(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
28 September 2006 (28.09.2006)

£
2 (o2 I 0O A T

(10) International Publication Number

WO 2006/102475 A2

(51) International Patent Classification:
GOGF 9/46 (2006.01)

(21) International Application Number:
PCT/US2006/010509 (74)

(22) International Filing Date: 21 March 2006 (21.03.2006)

(25) Filing Language: English (81)

(26) Publication Language: English

(30) Priority Data:
60/664,088 21 March 2005 (21.03.2005) US
60/664,121 21 March 2005 (21.03.2005) US
60/664,122 21 March 2005 (21.03.2005) US
60/667,816 1 April 2005 (01.04.2005) US

(71) Applicant (for all designated States except US): DEX-
TERRA, INC. [US/US]; 21540 30th Drive Southeast, (84)
Suite 230, Bothell, Washington 98021 (US).

(72) Inventors; and
(75) Inventors/Applicants (for US only): O’FARRELL,

Robert [US/US]; 23504 81st Avenue Southeast, Wood-
inville, Washington 98072 (US). KIRSTEIN, Mark
[US/US]; 762 Judith Court, Incline, Nevada 89451 (US).

Agents: HALL, David, A. et al.; TOWNSEND AND
TOWNSEND AND CREW LLP, 12730 High Bluff Drive,
Suite 400, San Diego, California 92130 (US).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KN, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV,
LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI,
NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG,
SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US,
UZ,VC, VN, YU, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,

[Continued on next page]

(54) Title: DATA MANAGEMENT FOR MOBILE DATA SYSTEM

Dexterra Client Dexterra Server

<z .
Adapter ‘;r‘-

p

<Customer | Definition> <Customer| Data>

Smart Client

<Customer fRequest>

WO 2006/102475 A2 |00 00 0 0 O 0 A

(57) Abstract: A data architecture provides mobile clients with the ability to gain access to business enterprise data sources through
configurable Views that interface with the data sources through Data Objects that are defined by Commands, which in turn commu-
nicate with the data sources through Connectors (also referred to as Adapters). Each type of View will interface to the data sources
with a different functionality so that communications links and other system resources can be used more efficiently. The View types
can include Direct Views, Derived Views, Delegated Views, and Definition Views.

WO 2006/102475 A2 [N A0VOH0 T 0000 AR

FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, For two-letter codes and other abbreviations, refer to the "Guid-
RO, SE, S, SK, TR), OAPI (BF, BJ, CE, CG, CI, CM, GA, ance Notes on Codes and Abbreviations" appearing at the begin-
GN, GQ, GW, ML, MR, NE, SN, TD, TG). ning of each regular issue of the PCT Gazette.

Published:
— without international search report and to be republished
upon receipt of that report

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
1

DATA MANAGEMENT FOR MOBILE DATA SYSTEM

REFERENCE TO PRIORITY DOCUMENTS

This application claims benefit of priority of: co-pending U.S. Provisional
Patent Application Serial No. 60/664,121 entitled "Data Management for Mobile
Data System”, by Robert O'Farrell et al., filed March 21, 2005; co-pending U.S.
Provisional Patent Application Serial No. 60/664,088 entitled "Modular
Applications for Mobile Data System”, by Robert Loughan, filed March 21, 2005;
co-pending U.S. Provisional Patent Application Serial No. 60/664,122 entitled
"Adapter Architecture for Mobile Data System”, by Robert O'Farrell et al., filed
March 21, 2005; and co-pending U.S. Provisional Patent Application Serial No.
60/667,816 entitled "Modular Applications Management for Mobile Data System”,
by Robert O'Farrell et al., filed April 1, 2005. Priority of the respective filing dates
is hereby claimed, and the disclosures of these Provisional Patent Applications
are hereby incorporated by reference.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document contains material which
is subject to copyright protection. The copyright owner has no objection to the
facsimile reproduction by anyone of the patent document or patent disclosure as it
appears in the U.S. Patent and Trademark Office patent file or records, but
otherwise reserves all copyright rights whatsoever.

BACKGROUND

1. Field of the Invention

The present invention relates generally to mobile computing systems and,
more particularly, to data management and data deployment in mobile computing
systems.
2. Description of the Related Art

Sophisticated customer relationship management (CRM) and enterprise
resource planning (ERP) systems are available to improve the automation of back
office and front office processes. Although many companies have realized
significant savings and efficiencies from deploying such systems, it is also true
that many organizations find the systems burdensome to implement and difficuit to

integrate with existing legacy data systems.

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
2

| More recently, business organizations and enterprises are deploying CRM
and ERP systems to assist mobile employees, primarily to utilize mobile
computing devices such as pagers and cell phones and also personal digital
assistants (PDAs). One important impediment to greater adoption of CRM and
ERP systems that employ such mobile devices involve integration with other data
in the enterprise.

Enterprise data integration issues can arise because mobile applications
often come in proprietary, closed architectures that impede integration with other
data systems of the enterprise. For example, data in the enterprise might be
maintained in four or five different sources. Some of the data sourceé include
CRM systems, dispatch systems, ERP systems, and financial records systems.
Each of these data sources can utilize a different data architecture, format, and
protocol. The data being stored and the configuration of the data and access
mechanisms are constantly changing. Many mobile computing systems create an
interim datastore in which data from the various sources in the enterprise is
collected. In this way, data from the different enterprise data sources, each with a
different data architecture and format, can be collected in a single common
database. The mobile users can access the enterprise data by accessing the
interim datastore, rather than the actual enterprise data sources. The interim
store, however, creates data update and conflict issues of its own.
Synchronization operations and other safeguards must be performed frequently,
to ensure that the data in the interim datastore is a faithful copy of the data in the
enterprise data sources.

It is known to provide a data integration solution that can utilize mobile
computing devices that interface to enterprise data sources through a network
server. Such a system is described in U.S. Patent Application Serial No.
10/746,229 filed December 23, 2003 assigned to Dexterra, Inc. of Bothell,
Washington, USA. The contents of this application are incorporated herein by
reference.

The Dexterra, Inc. patent application describes a system in which data is
utilized between multiple enterprise data sources to mobile clients in a distributed
fashion such that requests from a mobile client for enterprise data are received,
the appropriate enterprise data sources that contain the requested data are

determined, and the enterprise data is retrieved from the determined enterprise

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
3

éa{; s"ources. When the enterprise data is retrieved, it is converted into a
relational format, even if the data comes from multiple enterprise data sources of
different non-relational types (e.g. File System, email, etc). The converted
enterprise data is stored in a relational datastore in the mobile client. In this way,
mobile applications can be fully integrated with data from multiple enterprise data
sources and data updates and configuration changes can be distributed to and
from the mobile clients in real time, without using interim data storage, and
thereby avoiding complicated synchronization and asynchronous data issues
between the enterprise data sources and the mobile clients. The real time data
changes can include deployment of changes to the mobile application itself, as
well as data updates. The real time changes are further accommodated with data
conflict detection and resolution.

The Dexterra, Inc. system referenced above is based on a system
architecture in which target enterprise data sources contain objects or data tables,
and each target data table is mapped to a data object called a View. That is, a
View is defined that corresponds to each data table in the enterprise data sources
from which the application will obtain data. The Views can be defined by the
application developer, or from another vendor. The data in the Views are shared
among one or more data entities referred to as Business Objects. A single
Business Object can utilize data from multiple Views, and therefore can utilize
data from multiple enterprise data sources, even from data sources that have
incompatible data formats. In the system, data objects called Connectors provide
a data sharing interface with the enterprise data sources.

Once a set of Business Objects is defined, application developers can
design applications while dealing with data through their interface to the Business
Objects, rather than get involved in describing and defining the Views and
Connectors. Thus, developers are presented with a format-free data interface, so
that differences in targets are abstracted out from the developer.

The system described in the Dexterra, Inc. patent application referenced
above provides a powerful development tool for the mobile computing platform
that permits access to a variety of enterprise data sources. Even greater
adaptability in the configuration of the View data, however, could extend the
capabilities of the system and provide greater flexibility. The present invention

provides such greater View configuration capabilities.

WO 2006/102475 PCT/US2006/010509
4

SUMMARY

In accordance with the invention, mobile clients gain access to business
enterprise data sources through configurable Views that interface with the data
sources through Data Objects that are defined by Commands, which in turn
communicate with the data sources through Connectors (also referred to as
Adapters). Each type of View will interface to the data sources with a different
functionality so that communications links and other system resources can be
used more efficiently. For example, the View types can include Direct Views,
Derived Views, Delegated Views, and Definition Views. These new View types
can provide greater control over data interfaces and can be configured for greater
utilization of system resources.

Direct Views are Views that retrieve data directly from an enterprise data
source. Derived Views request data from a server that retrieves a base set of
associated data at runtime from the enterprise data sources and then places the
retrieved data into a relational data engine (RDE) that applies Derived View filter
parameters to extract filtered data and provide it to the requesting Derived View
type. The Delegated View will periodically retrieve data from the enterprise data
sources and will place the retrieved data into a Relational Data Engine cache from
which subsequent mobile client requests for enterprise data can be filled, thereby
reducing the data traffic between the mobile client and the data sources. The
Definition View permits control over where retrieved data is maintained, either at
the system server or at the mobile client, thereby extending control over utilization
of system resources.

Other features and advantages of the present invention should be apparent
from the following description of the preferred embodiment, which illustrates, by
way of example, the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 is a block diagram of a suitable computer system environment for
a mobile enterprise platform constructed in accordance with the present invention.

Figure 2 is a block diagram of the logical architecture of data in the mobile
enterprise platform illustrated in Figure 1.

Figure 3 is a block diagram that illustrates the Connector interface between

the enterprise data sources and the mobile client of Figure 1.

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
5

Figure 4 is a block diagram of a suitable computer system environment 400
constructed in accordance with the present invention.

Figure 5 is a diagrammatic representation of the Derived View data flow
using the View architecture in accordance with the present invention.

Figure 6 shows a diagrammatic representation of the data architecture for
the mobile platform illustrated in Figure 1.

Figure 7 is a diagrammatic representation of the data access configuration
for the mobile platform constructed in accordance with the present invention.

Figure 8 is a screenshot of a display on a computer device that is hosting
the DAD computer program application.

Figure 9 shows a tree view and context menu generated by the DAD
program when "Datasource Types" is selected on the Dexterra Explorer menu.

Figure 10 shows selection of the Data Sources menu item from the Figure
9 display.

Figure 11 shows selection of a particular datasource type, from which a
context menu is generated.

Figure 12 shows View types that are available for selection.

Figure 13 shows a Data Sources Properties dialog box that is generated by
utilizing a Data Sources context menu to create a new type of Data Source.

Figure 14 shows an authentication screen for DAD login information and
choose a particular enterprise datasource target.

Figure 15 shows a designer making a Command selection from the tree
view.

Figure 16 shows a "New Command" dialog box in response to selection in
Figure 15.

Figure 17 shows the Parameters tab of the Add Command dialog.

Figure 18 shows the tree view with a new Command called
"CustomerQuery" that has been added.

Figure 19 is a flow diagram that illustrates operations of a computer system
in accordance with the present invention.

DETAILED DESCRIPTION

In a mobile data integration system constructed in accordance with the

invention, mobile clients funning an application interface with enterprise data

sources through configurable View objects that access data through Data Objects

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
6

that are defined in terms of Command objects that interface with the enterprise
data sources through Adapters (also called Connectors). The multiple types of
Views that are supported can provide greater adaptability to thereby extend the
capabilities of the system and provide greater flexibility. Each type of View will
interface to the data sources with a different functionality so that communications
links and other system resources can be used more efficiently.

As described further below, in the illustrated embodiment, the View types
include Direct Views, Derived Views, Defined Views, and Designated Views. A
Direct View will retrieve data directly from an enterprise data source via the Data
Objects, Commands, and Adapters. A Derived View will incorporate filter
parameters and will request data from a server that retrieves a base set of
associated data at runtime from the enterprise data sources and then places the
retrieved data into a relational data engine (RDE) that applies the Derived View
filter parameters to extract filtered data and provide it to the requesting Derived
View type. The Delegated View will periodically retrieve data from the enterprise
data sources according to parameters of the Delegated View and will place the
retrieved data into a Relational Data Engine cache. Subsequent requests from
mobile clients for enterprise data can be filled by getting the requested data from
the RDE cache rather than directly from the enterprise data sources, thereby
reducing the data traffic between the mobile client and the data sources. Updated
data from mobile clients is returned directly to the enterprise data sources through
the Adapters. A Definition View permits control over where retrieved data is
maintained, either at the system server or at the mobile client. The extent of
system resources will generally determine selection between the two
configurations.

A base configuration of an exemplary base system architecture is
described below in connection with Figures 1, 2, and 3. In the preferred
embodiment of a mobile client data system that incorporates the configurable
View objects of the present invention, the system utilizes an Adapter-Command-
Data Object architecture. The Adapter-Command-Data Object is described
further below in terms of architectural changes from the system of Figs. 1, 2, and
3 at"V. Adapter Architecture" in conjunction with Figure 4. The configurable
View objects are described in greater detail below at "VI. View Types" in

conjunction with Figure 5.

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509

. SYSTEM OVERVIEW

The present invention provides a system in which data is utilized from
multiple enterprise data sources to mobile clients executing mobile applications
such that the mobile applications are integrated with the multiple enterprise data
sources, and data updates and configuration changes can be distributed to and
received from the mobile clients in real time, without using interim data storage.
The elimination of an interim data storage facility avoids complicated
synchronization and asynchronous data issues between the enterprise data
sources and the mobile clients. Thus, data updates and system configuration
updates for the mobile application can be communicated from the enterprise to
the mobile clients, and from the mobile clients to the enterprise, in real time. No
special synchronization operation is needed, as changes can be propagated
through the system in real time.
Il. SYSTEM PLATFORM

Figure 1 is a block diagram of a suitable computer system environment 100
constructed as described in the above-referenced Dexterra, Inc. patent
application. in accordance with the present invention. Figure 1 shows a mobile
client device 102, such as a Personal Digital Assistant (PDA) device that operates
in conjunction with the Microsoft PocketPC or Palm PDA operating systems. The
mobile client device communicates over a network connection 104 with an
application server 106 to request data from the server and receive data updates,
provide new data, and receive configuration changes. It should be understood
that multiple mobile clients 102 can communicate with the server 106. Only a
single client device 102 is shown in Figure 1 for the sake of drawing simplicity.

The mobile clients 102 consume the server-side connector web services for
real time data retrieval from multiple enterprise data stores. Additionally, the
mobile clients consume the server-side data manager web services for the
management of real-time client-side data updates, server side data updates and
system configuration updates.

The application server 106 communicates with enterprise data sources
108, such as CRM data sources, ERP sources, financial system resources, legacy
data stores, and the like. The exemplary enterprise data sources illustrated in
Figure 1 include data including "Siebel" software from Siebel Systems, Inc. of San
Mateo, California, USA; "Oracle" software from Oracle Corporation of Redwood

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
8

Shores, California, USA; "SAP" software from SAP AG of Walldorf, Germany; and
legacy software. The administrator application 110 and a developer application
112 communicate with the application server 106, which also stores metadata 114
for the system, as described further below.

The application server 106 provides data manager, configuration, and data
connector web services for data interchange and updating, user authentication,
security, and logging services. The application server also handles business
process management in the form of business information and rules.

The mobile client 102 also includes a datastore 116 that includes a
relational data base 118 that stores business data 120 and also a relational
database that stores metadata 122 for application execution on the mobile client.
An application 124 that is installed at the mobile client 102 includes various
software components that perform suitable functions. For example, the
application might comprise a field service application that informs field service
personnel as to a location at which service has been requested, explains the
nature of the service request, and provides for logging the service visit and settling
the account. The application 124 may include multiple applications that process
the data requested by the mobile client 102.

The administrator application 110 and developer application 112 together
comprise a "Studio" component 130. In the illustrated embodiment, the
administrator and developer are provided as two separate applications, and
provide a means to configure the system, including the metadata data and
application interfaces.

The system 100 comprises a mobile enterprise platform that supports the
service application 124. The system provides a set of Web services that
effectively deploy and manage mobilized software solutions to enhance mobile
business processes. Common examples include integrating to CRM or ERP,
sales force automation (SFA), and customer support and help desk functions for
an enterprise. Such enterprise applications depend on cross-application
interaction, in that data from one function or system is often used by a different
function or system. When executed on the mobile client, the existing application
functionality and enterprise information is utilized among multiple enterprise

software applications, legacy data systems, and mobile workers. In this way, a

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
9

significant return on investment can be achieved for these applications and for the
mobile enterprise platform.

The mobile enterprise platform 100 provides Web services that simplify the
use of mobile clients and associated portable devices in the field. These Web
services include a data manager function, a configuration function, and a
connector function. These will be described in greater detail below. The
applications 124 that are installed on the mobile clients 102 can be fully functional
in any connected or disconnected state, after they have been properly initiated by
the application server 106.

lll. LOGICAL ARCHITECTURE

Any client application that makes use of the Mobile Enterprise Platform
illustrated in Figure 1 will utilize the system components illustrated in the block
diagram of Figure 2. These components include:

Business Objects--programmable objects based on business
concepts, combining fields and relating information from different enterprise
data sources. (e.g. data sources such as Customer, Contacts, Assets,
Tasks, etc.).

Business Rules--custom logic to enforce business processes
utilizing business constants with checks applied against business data from
the enterprise data sources.

Business Constants--A user-configurable variable for use throughout
the client applications, and client and server-side business rules (e.g.
Business Rules, Warning Messages, and the like).

Datasource Connectors--data source connectors designed to
seamlessly provide access to a wide variety of enterprise data sources
(e.g. databases such as those formatted according to Oracle and SQL
Server, messaging systems such as MQ Series or MSMQ, CRM
applications such as Siebel or Peoplesoft, generic web services, and so
forth).

Business Process--metaphors, such as a "Force Flow" process of
Dexterra, Inc. of Bothell, Washington, U.S.A., that defines a form-to-form
navigation paradigm for modeling business processes.

Forms--a combination of standard visual display screens (e.g., View,
Edit, Find, and the like) with event driven logic that are designed to show

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
10

information, gather information, and direct the user through a given

business process, referred to herein as either a "ForceFlow" or a

"FieldFlow".

Views--A modifiable representation of the data identified from an
enterprise datasource or application that is utilized by one or more
Business Objects.

Filters--A Filter that can be applied to a View to modify the data
available to a Business Object.

These components can be used to specify the configuration (logical
architecture) of any client application that is constructed utilizing a technology
framework such as the Microsoft Corporation ".NET" and tools such as Microsoft
Corporation’s "Visual Studio .NET". Those skilled in the art will be familiar with
such programming tools to specify an application and its associated data objects.

The Mobile Enterprise Platform illustrated in Figure 1 is implemented as a
metadata driven framework. The framework provides integrated client and server
web services, enabling the connection, configuration, and data management
services necessary to deploy fail-safe, mission-critical mobile enterprise solutions.

Figure 2 illustrates that, in the mobile enterprise platform of Figure 1, the
structure of relational database tables and external application business objects
are mapped to views as metadata. One or more views are consumed by Business
Objects, also defined in metadata, which are in turn utilized by the mobile
application. The mobile application utilizes a client framework, referred to as the
"Dexterra Smartclient", which manages the instantiation of the Business Objects,
Local Data Access to the underlying physical database that resides on the mobile
client device, Device integration, as well as the client-server data communication
via the data manager and/or connector web services. Within the platform,
specifications for all logical layers (e.g., Business Objects, Views, Filters, and
Connectors) are defined and maintained within the metadata.

The mobile enterprise platform is architected as a logical stack, designed to
insulate layers in the logical architecture from all but non-adjacent members. At
the bottom of the logical stack, the Target layer, is data that resides in back-end,
enterprise data sources. The platform works with the source data in place, and
does not require information within the back-end system of record to be replicated
to a middle-tier replication database. That is, no interim datastore is needed. This

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
..... 11

brovides flexibility in design, as well as real time data access and can help reduce
total cost of ownership of the platform and applications, and assists simplification
of data management processes.

The next layer up in the logical stack is the Connector layer. The
Connector layer provides a programmatic construct that describes the back-end
datastore to the application server in a relational format. The information
regarding how to connect to an enterprise data source, as well as the security
settings (such as authentication methods and user and group definitions) are
stored within metadata, and are maintained using the Administrator component.

The next layer in the stack is the View layer, which comprises objects that
provide a one-to-one mapping to an object or table in a back-end, enterprise data
source. For example, if a back-end system has a table called CUST_ADDR
(customer address), and data from that table is required for use in an application,
then a View will be created in the Administrator component. The Administrator
View might be called, for example, CUSTOMER_ADDRESS, to represent that
data in the environment of the mobile enterprise platform, outside of the enterprise
data sources. It should be understood that a View has properties that correspond
to the properties or columns of the data object in the back-end system. However,
it is not required that all properties in the back end data source are required as
properties in the View. Indeed, the properties required are defined in the
administrative component and stored as metadata In the example just provided,
the properties might include fields such as ID, STREET_ADDR, CITY, STATE,
and ZIP_CODE.

Additionally, the user can define the data types of the properties within the
View, and these data types can be independent of the data types of the
corresponding properties in the enterprise data source. Other options of the view
properties that can be identified are unique identifier, read only, indexing, required
property and length. All the above information is stored as metadata.

The View layer also provides an indication of data conflicts, and provides a
means for resolving such conflicts. Data conflicts can occur, for example,
whenever there are data changes between what is being uploaded from the
mobile client and what exists at the server. Resolution of such conflicts can be
performed at the View layer, enforcing business rules such as permitting the most

recent data change to always take precedence, or permitting data changes from a

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
12

particular source (e.g., either the mobile client or an enterprise data source) to
take precedence depending on the data type (e.g. field data or customer account
data). This is described further below, in conjunction with the Data Manager Web
Service.

As illustrated in Figure 2, the Views can be defined against multiple objects
in multiple datastores, thus providing flexibility in application deployment and in
the use of in-place systems, without the burden of data replication. As with the
Connectors, the definitions of Views are stored in metadata, and are managed
with the Administrator. Those skilled in the art will understand details of data
definitions in metadata, without further explanation. As noted above, Filters can
be applied to the Views, to modify the data that is passed to the next layer. The
Administrator provides View management features, including a Views Wizard that
automatically creates Views based upon the object interface or table definition of
the back-end datastore objects (from the enterprise data sources).

The next layer up in the Figure 2 diagram includes the Business Objects,
which are mapped, or associated with, one or more Views. A Business Object of
the platform is the programmatic entity with which a developer will interface with
when building customizing mobile applications. The Business Objects include
multiple properties, each of which can be of a simple data type, or can be another
Business Object. Because the Business Objects of the platform can be mapped
to multiple Views, developers can work with a single entity that represents data
sourced from multiple, heterogeneous data sources. Thus, a single Business
Object defined in accordance with the mobile enterprise platform of the invention
can include data from multiple, potentially incompatible enterprise data sources,
such as from different proprietary formats.

In creating or modifying applications for the mobile applications and mobile
client devices, developers can interact solely with the Business Object layer. This
insulates the developers from any requirement to understand or interact directly
with the back-end systems (enterprise data sources) for the source data. In this
way, the Business Object layer provides an object-based interface for application
developers, abstracting the details of persistence and retrieval of data. There is
no need for the developer to directly interact with the local datastore on the mobile
device. In addition, due to the nature of disconnected data, the mobile client,

through the Business Object interface, automatically manages the processing of

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
13

data changes, by storing data changes locally in the client that will be passed to
the application server during an Update process. This further insulates
developers from this rote programming task.

The Business Objects exist on the mobile client device as metadata, and
are also managed using the Administrator (Figure 1). The use of metadata
throughout the mobile enterprise platform provides an environment in which the
attributes and behavior of most data entities can be configured through a
graphical user interface rather than coded.

The metadata-driven nature of the mobile enterprise platform enables
performing business processes on the mobile client through a stateless server
architecture. Through the metadata, the mobile application can be configured and
customized. The metadata defines the structure of the business objects
referencing the business enterprise data to the mobile device and defines the
events that trigger business rules that govern the business processes.

The metadata database contains the reference of the cross-functional,
cross-application back-end business information that is exposed through the
Connectors to configure a business object. This process is accomplished through
the Studio component (Figure 1) to configure and reference the connecting
enterprise data source business information with the Business Objects. This
provides the path to the specific data for the mobile applications; ensuring that no
business data from an enterprise data source is stored in its native data format on
the application server or on any other interim datastore of the system for data
updates. This non-invasive and real time synchronous approach using the
metadata permits the mobile enterprise platform to effectively connect to back-end
systems with a minimum amount of disruption while maximizing cross-functional
data access, data consistency, and data integrity.

IV. MOBILE ENTERPRISE PLATFORM COMPONENTS

A. MOBILE APPLICATIONS

As noted above, the mobile client 102 (Figure 1) can include installed
applications 124 that implement business processes of the enterprise. The
application can leverage the mobile enterprise platform described above, and
demonstrates how the application instantiates the business objects which drive

the business process configured in metadata.

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
14

For example, Task or Work Order information would be provided to the
mobile application through views and would be accessed via a business object. In
retrieval of the business data via the view definition, using the data manager web
service, the business object can deliver the business data to the mobile
application to describe the tasks. This data is stored on a local relational
database on the mobile device. When an update to the task data is committed to
the task business object in a request from the application, the Smartclient
application will persist the changes to the view defined datastore on the mobile
client, then the Smartclient manages the data updates back to the original data
source via the data manager web service, ensuring data integrity and consistency.

By utilizing the depth, breadth, and power of web, services (e.g.,
connection, configuration, and data manager services) that are available in the
mobile enterprise platform described herein, a large suite of mobile applications
can easily be constructed, including applications such as sales force productivity,
customer service, and support solutions. Such applications can be integrated with
a broad set of vertical applications including oil/gas, healthcare/medical and
financial service industry solutions.

B. SERVER COMPONENTS

The application server is a type of metadata-driven platform application and
provides information, applications, and business processes to the mobile client,
and ensures managed data integrity between the mobile enterprise platform and a
host of back-end enterprise data sources. The application server is a process-
based, high performance solution built on the ".NET" technology from Microsoft
Corporation of Redmond, Washington, U.S.A. Using the ".NET" technology, the
mobile enterprise solution is a framework that is Web Services native through the
use of XML and SOAP for data exchange and transport. The application server
provides three core Web Services, as shown in the functional architecture
diagram of Figure 1:

Connector Web Service

The Connector Web Service delivers non-invasive integration of the
existing enterprise applications infrastructure while maintaining control of
the Data-Integrity Conditions between the mobile clients and the discrete
enterprise data sources.

Configuration Web Service

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
15

The Configuration Web Service manages the metadata defining the
business data, business objects, business rules, business constants, and
system configuration such as authentication, logging, security, and roles
that encompass the mobile applications that are passed to the mobile
client--the component application that is resident on the mobile device.
Data Manager Web Service

The Data Manager Web Service orchestrates the update
interactions between the mobile client application, the application server,
and the third-party enterprise data sources. Additionally the Data Manager
Web Service provides the ability to directly communicate with the connector
layer for real-time queries. The Data Manager Web Service delivers
flexibility in the manner that manages the various conditions concerning
multiple updates by multiple users to the multiple enterprise data sources to
enforce the integrity of the data. The Data Manager Web Service can do
this via the application server or direct to any API and/or third-party
published Web Service.

In this way, the Data Manager Web Service can manage
deployment of application updates and data changes throughout the mobile
clients of the system.

Each of these components will next be described in greater detail.

1. Connector Web Service

The Connector Web Service is designed to support communication with
any ODBC-compliant data source or Web Service API. The Connector Web
Service allows a customer to define and build views based on data stored in one
or more third-party systems. The Connector Web Service has a published
interface that allows for standard bulk updates as well as real-time data access
from a mobile client.

The Connector Web Service provides the physical layer connection
between the application server meta-application and the specific interface of the
enterprise data sources. The connectors support database dispute management
and notification services, transaction management, and error handling. In a
default customer configuration, the mobile enterprise platform system is deployed
to customers with an ODBC or Web Service connector. Those skilled in the art

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
16

will be able to produce connectors to the most common enterprise systems, such
as Siebel, SAP, PeopleSoft, Oracle, SQL Server, and the like.

For example, an "Oracle" applications connector allows a customer to
make calls to Oracle support services, either through the closest data constructs
the customer has to APIs (such as PL/SQL procedures) or directly to the
enterprise database itself via ODBC. As with all of the ODBC connectors the
dynamically interrogation of the RDBMS schema is automatically executed,
exposing the specific physical design of the database. This gives the customer a
hierarchical view of the actual interfaces into that system.

Figure 3 shows an example of how the Connectors interface the enterprise
data sources to the mobile enterprise platform. On the left side of Figure 3 are
representations of multiple enterprise data sources, including an ERP data source
302, a CRM data source 304, an HR/Finance data source 306, a Legacy/ODBC
data source 308, and can include other Web Services or other sources (not
shown). In the middle portion of Figure 3 is a representation of the metadata 312
that specifies to the application server 314 how data from the different enterprise
data sources will be stored and related in the mobile client 316, which is
represented at the right side of Figure 3.

Thus, in this example, data identified as ORDER_|D exists in the ERP data
source. Data identified as F_NAME and L_NAME exists in the CRM data source.
Data identified as CRED_LIM exists on the HR/Finance data source, and data
identified as WARRANTY is stored in the Legacy/ODBC data source. All of these
identified data are stored in enterprise data sources, such as at back-end office
systems.

In the metadata 312, the data definition from the enterprise data sources is
mapped to views that are used to create the data store on the client and store the
relevant business data on the mobile client from the enterprise data sources in a
relational database . Access to this business data is performed via a the business
object layer defined and stored in metadata on the mobile client. As shown in
Figure 3, the ORDER_ID from the ERP data source is mapped to a business
object property called OrderlD, whose relational definition is stored in metadata
318 on the mobile client 316 and utilized by one or more the mobile applications
also defined in metadata. The F_NAME data from the CRM enterprise data
source is mapped to (stored into) the FirstName business object property

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
17

definition stored in the mobile client database, and the L_NAME data is mapped to
the LastName business object property. Similarly, the CRED_LIM data from the
HR/Finance data source is mapped to the CreditLimit business object property,
and the WARRANTY data from the Legacy/ODBC data source is mapped to the
Warranty business object property. Thus, data from the potentially dissimilar and
incompatible disparate enterprise data sources 302, 304, 306, 308, 310 are
delivered to the mobile client through the Data Manager Web Services to the local
data store (represented by the lines from the enterprise data sources to the
application server 314) in the proper format for access using one of the business
objects on the mobile client (indicated in the mobile client 316 with actual values).
Connector Types
The connectors that are supported by the Connector Web Service include
the following three connector types:
1. The Web Services connector is used when the mobile platform is
connecting to a third-party system (a) that is either non ODBC-compliant, or
(b) does not allow ODBC/RDBMS connectivity, or (c) whose interface is
defined by a standard API and can be wrapped and defined by Web
Service Descriptor Language (WSDL).
2. The ODBC/RDBMS connector is used when connecting the
mobile platform to a third-party system (a) that is ODBC compliant and (b)
allows for direct ODBC/RDBMS access and (c) whose data is located
physically within the same LAN environment or accessible via a
communication protocol supportive of the transport (such as RPC, TCP,
etc.).
3. The API connector is similar to the Web Services Connector but
(a) requires the AP to be accessible via non internet protocols such as
RPC and (b) is used if the Web Services Interface is not available.
Reading schema, via the ODBC/RDBMS connector, information is
accomplished through the use of the Studio portion 130 (Figure 1) of the mobile
enterprise platform, using the Administrator application. The Studio portion is
used to configure the View definition mapping to the backend data source and
map the definition of one or more Views to one or more Business Objects. When
defining the View definition or mapping the Views to Business Objects, using the
administrator, the information is stored as metadata. Dufing an update process

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
18

with the application server and enterprise data source, the metadata is read to
determine how to read, persist and remove the data (select/insert/update/delete
functions) while managing and enforcing the data integrity using such functions as
conflict detection/resolution, transactions both inherent and compensating where
appropriate.

Using the ODBC/RDBMS connector, data is read, persisted and/or
removed via ANS| SQL statements and/or stored procedures in the case of
Microsoft Corporations SQL Server or Oracle’s RDBMS (8i, 9i, etc.). Using the
Web Services/API connector, data is read, persisted and/or removed by calling
the appropriate API function or method for the transaction.

2. Configuration Web Service

The Configuration Web Service consumed by the Dexterra Studio provides
an easy interoperable way for administrators, business analysts and developers to
implement, configure, and administer the Dexterra Mobile Enterprise solution.

The Configuration Web Service allows for easy manipulation of the metadata used
to configure and customize the data and process definitions of Mobile
applications. This service will be better understood with reference to the features
of the Administrator component, which is described in greater detail below.

3. Data Manager Web Service

Update Process Model

An update process model is utilized in the system, in which mobile
applications update their locally held data (either the application or its business
objects) with the backend enterprise database using a set of core Net components
that are exposed as Web Services for easy interoperability.

The Data Manager Web Service updates the mobile application and all its
associated business objects defined data. The Update process model enables
two-way data transfer between the enterprise datasources via the Dexterra
application server and the mobile client, allowing updates to be made while the
mobile client is connected to the network, merging the updates between clients
when they are connected. When in the disconnected state, updates are managed
in the client environment, until a time at which a connected state is attained and
the update request can be initiated.

The update process model takes the “all or nothing” approach. If a failure

occurs before the entire stream is downloaded from the application server onto

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
19

the mobile client (or before the entire stream is uploaded from the client to the
server), then the Data Manager Web Service on the application server does not
receive a confirmation on the download transaction (or upload). As a result, the
server carries the intelligence to manage the client state as to whether it requires
a roll back of data or simply a retry. When the mobile client performs an update
process operation the second time, the application server takes into account the
original information state and may either deliver the results if the application
server has processed or process again in the event all the required information
was never received by the application server thus enforcing the reliable deliver of
information once and only once between the mobile client and application server.
This, in event, enforces the integrity of the data as it moves from mobile client to
one or more back end data sources.

Update Process Breakdown

Two types of update processing are supported:

1: Get Latest: In this update type, the mobile client makes a request
to get the latest information from the enterprise data sources via the
Dexterra application server.. The Dexterra application server process the
request and retrieves the business information from the multiple data
sources using the Dexterra Connector Web Service and delivers the
business information to the mobile client.

2: Update (2-way update): In this update type, records on both the
client and server end are interchanged enforcing the integrity of the data on
both the mobile client and the back end enterprise data sources using
Dexterra Conflict Resolution configured parameters.

Conflict Detection/Resolution

Conflict resolution describes the rules used to arbitrate on data conflicts
caused by changes made between a mobile client and one or more back end
enterprise data sources. This is performed first by identifying the conflict
(Detecting) and then resolving (Resolution) the conflict in one or more various
ways.

The Dexterra application server can detect conflicts in one of three ways:
Revision, Date/Time Stamp or Manual as well as identify a conflict situation by

row or column level.

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
20

Revision is a setting where a specific field or property is identified in a
single record source as revisioned and the Dexterra application Server will use
this to determine whether data has been changed on either the back end data
source or the mobile client.

Date/Time Stamp

Date/Time Stamp is a setting where a specific field or property is identified
in a single record source as date/time stamp and updated upon any insert/update
or delete and the Dexterra application Server will use this to determine whether
data has been changed on either the back end data source or the mobile client.

Manual is a setting where there is no specific field or property to identify a
conflict situation in a single record source therefore the Dexterra application
Server compares all the field or property data to define uniqueness and detect
whether data has been changed on either the back end data source or the mobile
client.

Depending on configuration of the Dexterra application Server, Conflicts
are resolved in one of four ways: First Update Wins, Last Update Wins, Admin
Resolution or Server-side Rule

First Update Wins

Under the First Update model the application server will only accept
changes of any record that is the first one to make an update. If a record is first
updated by the back end data source and a conflict is detected by the Update
Web Service, instead of returning an error, the Data Manager Web Service will
drop the version provided by the client and return a copy of the latest version of
the record from the back end enterprise data source to the mobile client.

Last Update Wins

Under the Last Update Wins model, the server need not detect conflicts.
Instead, it simply persists the changes from the mobile client to the back end
enterprise data source overwriting the current record in the back end enterprise
data source.

Admin (or Manual) Resolution

When configured for Admin/Manual resolution, the server will treat all
conflicts as requiring manual intervention to resolve and will return a copy of the
current record from the back end enterprise data source and optionally notify via

any notification service (SMS, Emai, etc.) that a conflict situation has arisen and

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
21

allow for resolution via the Dexterra Administrator. Doing so allows for column
level conflict resolution since the Administrator determines the values to reapply
back to the back end enterprise data source selectively.

Server Side Rules

Customizable Server Side Rules can be created to determine more
programmatically and specifically how certain conflict situations should be
resolved. For example, a conflict may be resolved based on the values of data in
a record. This flexibility allows for complete control over the specific actions
surrounding a conflict resolution scenario. !

Client Deployment from the Server

The application server contains the definition of one or more mobile field
applications that are to be downloaded to the mobile client, including the
Forms/screens represented as tasks (referred to as "FormFlows"), data-
interactions (referred to as a "FieldFlow"), and groups of FormFlows and
FieldFlows constructed into a Business Process/\Workflow (called a "ForceFlow").
The FormFlows, FieldFlows, and ForceFlows are described further below. The
application definition also includes the configured metadata associated to an
application such as View, Business Object, Business Constants definition. Also
included in the deployment is the specific business data from one or more back
end enterprise data sources required to run the mobile client in an “occasionally”
connected state.

The application server provides the foundation on which to deliver and
manage applications and to connect to existing enterprise data sources and
systems. The mobile enterprise platform applications are distributed and
managed to the mobilé devices, such as Pocket PC and Tablet PC devices, by
the application server, providing a highly manageable administration of all user
interfaces in the field.

C. ADMINISTRATOR COMPONENT

As noted above, the Administrator component (Figure 1) allows system
administrators to perform changes that are relatively regular or frequent. The
Administrator component provides access to decision variables, drop-down list
content, and other information in a format appropriate for business analysts or

administrators to manage. This approach to administration allows system

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
22

administrators to extend many functions down to the Administrator level without
compromising system integrity.

For example, data comprising business information that is used to define
the business processes of the enterprise can be received through a Business
Objects definition form. The Configuration Web Service provides access to this
aspect of the Administrator component.

D. CLIENT COMPONENT

As noted above, the client 102 (Figure 1) in the enterprise platform
architecture provides a framework in which the mobile application allows the use
of role-based business processes using techniques referred to as "ForceFlow",
"FieldFlow", and "FormFlow", and using Web Services, thus enabling
communications between the mobile client and the Dexterra application Server
and the enterprise data sources over a LAN/WAN network, such as the Internet,
via wired and wireless connections. The mobile application running on the client
devices functions in a manner that is optimized for small form-factor devices
providing an exception, easy to learn user experience.

In the illustrated system, the client is an object framework that is built
utilizing the ".NET Compact Framework" of Microsoft Corporation that is metadata
aware. The client component enables delivery of enterprise-class application
functionality on the mobile devices, which preferably operate according to the
"PocketPC" operating system or Microsoft Tablet PC operation system from
Microsoft Corporation. The client component also integrates with existing
"PocketPC" functionality to provide seamiess integration with Calendar, Task, and
Today screen functionality of the PocketPC interface. It thereby provides a stable,
effective environment in which to work.

FormFlows, FieldFlows, ForceFlows

Any business process tasks or steps or operations in the form of display
screens are called "FormFlows". The FormFlows are used to initiate process
interactions called "FieldFlows" that allow the initiation of business processes,
which are referred to as "ForceFlows". The FieldFlows allow launching of "out of
band" ForceFlows to bring real-world elasticity to the business processes.

The FormFlows are broken into three categories: (1) Information; (2)
Activity; and (3) Update. An Information FormFlow is a screen that shows

information needed by a mobile user to fulfill the next logical task in the business

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
23

process. An Activity FormFlow is a screen that shows something the user may
need to do or perform. An Update FormFlow is a screen that is displayed when a
mobile user is prompted to enter data that will be returned to the host applications
(the enterprise data sources).

A FieldFlow may be required, for example, when a part might have failed
and a search of inventory databases might need to be performed to see if any
matching parts or similar problems with solutions exist and are available, called a
lookup, or a FieldFlow may be required when a part might need to be ordered or
assigned or scheduled for delivery to the client, a FieldFlow called an update.

A ForceFlow is a business process, and therefore is a collection of
FormFlows and FieldFlows. An example of a ForceFlow would be time, travel,
and expense recording that is associated with a job or dispatch event.

Referring back to Figure 2, this block diagram shows how the relationships
between columns and fields in the target application are related to information In
the "FormFlows" (steps in the business process represented as ‘Forms” in the
application) and are then associated into the ForceFlow (the business process). .
There can be many Business Objects in one FormFlow and potentially more than
one FormFlow in any business process.

Filters allow characteristics and conditions to be placed onto the data when
referenced in the mobile application. For example, data type (e.g., Date), valid
types (e.g., only Monday through Friday), and any conflict conditions may be
detected. Other filter characteristics and conditions can be configured.

Views define the data and storage location for use in one or more Business
Objects, and the Business Object can be based on one or more Views. This
allows additional characteristics to be associated. For example, a Business
Object may be referred to as "Customer”, which may Include standard customer
details; location, contacts, inventory, and also SLA and other attributes that the
application would like to classify as Customer but not held in the same Target
table or even Target application.

V. ADAPTER ARCHITECTURE

The adapter architecture in accordance with the present invention is
illustrated in Figure 4. Some of the components illustrated in Figure 4 are
analogous to components illustrated in Figure 1. Components in Figure 4 that
perform functions for which a corresponding component is provided in the Figure

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
24

1 system will be identified in Figure 4 with the same reference numeral, except for
beginning with "4" rather than "1".

Figure 4 is a block diagram of a suitable computer system environment 400
constructed in accordance with the present invention. Figure 4 shows a mobile
client device 402, such as a Personal Digital Assistant (PDA) device that operates
in conjunction with the Microsoft PocketPC or Palm PDA operating systems. The
client device 402 includes the same components as described in connection with
the client device 102 of Figure 1, but are not illustrated in Figure 4 for simplicity of
llustration. The mobile client device 402 communicates over a network
connection 404 with an application server 406 to request data from the server and
receive data updates, provide new data, and receive configuration changes. It
should be understood that multiple mobile clients 402 can communicate with the
server 406. Only a single client device 402 is shown in Figure 4 for the sake of
drawing simplicity. |

The mobile clients 402 consume the server-side connector web services for
real time data retrieval from multiple enterprise data stores. Additionally, the
mobile clients consume the server-side data manager web services for the
management of real-time client-side data updates, server side data updates and
system configuration updates.

The application server 406 communicates with enterprise data sources
408, such as CRM data sources, ERP sources, financial system resources, legacy
data stores, and the like.

A "Dexterra Studio" component 430 communicates with the server 406 and
includes an administrator application and a developer application (not illustrated in
Figure 4). More particularly, the Studio component interfaces with the
Configurator of the server 406, and a data server DDS interfaces with the server
and the Adapter Framework of the server 406, which communicates with the
enterprise data sources 408.

The Adapter Framework provides an interface that will enforce specific
inputs and outputs required in moving data between the server 406 and any other
enterprise data source. The Data Manager of the server 406 will request and
respond to any properly defined connector component to communicate with the
enterprise data sources 408 through the Adapter Framework. Thus, the server
406 uses the definition of the Connection Objects, Command Objects, Data

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
25

Objects, and Views to determine how and what data to retrieve or persist to a
back end enterprise data source.

A design tool kit ("Dexterra Adapter Designer”, or DAD) is supplied with the
Studio 430 to permit developers to specify the components of the Adapter
Framework. That is, the DAD 430 provides a developer with the means to
connect and construct Adapter Framework data components to any Dexterra
Supported Adapter utilizing the Dexterra Studio VS.NET plug-in. Components
include Connection Objects, Command Objects, Data Objects, and Views.

Using the DAD 430, a developer will create a Connection Object to a back
end data source using a Dexterra Supported Adapter. This Connection Object will
expose (either using Discovery/Intraspection or Description) the data interface
object(s) available through the Adapter as either a Table, Stored Procedure, Script
or Object (EAI, etc.) Using the Dexterra Adapter Designer, a developer will then
create a series of Command Objects that perform specific actions through an
Adapter such as Select, Insert, Update and/or Delete. A developer then defines a
Data Object in which they will select the appropriate Select Command, Insert
Command, Update Command, and/or Delete Command. A View is then bound to
the Data Object for its request/respond actions. Using this tool and architecture, a
developer can request and persist data from one or more back end enterprise
data sources mapped to a single defined data object within the Dexterra Server
406, thus providing a layer of abstraction to the physical data structure and
interface capabilities.

A. COMMAND OBJECTS

The Command Object of the Adapter Framework defines an action to be
performed through an Adapter (i.e., Connector) to retrieve or persist data. For
example, a "SaveCustomer" command might be defined to save a Customer data
object to an enterprise data source through an Adapter. Command types or
formats will be determined by the Adapters according to the enterprise data
sources with which they interface and therefore must support. For example,
potential Command types for a mobile data system might include Table,
Procedure, SQL, Script, and Object.

The Command Objects will specify an action that will be performed. In
accordance with the invention, the Command action types include five defined
actions: (1) READ, (2) ADD, (3) UPDATE, (4) REMOVE, and (5) READ for EDIT.

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
26

These Command actions are described further below in conjunction with the Data
Object discussion. Command Objects can specify filters, which will operate when

a Command is executed. Each filter will operate on data in accordance with the

“data type of its corresponding Command type. A Command will include a Column

attribute, which comprises the columns of data that are returned when the
Command is executed. Lastly, a Command includes parameters that specify
values necessary for proper execution of the Command.

B. DATA OBJECTS

The Data Object associates Command Objects to retrieve or persist data,
logically grouping them into a single object (e.g. a Customer object). A Data
Object is defined by (that is, it is the result of) Commands that are executed on
enterprise data sources, through the Adapters. As noted above, Commands
include READ, ADD, UPDATE, REMOVE, and READ for EDIT. The READ
Command is a Command object that will retrieve data, define which data columns
are returned and what their attributes are, and will override Data Types for casting
from Adapter to the ".NET" paradigm. The ADD Command is a Command object
that will persist new instances of data through an Adapter to insert new data
instances back into the corresponding enterprise data source. The UPDATE
Command is a Command object that will persist changes to existing data items
through an Adapter back to the corresponding enterprise data source. The
REMOVE Command is a Command object that will remove data from an
enterprise data source through an Adapter. The READ for EDIT Command is a
Command object that will retrieve a single record with a RowLock through an
Adapter.

The Data Objects will map the return elements of the READ Command to
the parameters of the ADD, UPDATE, REMOVE, and READ for EDIT Commands.
A single Data Object can retrieve and persist data through different Commands to
potentially different Adapters.

C. CONNECTIONS

As before, the Connections will interface to the enterprise data sources to
provide data access by the mobile client application. In the Adapter Framework
430 described in connection with the present invention, the Connections will not

communicate directly with Views, but will instead interface directly with the

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
27

Command Objects, which will eventually exchange data with the Data Objects and
Views.

D. VIEWS

In the Adapter Framework in the Server 430 of the Figure 4 configuration, a
View is not bound to a single data table, as was the case in the Figure 1
configuration. Rather, a View is bound to a Data Object with defined Commands
for READ, ADD, UPDATE, REMOVE, and READ for EDIT. Thus, a much more
versatile data interface is provided. The structure of a View is defined by the
selected data columns specified in the READ command for the Data Object. In
addition, filters are no longer created at a View object, but are created at a
Command Object.

As described further below in the next section, the View types of the Figure
4 system include Direct Views, Derived Views, Delegated Views, and Definition
Views. The configuration of the View Objects in the server 430 enables
abstraction of View CRUD (Create, Read, Update, Delete) operations to the
enterprise data sources, and enables CRUD to be defined instead of hard coded.
VI. VIEW TYPES

As noted above, mobile clients gain access to business enterprise data
sources through configurable Views that interface with the data sources through
Data Objects that are defined by Commands, which in turn communicate with the
data sources through Connectors (also referred to as Adapters). Each type of
View will interface to the data sources with a different functionality so that
communications links and other system resources can be used more efficiently.

In the system illustrated in Figure 4, the View types include Direct Views,
Derived Views, Delegated Views, and Definition Views. As described further
below, these new View types provide greater control over data interfaces and can
be configured for greater utilization of system resources.

A. DIRECT VIEWS

A Direct View will retrieve data directly from an enterprise data source via
the Data Objects, Commands, and Adapters. A Direct View is a type of View that
is defined for the mobile client only. Most View types retrieve their requested data
by resorting to a local client relational data store (cache) called SQLCE. In
contrast, the Direct View type requests data directly from the enterprise data

sources instead of going to the local client data store cache. In the event of a

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
28

failed connection to the enterprise data sources, the Figure 4 system provides an
optional FailOver operation that can retrieve data from the SQLCE if the
enterprise data sources are not available. This permits a Client/Server-like
operation of a Mobile Application where control over what data is persisted locally,
as compared to what data is required in real-time (such as inventory data), can be
configured.

When the mobile application for the system (Figure 1) is planned and
designed, the application developer can select a View (defined in terms of Data
Objects) to be a Direct View. Such design decisions can be specified through
system development tools, which will be referred to as "Dexterra Unified
Development Environment Tool" or as the "Dexterra Adapter Designer" (DAD)
tool. Typically, use of a Direct View by a mobile client is best implemented as part
of the View Filter conditions for client variables so as to limit the results returned
from the backend datasource to be user specific.

When the application is running on the mobile client, the mobile client will
request data from a View during a Business Object Request (called a FindSet
operation). The mobile client will see that the View is a Direct View, and will
therefore make the data request of the View directly to the Dexterra Server using
the Data Manager and passing any Environment or User Defined variables for the
View Filter. The Data Manager will retrieve the data for the View from the
backend enterprise datasource (which could be a Default, Derived, or Delegated
View Type) and will return the data to the client, which will then return the results
of the data retrieval to the Business Object.

B. DERIVED VIEWS

A Derived View provides the ability to derive (abstract) a definition of data
from one or more defined Views within the data server of the system. This
enables a data item to be defined based on one or more data structures that are
predefined as a View. A Derived View will incorporate filter parameters and will
request data from a server that retrieves a base set of associated data at runtime
from the enterprise datasources and then places the retrieved data into a
relational data engine (RDE) that applies the Derived View filter parameters to
extract filtered data and provide it to the requesting Derived View type. Thus,
Derived Views can filter data from one or more other Views from different

enterprise data sources (such as Siebel, Oracle, etc.) using common ANSI SQL

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
29

operations, thus utilizing the power of a relational engine such as SQL Server or
Oracle.

Derived Views are defined in system metadata and are constructed at
runtime within the Dexterra Server (which is stateless) to provide for the data
abstraction rather than predefining the structure as a table or defined object,
giving true flexibility towards change in the enterprise.

Using the Dexterra Unified Development Environment Tool, a developer
first creates one or more base Views of type Default, Delegated, or Defined and
configures filter conditions, permissions, and the like. A Default type can be set to
be one of the remaining View types, as desired. After the base View is created, a
Derived View can be created by selecting one or more Views and defining the
attributes of the View (such as the fields) to map and the filter condition to apply to
the data returned from the base Views.

At runtime, the Dexterra Server will respond to a Derived View request by
first retrieving the data from the base Views of the Derived View and then will put
the retrieved data into a relational engine such as SQL Server or Oracle, and then
apply the Derived View Filter Condition (as SQL) against the data and return the
data for delivery to the Data Manager for comparison and for preparation of
delivery to the mobile client.

The Derived View is illustrated in Figure 5, which illustrates operation of a
system 502 with a Derived View (indicated as "V3" in Figure 5) that is based on a
"V1" View and a "V2" View, such that the V1 View retrieves Customer data from a
Siebel database 504 and the V2 View retrieves History data from the Siebel
database. The V3 View specifies only a subset of History data for retrieval, which
is accomplished through filter conditions of V3. The data subset is then returned
to the mobile client 506. The V2 View is a type of Defined View, in that only a
subset of the order history is called for by the V2 View. The referential data store
508 contains metadata from which the specified data can be retrieved:; it does not
contain raw data of the order history. Thus, the data that must be retrieved from
the database 504 and returned over the communications links will be reduced,
because only the data of interest is actually pulled from the database and sent to
the Derived View V3.

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
30

C. DELEGATED VIEWS

The Delegated View provides the ability to delegate, or cache, data from
one or more backend enterprise data sources on the Dexterra Server and
configure the Dexterra Server to retrieve and update its cache based on a
predefined set of rules, such as a timer interval (every hour, etc.) or a
predetermined event (referred to as server side rule triggering). Thus, a
Delegated View will periodically retrieve data from the enterprise data sources
according to parameters of the Delegated View and will place the retrieved data
into a Relational Data Engine cache.

Using the Dexterra Unified Development Environment Tool, a developer
creates a View based on a specific Adapter-supported object type, such as Table,
Object, Stored Procedure, Script, or the like. The developer then configures the
filter conditions, permissions, and associated object parameters and then marks
the View as a Delegated View and configures the update functions of the filter,
such as filter time interval, event rules, and so forth. Thereafter, at runtime, the
Data Manager of the Dexterra Server will automatically request data for the View
from the defined Adapter at the set time interval or server side event and will
cache the data in the local RDE.

In response to a mobile client request, the Data Manager of the Dexterra
Server will retrieve the data from the local RDE instead of requesting the data
defined by the View from the Adapter that is connected to the enterprise data
source. A filter condition can apply to the local RDE source, thereby increasing
the performance of the request and offloading the dependent back end data
source for that defined set of data.

Thus, after the server executes automatic data retrievals based on the
specified update functions, subsequent requests from mobile clients for enterprise
data can be filled by getting the requested data from the RDE cache rather than
directly from the enterprise data sources, thereby reducing the data traffic
between the mobile client and the data sources. Updated data from mobile clients
is returned directly to the enterprise data sources through the Adapters.

D. DEFINITION VIEWS

A Definition View provides the ability to create a user-defined View in the
situation where there is no backend data store in the enterprise to retrieve or

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
31

persist the data. This ability can be commonly used to either augment a backend
system for functionality required in the mobile offering that is not part of the
enterprise system. Another use might be to enable the enterprise to relate data
from the mobile application to data in the backend enterprise data sources without
modifying the backend enterprise system. A user-defined View (Definition View)
will have an option for "ServerOnly" or "ClientOnly". The ServerOnly option can
be used to store data for purposes of augmenting a backend data process but not
required for the mobile application. The ClientOnly option can be used to store
additional data elements to be used in the mobile application such as pick lists,
constants, enumerators, and so forth.

A Definition View permits control over where retrieved data is maintained,
either at the system server or at the mobile client. The extent of system resources
will generally determine selection between the two configurations.

To utilize Definition Views, a developer uses the Dexterra Unified
Development Environment Tool to create a View by defining the data structure,
including field names, data types, and default values that will store the business
data. Then the developer can create a filter as well as a permissions set for
controlling access. The ServerOnly option can be selected, which would not
create the View definition on a mobile device. The ServerOnly definition would be
a worker View used for other operations, such as a Derived View. The ClientOnly
definition would create the View on the Client device only. If this option is
selected, the user would be able to enter seed data manually, import data from a
delimited source or XML file, and export the data to an XML file.

The Dexterra Server will use the Defined View structure in the RDE as its
backend datasource. In the case of the ServerOnly option, the View definition will
not be created on the Mobile client data cache (SQLCE). In the case of the
Default or ClientOnly option, the View Definition will be created as a table in the
local client cache (SQLCE). If ClientOnly, it will be seeded with the data
configured on the server (user entered or imported).

. E. RELATIONAL DATA ENGINE

In conjunction with the configurable Views, the system also includes a
Relational Data Engine (RDE) within the framework at the server 406 (see Figure
4). Alternatively, the RDE could be located at other computers of the platform
system that can communicate with the server. The RDE uses a standard syntax

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
32

such as ANSI SQL in the real-time communication of data from one or more
backend enterprise data sources 408 to one or more mobile client devices 402 in
a stateless way. As described above, the RDE is useful for Derived Views,
Delegated Views, Defined Views, and is also utilized for complex filter conditions,
state modeling of mobile clients, comparisons of client data, and the like. That is,
the RDE is utilized in accordance with the specific View types, as set forth above.

As the Dexterra Server moves data from one or more backend enterprise
datasources to one or more mobile clients, it utilizes the power of the RDE to store
the data in real time without the need for a static definition of a data model
mapping to the definition of the data. The RDE is used to take advantage of the
power of a standard use syntax such as ANSI SQL to promote the correlating of
data in filter conditions or data abstraction.

F. METADATA BUSINESS OBJECTS

To utilize the configurable Views and RDE, the system utilizes metadata
business objects that provide the ability to create and define a Business Object in
meta data that is bound to one or more Views from one or more backend
enterprise data sources that can be used by one or more mobile client
applications utilizing the Dexterra Studio VS.NET plug-in. This provides the ability
to create relationships to one or more other Business Objects for a true object
oriented application component architecture utilizing the Dexterra Studio VS.NET
plug-in.

Use of the RDE is achieved using the Dexterra Unified Development
Environment Tool to configure the definition of a Business Object including
Properties, Default Values, Relationships, Filter Conditions, Permissions,
Associated Applications and Business Rules. At runtime, the mobile client, upon
request from a Business Object, creates an object instance based on the
metadata definition. This enables the client application to then execute operations
such as Find, FindSet, Save, and Delete. The mobile client will perform thése
operations against the defined View attributes for the Business Object. This may
retrieve or update data on the local device, for example.

VIl. CONFIGURATION AND USER INTERFACE

In the Adapter Framework in the Server 430 of the Figure 4 configuration, a

View is not bound to a single data table, as would be the case in a system without

the present invention (and as indicated in Figure 2). Rather, a View is bound to a

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
33

Data Object with defined Commands for READ, ADD, UPDATE, REMOVE, and
READ for EDIT. Thus, a much more versatile data interface is provided. The
structure of a View is defined by the selected data columns specified in the READ
command for the Data Object.

In the system that utilizes the View object configuration of the present
invention, filters are created at a Command Object, rather than at a View object.
The configuration of the View Objects in the server 430 enables abstraction of
View CRUD (Create, Read, Update, Delete) operations to the enterprise data
sources, and enables CRUD to be defined instead of hard coded. Other than the
changed View configuration and concomitant changes such as for creation of
filters, the remaining components illustrated in Figure 1 can be utilized for a
mobile platform system constructed in accordance with the present invention.

Figure 6 shows a diagrammatic representation of the data architecture for
the mobile platform illustrated in Figure 1 and comprising an embodiment of the
present invention. Figure 6 shows that a View object of the data system has a
ViewlID and is bound to a defined Data Object. Figure 6 shows that the Data
Object can include one or more commands from among a READ command, an
ADD command, an UPDATE command, a REMOVE command, and a READ for
EDIT command.

Figure 6 shows that Command objects also are bound to the Data Objects,
and also are bound to Connection objects, which are in turn bound to Adapter
objects. Figure 6 shows that the Adapter objects interface with a metadata store
that interfaces with the enterprise datasources to retrieve data for the mobile
platform, as described above.

Figure 7 is a diagrammatic representation of the data access configuration
for the mobile platform constructed in accordance with the present invention.
Figure 7 shows that a mobile client (indicated as "Dexterra Client" in Figure 7)
communicates with the application server ("Dexterra Server" in Figure 7) through
a View object at the server, where the View object interfaées with a Data Object to
act through Command objects to access Adapter objects that ultimately interface
directly with enterprise datastores (e.g., Microsoft SQL Server and Siebel data
servers in Figure 7). At the client device, the mobile application communicates
data requests through a smart client to metadata stores and business data stores
to the View objects at the application server.

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
34

Figure 8 illustrates how access to the DAD features of the mobile platform
system is gained through a file explorer type of graphical user interface. Figure 8
is a screenshot of a display on a computer device that is hosting the DAD
computer program application. In Figure 8, the display is a window-type display
titted "Dexterra Explorer" and shows a workspace with a file tree view. The tree
view shows a hierarchy of "Servers" with server names indicated as Solomon,
Tempest, Ultrium, and Thunder. It should be apparent that server names may be
arbitrary selected.

In accordance with the DAD program, a variety of actions can be taken with
respect to a selected server. Figure 8 shows that the "Solomon" server has been
selected, with the Data Access menu item being highlighted to show that data
access options can be investigated. Beneath the Data Access menu item,
submenus are shown, comprising Data Sources, Datasource Types, Commands,
Data Objects, and Views. Using the DAD program and the explorer menu, a
mobile application designer can specify new datasources and can interface with
corresponding Adapters to gain access to enterprise datasources for the mobile
clients that will use the developed application.

Figure 9 shows a designer having selected "Datasource Types" on the
Dexterra Explorer menu and Figure 9 shows that a context menu is generated,
providing the designer with options to add a new datasource type, or refresh the
view, or edit a datasource type, or delete a datasource type. Thus, selecting a
Dexterra Explorer menu item can generate a context menu that provides a menu
of additional operations on the selected menu item. Figure 10 shows selection of
the Data Sources menu item from Figure 9, illustrating exemplary data sources
available in the system under design. Figure 11 shows selection of a particular
datasource type, from which a context menu may be generated for editing
operations on the selected datasource type. Figure 12 shows View types that are
available for selection. As with the other Dexterra Explorer menu items, selecting
the View menu item will generate a context menu that allows a designer to
perform editing operations on View types, including create, edit, and delete.

As noted above, if the "Data Sources" node on the Dexterra Explorer menu
is selected, a new Data Source can be specified via a context menu that is
generated by the Explorer program. Figure 13 shows a Data Sources Properties
dialog box that is generated by utilizing a Data Sources context menu to create a

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
35

new type of Data Source. Figure 13 shows that the designer is presented with a
screen that permits selection of a data adapter, based on the data types available
to the designer. In Figure 13, the available adapter types are shown as OLE DB
for SQL Server, OLE DB for Oracle, Clarify Adapter, and Remedy Adapter. These
adapter types are shown for purposes of illustration only; it should be understood
that additional and different adapter types could be provided in accordance with
the teachings of the invention. Figure 13 shows that the designer also can specify
a Connection type. After selecting an Adapter, the designer would select the
Connection display button to specify the connection parameters.

Figure 14 shows an authentication screen for the designer to provide login
information and choose a particular enterprise datasource target. Once the
designer is authorized, the display will be changed in accordance with the
selected adapter. After a new datasource is defined, using the DAD interface, a
new datasource type node will appear in the Dexterra Explorer tree view (Figure
11), in accordance with the designer's newly defined datasource type.

Other nodes can be created, added, edited, and deleted from the Dexterra
Explorer tree view. Figure 15 shows a designer making a Command selection
from the tree view. Selection of "Add New Command" in Figure 14 generates the
"New Command" dialog box of Figure 16.

Figure 16 shows that a name can be entered for the new command, along
with parameters to specify datasource, action, data type, and source, and also
space for entry of a SQL statement. Figure 17 shows that the Parameters tab of
the Add Command dialog accepts additional command specifications.

Among the control parameters for the Add New Command dialog box of
Figure 16 are:

Command Name Textbox--The DAD user enters a name to uniquely
identify the command. On "save" there is a validation that the Command Name is
unique.

Datasourse--This is a drop-down list of datasources that have been
defined. This information is discovered from metadata. Every command is
required to have a corresponding datasource.

Command Type (Action)--This is a drop-down list of the different types of

commands available. Every command is required to have a command type.

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
36

Data Group box--This group box includes tabs for "Main" and
"Parameters"”, and contains the controls to define the actions of the command.
This box will be different depending on the chosen datasource. For example, the
illustrated display in Figure 16 is for a RDBMS such as SQL Server. Those skilled
in the art will appreciate that a system such as an Oracle/Siebel system probably
would not have the "SQL Statement" text box. |

Source Type radio button--Selecting this radio button enables the two
corresponding combo boxes (Datasource and Source Type) and disables the SQL
Statement textbox. This radio button indicates the designer is using the enterprise
objects available by the enterprise data system.

Source Type box--is a list indicating the types of Enterprise Objects
available from the enterprise system. An example of source types includes tables,
views, or stored procedures in SQL.

Source box--a drop-down list of the available enterprise objects for the user
to select based on the filtering by type.

SQL Statement radio button--Selecting this radio button enables the
corresponding textbox and disables the SourceType and Source combo boxes.
This radio button indicates the designer is going to specify the SQL Statement that
this command shall execute.

SQL Statement text box--The designer enters a SQL statement to be
executed by the command.

Among the parameters for the Add New Command--Parameters dialog box
of Figure 17 are:

Parameters list box--Contains a list of parameters for the selected
Enterprise Object, if they pertain. Figure 17 shows parameters of Return Value
and CustomerFirstName.

Parameter Properties group box--shows a grouping of controls that
describe the properties of the selected parameter.

Name text box--The name of the selected parameter. In Figure 17, this
textbox is grayed out to indicate it is disabled because the parameter name.
cannot be edited.

Direction box--This contains a drop-down list of the direction types a

parameter can have, such as Input, Output, and Input/Output.

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
37

Data Type box--This contains a drop-down list of the datatypes available
for the parameter, if applicable.

Required box--Contains the Boolean values True or False and thereby
indicates whether or not the parameter is required.

Value text box--This text box is available if a value for the parameter is to
be forced.

After the editing process is completed, the tree view in the Dexterra
Explorer will be updated to reflect any added items. For example, Figure 18
shows that a new Command called "CustomerQuery" has been added to the tree
view. Thus, the name command will be available to any subsequent developer
who uses DAD to interface to the Solomon server. It should be noted that the new
CustomerQuery command also could be manipulated (copied, moved, edited and
moved, etc.) to another node of the tree view, using the Dexterra Explorer
graphical user interface and editing commands.

Thus, the View Object configuration described herein supports multiple
View types for increased flexibility in the operation of the mobile data platform.
The new View Object configuration supports View types including Derived View,
Delegated View, Direct View, and Defined View. Each View type will interface to
the enterprise datasources with a different functionality, so communications links
and system resources can be used with greater convenience, flexibility, and
efficiency.

Thus, the Dexterra Explorer tool provides the ability to create custom
enterprise connectivity to disparate backend datasources, and provides the ability
to separate the connectivity to any backend enterprise system with the
configuration and adaptation to the specific instance of an implementation. This
allows the communications between the .NET interface and a backend system to
be developed separately from the configuration of the information required from
the backend system, thus creating an abstraction layer and allowing for a
configuration tool to manage the adaptation, as described herein. In this way, the
disclosed tool implements a specific Dexterra Adapter Interface that will bind to
the Dexterra DataManager and enforce specific inputs and outputs required in
moving data between the Dexterra Server and any of the enterprise datasources.

Figure 19 is a flow diagram that illustrates operation of the mobile data
platform system as described above. In the first operation, represented in the flow

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509

38
diagram box numbered 1902, the method of processing data that is shared

between multiple enterprise datasources and a mobile client that communicates
with an application server begins with receiving a request from a mobile client for
a data operation on data at one of the enterprise datasources. In the next
operation, represented by box 1904, a configurable View Object is determined,
wherein the View Object is adapted to be bound to a Data Object for execution of
specified Command Object data actions corresponding to the requested data
operation. In the last operation at box 1906, the operations on the data are
performed as specified by the View Object, utilizing a Relational Data Engine.

The computer program tool referred to above as "DAD" for use by
designers of mobile applications is provided to create custom enterprise
connectivity to disparate enterprise datasources of the mobile data platform
system. The DAD application program tool provides these features through the
user interface illustrated in the drawings. Thus, the DAD application program tool
provides a means for specifying application processing of data that is shared
between the multiple enterprise datasources and mobile clients.

The computer program comprising the DAD tool can be installed on a
computer apparatus or system, such as a desktop computer, notebook computer,
or the like, so long as the DAD tool program can receive user input to carry out the
connection adapter specifying process and can verify datasources, bindings, and
the like. The configured adapters and Connection Objects can be included within
a mobile data platform system and installed at an application server of the mobile
platform such as described above, so that the operational features of the adapters
can be utilized at the mobile clients for operations with the enterprise datasources.

As described above, the DAD tool provides a means for configuring a View
Object that provides desired data operations on data objects stored at a back end
enterprise datasource. When the configured View Object is incorporated into the
mobile data platform, the mobile data platform carries out its operations on data
requested by mobile clients in accordance with the specified View Object. In this
way, the computer system provides a configurable View Object that is adapted to
be bound to a Data Object in the computer system for execution of specified
Command Object data actions in accordance with the View Object.

The present invention has been described above in terms of a presently

preferred embodiment so that an understanding of the present invention can be

WO 2006/102475 PCT/US2006/010509
39

conveyed. There are, however, many configurations for mobile enterprise data
systems not specifically described herein but with which the present invention is
applicable. The present invention should therefore not be seen as limited to the
particular embodiments described herein, but rather, it should be understood that
the present invention has wide applicability with respect to mobile enterprise data
systems generally. All modifications, variations, or equivalent arrangements and
implementations that are within the scope of the attached claims should therefore
be considered within the scope of the invention.

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509

40
CLAIMS
WE CLAIM:
1. A computer system data architecture framework for use in a mobile

data platform system for processing of data that is shared between multiple

enterprise datasources and a mobile client that communicates with an application
server, the data architecture framework comprising:

a configurable View Object in the computer system that is adapted to be
bound to a Data Object in the computer system for execution of specified
Command Object data actions in accordance with the View Object; and

a Relational Data Engine that performs operations on data as specified by
the View Object.

2. A computer system as defined in claim 1, wherein the View Object is
a Derived View type in which a data definition for requested data is derived from
one or more View Objects at the application server.

3. A computer system as defined in claim 1, wherein the View Object is
a Delegated View type in which requested data is retrieved from a delegated

cache store at the application server.

4, A computer system as defined in claim 3, wherein the delegated
cache store provides data to which a predefined processing rule has been

applied.

5. A computer system as defined in claim 1, wherein the View Object is
a Definition View type in which requested data is provided in accordance with a
data definition of the Definition View type.

6. A computer system as defined in claim 1, wherein the View Object is
a Direct View type in which requested data is retrieved directly from one of the

enterprise datasources.

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
41

7. A computer system as defined in claim 1, further comprising:

a Connection Object that provides an interface to a back end enterprise
data source and exposes a data interface object available through the Connection
Object as either a Table, Stored Procedure, Script, or Object;

a Command Object that performs specific data actions;

a Data Object that permits a mobile data client to specify one of the
Command Object data actions to be performed on the data interface object; and

a View Object that is adapted to be bound to the Data Object for execution
of the specified Command Object data actions.

8. A computer system as defined in Claim 1, wherein the data actions
include at least one action from among data actions comprising Select, Insert,

Update, and Delete.

9. A method of processing data that is shared between multiple
enterprise datasources and a mobile client that communicates with an application
server, the method comprising:

receiving a request from a mobile client for a data operation on data at one
of the enterprise datasources;

determining a configurable View Object that is adapted to be bound to a
Data Object for execution of specified Command Object data actions
corresponding to the requested data operation; and

performing operations on the data as specified by the View object utilizing a

Relational Data Engine.

10. A method as defined in claim 9, wherein the determined View Object
is a Derived View type in which a data definition for requested data is derived from

one or more View Objects at the application server.

11. A method as defined in claim 9, wherein the determined View Object
is a Delegated View type in which requested data is retrieved from a delegated
cache store at the application server.

10

15

20

25

30

WO 2006/102475 PCT/US2006/010509
42

12. A method as defined in claim 11, wherein the delegated cache store
provides data to which a predefined processing rule has been applied.

13. A method as defined in claim 9, wherein the determined View Object
is a Definition View type in which requested data is provided in accordance with a
data definition of the Definition View type.

14. A method as defined in claim 9, wherein the determined View Object
is a Direct View type in which requested data is retrieved directly from one of the
enterprise datasources.

15. A method as defined in claim 9, further comprising:

determining a Connection Object that provides an interface to a back end
enterprise datasource and exposes a data interface object available through the
Connection Object as either a Table, Stored Procedure, Script, or Object in
accordance with the determined View Object;

determining a Command Object that performs specific data actions in
accordance with the determined View Object;

determining a Data Object that permits a mobile data client to specify one

of the Command Object data actions to be performed on the data interface object.

16. A method as defined in Claim 9, wherein the data actions include at
least one action from among data Select, Insert, Update, and Delete.

17. A computer system including a data architecture framework for use
in a mobile data platform system for processing of data that is shared between
multiple enterprise datasources and a mobile client that communicates with an
application server, the computer system comprising:

means for determining a configurable View Object in the computer system
that is adapted to be bound to a Data Object in the computer system for execution
of specified Command Object data actions in accordance with the View Object,
wherein the data actions include at least one action from among data actions

comprising Select, Insert, Update, and Delete;

10

WO 2006/102475 PCT/US2006/010509
43

means for performing operations on data as specified by the View Object;
and

wherein the means for determining communicates with a Connection

- Object that provides an interface to a back end enterprise data source and

exposes a data interface object available through the Connection Object as either
a Table, Stored Procedure, Script, or Object, communicates with a Command
Object that performs specific data actions, communicates with a Data Object that
permits a mobile data client to specify one of the Command Object data actions to
be performed on the data interface object, and communicates with a View Object
that is adapted to be bound to the Data Object for execution of the specified

Command Object data actions.

PCT/US2006/010509
1/19

WO 2006/102475

1adojarag

A 1 (foet7] [apoei0) (1o =) ===
- 80k gg E @) || | [eanosey

20 | | 1] ey
{{‘ S—— ey | || e |

¥

9890 | il
h 10}28U109 TQ D
4 S80MI8%] m,nEt ;
, A Ji
=== WX Iabeuejy

s J dvos - geg Bleq ||
-ujupy , * \m_SL
|Leueprag kao,m:ws\ &QJIQ @ll_ ——

__ 58085 2109 |

— 011 —
g&\ a0/ s 0

¥elk

PCT/US2006/010509

WO 2006/102475

2/19

2914
aseqeieq aseqereq aseqele(y :
8/qe] __olgel . alqel Jab.18)
et Py (lyuiniog) | pigd Jldumog|
(900/T141dy/so0ms gam) Jooauusy_ ~ Jsunioy
MO, MIA %] [Mipw -
I - e
10810 ssausng _palipssausng] N
MO}pjoK 1.
MO[{8910] | Tddy
,.rf:..,&wm.é&m .

PCT/US2006/010509
3/19

WO 2006/102475

oM L
{AINVSEM
8lE a0e~ [ogaoioeba
BIECT IR
. mbm,r/// -
S \@&g o AueLE) TINTHT R —
00°000°28 |Irmpaig | 2RI
ys | aueyisey uRNISET | | N 7 b—
gap | ey SUBNISH | | IWYN 4]
ZLi0S | GuepiD Wlmwl W0 | |ar y3auob—
-l . — Janiss eugag
9ig , .
pig—" 28| d43

PCT/US2006/010509

WO 2006/102475

4/19

© 0 HOIOsUUOD

90y

¥ Old

0

%

PCT/US2006/010509

WO 2006/102475

5/19

¢0g

¥0S

AojsIH JeplO

BleQq Jowoisn)

[eg8IS

G Old

805

al0)s eleq
[enualaloy

90§

\N>

USID SlIqoN

/

T A

EN

PCT/US2006/010509
6/19

WO 2006/102475

VE § o_&gmi
{0) samgimy.
{oJseg

{0} awey

amain

A

Qu: § ggms_%c :
{0} Buwey.

;) %mseawgwﬁﬁm
-qlpe : : V ; {31} {0) pUewio] ZAONEY
: E T 23| Gt (o) pueiiinory31yaan |

~bilo) m%___sa dav |

{0l fsag |
{0) awrey

éo.sg .
TRl

m_.nmn; L] ABIA
sdbinA-

{31} to} qiedA puswiven Koie
- om:g %%&:8
B R Ao o 20
Su Q&,Emsaoo

o) auen

a_EE,__ao)

{%4}{0) greidepy |,
{0} promsseg | RS

{O) slreNssgy 11 i - -
{0} mpsws uogosuupg | s | {0} payioddngseds fpuguinies
{0} sanog B {Q) uopdwosag
{0)ss0g : ; {0) sweN

(o) awey (¥, . >

{o) Bumguomstuog i n:mﬁmﬁ«

QJuoRIBLueg

WO 2006/102475 PCT/US2006/010509

7/19

ks

Adapter Sk

s

=

Dexterra Server

FIG. 7

i
o
;

=il

A

s
SR
IR

sl

NGB
S

Dexterra Client
Smart Client
<Customer |Request>

<Customer [Definition> <Customer| Data>

WO 2006/102475 PCT/US2006/010509

8/19

-4 Commanils

» : f- 23, Data Objects

' i 5= Yiews

(K Business Information
B8 Business Rules
(38 Logging
-3 Utliies

; G182 Tempest

FIG. 8

WO 2006/102475 PCT/US2006/010509

Add Wew Datasource Type...
Refresh

Edit...

Delate

Eg{@ Business Rules

B-{F] Securty

-*"'Z*i?] Legding
-y Utiliies
il Logout {admin}
H-8= Tempest

G0 Ultrium,

FIG. 9

WO 2006/102475

il =175, Servers

: E—] Solomon

B~ # Datahccess

SRTER D it S ourmes: i

- 8B SQAL Infarmation

----- A OmnisSAL DAM-

- Ay Oracled DAM

- Ap Sybase DAM

= Datasource Types |
- [#] OLE DB Adapter for SAL S

FIG. 10

PCT/US2006/010509

WO 2006/102475 PCT/US2006/010509

l o m Servers

| B2 Solomen

& 7 Data Access
k-] Data Sources

Clarify Mapter,
| Remedy Adapter

. n, Dats Objects

. Views

| usiness Information

. Buginess Rides
Security

FIG. 11

WO 2006/102475 PCT/US2006/010509

12/19

iﬁf&_lﬁtﬁﬂ‘a Explorer oy
he B2 X
= 1% Servers

L‘—] Solomen |
E:'lf}’ ‘Data fccess:

u% Eiata Objects
.

i Actionttem
g Customer
el Bl
gl msUE
s Business Information
E-E5 Business Rules
2] Security
i ¥ Logging,

WO 2006/102475 PCT/US2006/010509

Ch.qosé a dg’;@ éyi;l‘ap‘tér:' o

DLE DB Adapterfor SGL Ssmer
|| OLE DR AdapterforOracle

it | Clarify, Adapter

Remedy Adapter

FIG. 13

WO 2006/102475

14/19

PCT/US2006/010509

Spacrfy’the fnllowlng to connect ta SQ L Server data,

5

Select or errter a semer rame:,

FIG. 14

WO 2006/102475 PCT/US2006/010509

| & ?@ Servers

i -5 Sclomon

B # Data Access

' ~‘%‘@a‘ta:5&urces
Aeld New Com

»-’iﬁl Iogging
- Utiliies

i 1ngout fadmin)
-85 Tempest

B8] Ultrium

-5 Thunder

FIG. 15

WO 2006/102475

16/19

Start Fape View li)exterra I -

L.

Dexterra Adapter Designer - Add Command ‘

. Command Mame: -]Gmmmers

i

| .
i o .
|

|

Datasource: [FF A“)

Source Type: lTB!D]‘eL

‘ Source: ldax_customem

PCT/US2006/010509

FIG. 16

WO 2006/102475 PCT/US2006/010509

18/19

, B x

| B Servers

=85 Solomon

B # Datafccess

gj% Data Sources

El-+@ Commands
e ClistomerQuery |

| CustomerSave

EQ CustomerlUpdate

~efy Custemeringert

----- ¥ CustomerDelste)

- PartsGuery

- -l PartsSave

-2 Patsbpdate

..... &> Patsinest

..... X PartsDelete

- &, Data Objects

FIG. 18

WO 2006/102475 PCT/US2006/010509

19/19

(START)

A 4

Receive request from a mobile
| client for a data operation on data at
an enterprise datasource.

1902

A

Determinev a configurable View
Object that is adapted to be bound
to a Data Object for execution of
specified Command Object data
actions corresponding to the
requested data operation.

1904

A

Perform operations on the data as |
specified by the View object utilizing
a Relational Data Engine.

1906
y
CONTINUE

FIG. 19

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

