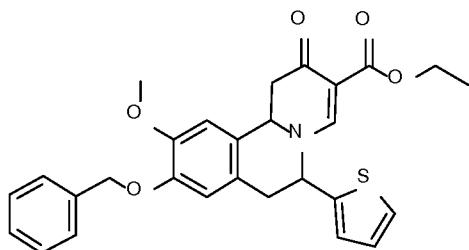
A mixture of 2-benzyloxy-4-bromo-1-methoxy-benzene (50.0 g, 0.17 mol), 1-(2-thienyl)ethanone (32.3 g, 0.26 mol), *t*-BuONa (29.5 g, 0.31 mol), Xantphos (4.9 g, 8.53 mmol) and $Pd_2(dbu)_3$ (3.9 g, 4.26 mmol) in THF (800 ml) was heated at 60 °C for 5 hrs under nitrogen atmosphere. After being cooled to rt, the mixture was filtered. The filtrate was concentrated under reduced pressure. The residue was purified by the flash column chromatography to afford 2-(3-benzyloxy-4-methoxy-phenyl)-1-(2-thienyl)ethanone (31.0 g) as a light yellow solid.


15 **Step 3: Preparation of 2-(3-benzyloxy-4-methoxy-phenyl)-1-(2-thienyl)ethanamine**

A mixture of 2-(3-benzyloxy-4-methoxy-phenyl)-1-(2-thienyl)ethanone (31.0 g, 0.092 mol) and NH_4OAc (49.4 g, 0.64 mol) in MeOH (500 ml) was refluxed for 6 hrs. The resulting mixture was cooled to rt, and then to the mixture was added $NaBH_3CN$ (8.6 g, 0.14 mol) portion wise.


20 The resulting mixture was refluxed for 16 hrs. After being cooled to rt, the resulting reaction mixture was concentrated under reduced pressure, and the residue was partitioned between EtOAc and H_2O . The organic layer was washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to give 2-(3-benzyloxy-4-methoxy-phenyl)-1-(2-thienyl)ethanamine (38.0 g), which was used directly in the next step without further purification.

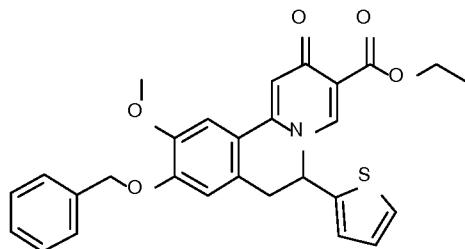
Step 4: Preparation of *N*-[2-(3-benzyloxy-4-methoxy-phenyl)-1-(2-thienyl)ethyl]formamide


A mixture of 2-(3-benzyloxy-4-methoxy-phenyl)-1-(2-thienyl)ethanamine (85.0 g, 0.25 mol) and formic acid (57.6 g, 1.25 mol) in 1,4-dioxane (850 ml) was refluxed for 48 hrs. The resulting mixture was cooled to rt and concentrated under reduced pressure. The residue was partitioned between EtOAc and saturated NaHCO₃ aqueous solution. The organic layer was separated, washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford *N*-[2-(3-benzyloxy-4-methoxy-phenyl)-1-(2-thienyl)ethyl]formamide (41.5 g) as a yellow oil.

Step 5: Preparation of 6-benzyloxy-7-methoxy-3-(2-thienyl)-3,4-dihydroisoquinoline

To a stirred solution of *N*-[2-(3-benzyloxy-4-methoxy-phenyl)-1-(2-thienyl)ethyl]formamide (35.0 g, 0.095 mol) in DCM (400 ml) was added POCl₃ (31.59 g, 0.21 mol) at rt. The mixture was heated at 50 °C for 1 hr. After being cooled to rt, the mixture was poured into a stirred mixture of ammonia water and DCM. The organic phase was separated, washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by the flash column chromatography to afford 6-benzyloxy-7-methoxy-3-(2-thienyl)-3,4-dihydroisoquinoline (25.3 g) as a light yellow solid.

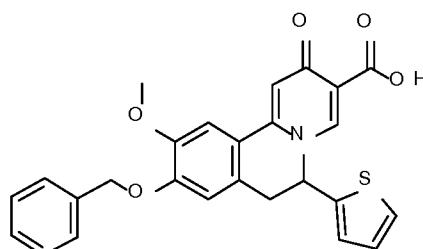
Step 6: Preparation of ethyl 9-benzyloxy-10-methoxy-2-oxo-6-(2-thienyl)-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate



A mixture of 6-benzyloxy-7-methoxy-3-(2-thienyl)-3,4-dihydroisoquinoline (17.2 g, 0.049

mol) and ethyl 2-(ethoxymethylene)-3-oxo-butanoate (27.5 g, 0.15 mol) in EtOH (200 ml) was heated under reflux for 72 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure to give crude ethyl 9-benzyloxy-10-methoxy-2-oxo-6-(2-thienyl)-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (24.0 g), which was used directly in the next step

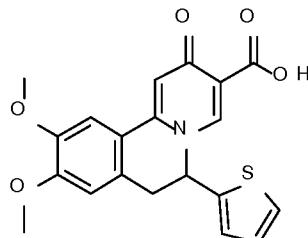
5 without further purification.


Step 7: Preparation of ethyl 9-benzyloxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

A mixture of ethyl 9-benzyloxy-10-methoxy-2-oxo-6-(2-thienyl)-1,6,7,11b-

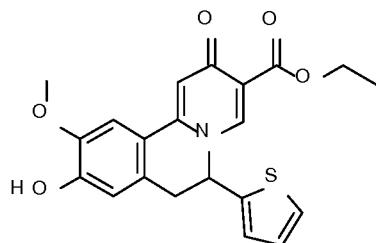
10 tetrahydrobenzo[a]quinolizine-3-carboxylate (14.6 g, 0.029 mol) and *p*-chloranil (7.3 g, 0.029 mol) in DME (150 ml) was heated at 80 °C for 3 hrs. The mixture was cooled to rt and filtered. The filter cake was dried to afford ethyl 9-benzyloxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (7.0 g, yield: 48%) as a light yellow solid.

Step 8: Preparation of 9-benzyloxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid


A mixture of ethyl 9-benzyloxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-

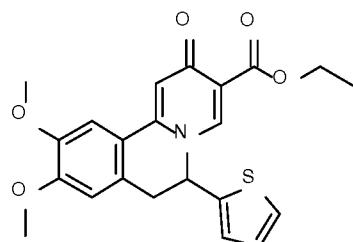
dihydrobenzo[a]quinolizine-3-carboxylate (100 mg, 0.21 mmol) and NaOH (16 mg) in a mixture solvent of H₂O (0.2 mL) and THF (5 mL) was stirred at room temperature for 16 hrs. The

20 mixture was concentrated under reduced pressure. The residue was diluted with H₂O and acidified with 1 M hydrochloric acid to pH=2-3. Then the mixture was filtered. The filter cake was dried under reduced pressure to afford 9-benzyloxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (54 mg) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*6) δ: δ 3.30 - 3.39 (m, 1 H), 3.73 (dd, 1 H), 3.88 (s, 3 H), 5.16 (s, 2 H), 6.35 (d, 1 H), 6.87 - 6.94 (m, 1 H), 7.02 (d, 1 H), 7.20 (s, 1 H), 7.32 - 7.43 (m, 4 H), 7.44 - 7.50 (m, 2 H), 7.54


(d, 2 H), 8.99 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 460.

Example 13: 9,10-dimethoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

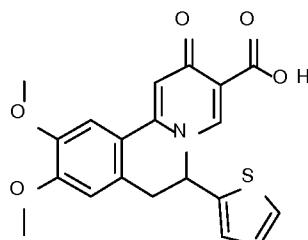
5


Step 1: Preparation of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

A solution of ethyl 9-benzyloxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-

10 dihydrobenzo[a]quinolizine-3-carboxylate (5.0 g, 0.01 mol, from step 7 of Example 12) and thioanisole (13.66 g, 0.11 mmol) in TFA (50 mL) was stirred at room temperature for 16 hrs. The resulting mixture was partitioned between DCM and H₂O. The organic layer was separated, washed with saturated NaHCO₃ aqueous solution and brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was recrystallized from DCM/hexane to afford 15 ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (3.50 g) as a yellow solid.

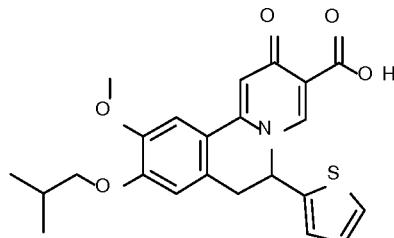
Step 2: Preparation of ethyl 9,10-dimethoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

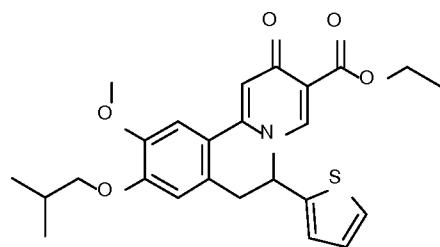


20 A mixture of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (210 mg, 0.53 mmol), K₂CO₃ (132 mg, 0.95 mmol)

and iodomethane (113 mg, 0.79 mmol) in acetone (5 mL) was heated at 50 °C for 16 hrs. The mixture was concentrated under reduced pressure and the residue was partitioned between EtOAc and H₂O. The organic layer was separated, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was recrystallized from a mixture solvent (PE:

5 EA=1:1) to afford ethyl 9,10-dimethoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (200 mg) as a light yellow solid.

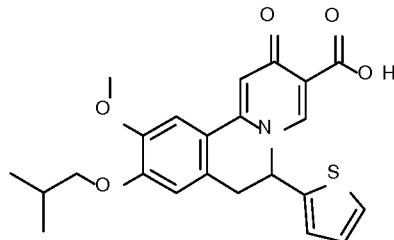

Step 3: Preparation of 9,10-dimethoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid


10 A mixture of ethyl 9,10-dimethoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg, 0.24 mmol) and NaOH (20 mg) in MeOH (2 mL) and H₂O (0.2 mL) was stirred at room temperature for 16 hrs. The resulting mixture was concentrated under reduced pressure. The residue was diluted with H₂O and acidified by 1 M hydrochloric acid to pH=2-3. The mixture was filtered. The filter cake was dried under reduced pressure to afford 9,10-dimethoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (46 mg) as a white solid. ¹H NMR (400 MHz, DMSO-*d*6) δ: 3.37 - 3.39 (m, 1 H), 3.73 (dd, 1 H), 3.85 (d, 6 H), 6.35 (d, 1 H), 6.90 (t, 1 H), 6.99 - 7.12 (m, 2 H), 7.36 (d, 1 H), 7.51 (d, 2 H), 8.98 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 384.

15

20 **Example 14: 9-isobutoxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**

Step 1: Preparation of ethyl 9-isobutoxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

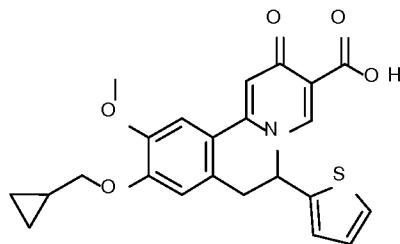


A mixture of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (150 mg, 0.38 mmol), 1-bromo-2-methyl-propane (78 mg, 0.57 mmol) and K_2CO_3 (78 mg, 0.57 mmol) in DMF (5 ml) was heated at 50 °C for 16 hrs.

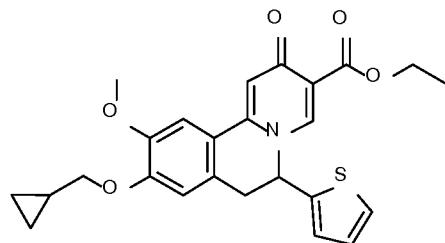
5 The mixture was partitioned between H_2O and DCM. The organic layer was separated, washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was recrystallized from PE/EtOAc to afford ethyl 9-isobutoxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (110 mg) as a light yellow solid.

Step 2: Preparation of 9-isobutoxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-

10 **dihydrobenzo[a]quinolizine-3-carboxylic acid**

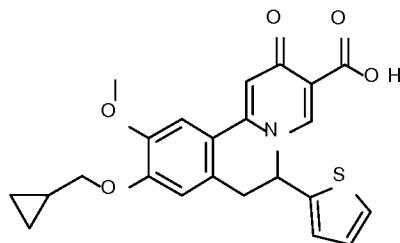


A mixture of ethyl 9-isobutoxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (80 mg, 0.18 mmol) and NaOH (14 mg) in MeOH (2 mL) and H_2O (0.2 mL) was stirred at room temperature for 16 hrs. The mixture was


15 concentrated under reduced pressure. The residue was diluted with H_2O and acidified with 1 M hydrochloric acid to pH=2-3. The resulting mixture was filtered. The filter cake was dried under reduced pressure to afford 9-isobutoxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (38 mg) as a white solid. 1H NMR (400 MHz, $DMSO-d_6$) δ : 0.98 (d, 6 H), 1.98 - 2.12 (m, 1 H), 3.37 (br. s., 1 H), 3.70 (dd, 1 H), 3.80 (d, 2 H), 3.88 (s, 3 H), 6.27 - 6.39 (m, 1 H), 6.88 - 6.93 (m, 1 H), 7.02 (d, 1 H), 7.07 (s, 1 H), 7.36 (d, 1 H), 7.50 (d, 2 H), 8.98 (s, 1 H). MS obsd. (ESI^+) $[(M+H)^+]$: 426.

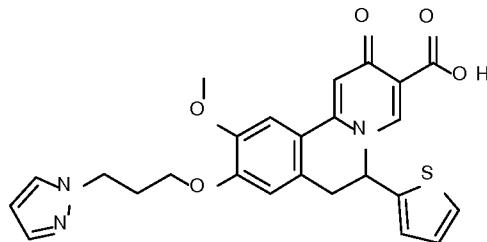
Example 15: 9-(cyclopropylmethoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

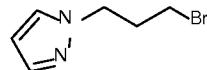
-63-



Step 1: Preparation of ethyl 9-(cyclopropylmethoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

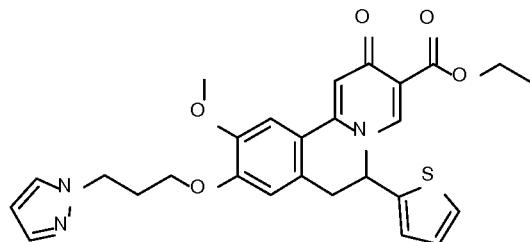
5 A mixture of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (150 mg, 0.38 mmol), bromomethylcyclopropane (76 mg, 0.57 mmol) and K_2CO_3 (78 mg, 0.57 mmol) in DMF (5 ml) was stirred at room temperature for 16 hrs. The resulting mixture was partitioned between H_2O and DCM. The organic layer was washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The 10 residue was recrystallized from PE/EA to afford ethyl 9-(cyclopropylmethoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (140 mg) as a light yellow solid.


Step 2: Preparation of 9-(cyclopropylmethoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid


15 A mixture of ethyl 9-(cyclopropylmethoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (70 mg, 0.16 mmol) and NaOH (12 mg) in MeOH (2 mL) and H_2O (0.1 mL) was stirred at room temperature for 16 hrs. The resulting mixture was concentrated under reduced pressure. The residue was diluted with H_2O and acidified with 1 M hydrochloric acid to pH=2-3. The mixture was filtered and the filter cake was dried under 20 reduced pressure to afford 9-(cyclopropylmethoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid. 1H NMR (400 MHz, $DMSO-d_6$) δ : 0.26 - 0.39 (m,

2 H), 0.53 - 0.64 (m, 2 H), 1.17 - 1.33 (m, 1 H), 3.31 (s, 1 H), 3.70 (dd, 1 H), 3.81 - 3.95 (m, 5 H), 6.34 (d, 1 H), 6.90 (dd, 1 H), 6.98 - 7.07 (m, 2 H), 7.35 (dd, 1 H), 7.51 (d, 2 H), 8.98 (s, 1 H).
MS obsd. (ESI⁺) [(M+H)⁺]: 424.

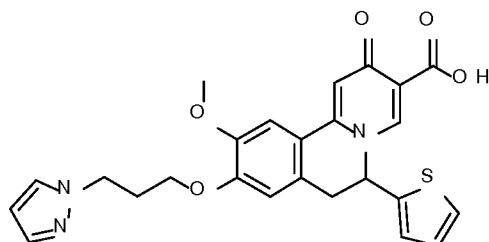
5 **Example 16: 10-methoxy-2-oxo-9-(3-pyrazol-1-ylpropoxy)-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**



Step 1: Preparation of 1-(3-bromopropyl)pyrazole

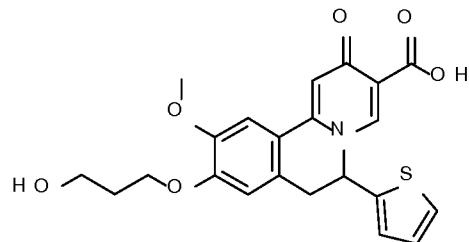
10 To a solution of 1*H*-pyrazole (1 g, 14.7 mmol) in acetone (20 mL) was added K₂CO₃ (4.06 g, 29.4 mmol) and 1,3-dibromopropane (14.8 g, 73.4 mmol). The mixture was heated at 30 °C for 12 hrs. The mixture was concentrated under reduced pressure and the residue was partitioned between H₂O (150 mL) and EtOAc (200 mL). The organic layer was separated, washed with brine (150 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford compound 1-(3-bromopropyl)pyrazole (500 mg) as a yellow oil.

Step 2: Preparation of ethyl 10-methoxy-2-oxo-9-(3-pyrazol-1-ylpropoxy)-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

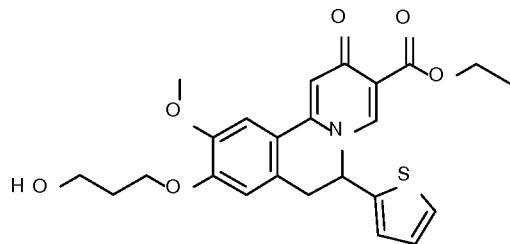


20 A solution of compound ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (150 mg, 377 μmol) in DMF (3 mL) was added K₂CO₃ (104 mg, 754 μmol) and 1-(3-bromopropyl)pyrazole (85.6 mg, 453 μmol). The mixture was heated at 30 °C for 12 hrs and then partitioned between H₂O (50 mL) and EtOAc (100 mL). The organic layer was separated, washed with brine (50 mL), dried over anhydrous Na₂SO₄ and

concentrated under reduced pressure. The residue was purified by column chromatography to afford crude ethyl 10-methoxy-2-oxo-9-(3-pyrazol-1-ylpropoxy)-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg) as a yellow oil.

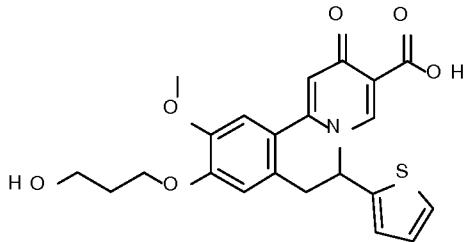

Step 3: Preparation of 10-methoxy-2-oxo-9-(3-pyrazol-1-ylpropoxy)-6-(2-thienyl)-6,7-

5 **dihydrobenzo[a]quinolizine-3-carboxylic acid**

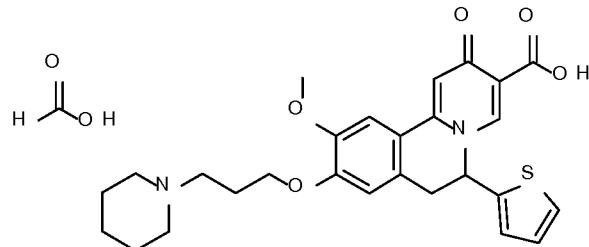


To a solution of ethyl 10-methoxy-2-oxo-9-(3-pyrazol-1-ylpropoxy)-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg, 198 μ mol) in MeOH (2 mL) was added 2 M NaOH aqueous solution (0.197 mL, 395 μ mol). The mixture was stirred at 30 °C for 12 hrs, and 10 then concentrated under reduced pressure. The residue was diluted with H₂O (20 mL) and acidified with 1 M hydrochloric acid to pH=3. Then the resulting mixture was extracted with DCM (100 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 10-methoxy-2-oxo-9-(3-pyrazol-1-ylpropoxy)-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (13.8 mg) as a white solid. ¹H NMR (400 MHz, DMSO-*d*6) δ : 2.25 (t, 2 H), 3.23 - 3.28 (m, 1 H), 3.70 (dd, 1 H), 3.90 (s, 3 H), 3.94 - 4.07 (m, 2 H), 4.27 (t, 2 H), 6.23 (t, 1 H), 6.33 (d, 1 H), 6.90 (dd, 1 H), 7.02 (s, 2 H), 7.36 (d, 1 H), 7.44 (d, 1 H), 7.52 (d, 2 H), 7.72 (d, 1 H), 8.98 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 478.

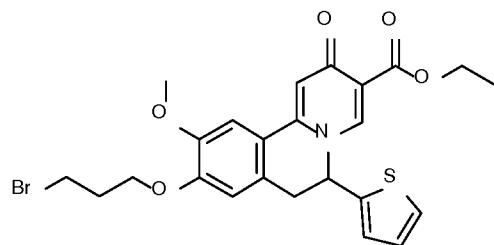
20 **Example 17: 9-(3-hydroxypropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**



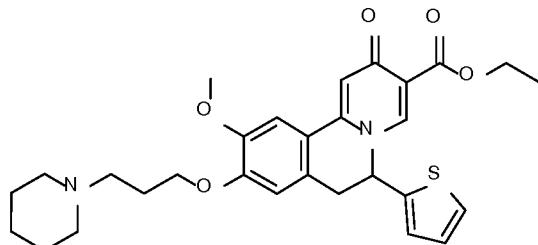
Step 1: Preparation of ethyl 9-(3-hydroxypropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate


To a solution of compound ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (150 mg, 377 μ mol) in DMF (3 mL) was added K₂CO₃ (78 mg, 566 μ mol) and 3-bromopropan-1-ol (79 mg, 566 μ mol). The mixture was heated 5 at 30 °C for 12 hrs, and then partitioned between H₂O (50 mL) and EtOAc (100 mL). The organic layer was separated, washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude ethyl 9-(3-hydroxypropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (200 mg) as brown oil, which was used directly in the next step without further purification.

10 **Step 2: Preparation of 9-(3-hydroxypropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**

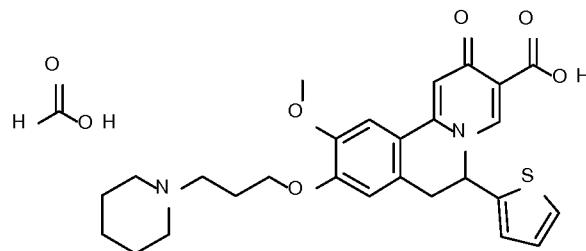

To a solution of ethyl 9-(3-hydroxypropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (200 mg, 439 μ mol) in MeOH (2 mL) was added 2 M 15 NaOH aqueous solution (0.439 mL, 878 μ mol). The mixture was stirred at 30 °C for 12 hrs, and then concentrated under reduced pressure. The residue was diluted with H₂O (20 mL) and acidified with 1 M hydrochloric acid to pH=3. Then the resulting mixture was extracted with DCM (100 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 9-(3-hydroxypropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (7.9 mg) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*6) δ : 1.89 (t, 2 H), 3.33 (br. s., 1 H), 3.55 (t, 2 H), 3.71 (d, 1 H), 3.87 (s, 3 H), 4.09 (t, 2 H), 4.60 (br. s., 1 H), 6.33 (br. s., 1 H), 6.82 - 6.94 (m, 1 H), 6.96 - 7.13 (m, 2 H), 7.35 (d, 1 H), 7.50 (br. s., 2 H), 8.97 (br. s., 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 428.

Example 18: 10-methoxy-2-oxo-9-[3-(1-piperidyl)propoxy]-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid formate

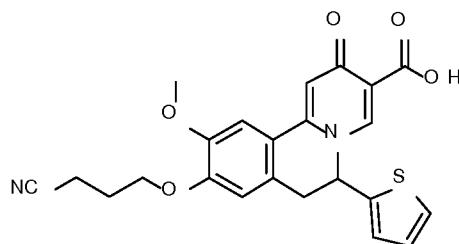

Step 1: Preparation of ethyl 9-(3-bromopropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-

5 dihydrobenzo[a]quinolizine-3-carboxylate

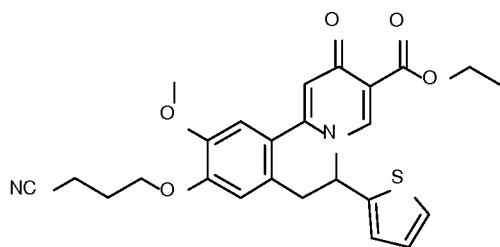
A mixture of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (400 mg, 1.0 mmol), 1,3-dibromopropane (244 mg, 1.21 mmol) and K_2CO_3 (209 mg, 1.51 mmol) in DMF (7 mL) was stirred at room temperature for 16 hrs. The mixture was partitioned between H_2O and DCM. The organic layer was separated, washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to give crude ethyl 9-(3-bromopropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (500 mg), which was used directly in the next step without further purification.


15 Step 2: Preparation of ethyl 10-methoxy-2-oxo-9-[3-(1-piperidyl)propoxy]-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

A mixture of ethyl 9-(3-bromopropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (200 mg, 0.39 mmol), piperidine (164 mg, 1.93 mmol) and K_2CO_3 (267 mg, 1.93 mmol) in DMF (5 mL) was stirred at room temperature for 16 hrs. The mixture was partitioned between H_2O and DCM. The organic layer was separated, washed

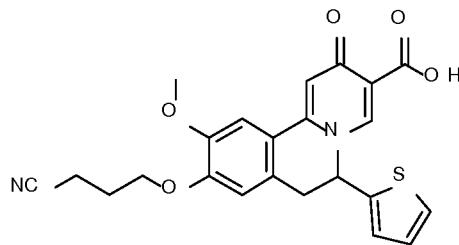

with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to give crude ethyl 10-methoxy-2-oxo-9-[3-(1-piperidyl)propoxy]-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (140 mg), which was used directly in the next step without further purification.

5 **Step 3: Preparation of 10-methoxy-2-oxo-9-[3-(1-piperidyl)propoxy]-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid formate**

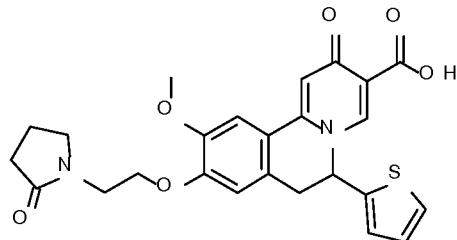


A mixture of ethyl 10-methoxy-2-oxo-9-[3-(1-piperidyl)propoxy]-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (140 mg, 0.27 mmol) and NaOH (21 mg) in MeOH (3 mL) and H_2O (0.3 mL) was stirred at room temperature for 16 hrs. The mixture was 10 concentrated under reduced pressure. The residue was diluted with H_2O and acidified with 1 M hydrochloric acid to pH=2-3. The resulting mixture was filtered. The filter cake was dried and purified by prep-HPLC (formic acid as additive) to afford 10-methoxy-2-oxo-9-[3-(1-piperidyl)propoxy]-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid formate (23 15 mg) as a white solid. ^1H NMR (400 MHz, $\text{DMSO}-d_6$) δ : 1.39 (d, 2 H), 1.46 - 1.57 (m, 4 H), 1.91 (t, 2 H), 2.36 - 2.48 (m, 6 H), 3.34 (s, 1 H), 3.72 (dd, 1 H), 3.88 (s, 3 H), 4.07 (t, 2 H), 6.34 (d, 1 H), 6.85 - 6.95 (m, 1 H), 7.00 - 7.11 (m, 2 H), 7.36 (d, 1 H), 7.45 - 7.56 (m, 2 H), 8.21 (s, 1 H), 8.98 (s, 1 H). MS obsd. (ESI^+) $[(\text{M}+\text{H})^+]$: 495.

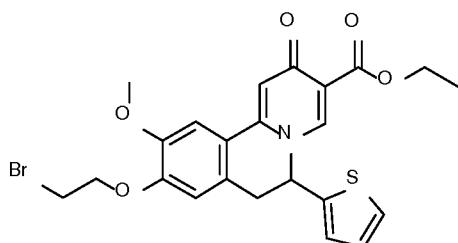
20 **Example 19: 9-(3-cyanopropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**



Step 1: Preparation of ethyl 9-(3-cyanopropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

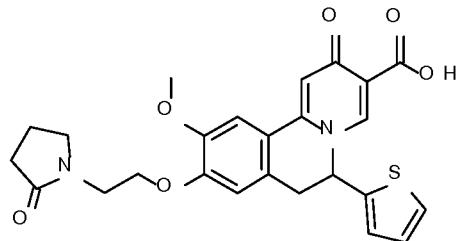

To a solution of compound ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (150 mg, 377 μ mol) in DMF (3 mL) was added K₂CO₃ (78 mg, 566 μ mol) and 4-bromobutanenitrile (84 mg, 566 μ mol). Then the mixture was 5 stirred at 30 °C for 12 hrs. The mixture partitioned between H₂O (50 mL) and EtOAc (100 mL). The organic layer was separated, washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude ethyl 9-(3-cyanopropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (190 mg) as brown oil, which was used directly in the next step without further purification.

10 **Step 2: Preparation of 9-(3-cyanopropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**



A solution of ethyl 9-(3-cyanopropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (190 mg, 409 μ mol) in THF (2 mL) was added 2 M 15 LiOH aqueous solution (0.409 mL, 818 μ mol). The mixture was stirred at 30 °C for 12 hrs, and then concentrated under reduced pressure. The residue was diluted with H₂O (20 mL) and acidified with 1 M hydrochloric acid to pH=3. Then the resulting mixture was extracted with DCM (100 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to 20 afford 9-(3-cyanopropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (32.5 mg) as a white solid. ¹H NMR (400 MHz, DMSO-*d*6) δ : 1.97 - 2.15 (m, 2 H), 2.65 (t, 2 H), 3.42 - 3.49 (m, 1 H), 3.72 (dd, 1 H), 3.89 (s, 3 H), 4.10 (t, 2 H), 6.35 (br. s., 1 H), 6.91 (dd, 1 H), 7.03 (br. s., 1 H), 7.11 (s, 1 H), 7.30 - 7.41 (m, 1 H), 7.53 (d, 2 H), 8.99 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 437.

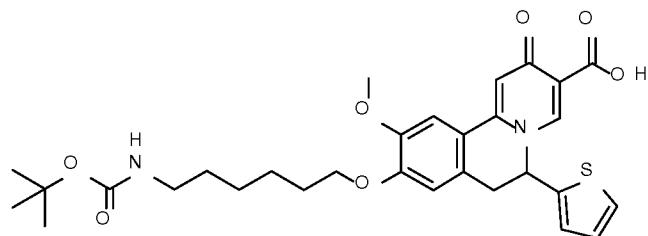
Example 20: 10-methoxy-2-oxo-9-[2-(2-oxopyrrolidin-1-yl)ethoxy]-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid



Step 1: Preparation of ethyl 9-(2-bromoethoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

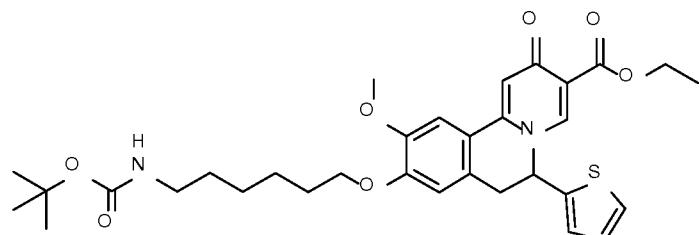
A mixture of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg, 0.25 mmol), 1,2-dibromoethane (57 mg, 0.30 mmol) and K_2CO_3 (53 mg, 0.38 mmol) in DMF (3 ml) was stirred at room temperature for 10 hrs. The mixture was partitioned between H_2O and DCM. The organic layer was separated, washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to give crude ethyl 9-(2-bromoethoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (130 mg), which was used directly in the next step without further purification.

Step 2: Preparation of 10-methoxy-2-oxo-9-[2-(2-oxopyrrolidin-1-yl)ethoxy]-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid


To a cooled and stirred solution of pyrrolidin-2-one (290 mg, 3.41 mmol) in DMF (2 mL) was added NaH (50 mg, 1.25 mmol) at 0 °C. After the addition, the resulting mixture was warmed up to room temperature and stirred for 10 min. Then to the mixture was added ethyl 9-(2-bromoethoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

(130 mg, 0.25 mmol) and the resulting mixture was stirred at rt for 16 hrs. The reaction was quenched by addition of saturated NH₄Cl aqueous solution, and then the mixture was extracted with EtOAc. The organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 10-

5 methoxy-2-oxo-9-[2-(2-oxopyrrolidin-1-yl)ethoxy]-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (7.0 mg) as a white solid. ¹H NMR (400 MHz, DMSO-*d*6) δ: 1.91 (quin, 2 H), 2.15 - 2.26 (m, 2 H), 3.31 - 3.32 (m, 1 H), 3.48 (t, 2 H), 3.56 (t, 2 H), 3.71 (dd, 1 H), 3.88 (s, 3 H), 4.13 (t, 2 H), 6.34 (d, 1 H), 6.90 (dd, 1 H), 7.01 (d, 1 H), 7.10 (s, 1 H), 7.36 (d, 1 H), 7.52 (d, 2 H), 8.92 - 9.03 (m, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 481.


10

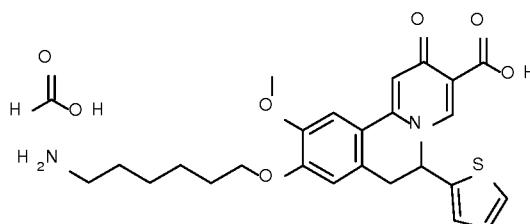
Example 21: 9-[6-(*tert*-butoxycarbonylamino)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

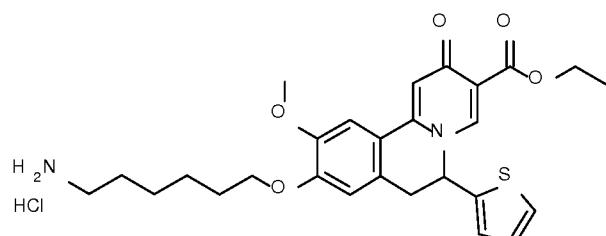
Step 1: Preparation of ethyl 9-[6-(*tert*-butoxycarbonylamino)hexoxy]-10-methoxy-2-

15 **oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate**

To a solution of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (120 mg, 0.3 mmol) in DMF (3 mL) was added K₂CO₃ (83 mg, 0.6 mmol) and *tert*-butyl (6-bromohexyl)carbamate (101 mg, 0.36 mmol). The mixture was stirred at 30 °C for 12 hrs, and then partitioned between H₂O (50 mL) and EtOAc (100 mL). The organic layer was separated, washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude ethyl 9-[6-(*tert*-butoxycarbonylamino)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (140 mg) as a yellow oil, which was used directly in 20 the next step without further purification.

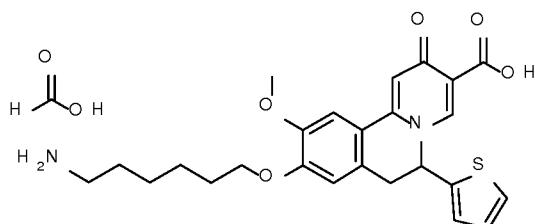
25


Step 2: Preparation of 9-[6-(*tert*-butoxycarbonylamino)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid


To a solution of crude ethyl 9-[6-(*tert*-butoxycarbonylamino)hexoxy]-10-methoxy-2-oxo-

5 6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (70 mg, 0.117 mmol) in MeOH (1 mL) was added 2 M NaOH aqueous solution (0.117 mL, 0.234 mmol). The mixture was stirred at 30 °C for 2 hrs, and then diluted with H₂O (20 mL). The resulting mixture was acidified with 1 M hydrochloric acid to pH=3, and extracted with DCM (100 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 9-[6-(*tert*-butoxycarbonylamino)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (18.1 mg) as white solid. ¹H NMR (400 MHz, DMSO-*d*6) δ: 1.36 (s, 15 H) 1.71 (d, 2 H) 2.81 - 2.98 (m, 2 H) 3.11 - 3.28 (m, 1 H) 3.70 (d, 1 H) 3.87 (s, 3 H) 4.01 (t, 2 H) 6.33 (br. s., 1 H) 6.77 (br. s., 1 H) 6.84 - 6.95 (m, 1 H) 6.96 - 7.12 (m, 2 H) 7.35 (d, 1 H) 7.50 (br. s., 2 H) 8.96 (br. s., 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 569.

Example 22: 9-(6-aminohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid formate

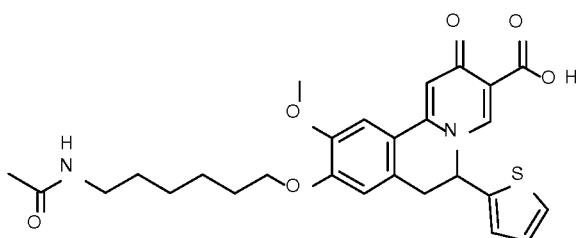

20 **Step 1: Preparation of ethyl 9-(6-aminohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate hydrochloride**

A solution of ethyl 9-[6-(*tert*-butoxycarbonylamino)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (70 mg, 117 μ mol) in HCl/dioxane (3 mL) was stirred at 30 °C for 12 h. The mixture was concentrated under reduced pressure to afford crude ethyl 9-(6-aminohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-

5 dihydrobenzo[a]quinolizine-3-carboxylate hydrochloride (60 mg) as a yellow oil, which was used directly in the next step without further purification.

Step 2: Preparation of 9-(6-aminohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid formate

10 To a solution of ethyl 9-(6-aminohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate hydrochloride (60 mg, 0.112 mmol) in MeOH (1 mL) was added 2 M NaOH (0.112 mL, 0.224 mmol). The mixture was stirred at 30 °C for 2 hrs, and then concentrated under reduced pressure. The residue was diluted with H₂O (20 mL) and acidified with 1 M hydrochloric acid to pH=3. Then the mixture was extracted with DCM (60 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC (formic acid as additive) to afford compound 9-(6-aminohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid formate (12 mg) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*6) δ : 1.38 (br. s., 4 H), 1.48 - 1.63 (m, 2 H), 1.64 - 1.82 (m, 2 H), 2.74 (t, 2 H), 3.31 (br. s., 1 H), 3.72 (d, 1 H), 3.87 (s, 3 H), 4.01 (t, 2 H), 6.33 (br. s., 1 H), 6.90 (dd, 1 H), 6.95 - 7.11 (m, 2 H), 7.35 (d, 1 H), 7.45 - 7.52 (m, 1 H), 8.40 (br. s., 1 H), 8.95 (br. s., 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 469.

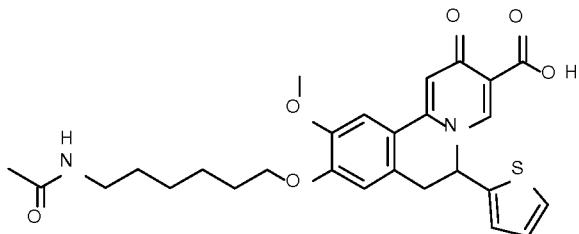

15

20

25

Example 23: 9-(6-acetamidohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-

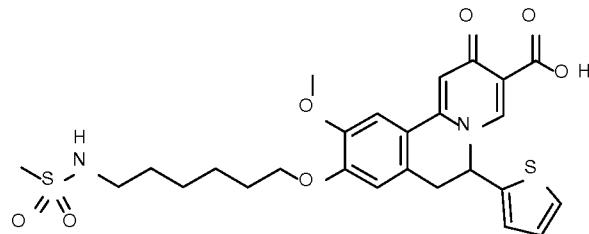
dihydrobenzo[a]quinolizine-3-carboxylic acid


Step 1: Preparation of ethyl 9-(6-acetamidohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

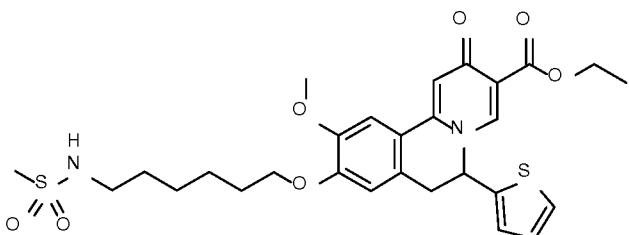
To a solution of ethyl 9-(6-aminohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-

5 dihydrobenzo[a]quinolizine-3-carboxylate hydrochloride (80 mg, 0.15 mmol) in DCM (3 mL) was added DIPEA (97 mg, 0.75 mmol) and acetyl chloride (95 mg, 0.75 mmol). The mixture was stirred at 30 °C for 12 hrs, and then diluted with H₂O (20 mL). The resulting mixture was extracted with DCM (60 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude ethyl 9-(6-
10 acetamidohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-
carboxylate (100 mg) as a yellow oil, which was used directly in the next step without further
purification.

Step 2: Preparation of 9-(6-acetamidohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

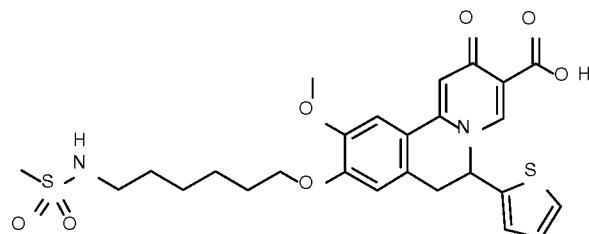

15

To a solution of ethyl 9-(6-acetamidohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg, 0.185 mmol) in MeOH (2 mL) was added 2 M NaOH aqueous solution (0.186 mL, 0.371 mmol). The mixture was stirred at 30 °C for 2 hrs, and then concentrated under reduced pressure. The residue was diluted with H₂O (20 mL) and
20 acidified with 1 M hydrochloric acid to pH=3. Then the mixture was extracted with DCM (60 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 9-(6-acetamidohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (17.5 mg) as a white solid. ¹H NMR (400 MHz, DMSO-*d*6) δ: 1.25 - 1.48 (m, 6 H), 1.66 - 1.76 (m, 2 H), 1.77 (s, 3 H), 3.01 (q, 2 H), 3.39 - 3.47 (m, 1 H), 3.71 (dd, 1 H), 3.87 (s,


3 H), 4.02 (t, 2 H), 6.34 (d, 1 H), 6.90 (dd, 1 H), 7.00 - 7.11 (m, 2 H), 7.36 (dd, 1 H), 7.51 (d, 2 H), 7.78 (br. s., 1 H), 8.98 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 511.

Example 24: 9-[6-(methanesulfonamido)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

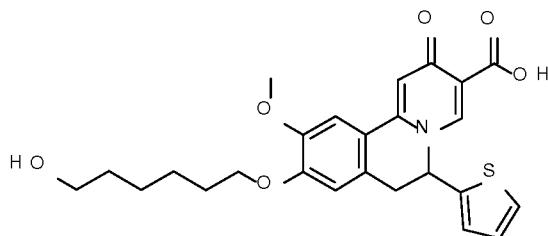
5 **dihydrobenzo[a]quinolizine-3-carboxylic acid**



Step 1: Preparation of ethyl 9-[6-(methanesulfonamido)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

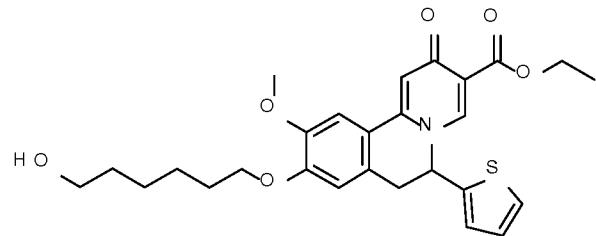
10 To a solution of ethyl 9-(6-aminohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate hydrochloride (100 mg, 0.187 mmol) in DCM (3 mL) was added DIPEA (121 mg, 0.937 mmol) and methanesulfonyl chloride (107 mg, 937 μ mol). The mixture was stirred at 30 °C for 12 hrs, and then concentrated under reduced pressure. The residue was partitioned between H₂O (20 mL) and DCM (60 mL). The organic layer was separated, washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude ethyl 9-[6-(methanesulfonamido)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg) as a yellow oil, which was used directly in the next step without further purification.

15 **Step 2: Preparation of 9-[6-(methanesulfonamido)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**



To a solution of ethyl 9-[6-(methanesulfonamido)hexoxy]-10-methoxy-2-oxo-6-(2-

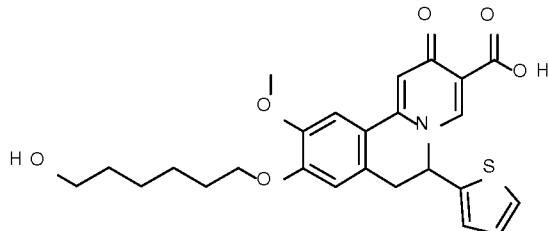
thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg, 0.174 mmol) in MeOH (2 mL) was added 2 M NaOH (0.174 mL, 0.348 mmol). The mixture was stirred at 30 °C for 2 hrs, then diluted with H₂O (20 mL) and acidified with 1 M hydrochloric acid to pH=3. Then the resulting mixture was extracted with DCM (60 mL). The organic layer was washed with brine (50 mL),


5 dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 9-[6-(methanesulfonamido)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (53.3 mg) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*6) δ: 1.32 - 1.53 (m, 6 H), 1.66 - 1.81 (m, 2 H), 2.87 (s, 3 H), 2.92 (q, 2 H), 3.40 - 3.48 (m, 1 H), 3.71 (dd, 1 H), 3.87 (s, 3 H), 4.02 (t, 2 H), 6.34 (d, 1 H), 6.85 - 6.96 (m, 2 H), 6.98 - 7.11 (m, 2 H), 7.36 (dd, 1 H), 7.50 (d, 2 H), 8.98 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 10 547.

Example 25: 9-(6-hydroxyhexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

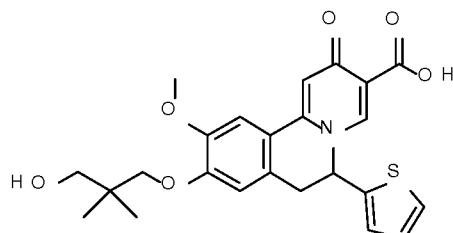
15

Step 1: Preparation of ethyl 9-(6-hydroxyhexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

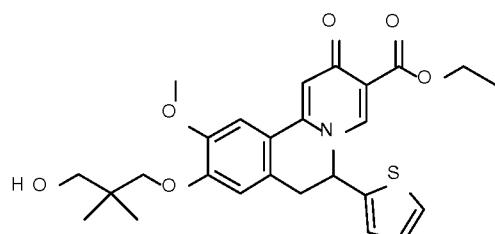


To a solution of compound ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-

20 dihydrobenzo[a]quinolizine-3-carboxylate (150 mg, 0.377 mmol) in DMF (3 mL) was added K₂CO₃ (104 mg, 754 µmol) and 6-bromohexan-1-ol (102 mg, 0.566 mmol). The mixture was stirred at 30 °C for 12 hrs, and then partitioned between H₂O (50 mL) and EtOAc (100 mL). The organic layer was separated, washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give ethyl 9-(6-hydroxyhexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (90 mg), which was used directly in the

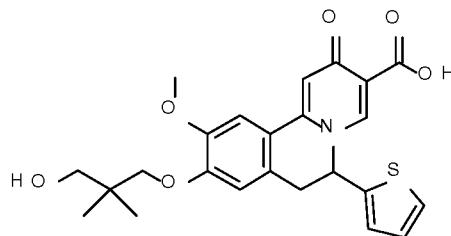

next step without further purification.

Step 2: Preparation of 9-(6-hydroxyhexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

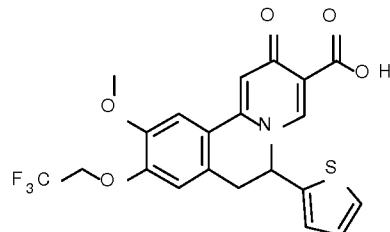


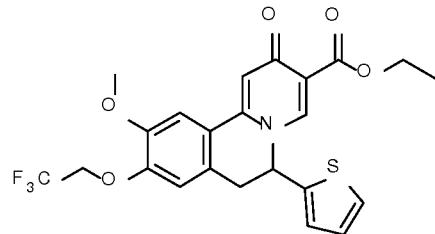
5 To a solution of ethyl 9-(6-hydroxyhexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (90 mg, 0.181 mmol) in MeOH (2 mL) was added 2 M NaOH aqueous solution (0.181 mL, 0.362 mmol). The mixture was stirred at 30 °C for 12 hrs, then diluted with H₂O (20 mL) and acidified with 1 M hydrochloric acid to pH=3. The resulting mixture was extracted with DCM (100 mL). The organic layer was washed with brine (50 mL),
10 dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 9-(6-hydroxyhexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (48 mg) as white solid. ¹H NMR (400 MHz, DMSO-*d*6) δ: 1.15 - 1.55 (m, 6 H), 1.73 (br. s., 2 H), 3.12 - 3.30 (m, 1 H), 3.73 (br. s., 1 H), 3.86 (br. s., 3 H), 4.01 (br. s., 2 H), 4.39 (br. s., 2 H), 6.33 (br. s., 1 H), 6.90 (d, 1 H), 7.04 (d, 2 H),
15 7.35 (br. s., 1 H), 7.50 (br. s., 2 H), 8.97 (br. s., 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 470.

Example 26: 9-(3-hydroxy-2,2-dimethyl-propoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

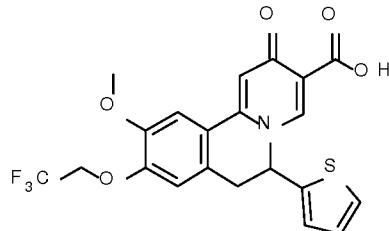


20 **Step 1: Preparation of ethyl 9-(3-hydroxy-2,2-dimethyl-propoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate**

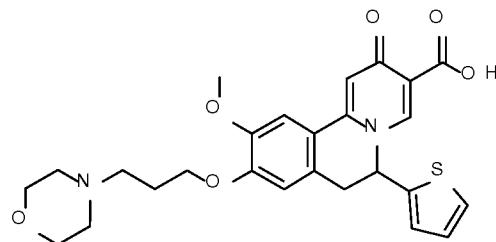

A mixture of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg, 0.25 mmol), 3-bromo-2,2-dimethyl-propan-1-ol (63 mg, 0.38 mmol) and K_2CO_3 (52 mg, 0.38 mmol) in DMF (3 ml) was heated at 80 °C 16 hrs. After being cooled to rt, the mixture was partitioned between H_2O and DCM. The organic 5 layer was separated, washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to give crude ethyl 9-(3-hydroxy-2,2-dimethyl-propoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (130 mg), which was used directly in the next step without further purification.


Step 2: Preparation of 9-(3-hydroxy-2,2-dimethyl-propoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

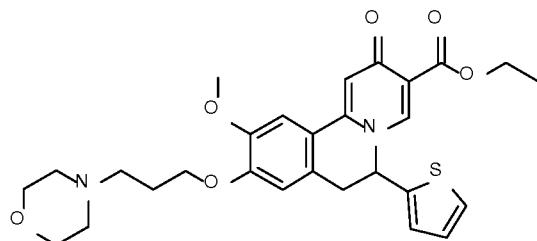
A mixture of ethyl 9-(3-hydroxy-2,2-dimethyl-propoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (130 mg, 0.27 mmol) and NaOH (22 mg) in H_2O (0.3 mL) and MeOH (2 mL) was stirred at room temperature for 16 hrs. The mixture was 15 concentrated under reduced pressure. The residue was diluted with H_2O and acidified with 1 M hydrochloric acid to pH=2-3. The resulting mixture was filtered. The filter cake was purified by prep-HPLC to afford 9-(3-hydroxy-2,2-dimethyl-propoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (52 mg) as a yellow solid. 1H NMR (400 MHz, DMSO-*d*6) δ : 0.93 (s, 6 H), 3.29 (br. s., 2 H), 3.32 - 3.33 (m, 1 H), 3.66 - 3.74 (m, 1 H), 3.74 - 20 3.79 (m, 2 H), 3.88 (s, 3 H), 6.34 (d, 1 H), 6.90 (dd, 1 H), 7.01 (d, 1 H), 7.06 (s, 1 H), 7.32 - 7.38 (m, 1 H), 7.50 (d, 2 H), 8.97 (s, 1 H). MS obsd. (ESI^+) [$(M+H)^+$]: 456.


Example 27: 10-methoxy-2-oxo-6-(2-thienyl)-9-(2,2,2-trifluoroethoxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

6,7-dihydrobenzo[a]quinolizine-3-carboxylate

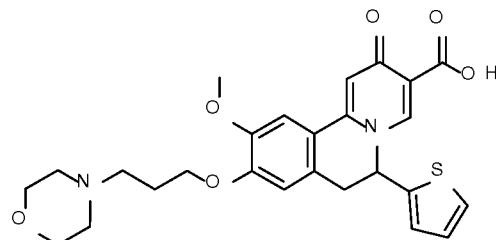

A mixture of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (150 mg, 0.38 mmol), 1,1,1-trifluoro-2-iodo-ethane (119 mg, 0.57 mmol) and K_2CO_3 (78 mg, 0.57 mmol) in DMF (5 ml) was heated at 70 °C for 6 hrs. The mixture was partitioned between H_2O and DCM. The organic layer was separated, washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was recrystallized from PE/EA to afford ethyl 10-methoxy-2-oxo-6-(2-thienyl)-9-(2,2,2-trifluoroethoxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg) as a white solid.

10 Step 2: Preparation of 10-methoxy-2-oxo-6-(2-thienyl)-9-(2,2,2-trifluoroethoxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid



A mixture of ethyl 10-methoxy-2-oxo-6-(2-thienyl)-9-(2,2,2-trifluoroethoxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (70 mg, 0.15 mmol) and NaOH (12 mg) in H_2O (0.1 mL) and THF (2 mL) was stirred at room temperature for 16 hrs. The mixture was concentrated under reduced pressure. The residue was diluted with H_2O and acidified with 1 M hydrochloric acid to pH=2-3. The resulting mixture was filtered. The filter cake was purified by prep-HPLC to afford 10-methoxy-2-oxo-6-(2-thienyl)-9-(2,2,2-trifluoroethoxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (25 mg) as a white solid. 1H NMR (400 MHz, $DMSO-d_6$) δ : 3.30 (s, 1 H), 3.75 (dd, 1 H), 3.90 (s, 3 H), 4.82 (q, 2 H) 6.37 (d, 1 H), 6.90 (dd, 1 H), 7.02 (d, 1 H), 7.21 (s, 1 H), 7.32 - 7.42 (m, 1 H), 7.60 (d, 2 H), 9.02 (s, 1 H). MS obsd. (ESI $^+$) $[(M+H)^+]$: 452.

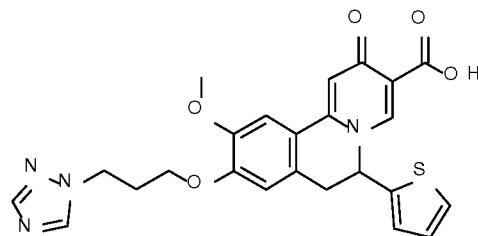
Example 28: 10-methoxy-9-(3-morpholinopropoxy)-2-oxo-6-(2-thienyl)-6,7-**25 dihydrobenzo[a]quinolizine-3-carboxylate**


Step 1: Preparation of ethyl 10-methoxy-9-(3-morpholinopropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

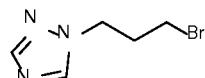
5 A mixture of ethyl 9-(3-bromopropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (130 mg, 0.25 mmol, step 1 of Example 18), morpholine (109 mg, 1.25 mmol) and K_2CO_3 (173 mg, 1.25 mmol) in DMF (3 ml) was stirred at room temperature for 16 hrs. The mixture was partitioned between H_2O and DCM. The organic layer was washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by flash column chromatography to give ethyl 10-methoxy-9-(3-morpholinopropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg) as a yellow oil.

10

Step 2: Preparation of 10-methoxy-9-(3-morpholinopropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

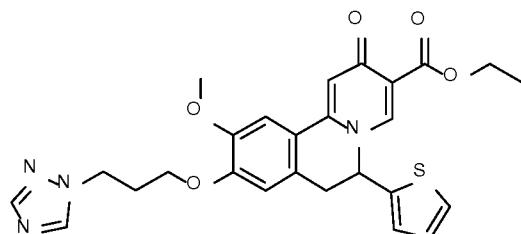


15 A mixture of ethyl 10-methoxy-9-(3-morpholinopropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg, 0.27 mmol) and NaOH (15 mg) in MeOH (2 mL) and H_2O (0.2 mL) was stirred at room temperature for 16 hrs. The mixture was concentrated under reduced pressure. The residue was diluted with H_2O and acidified with 1 M hydrochloric acid to pH=2-3. The resulting mixture was filtered. The filter cake was purified by prep-HPLC to afford 10-methoxy-9-(3-morpholinopropoxy)-2-oxo-6-(2-thienyl)-6,7-


dihydrobenzo[a]quinolizine-3-carboxylate (7 mg) as a white solid. ¹H NMR (400 MHz, DMSO-*d*6) δ: 1.90 (quin, 2 H), 2.35 (m, 4 H), 2.41 (t, 2 H), 3.33 (m, 1 H), 3.56 (t, 4 H), 3.70 (dd, 1 H), 3.87 (s, 3 H), 4.07 (t, 2 H), 6.32 (m, 1 H), 6.91 (dd, 1 H), 6.97 - 7.13 (m, 2 H), 7.29 - 7.40 (m, 1 H), 7.45 - 7.54 (m, 1 H), 8.33 (s, 1 H), 8.94 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 497.

5

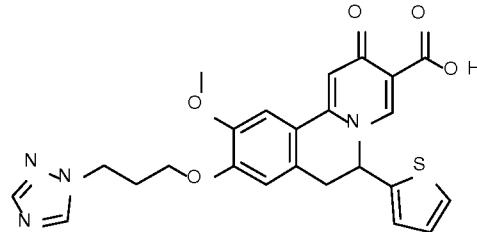
Example 29: 10-methoxy-2-oxo-6-(2-thienyl)-9-[3-(1,2,4-triazol-1-yl)propoxy]-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid


Step 1: Preparation of 1-(3-bromopropyl)-1,2,4-triazole

10

To a solution of 1*H*-1,2,4-triazole (1 g, 14.5 mmol) in DMF (10 mL) was added NaH (596 mg, 14.9 mmol) and the mixture was stirred for 15 min. Then to the mixture was added 1,3-dibromopropane (14.6 g, 72.4 mmol). The resulting mixture was stirred at 30 °C for 12 hrs, and then partitioned between H₂O (150 mL) and EtOAc (200 mL). The organic layer was separated, washed with brine (150 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford crude 1-(3-bromopropyl)-1,2,4-triazole (300 mg) as a yellow oil.

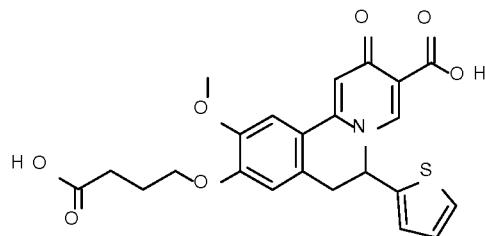
Step 2: Preparation of ethyl 10-methoxy-2-oxo-6-(2-thienyl)-9-[3-(1,2,4-triazol-1-yl)propoxy]-6,7-dihydrobenzo[a]quinolizine-3-carboxylate



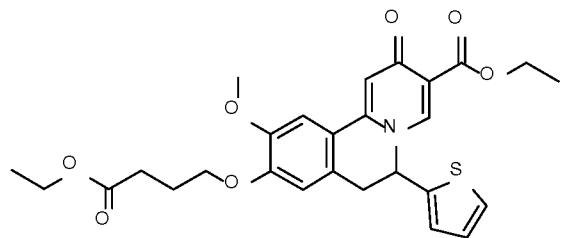
20

To a solution of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (150 mg, 0.377 mmol) in DMF (3 mL) was added K₂CO₃ (104 mg, 754 μmol) and 1-(3-bromopropyl)-1,2,4-triazole (107 mg, 0.566 mmol). The mixture was stirred at 30 °C for 12 hrs, and then partitioned between H₂O (50 mL) and EtOAc

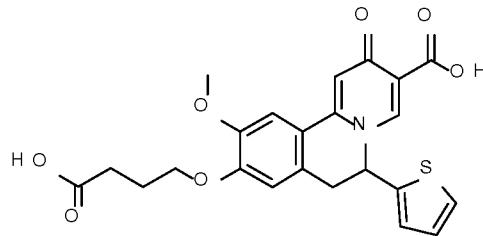
(100 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to afford crude ethyl 10-methoxy-2-oxo-6-(2-thienyl)-9-[3-(1,2,4-triazol-1-yl)propoxy]-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (200 mg) as a brown oil, which was used directly in the next step without further purification.


5 **Step 3: Preparation of 10-methoxy-2-oxo-6-(2-thienyl)-9-[3-(1,2,4-triazol-1-yl)propoxy]-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**

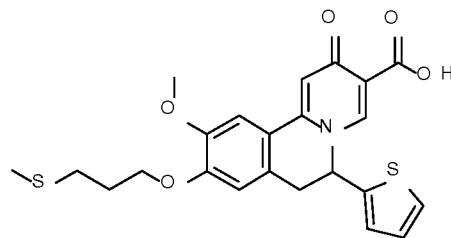
To a solution of ethyl 10-methoxy-2-oxo-6-(2-thienyl)-9-[3-(1,2,4-triazol-1-yl)propoxy]-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (200 mg, 0.395 mmol) in MeOH (2 mL) was 10 added 2 M NaOH aqueous solution (0.395 mL, 0.790 mmol). The mixture was stirred at 30 °C for 12 hrs, and then concentrated under reduced pressure. The residue was diluted with H_2O (20 mL) and acidified with 1 M hydrochloric acid to pH=3. The resulting mixture was extracted with DCM (100 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by prep-HPLC to 15 afford 10-methoxy-2-oxo-6-(2-thienyl)-9-[3-(1,2,4-triazol-1-yl)propoxy]-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (61 mg) as a white solid. ^1H NMR (400 MHz, DMSO-*d*6) δ : 2.28 (t, 2 H), 3.23 - 3.31 (m, 1 H), 3.71 (dd, 1 H), 3.90 (s, 3 H), 4.05 (d, 2 H), 4.35 (t, 2 H), 6.34 (d, 1 H), 6.91 (dd, 1 H), 6.99 - 7.08 (m, 2 H), 7.36 (dd, 1 H), 7.53 (d, 2 H), 7.98 (s, 1 H), 8.53 (s, 1 H), 8.99 (s, 1 H). MS obsd. (ESI^+) $[(\text{M}+\text{H})^+]$: 479.


20

Example 30: 9-(3-carboxypropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid


Step 1: Preparation of ethyl 9-(4-ethoxy-4-oxo-butoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

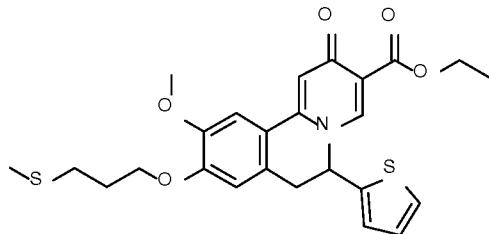
25


A mixture of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg, 0.25 mmol), ethyl 4-bromobutanoate (74 mg, 0.38 mmol) and K_2CO_3 (52 mg, 0.38 mmol) in DMF (3 mL) was stirred at room temperature for 5 16 hrs. The mixture was partitioned between H_2O and DCM. The organic layer was separated, washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was recrystallized from PE/EA to afford ethyl 9-(4-ethoxy-4-oxo-butoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (60 mg) as a white solid.

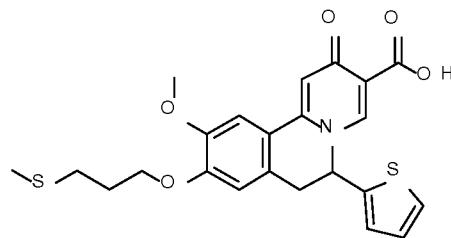
Step 2: Preparation of 9-(3-carboxypropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

A mixture of ethyl 9-(4-ethoxy-4-oxo-butoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (60 mg, 0.12 mmol) and NaOH (20 mg) in MeOH (2 mL) and H_2O (0.1 mL) was stirred at room temperature for 16 hrs. The mixture was 15 concentrated under reduced pressure. The residue was diluted with H_2O and acidified with 1 M hydrochloric acid to pH=2-3. The resulting mixture was filtered, and the filter cake was dried under reduced pressure to afford 9-(3-carboxypropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (26 mg) as a white solid. 1H NMR (400 MHz, $DMSO-d_6$) δ : 1.96 (t, 2 H), 2.39 (t, 2 H), 3.36 (m, 1 H), 3.71 (d, 1 H), 3.88 (s, 3 H), 4.05 (br. s., 2 H), 6.35 (br. s., 1 H), 6.90 (br. s., 1 H), 7.05 (d, 2 H), 7.35 (d, 1 H), 7.51 (d, 2 H), 8.98 (s, 1 H), 20 12.17 (br. s., 1 H). MS obsd. (ESI^+) $[(M+H)^+]$: 456.

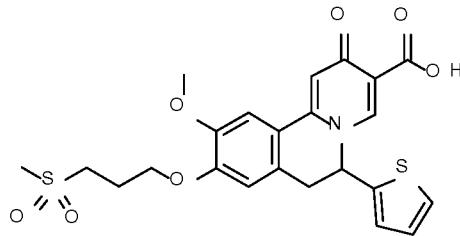
Example 31: 10-methoxy-9-(3-methylsulfonylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid



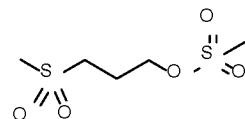
Step 1: Preparation of 3-methylsulfanylpropyl methanesulfonate


To a solution of 3-methylsulfanylpropan-1-ol (500 mg, 4.71 mmol) in DCM (5 mL) was 5 added Et₃N (2.38 g, 23.5 mmol) and methanesulfonyl chloride (2.86 g, 25.0 mmol). The mixture was stirred at 30 °C for 12 hrs, and then partitioned between H₂O (20 mL) and DCM (60 mL). The organic layer was separated, washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude 3-methylsulfanylpropyl methanesulfonate (600 mg) as a yellow oil, which was used directly in the next step without further purification.

10 **Step 2: Preparation of ethyl 10-methoxy-9-(3-methylsulfanylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate**

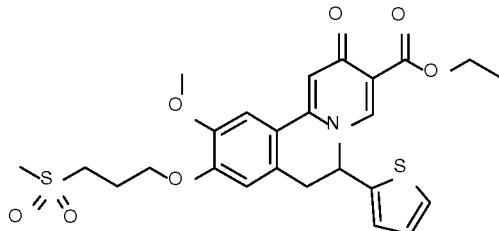

To a solution of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg, 0.251 mmol) in DMF (3 mL) was added 15 K₂CO₃ (69.6 mg, 0.503 mmol) and 3-methylsulfanylpropyl methanesulfonate (69.6 mg, 0.377 mmol). Then the mixture was stirred at 30 °C for 12 hrs, and then partitioned between H₂O (50 mL) and EtOAc (100 mL). The organic layer was separated, washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude ethyl 10-methoxy-9-(3-methylsulfanylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (120 mg) as a yellow oil, which was used directly in the next step without further purification.

20 **Step 3: Preparation of 10-methoxy-9-(3-methylsulfanylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**



To a solution of ethyl 10-methoxy-9-(3-methylsulfanylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (120 mg, 0.247 mmol) in MeOH (1 mL) was added 2 M NaOH aqueous solution (0.247 mL, 0.494 mmol). The mixture was stirred at 30 °C for 2 hrs, 5 and then concentrated under reduced pressure. The residue was diluted with H₂O (20 mL) and acidified with 1 M hydrochloric acid to pH=3. Then the resulting mixture was extracted with DCM (60 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 10-methoxy-9-(3-methylsulfanylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-10 carboxylic acid (14.9 mg) as a white solid. ¹H NMR (400 MHz, DMSO-*d*6) δ: 1.94 - 2.03 (m, 2 H), 2.04 - 2.10 (m, 3 H), 2.61 (t, 2 H), 3.41 - 3.52 (m, 1 H), 3.72 (dd, 1 H), 3.88 (s, 3 H), 4.11 (t, 2 H), 6.34 (d, 1 H), 6.90 (dd, 1 H), 6.99 - 7.15 (m, 2 H), 7.36 (dd, 1 H), 7.51 (d, 2 H), 8.98 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 458.

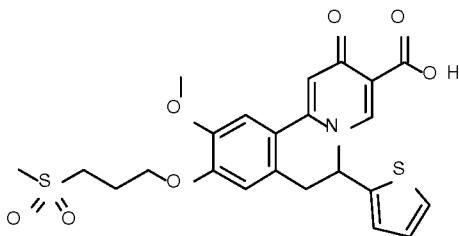
15 **Example 32: 10-methoxy-9-(3-methylsulfonylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**


Step 1: Preparation of 3-methylsulfonylpropyl methanesulfonate

20 To a solution of 3-methylsulfonylpropan-1-ol (200 mg, 1.45 mmol) in DCM (5 mL) was added Et₃N (732 mg, 23.5 mmol) and methanesulfonyl chloride (2.84 g, 24.9 mmol). The mixture was stirred at 30 °C for 12 hrs, and then partitioned between H₂O (20 mL) and DCM (60 mL). The organic layer was separated, washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford crude 3-methylsulfonylpropyl

methanesulfonate (300 mg) as a yellow oil, which was used directly in the next step without further purification.

Step 2: Preparation of ethyl 10-methoxy-9-(3-methylsulfonylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

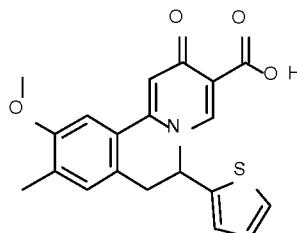


5

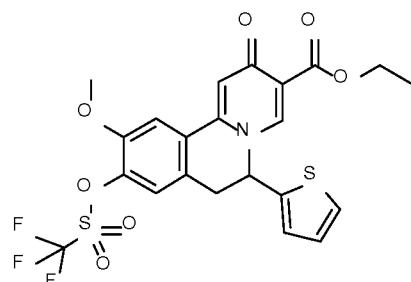
To a solution of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg, 0.251 mmol) in DMF (3 mL) was added K_2CO_3 (69.6 mg, 0.503 mmol) and 3-methylsulfonylpropyl methanesulfonate (81.6 mg, 0.377 mmol). The mixture was stirred at 30 °C for 12 hrs, and then partitioned between H_2O (50 mL) and EtOAc (100 mL). The organic layer was separated, washed with brine (50 mL), dried over anhydrous Na_2SO_4 and concentrated under reduced pressure to afford crude ethyl 10-methoxy-9-(3-methylsulfonylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (90 mg) as a yellow oil, which was used directly in the next step without further purification.

Step 3: Preparation of 10-methoxy-9-(3-methylsulfonylpropoxy)-2-oxo-6-(2-thienyl)-

6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

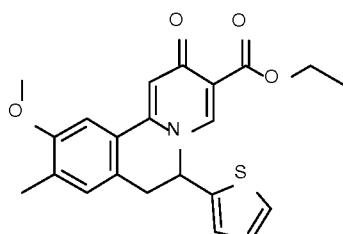


To a solution of ethyl 10-methoxy-9-(3-methylsulfonylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (90 mg, 0.174 mmol) in MeOH (1 mL) was added 2 M NaOH aqueous solution (0.174 mL, 0.348 mmol). The mixture was stirred at 30 °C for 2 hrs, and then concentrated under reduced pressure. The residue was diluted with H_2O (20 mL) and acidified with 1 M hydrochloric acid to pH=3. The resulting mixture was extracted with DCM (60 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 10-methoxy-9-(3-methylsulfonylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (14.4 mg) as a yellow solid. ^1H NMR (400 MHz, $\text{DMSO}-d_6$) δ : 2.12 - 2.25 (m, 2 H) 3.03 (s, 3 H), 3.23 - 3.30 (m, 2 H), 3.34 (br. s., 1 H), 3.72 (dd, 1 H), 3.89 (s, 3 H), 4.16 (t, 2 H),


6.35 (br. s., 1 H), 6.86 - 6.94 (m, 1 H), 6.97 - 7.13 (m, 2 H), 7.35 (d, 1 H), 7.52 (d, 2 H), 8.98 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 490.

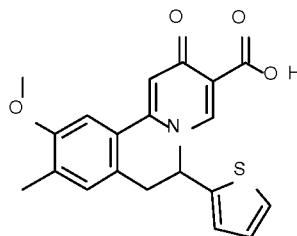
Example 33: 10-methoxy-9-methyl-2-oxo-6-(2-thienyl)-6,7-

5 dihydrobenzo[a]quinolizine-3-carboxylic acid

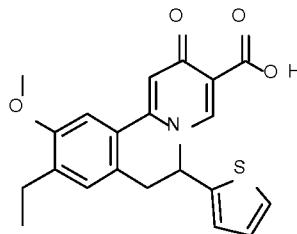

Step 1: Preparation of ethyl 10-methoxy-2-oxo-6-(2-thienyl)-9-(trifluoromethylsulfonyloxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

10 To a stirred solution of ethyl 9-hydroxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (1.5 g, 3.77 mmol) and Et₃N (1.15 g, 11.32 mmol) in DCM (15 mL) was added a solution of *N*-phenyl-bis(trifluoromethanesulfonyl imide) (2.0 g, 5.66 mmol) in DCM (10 mL) drop wise at 0 °C. The mixture was warmed up to rt, and stirred at rt for 16 hrs. The reaction mixture was diluted with DCM, and washed with 1 M hydrochloric acid and 15 brine. The organic phase was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by column chromatography to afford ethyl 10-methoxy-2-oxo-6-(2-thienyl)-9-(trifluoromethylsulfonyloxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (1.55 g) as a yellow solid.

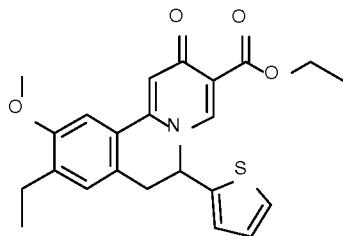
Step 2: Preparation of ethyl 10-methoxy-9-methyl-2-oxo-6-(2-thienyl)-6,7-


20 dihydrobenzo[a]quinolizine-3-carboxylate

A mixture of ethyl 10-methoxy-2-oxo-6-(2-thienyl)-9-(trifluoromethylsulfonyloxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (200 mg, 0.38 mmol), methylboronic acid (34 mg, 0.57 mmol), K₂CO₃ (157 mg, 1.13 mmol) and Pd(dppf)Cl₂·CH₂Cl₂ (31 mg, 0.04 mmol) in THF/H₂O (4 mL/1 mL) was heated at 60 °C for 12 hrs under nitrogen atmosphere. The mixture 5 was concentrated under reduced pressure, and the residue was purified by flash column chromatography to afford crude ethyl 10-methoxy-9-methyl-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (310 mg) as a dark yellow solid, which was used directly in the next step without further purification.

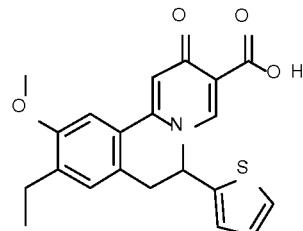

Step 3: Preparation of 10-methoxy-9-methyl-2-oxo-6-(2-thienyl)-6,7-

10 dihydrobenzo[a]quinolizine-3-carboxylic acid



A mixture of ethyl 10-methoxy-9-methyl-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (310 mg, 0.78 mmol) and NaOH (63 mg) in MeOH (3 mL) and H₂O (0.8 mL) was stirred at room temperature for 16 hrs. The mixture was 15 concentrated under reduced pressure. The residue was diluted with H₂O and acidified with 1 M hydrochloric acid to pH=2-3. The resulting mixture was filtered. The filter cake was purified by prep-HPLC to afford 10-methoxy-9-methyl-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (26 mg) as a light yellow solid. ¹H NMR (400 MHz, DMSO-*d*6) δ: 2.20 (s, 3 H), 3.31 (m, 1 H), 3.68-3.71 (m, 1 H), 3.91 (s, 3 H), 6.37 (br. s., 1 H), 6.90 (dd, 1 H), 7.00 (br. s., 20 1 H), 7.24 (s, 1 H), 7.36 (d, 1 H), 7.50 (s, 1 H) 7.62 (s, 1 H), 9.02 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 368.

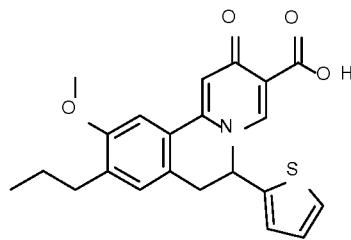
Example 34: 9-ethyl-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

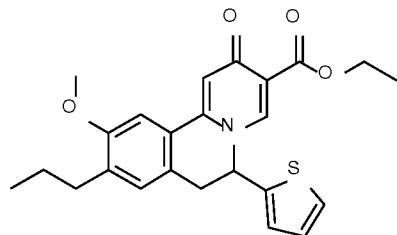


Step 1: Preparation of ethyl 9-ethyl-10-methoxy-2-oxo-6-(2-thienyl)-6,7-

dihydrobenzo[a]quinolizine-3-carboxylate

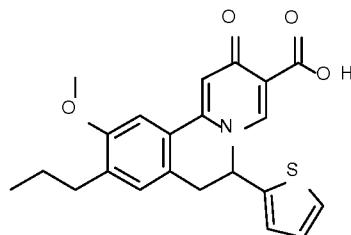
A mixture of ethyl 10-methoxy-2-oxo-6-(2-thienyl)-9-(trifluoromethylsulfonyloxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (200 mg, 0.38 mmol, from step 1 of Example 33), 5 ethylboronic acid (42 mg, 0.57 mmol), K_2CO_3 (157 mg, 1.13 mmol) and $Pd(dppf)Cl_2 \cdot CH_2Cl_2$ (31 mg, 0.04 mmol) in THF/H_2O (4 mL/1 mL) was heated at 60 °C for 12 hrs under nitrogen atmosphere. The mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography to afford crude ethyl 9-ethyl-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (140 mg) as a yellow oil, which was used directly in 10 the next step without further purification.


Step 2: Preparation of 9-ethyl-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid


A mixture of ethyl 9-ethyl-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (140 mg, 0.34 mmol) and $NaOH$ (27 mg) in H_2O (0.3 mL) and $MeOH$ (2 mL) was stirred at room temperature for 16 hrs. The mixture was 15 concentrated under reduced pressure. The residue was diluted with H_2O and acidified with 1 M hydrochloric acid to $pH=2-3$. The resulting mixture was filtered. The filter cake was purified by prep-HPLC to afford 9-ethyl-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (21 mg) as a light yellow solid. 1H NMR (400 MHz, $DMSO-d_6$) δ : 1.15 (t, 3 H), 2.55 - 2.71 (m, 2 H), 3.37 (m, 1 H), 3.68-3.73 (m, 1 H), 3.92 (s, 3 H), 6.37 (br. s., 1 H), 6.91 (dd, 1 H), 7.01 (br. s., 1 H), 7.24 (s, 1 H), 7.36 (d, 1 H), 7.51 (s, 1 H), 7.62 (s, 1 H), 9.02 (s, 1 H). MS obsd. (ESI^+) $[(M+H)^+]$: 382.

25 **Example 35: 10-methoxy-2-oxo-9-propyl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**

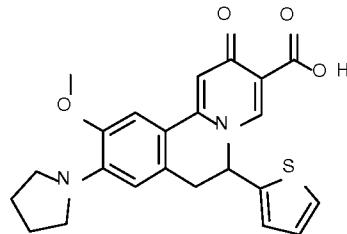
-90-


Step 1: Preparation of ethyl 10-methoxy-2-oxo-9-propyl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

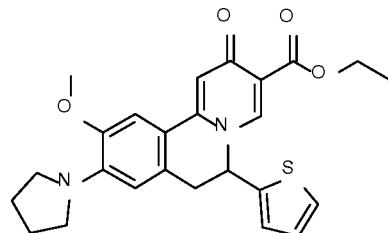
5 A mixture of ethyl 10-methoxy-2-oxo-6-(2-thienyl)-9-(trifluoromethylsulfonyloxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (200 mg, 0.38 mmol), propylboronic acid (50 mg, 0.57 mmol), K_2CO_3 (157 mg, 1.13 mmol) and $Pd(dppf)Cl_2 \cdot CH_2Cl_2$ (31 mg, 0.04 mmol) in THF/H_2O (4 mL/1 mL) was heated at 70 °C for 12 hrs under nitrogen atmosphere. The mixture was concentrated under reduced pressure. The residue was purified by flash column chromatography to afford crude ethyl 10-methoxy-2-oxo-9-propyl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg) as a brown solid, which was used directly in the next step without further purification.

10

Step 2: Preparation of 10-methoxy-2-oxo-9-propyl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

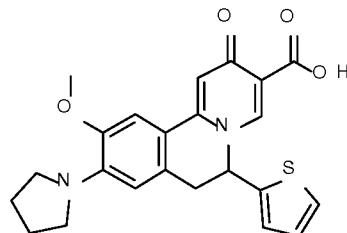


15 A mixture of ethyl 10-methoxy-2-oxo-9-propyl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg, 0.24 mmol) and $NaOH$ (19 mg) in H_2O (0.2 mL) and $MeOH$ (2 mL) was stirred at room temperature for 16 hrs. The mixture was concentrated under reduced pressure. The residue was diluted with H_2O and acidified with 1 M hydrochloric acid to pH=2-3. The resulting mixture was filtered. The filter cake was purified by prep-HPLC to afford 10-methoxy-2-oxo-9-propyl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (15 mg) as a white solid. 1H NMR (400 MHz, $DMSO-d_6$) δ : 0.89 (t, 3 H), 1.56

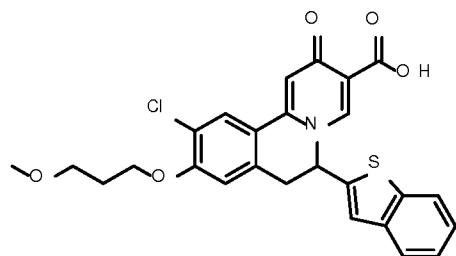

20

(sxt, 2 H), 2.53 - 2.62 (m, 2 H), 3.31 - 3.33 (m, 1 H), 3.65 - 3.74 (m, 1 H), 3.90 (s, 3 H), 6.36 (br. s., 1 H), 6.90 (dd, H), 7.02 (br. s., 1 H), 7.21 (s, 1 H), 7.35 (d, 1 H), 7.50 (s, 1 H), 7.61 (s, 1 H), 9.02 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 396.

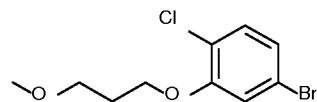
5 **Example 36: 10-methoxy-2-oxo-9-pyrrolidin-1-yl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**



10 **Step 1: Preparation of ethyl 10-methoxy-2-oxo-9-pyrrolidin-1-yl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate**

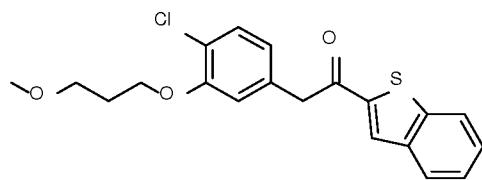

10 To a solution of ethyl 10-methoxy-2-oxo-6-(2-thienyl)-9-(trifluoromethylsulfonyloxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (100 mg, 0.189 mmol) in NMP (20 mL) was added pyrrolidine (67 mg, 0.944 mmol). The reaction vessel was sealed and heated in microwave reactor at 150 °C for 1 hr. Then the resulting mixture was purified by column chromatography to give crude product (3 g) as yellow oil, which was partitioned between H₂O (50 mL) and EtOAc (100 mL). The organic layer was separated, washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to afford ethyl 10-methoxy-2-oxo-9-pyrrolidin-1-yl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (60 mg) as a brown oil, which was used directly in the next step without further purification.

20 **Step 2: Preparation of 10-methoxy-2-oxo-9-pyrrolidin-1-yl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid**

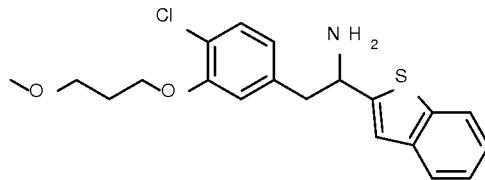

To a solution of ethyl 10-methoxy-2-oxo-9-pyrrolidin-1-yl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (60 mg, 0.133 mmol) in MeOH (1 mL) was added 2 M NaOH (0.2 mL, 0.399 mmol). The resulting mixture was stirred at 30 °C for 0.5 hr, and then concentrated under reduced pressure. The residue was diluted with H₂O (20 mL) and acidified 5 with 1 M hydrochloric acid to pH=3. The resulting mixture was extracted with DCM (60 mL). The organic layer was washed with brine (50 mL), dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The residue was purified by prep-HPLC to afford 10-methoxy-2-oxo-9-pyrrolidin-1-yl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (13.8 mg) as a yellow solid. ¹H NMR (400 MHz, DMSO-*d*6) δ: 1.78 - 1.92 (m, 4 H), 3.24 (br. s., 1 H) 3.44 (d, 4 H), 3.63 (dd, 1 H), 3.84 (s, 3 H), 6.29 (d, 1 H), 6.54 (s, 1 H), 6.91 (dd, 1 H), 7.02 (d, 1 H), 7.26 - 7.42 (m, 3 H), 8.90 (s, 1 H). MS obsd. (ESI⁺) [(M+H)⁺]: 423.

Example 37: 6-(benzothiophen-2-yl)-10-chloro-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

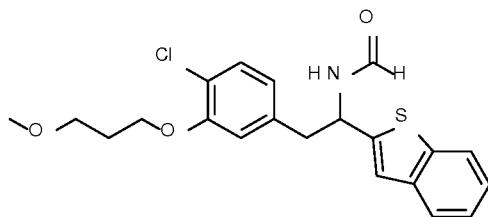
15


Step 1: Preparation of 4-bromo-1-chloro-2-(3-methoxypropoxy)benzene

A mixture of 5-bromo-2-chloro-phenol (22.0 g, 106 mmol), 1-bromo-3-methoxy-propane (19.5 g, 127 mmol) and K₂CO₃ (30 g, 212 mmol) in DMF (50 mL) was heated at 50 °C for 3 hrs. 20 Then the mixture was partitioned between ethyl acetate and water. The organic layer was separated, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude 4-bromo-1-chloro-2-(3-methoxypropoxy)benzene (30.0 g), which was used directly in the next step without further purification.

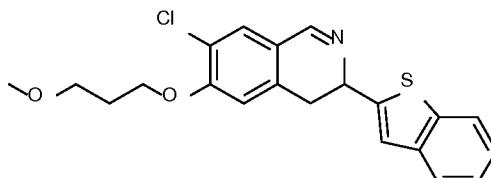

Step 2: Preparation of 1-(benzothiophen-2-yl)-2-[4-chloro-3-(3-

25 **methoxypropoxy)phenyl]ethanone**


To a mixture of crude 4-bromo-1-chloro-2-(3-methoxypropoxy)benzene (1.11 g, 4 mmol), tris(dibenzylideneacetone)dipalladium(0) (37 mg, 0.04 mmol), Xantphos (46 mg, 0.08 mmol) and *t*-BuONa (768 mg, 8 mmol) in THF (10 mL) was added 1-(benzothiophen-2-yl)ethanone (1.41 g, 8 mmol). The resulting mixture was heated at 60 °C for 30 minutes under microwave. After being cooled to rt, the mixture was partitioned between water and EtOAc. The separated aqueous layer was extracted with EtOAc for three times. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography to afford 1-(benzothiophen-2-yl)-2-[4-chloro-3-(3-methoxypropoxy)phenyl]ethanone (1.41 g) as a brown oil.

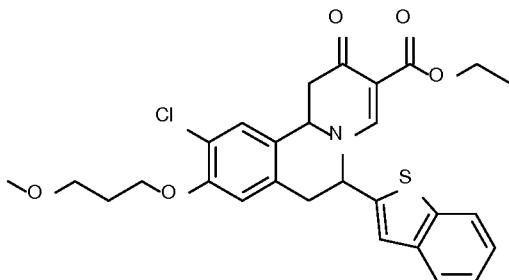
Step 3: Preparation of 1-(benzothiophen-2-yl)-2-[4-chloro-3-(3-methoxypropoxy)phenyl]ethanamine

To a mixture of 1-(benzothiophen-2-yl)-2-[4-chloro-3-(3-methoxypropoxy)phenyl]ethanone (770 mg, 2 mmol) and ammonium acetate (2.31 g, 30 mmol) in methanol (10 mL) and dichloroethane (5 mL) was added NaBH₃CN (252 mg, 4 mmol). The resulting mixture was heated at 65 °C for 16 hrs. After being cooled to rt, the reaction mixture was basified by 2 M NaOH aqueous solution to pH=12, and then diluted with water. The resulting mixture was extracted with DCM for three times. The combined organic layers were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude 1-(benzothiophen-2-yl)-2-[4-chloro-3-(3-methoxypropoxy)phenyl]ethanamine (739 mg) as a brown oil, which was used directly in the next step without further purification.

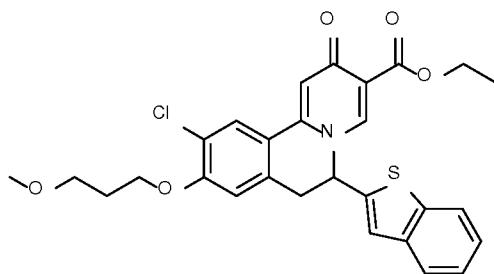

Step 4: Preparation of *N*-[1-(benzothiophen-2-yl)-2-[4-chloro-3-(3-methoxypropoxy)phenyl]ethyl]formamide

A mixture of crude 1-(benzothiophen-2-yl)-2-[4-chloro-3-(3-methoxypropoxy)phenyl]ethanamine (739 mg, 2 mmol) and formic acid (0.1 mL) in ethyl formate (10 mL) was heated at 90 °C for 2 hrs. After being cooled to rt, the mixture was

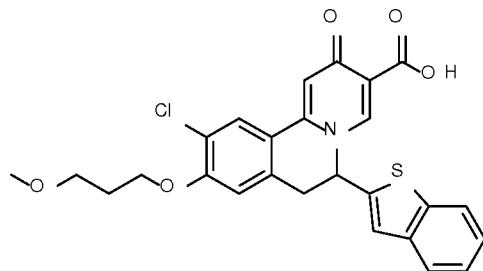
5 concentrated under reduced pressure to give *N*-[1-(benzothiophen-2-yl)-2-[4-chloro-3-(3-methoxypropoxy)phenyl]ethyl]formamide (756 mg) as a brown oil, which was used directly in the next step without further purification.


Step 5: Preparation of 3-(benzothiophen-2-yl)-7-chloro-6-(3-methoxypropoxy)-3,4-dihydroisoquinoline

10


To a solution of *N*-[1-(benzothiophen-2-yl)-2-[4-chloro-3-(3-methoxypropoxy)phenyl]ethyl]formamide (756 mg, 1.9 mmol) in CH₃CN (10 mL) was added POCl₃ (291 mg, 1.9 mmol). The mixture was heated at 80 °C for 2 hrs. After being cooled to rt, the mixture was concentrated under reduced pressure. The residue was dissolved in CH₃CN (10 mL) and then basified by ammonia water to pH=10 at 0 °C. The resulting mixture was extracted with DCM. The organic layer was washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure to give crude 3-(benzothiophen-2-yl)-7-chloro-6-(3-methoxypropoxy)-3,4-dihydroisoquinoline (727 mg) as a brown oil, which was used directly in the next step without further purification.

15 20 **Step 6: Preparation of ethyl 6-(benzothiophen-2-yl)-10-chloro-9-(3-methoxypropoxy)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate**


A mixture of crude 3-(benzothiophen-2-yl)-7-chloro-6-(3-methoxypropoxy)-3,4-dihydroisoquinoline (727 mg, 1.9 mmol) and ethyl 2-(ethoxymethylene)-3-oxo-butanoate (1.06 g, 5.7 mmol) in ethanol (15 mL) was refluxed for 24 hrs. The mixture was concentrated under reduced pressure to give crude ethyl 6-(benzothiophen-2-yl)-10-chloro-9-(3-methoxypropoxy)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (1.70 g), which was used directly in the next step without further purification.

Step 7: Preparation of ethyl 6-(benzothiophen-2-yl)-10-chloro-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate

A mixture of crude ethyl 6-(benzothiophen-2-yl)-10-chloro-9-(3-methoxypropoxy)-2-oxo-1,6,7,11b-tetrahydrobenzo[a]quinolizine-3-carboxylate (1.70 g, 1.9 mmol) and *p*-chloranil (467 mg, 1.9 mmol) in DME (10 mL) was heated at 70 °C for 3 hrs. After being cooled to rt, the mixture was partitioned between DCM and water. The organic layer was washed with saturated NaHCO₃ aqueous solution (50 mL) 5 times and brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to give crude ethyl 6-(benzothiophen-2-yl)-10-chloro-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (2.01 g) as a brown oil, which was used directly in next step without further purification.

Step 8: Preparation of 6-(benzothiophen-2-yl)-10-chloro-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid

20

To a mixture of crude ethyl 6-(benzothiophen-2-yl)-10-chloro-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylate (2.01 g, 1.9 mmol) in methanol (16 mL) and H₂O (4 mL) was added LiOH·H₂O (958 mg, 22.8 mmol). The resulting mixture was stirred at rt overnight, and then acidified by 1 M hydrochloric acid to pH=2-3. The mixture was extracted

with DCM for three times. The combined organic layers were washed with brine, dried over anhydrous Na_2SO_4 and concentrated under reduced pressure. The residue was purified by column chromatography to give crude product as a brown solid, which was recrystallized from diethyl ether and EtOH to afford 6-(benzothiophen-2-yl)-10-chloro-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid (80 mg) as a light-brown solid. ^1H NMR (400MHz, DMSO-*d*6) δ : 8.95 (s, 1H), 8.14 (s, 1H), 7.81 - 7.76 (m, 1H), 7.75 - 7.69 (m, 1H), 7.37 (s, 1H), 7.34 - 7.28 (m, 2H), 7.24 (s, 1H), 6.40 (s, 1H), 4.23 - 4.09 (m, 2H), 3.85 - 3.75 (m, 1H), 3.60 - 3.50 (m, 1H), 3.49 - 3.41 (m, 2H), 3.20 (m, 3H), 2.00 - 1.88 (m, 2H). MS obsd. (ESI $^+$) $[(\text{M}+\text{H})^+]$: 496.

10

BIOLOGICAL EXAMPLES

Example 38 materials and methods

HBV cell line

HepG2.2.15 cells (Acs et al. *Proc Natl Acad Sci U S A*, 84, (1987), 4641-4), a 15 constitutively HBV-expressing cell line were cultured in DMEM+Glutamax-I medium (Invitrogen, Carlsbad, CA, USA), supplemented with 10% fetal bovine serum (Invitrogen) and G418 (Invitrogen) at a final concentration of 200 mg/L and maintained in 5% CO_2 at 37°C.

HBsAg Assay

20 HepG2.2.15 cells were seeded in duplicate into white, 96-well plates at 1.5×10^4 cells/well. The cells were treated with a three-fold serial dilution series of the compounds in DMSO. The final DMSO concentration in all wells was 1% and DMSO was used as no drug control.

The HBsAg chemiluminescence immunoassay (CLIA) kit (Autobio Diagnostics Co., Zhengzhou, China, Catalog number: CL0310-2) was used to measure the levels of secreted HBV 25 antigens semi-quantitatively. For the detection 50 μL /well culture supernatant was used and HBsAg was quantified using HBsAg chemiluminescence immunoassay (CLIA) kit (Autobio Diagnostics Co., Zhengzhou, China, Catalog number: CL0310-2), 50 μL of the supernatant was transferred to the CLIA assay plate and 50 μL of enzyme conjugate reagent was added into each well. The plates were sealed and gently agitated for 1 hour at room temperature. The 30 supernatant-enzyme-mixture was discarded and wells were washed 6 times with 300 μL of PBS. The residual liquid was removed by plating the CLIA plate right side down on absorbent tissue paper. 25 μL of substrates A and B were added to each well. Luminance was measured using a

luminometer (Mithras LB 940 Multimode Microplate Reader) after 10 minutes incubation. Dose-response curves were generated and the IC_{50} value was extrapolated by using the E-WorkBook Suite (ID Business Solutions Ltd., Guildford, UK). The IC_{50} was defined as the compound concentration (or conditioned media log dilution) at which HBsAg secretion was reduced by

5 50% compared to the no drug control.

The compounds of the present invention were tested for their activity to inhibit HBsAg as described herein. The Examples were tested in the above assay and found to have IC_{50} below 25.0 μM . Particular compounds of formula I were found to have IC_{50} below 0.100 μM . More Particular compounds of formula I were found to have IC_{50} below 0.010 μM . Results of HBsAg assay are

10 given in Table 1.

Table 1: Activity data of particular compounds

Example No.	IC_{50} (μM)	Example No.	IC_{50} (μM)	Example No.	IC_{50} (μM)	Example No.	IC_{50} (μM)
1	0.064	11	0.17	21	0.006	31	0.004
2	0.01	12	0.005	22	0.021	32	0.11
3	0.003	13	0.006	23	0.018	33	0.035
4	1.16	14	0.002	24	0.01	34	0.024
5	0.8	15	0.002	25	0.003	35	0.022
6	1.93	16	0.009	26	0.004	36	0.003
7	0.009	17	0.018	27	0.003	37	4.42
8	0.094	18	0.097	28	0.01		
9	0.083	19	0.005	29	0.064		
10	0.01	20	0.037	30	0.32		

HBV DNA assay

The assay employs real-time qPCR (TaqMan) to directly measure extracellular HBV DNA copy number. HepG2.2.15 cells were plated in 96-well microtiter plates. Only the interior wells were utilized to reduce “edge effects” observed during cell culture, the exterior wells were filled with complete medium to help minimize sample evaporation. On the following day, the HepG2.2.15 cells were washed and the medium was replaced with complete medium containing

various concentrations of a test compound in triplicate. 3TC was used as the positive control, while media alone was added to cells as a negative control (virus control, VC). Three days later, the culture medium was replaced with fresh medium containing the appropriately diluted drug. Six days following the initial administration of the test compound, the cell culture supernatant 5 was collected, treated with pronase and then used in a real-time qPCR/TaqMan assay to determine HBV DNA copy numbers. Antiviral activity was calculated from the reduction in HBV DNA levels (IC₅₀).

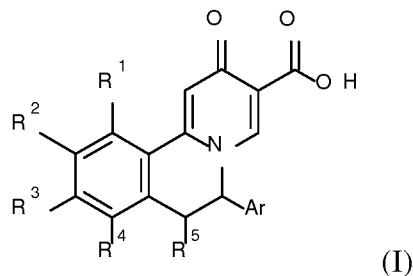

The compounds of the present invention were tested for their activity to anti HBV DNA production as described herein. The Examples were tested in the above assay and found to have IC₅₀ 10 below 25.0 μ M. Particular compounds of formula I were found to have IC₅₀ below 0.10 μ M. Results of HBV DNA assay are given in Table 2.

Table 2: Anti HBV DNA production activity in HepG2.2.15 cells

Example No.	IC ₅₀ (μ M)
7	<0.032
8	<0.032
15	<0.032

Claims

1. A compound of formula I

5 wherein

R^1 , R^2 , R^3 and R^4 are independently selected from C_{1-6} alkyl, halo C_{1-6} alkyl, hydrogen, halogen, cyano, amino, C_{1-6} alkylamino, di C_{1-6} alkylamino, pyrrolidinyl and OR^6 ;

R^5 is hydrogen or C_{1-6} alkyl;

R^6 is hydrogen; C_{1-6} alkyl; halo C_{1-6} alkyl; C_{3-7} cycloalkyl C_{1-6} alkyl; phenyl C_{1-6} alkyl;

10 hydroxyC₁₋₆alkyl; C₁₋₆alkoxyC₁₋₆alkyl; carboxyC₁₋₆alkyl; C₁₋₆alkylsulfanylC₁₋₆alkyl; C₁₋₆alkylsulfonylC₁₋₆alkyl; cyanoC₁₋₆alkyl; aminoC₁₋₆alkyl; C₁₋₆alkylaminoC₁₋₆alkyl; diC₁₋₆alkylaminoC₁₋₆alkyl; C₁₋₆alkylcarbonylaminoC₁₋₆alkyl; C₁₋₆alkylsulfonylaminoC₁₋₆alkyl; C₁₋₆alkoxycarbonylaminoC₁₋₆alkyl; pyrazolylC₁₋₆alkyl; triazolylC₁₋₆alkyl or heterocycloalkylC₁₋₆alkyl, wherein heterocycloalkyl is *N*-containing monocyclic

15 heterocycloalkyl;

Ar is phenyl; phenyl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; thiaryl; thiaryl substituted by one, two or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy,

20 or three groups independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; pyridinyl; pyridinyl substituted by one, two or three groups

independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy; pyrimidinyl; pyrimidinyl substituted by one, two or three groups independently

C_{1-6} alkoxy, hydroxy, halogen and phenyl C_{1-6} alkoxy; pyrazolyl; pyrazolyl substituted by one, two or three groups independently selected from C_{1-6} alkyl, C_{1-6} alkoxy, hydroxy, halogen and phenyl C_{1-6} alkoxy; thiazolyl; or thiazolyl substituted by one, two or three groups

independently selected from C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen and phenylC₁₋₆alkoxy;

or pharmaceutically acceptable salts, or enantiomers thereof.

5 2. A compound according to claim 1, wherein

R¹ is hydrogen;

R² is hydrogen, halogen or C₁₋₆alkoxy;

R³ is C₁₋₆alkyl, pyrrolidinyl or OR⁶;

R⁴ is C₁₋₆alkyl or hydrogen;

10 R⁵ is hydrogen;

R⁶ is C₁₋₆alkyl, haloC₁₋₆alkyl, C₃₋₇cycloalkylC₁₋₆alkyl, phenylC₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkoxyC₁₋₆alkyl, carboxyC₁₋₆alkyl, C₁₋₆alkylsulfanylC₁₋₆alkyl, C₁₋₆alkylsulfonylC₁₋₆alkyl, cyanoC₁₋₆alkyl, aminoC₁₋₆alkyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, C₁₋₆alkylsulfonylaminoC₁₋₆alkyl, C₁₋₆alkoxycarbonylaminoC₁₋₆alkyl, pyrazolylC₁₋₆alkyl, triazolylC₁₋₆alkyl, piperidylC₁₋₆alkyl, morpholinylC₁₋₆alkyl or 2-oxopyrrolidinylC₁₋₆alkyl;

15 Ar is phenyl; phenyl substituted by C₁₋₆alkyl, C₁₋₆alkoxy, hydroxy, halogen or phenylC₁₋₆alkoxy; thienyl; thienyl substituted by C₁₋₆alkyl; or benzothiophenyl;

or pharmaceutically acceptable salts, or enantiomers thereof.

20 3. A compound according to claim 1 or 2, or pharmaceutically acceptable salts, or enantiomers thereof, wherein R¹ is hydrogen, R⁴ is hydrogen, R⁵ is hydrogen.

4. A compound according to any one of claims 1 to 3, or pharmaceutically acceptable salts, or enantiomers thereof, wherein R² is C₁₋₆alkoxy.

25 5. A compound according to any one of claims 1 to 4, or pharmaceutically acceptable salts, or enantiomers thereof, wherein R² is methoxy.

6. A compound according to any one of claims 1 to 5, or pharmaceutically acceptable salts, or enantiomers thereof, wherein R³ is pyrrolidinyl or OR⁶, wherein R⁶ is C₁₋₆alkyl, haloC₁₋₆alkyl, C₃₋₇cycloalkylC₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkoxyC₁₋₆alkyl, carboxyC₁₋₆alkyl, C₁₋₆alkylsulfanylC₁₋₆alkyl, cyanoC₁₋₆alkyl, aminoC₁₋₆alkyl, C₁₋₆alkylcarbonylaminoC₁₋₆alkyl, C₁₋₆alkylsulfonylaminoC₁₋₆alkyl or C₁₋₆alkoxycarbonylaminoC₁₋₆alkyl.

7. A compound according to any one of claims 1 to 6, or pharmaceutically acceptable salts, or enantiomers thereof, wherein R³ is OR⁶, wherein R⁶ is methyl, isobutyl, trifluoroethyl, cyclopropylmethyl, cyanopropyl, hydroxypropyl, hydroxyhexyl, hydroxydimethylpropyl,

5 methoxypropyl, carboxypropyl, methylsulfanylpropyl, aminohexyl, methylcarbonylaminohexyl, methylsulfonylaminohexyl or methoxycarbonylaminohexyl.

8. A compound according to any one of claims 1 to 7, or pharmaceutically acceptable salts, or enantiomers thereof, wherein Ar is phenyl, phenyl substituted by C₁₋₆alkyl or halogen, thiienyl or

10 thiienyl substituted by C₁₋₆alkyl.

9. A compound according to any one of claims 1 to 8, or pharmaceutically acceptable salts, or enantiomers thereof, wherein Ar is phenyl; phenyl substituted by methyl, fluoro or chloro; thiienyl or thiienyl substituted by methyl.

15

10. A compound according to claim 1 or 2, wherein

R¹ is hydrogen;

R² is C₁₋₆alkoxy;

R³ is pyrrolidinyl or OR⁶;

20 R⁴ is hydrogen;

R⁵ is hydrogen;

R⁶ is C₁₋₆alkyl, haloC₁₋₆alkyl, C₃₋₇cycloalkylC₁₋₆alkyl, hydroxyC₁₋₆alkyl, C₁₋₆alkoxyC₁₋₆alkyl or C₁₋₆alkylsulfanylC₁₋₆alkyl;

Ar is phenyl substituted by C₁₋₆alkyl, or thiienyl;

25 or pharmaceutically acceptable salts, or enantiomers thereof.

11. A compound according to claim 1, 2 or 10, wherein

R¹ is hydrogen;

R² is methoxy;

30 R³ is pyrrolidinyl or OR⁶;

R⁴ is hydrogen;

R⁵ is hydrogen;

R⁶ is isobutyl, trifluoroethyl, cyclopropylmethyl, hydroxydimethylpropyl, methoxypropyl or methylsulfanylpropyl;

Ar is phenyl substituted by methyl or thienyl;

or pharmaceutically acceptable salts, or enantiomers thereof.

5

12. A compound according to claim 1, selected from

10-Methoxy-9-(3-methoxypropoxy)-2-oxo-6-phenyl-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-9-(3-methoxypropoxy)-2-oxo-6-(3-thienyl)-6,7-dihydrobenzo[a]quinolizine-

10 3-carboxylic acid;

10-Methoxy-9-(3-methoxypropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

6-(4-Hydroxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

15 10-Methoxy-6-(4-methoxyphenyl)-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

6-(4-Benzylxyphenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-9-(3-methoxypropoxy)-6-(4-methyl-2-thienyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

6-(3-Chlorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

6-(4-Fluorophenyl)-10-methoxy-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

25 10-Methoxy-9-(3-methoxypropoxy)-6-(o-tolyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-Methoxy-8-methyl-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-Benzylxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-

30 carboxylic acid;

9,10-Dimethoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-Isobutoxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-(Cyclopropylmethoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-2-oxo-9-(3-pyrazol-1-ylpropoxy)-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

5 9-(3-Hydroxypropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-2-oxo-9-[3-(1-piperidyl)propoxy]-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid formate;

10 9-(3-Cyanopropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-2-oxo-9-[2-(2-oxopyrrolidin-1-yl)ethoxy]-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-[6-(*tert*-Butoxycarbonylamino)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

15 9-(6-Aminohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid formate;

9-(6-Acetamidohexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

20 9-[6-(Methanesulfonamido)hexoxy]-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-(6-Hydroxyhexoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-(3-Hydroxy-2,2-dimethyl-propoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

25 10-Methoxy-2-oxo-6-(2-thienyl)-9-(2,2,2-trifluoroethoxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-9-(3-morpholinopropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylate;

30 10-Methoxy-2-oxo-6-(2-thienyl)-9-[3-(1,2,4-triazol-1-yl)propoxy]-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-(3-Carboxypropoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-9-(3-methylsulfanylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-9-(3-methylsulfonylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

5 10-Methoxy-9-methyl-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-Ethyl-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10 10-Methoxy-2-oxo-9-propyl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-2-oxo-9-pyrrolidin-1-yl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

15 6-(Benzothiophen-2-yl)-10-chloro-9-(3-methoxypropoxy)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

or pharmaceutically acceptable salts, or enantiomers thereof.

13. A compound according to claim 1, selected from

10-Methoxy-9-(3-methoxypropoxy)-2-oxo-6-(3-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

20 10-Methoxy-9-(3-methoxypropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

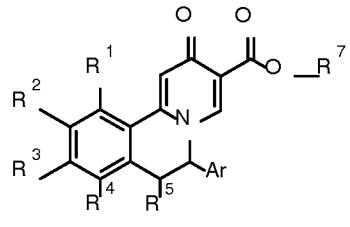
10-Methoxy-9-(3-methoxypropoxy)-6-(o-tolyl)-2-oxo-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

25 9-Isobutoxy-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

9-(Cyclopropylmethoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

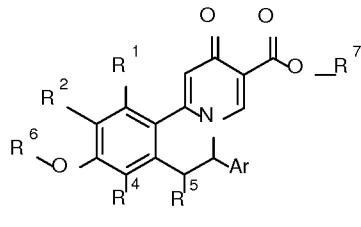
9-(3-Hydroxy-2,2-dimethyl-propoxy)-10-methoxy-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

30 10-Methoxy-2-oxo-6-(2-thienyl)-9-(2,2,2-trifluoroethoxy)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;


10-Methoxy-9-(3-methylsulfanylpropoxy)-2-oxo-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

10-Methoxy-2-oxo-9-pyrrolidin-1-yl-6-(2-thienyl)-6,7-dihydrobenzo[a]quinolizine-3-carboxylic acid;

or pharmaceutically acceptable salts, or enantiomers thereof.


5 14. A process for the preparation of a compound according to any one of claims 1 to 13 comprising

(a) hydrolysis of a compound of formula (A)

(A); or

(b) hydrolysis of a compound of formula (B)

(B);

wherein R¹ to R⁷ and Ar are defined as in any one of claims 1 to 11.

15. A compound according to any one of claims 1 to 13 for use as therapeutically active substance.

15

16. A pharmaceutical composition comprising a compound in accordance with any one of claims 1 to 13 and a therapeutically inert carrier.

17. The use of a compound according to any one of claims 1 to 13 for the treatment or 20 prophylaxis of HBV infection.

18. The use of a compound according to any one of claims 1 to 13 for the preparation of a medicament for the treatment or prophylaxis of HBV infection.

25 19. The use of a compound according to any one of claims 1 to 13 for the inhibition of HBsAg production or secretion, or for the inhibition of HBsAg production or secretion.

20. A compound according to any one of claims 1 to 13 for the treatment or prophylaxis of HBV infection.

5

21. A compound according to any one of claims 1 to 13, when manufactured according to a process of claim 14.

22. A method for the treatment or prophylaxis of HBV infection, which method comprises
10 administering an effective amount of a compound as defined in any one of claims 1 to 13.

23. The invention as hereinbefore described.

INTERNATIONAL SEARCH REPORT

International application No
PCT/EP2016/052585

A. CLASSIFICATION OF SUBJECT MATTER
INV. C07D471/04 A61K31/4375 A61P31/12
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C07D

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, CHEM ABS Data, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	<p>Y.-R. Wu: "Two New Quaternary Alkaloids and Anti-Hepatitis B Virus Active Constituents from <i>Corydalis saxicola</i>", <i>Planta Medica</i>, 2007, pages 787-791, XP055160353, DOI: 10.1055/s-2007-98154 Retrieved from the Internet: URL:https://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-2007-981549.pdf [retrieved on 2015-01-07] page 788; compounds 4, 5, 6, 9</p> <p>-----</p> <p>CN 103 450 184 A (SHANGHAI YIZHI MEDICINE SCIENCE & TECHNOLOGY CO LTD) 18 December 2013 (2013-12-18) page 4; compound I</p> <p>-----</p>	1-23
A		1-23

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered to be of particular relevance
"E" earlier application or patent but published on or after the international filing date
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
"O" document referring to an oral disclosure, use, exhibition or other means
"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search 8 March 2016	Date of mailing of the international search report 21/03/2016
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Beligny, Samuel

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No
PCT/EP2016/052585

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
CN 103450184	A 18-12-2013	NONE	