7007043 A2 |V 00 R RO O

o

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
19 January 2006 (19.01.2006)

(10) International Publication Number

WO 2006/007043 A2

(51) International Patent Classification:
GOGF 12/00 (2006.01)

(21) International Application Number:
PCT/US2005/015493

(22) International Filing Date: 4 May 2005 (04.05.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/881,508 30 June 2004 (30.06.2004) US

(71) Applicant (for all designated States except US): INTER-
NATIONAL BUSINESS MACHINES CORPORA-
TION [US/US]; New Orchard Road, Armonk, NY 10504
(US).

(72) Inventors: JANN, Joefon; 213, Barnes Street, Ossining,
NY 10562 (US). PATTNAIK, Pratap, Chandra; 213
Barnes Street, Ossining, NY 10562 (US). BURUGULA,
Rmanjaneya, Sarma; 24 Scenic Drive, Apt. U, Croton

on Hudson, NY 10520 (US).

(74) Agent: CAMERON, Douglas, W.; TJ Watson Research
Center, RT 134/1101 Kitchawan Road, Yorktown Heights,

NY 10598 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN,
YU, ZA, ZM, ZW.
(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: AUTONOMICALLY TUNING THE VIRTUAL MEMORY SUBSYSTEM OF A COMPUTER OPERATING SYS-

TEM

Inside Virtual Memory Manager

23
In-use Nst

Free fist
21

a) In-use list

32
‘Waltlist

51
Hard disk drive

25
E 24 E 24 In-use frame f 24]/ 24

b) Free list

¢) VMM System Parameters: min_f(ej max_free, nfreC’

d) Wait list

2
e

3
E 2 f 22 Free frame % 22]/ 22
1

2

83

61 62
E 33 Waiting Thread E 33 E 33 E 33

(57) Abstract: A method, information processing system, and computer readable medium for efficiently distributing a computer
system’s main memory among applications running in that operating system instance. More specifically, threshold values used by
& a page replacement algorithm of the virtual memory manager are automatically tuned in response to the load on the memory of a
& computer system. One such threshold value is the lower threshold of free memory which is changed as a function of the load on

the memory. For example, such a load might be represented as the number of threads that were added to a waiting queue during a
defined interval of time divided by the number of clock tics in that interval. This representation is known as the thread wait rate.
This rate is then compared to a target rate to determine if the lower threshold value should be changed. When the free memory space
falls below the lower threshold, a page replacement daemon is used to page out memory to make more memory space available.

WO 2006/007043 PCT/US2005/015493

10

15

20

25

30

AUTONOMICALLY TUNING THE VIRTUAL MEMORY SUBSYSTEM OF A
COMPUTER OPERATING SYSTEM

FIELD OF THE INVENTION

[0004] This invention pertains to the virtual memory management component of
a computer operating system. More specifically, this invention pertains to the tuning of
the threshold values used by any Page Replacement algorithm of the virtual memory
manager of an Operating system.

BACKGOUND OF THE INVENTION

[0005] The Virtual Memory Manager (VMM) component of an Operating System
(OS) running on a machine is responsible for efficiently distributing the machine’s main
memory among the applications running in that OS instance. One of the primary
responsibilities of a VMM is to page out the contents of a main memory block (called a
“frame” or “page frame”) that is under-utilized to paging space on disk, and to
re-allocate that frame to another application that needs main memory. This is typically
achieved with the help of a daemon process called “Page Replacement daemon” (also
called an “LRU daemon” in most UNIX operating systems).

[0006] Because the process of freeing up a frame (i.e. the act of moving its
contents out to disk to make it a free frame) takes much longer than the process of
alIocafing a free frame to a requesting application (the consumer of a free frame), the
Page Replacement daemon typically starts paging out frames before the number of
free frames in the OS goes down to zero, in anticipation of the need for additional free
frames in the OS. The VMM can decide when to kick off the Page Replacement
daemon and how many pages it should free up in each run, by using two tunable
parameters min_free and max_free. The Page Replacement daemon is kicked off as
soon as the number of free frames goes below min_free, and in each run it frees up
enough pages so that the number of free frames at the end reaches max_free.

WO 2006/007043 PCT/US2005/015493

10

15

20

25

30

[0007] Currently these parameters have to be explicitly input by a system
administrator in order to tune the performance of the VMM to suit the needs of the
applications running in the OS. Because this tuning requires human manual input,
these parameters are rarely being tuned, resulting in sub-optimal performance of the
VMM, and hence of the OS. This lack of tuning translates into more cost for the IT
organization.

SUMMARY OF THE INVENTION

[0008] It is an objective of this invention to eliminate the need for the manual
tuning of the VMM by a system administrator to improve system performance. An
important benefit of this invention is that the OS becomes much more
responsive/adaptive to the changes in its workloads. More specifically, this invention
makes the tuning of VMM system parameters autonomic by automatically varying their
values in response to on the changing memory load in the OS.

[0009] This invention provides a method for improving memory availability in an
OS by automatically changing a parameter, known as a lower thréshold, in response to
the OS’s memory load. More free memory space is created when the current free
memory space goes below the lower threshold.

[0010] A more specific preferred embodiment of this invention provides a method
for automatically tuning the memory manager of an OS by setting a lower threshold of
free memory space to an initial value and automatically changing this lower threshold
when the current “thread wait rate” differs from a target “thread wait rate”, where “thread
wait rate” is the number of threads waiting per unit time over a specified time interval.
The memory manager will then initiate an operation to make more memory space
available when free memory space falls below the lower threshold.

WO 2006/007043 PCT/US2005/015493

10

15

20

25

30

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The subject matter, which is regarded as the invention, is particularly
pointed out and distinctly claimed in the claims at the conclusion of the specification.
The foregoing and other features and also the advantages of the invention will be
apparent from the following detailed description taken in conjunction with the
accompanying drawings.

[0012] Figure 1 shows the major subsystems of a typical computer operating
system.
[0013] Figure 2 shows the data structures used in implementing the current page

replacement algorithm.

[0014] Figure 3 shows a flow chart of the current Page Replacement algorithm.

[0015] Figure 4 shows the data structures used in a preferred embodiment to
implement dynamic autonomic tuning of the page replacement daemon.

[0016] Figure 5 shows a flow chart of the new Page Replacement algorithm with
this invention.

[0017] Figure 6 shows how min_free and max_free will be changed by the LRU
daemon with respect to time.

[0018] Figure 7 is a diagram of an illustrative hardware implementation of a
computing system in accordance with which one or more components/methodologies of
the present invention may be implemented.

DETAILED DESCRIPTION

[0019] Referring to Figure 1, a typical operating system kernel 10 consists of
several components — Virtual Memory Manager (VMM) 20, Process Manager 30, File
systems 40, Networking subsystems 50, etc. File systems 40 provides structured

3

WO 2006/007043 PCT/US2005/015493

10

15

20

25

30

access to the hard disk drive. The Process Manager schedules processes and threads
on to processors, while the Networking subsystems allows applications to communicate
with other machines or computers. This invention pertains to the virtual memory
manager component of the Operating System (OS), and other components are not
described in this application because they are well known in the art. Figure 2 shows
some of the data structures that the VMM 20 maintains to manage the system memory.
The VMM 20 maintains one or more free lists 21 to keep track of the free page frames
22 in the real memory. VMM 20 also maintains the total number of free frames in a
variable nfree 63. When a request for a free page comes, the VMM 20 will check if
nfree is >0, and if so, it searches its free lists 21 to get a free page. When the value of
nfree 63 goes below a lower threshold value min_free 61, VMM 20 will invoke the Page
Replacement daemon (also known as the LRU daemon) 25 1o initiate page-out to
create a free page frame 22 by evicting the contents of in-use page frames 23 to disk
51. In the embodiment example described in this section, this page-out is implemented
by a separate process called the Page Replacement Daemon. The Page Replacement
daemon will pageout enough number of page frames such that at the end of its run
nfree will be greater than or equal to max_free. All the unfulfilled requests for free page
frames are queued onto a waitlist 32 as shown in figure 2. The requesting threads 33
are woken up when a free page frame becomes available later.

[0020] The high level algorithm used by the Page Replacement daemon is
shown in figure 3. Box 101 represents the invocation of the Page replacement daemon
when nfree < min_free. In 102, the Page Replacement daemon calculates the number
of pages to be paged out by subtracting nfree 63 from max_free 61. In 108, it scans
the in-use page frame list 23 to find appropriate candidates for eviction. Once the Page
Replacement daemon starts scanning the memory for selecting candidate pages for
eviction, there are several possible policies to decide which particular pages will be
paged out. This invention does not depend on any particular policy used for choosing
the candidate pages for eviction. After evicting the number of pages as calculated in
102, the Page Replacement daemon checks again whether nfree is still less than
max_free in 104. This can happen if page frames are being consumed immediately
after they are being freed. If the predicate in 104 evaluates to true, then branch 106 is
taken and it re-starts step 102. Otherwise, branch 105 is taken and the Page
Replacement daemon goes back to sleep in 107.

4

WO 2006/007043 PCT/US2005/015493

10

15

20

25

30

[0021] Given the above description, it can be observed that the goal of the
VMM's Page Replacement daemon is to balance the cost of having too many free page
requesters 33 on the waitlist 32 with the cost of evicting too many in-use pages 24
prematurely. This invention addresses this issue by providing mechanisms to
determine the optimal values for the parameters min_free 61 and max_free 62 and to
adjust these parameters on an ongoing basis as the number of waiters for a free frame
change.

[0022] Figure 4 shows the data structures in the preferred embodiment that are
required to implement this invention. We need to continucusly monitor the number of
requesters and the amount of time each requester spends in the waitlist waiting for a
free frame. This is done by maintaining a variable thrd_wait 35. ‘
The value of the thrd_wait is updated as follows. Whenever a thread 33 is enqueued
on to the waitlist 32, the operating system notes the time at which the thread is
enqueued in a per-thread variable waitlist_enque_time 36. When the thread is
eventually dequeued as free pages become available, the OS will subtract
waitlist_enque_time 36 from the current time to find out the total time the thread has
spent in the wait list. The OS will then convert this total time into clock tics, and add it
to the thra_wait 35 counter, which contains the total amount of time in clock tics all the
threads together have spent in the wait list. This counter will be reset by the Page
Replacement daemon as we will describe in figure 5. So the thrd_wait 35 counter
contains the total waiting time for all the threads that were engqueued to, and later
dequeued from, the waitlist at some point between two runs of the Page Replacement
daemon. The Page Replacement daemon maintains another variable thrd_wait_rate
37, which is the average number of threads waiting per clack tic. 1t is maintained in
units of counts per clock_tic, so that this value is normalized across systems with
different CPU frequencies. The value of thrd_wait_rate 37 is computed each time the
Page Replacement daemon is kicked off, as a ratio of the cumulative total amount of
time all the threads have spent waiting since the last run and the number of clock tics
encompassed between the two runs. The Page Replacement daemon also maintains
another variable sirt_time 39 used to calculate the number of encompassed clock tics
between the two runs mentioned above. Finally, the thrd_wait_rate_tgt 38 value given

WO 2006/007043 PCT/US2005/015493

10

15

20

25

30

in figure 4 is used by the Page Replacement daemon to calculate by how much the
min_free and the max_free have to be changed.

[0023] The flow chart given in figure 5 summarizes the new behavior of the Page
Replacement daemon. Box 201 represents the invocation of the Page Replacement
daemon when nfree < min_free. In 202, the Page Replacement daemon calculates the
elapsed time since its last run and the total amount of time in clock tics all the threads
spent in the waitlist since the last run. The elapsed time is calculated by reading the
current system time and subtracting the previously recorded strt_time 38 value. The
total amount of time all the threads have waited since the last run, consists of two parts.
The first part is the total wait time of the threads that are not currently in the wait list.
This is maintained in the thrd_wait counter by the OS. The second part is the total time
the threads that are still in wait fist have spent in the queue. The Page replacement
daemon 25 calculates this second part by walking through the wait list 32, subtracting
each thread’s waitlist_enque_time 36 from the current time, and summing up all the
waiting times. The total waiting time of all threads, either in or out of the wait list, is
calculated by adding the above value to the thrd_wait counter 35.

[0024] An alternative mechanism to calculate the total waiting time of all threads
is to poll the waitlist once every clock tic to count the number of threads in the waitlist,
and add it to the thrd_wait counter. In this case the Page Replacement daemon does
not have to walk through the wait list at the beginning of each run. The disadvantage is
that the OS has to do additional work at every clock tic, which may be too much of
overhead.

[0025] As the Page Replacement daemon calculates the elapsed time and the
total thread waiting time in 202, it also resets the time stamp values strt_time and the
per-thread waitlist_enque_time to the current system time immediately after reading
those variables. It will also reset thrd_wait_time to 0 so that this counter contains the
waiting time for all the threads that will go through the wait list from now on. in 203 the
Page Replacement daemon calculates the thrd_wait_rate 36 by dividing the total thread
waiting time by the elapsed time. In 204 it re-calculates the min_free 61 and max_free
62 values based on the difference between thrd_wait_rate calculated above and the
pre-set target value thrd_wait_rate_tgt, as given below.

6

WO 2006/007043 PCT/US2005/015493

10

15

20

25

30

[0026] The desired min_free value should be increased if the thrd_wait _rate is
higher than thrd_wait_rate_tgt, and decreased if the thrd_wait_rate is lower than the
thrd_wait_rate_tgt. In the embodiment example, the desired min_free is calculated as
given below.

desired min_free = min_free * thrd_wait_rate / thrd_wait_rate_tgt
The min_free parameter is updated as the average of the desired min_free vaiue and
the current value. This averaging provides a bit of damping against oscillations due to
spikes in the workload. One can also put an upper limit on the min_free value that can
be updated by the Page Replacement daemon, in order to avoid thrashing.

[0027] The max_free parameter is updated to maintain the same gap between
max_free and min_free as before this update of min_free.

Example: Let us assume that the thrd_wait_rate_Igtis setto 1, thrd_wait _rate is
calculated to be 1.5, and min_free & max_free are 120 & 128 respectively. The desired
min_free will be 120 * 1.5 /1 = 180. The Page Replacement daemon will change the
min_free to the average of the desired min_free and the current min_free, which is
120+180/2 = 150. The new value for max_free will be 150+(128-120) = 158.

[0028] Several alternative mechanisms can be used to calculate the desired
min_free value from the deviation in thrd_wait_rate, instead of the simple linear
approximation as given above. Any mechansim used to calculate the desired min_frée
value should adhere to the general principle that min_free should be increased if
thrd_wait_rate > thrd_wait_rate_tgt, and decreased if thrd_wait_rate <
thrd_wait_rate_tgt.

[0029] After re-calculating the min_free and max_free values, the rest of the
steps for the Page Replacement daemon - 205, 206, 207, 208, 209, and 210 - are
similar to the steps in figure 3 - 102, 103, 104, 105, 106, and 107 - respectively. More

‘specifically, in 205, the Page Replacement daemon calculates the number of pages to

be paged out by subtracting nfree 63 irom max_free 61. In 2086, it scans the in-use
page frame list to find appropriate candidates for eviction. Once the Page
Replacement daemon starts scanning the memory for selecting candidate pages for

eviction, there are several possible policies to decide which particular pages will be
7

WO 2006/007043 PCT/US2005/015493

10

15

20

25

30

paged out. This invention does not depend on any particular policy used for choosing
the candidate pages for eviction. After evicting the number of pages as calculated in
205, the Page Replacement daemon checks again whether nfree is still less than
max_free in 207. This can happen if page frames are being consumed immediately
after they are being freed. If the predicate in 207 evaluates to true, then branch 209 is
taken and step 205 starts again. Otherwise, branch 208 is taken and the Page
Replacement daemon goes back to sleep in 210.

[0030] Figure 6 illustrates with the help of a timeline, how the thrd_wait_rate is
calculated.

The arrow 381 serves as a reference line for the wall clock time. On 381, the 3 time
stamps fs;, sz, and ts; represent the beginning of 3 runs of the Page Replacement
daemon. The double-headed arrows shown about the time axis represent the amount
of time each run of the Page Replacement daemon 25 took to complete. It can be
observed from the figure that each run of the Page Replacement daemon takes a
different amount of time to complete. Also, the elapsed time between 2 consecutive
instances of the Page Replacement daemon is not fixed. The TW, value at each time
stamp represents the total amount of time all the threads spent in the wait queue since
the last run of the Page Replacement daemon. The TW, value is calculated using the
thrd_wait counter and the waitlist_enque_time of each thread in the wait list, as
described in the earlier paragraph.

[0031] In the embodiment example, various parameters are to be initialized at
System Initialization time as given below:

min_free 61 and max_free 62 are set to some default values.

thrd_wait counter 35 and thrd_wait_rate 37 are initialized to 0

thrd_wait_rate_1gt 38 is initialized to a certain value, and

strt_time 39 is initialized to the current time.

[0032] 11t should be noted that one can implement the invention even without
maintaining a precise thrd_wait_rate value as described in the emodiment example

8

WO 2006/007043 PCT/US2005/015493

10

15

20

25

30

above. In the preferred embodiment described in this application, Page Replacement
daemon calculates the precise value thrd_wait_rate by waiking through the entire
waitlist each time it is invoked. One can also implement this invention by calculating a
rough estimate of the thrd_wait_rate, which can reduce the complexity of
implementation without significantly reducing the impact on memory availability. In the
following paragraphs we describe a couple of alternatives to calculate the
thrd_wait_rate.

[0033] 1) The system can maintain 2 variables nthrds_waited, and
nthrds_waiting in addition to the thrd_wait counter. nthrds_waited will contain the
number of threads that have contributed to the value in thrd_wait. nthrds_waiting will
contain the number of threads currently in tpe waitlist. Both of these variables are
updated whenever a thread is leaving the wait list; nthrds_waiting is also updated when
a thread is enqueued onto the waitlist. Given these variables, the Page Replacement
daemon can calculate thrd_wait_rate as follows:

thrd_wait_rate = (thrd_wait + ((thrd_wait / nthrds_waited) * nthrds_waiting)) /
(current time — sirt_time)
Using this implementation eliminates the need for maintaing waitlist_enque_time for
each thread.

[0034] 2) One can simplify the estimation even further by ignoring the threads
that were taken off the wait list. If we ignore the threads that are not currently on the
wait list, and assume that the threads on the wait list were enqueued at uniform time
intervals, then the thrd_wait_rate can be simply calculated as nthrds_waiting/2. This
can be derived as follows.

Assume that the first thread on the wait list was enqueued at time T7, and current time
is T2. Since we assume that the threads were enqueued onto the wait list at uniform
time intervals, on average each thread is waiting for (72-T1)/2 amount of time.

Total waiting time of all the threads currently in the wait list = (nthrds_waiting * (T2 - T1)
/2)

Elapsed time = (T2-T1)

thrd_wait_rate = (nthrds_waiting *(T2—T1)/2)/(T2-T1) = nthrds_waiting /2

WO 2006/007043 PCT/US2005/015493

10

15

20

25

30

[0035] FIG. 7 is a high level block diagram showing an information
processing system useful for implementing one embodiment of the present invention.
The computer system includes one or more processors, such as processor 704. The
processor 704 is connected to a communication infrastructure 702 (e.g., a
communications bus, cross-over bar, or network). Various software embodiments are
described in terms of this exemplary computer system. After reading this description, it
will become apparent to a person of ordinary skill in the relevant art(s) how to
implement the invention using other computer systems and/or computer architectures.

[0036] The computer system can include a display interface 708 that forwards
graphics, text, and other data from the communication infrastructure 702 (or from a
frame buffer not shown) for display on the display unit 710. The computer system also
includes a main memory 706, preferably random access memory (RAM), and may also
include a secondary memory 712. The secondary memory 712 may include, for
example, a hard disk drive 714 and/or a removable storage drive 716, representing a
floppy disk drive, a magnetic tape drive, an optical disk drive, etc. The removable
storage drive 716 reads from and/or writes to a removable storage unit 718 in a manner
well known to those having ordinary skill in the art. Removable storage unit 718,
represents a floppy disk, a compact disc, magnetic tape, optical disk, etc. which is read
by and written to by removable storage drive 716.-As will be appreciated, the removable
storage unit 718 includes a computer readable medium having stored therein computer
software and/or data.

[0037] In alternative embodiments, the secondary memory 712 may include other
similar means for allowing computer programs or other instructions to be loaded into
the computer system. Such means may include, for example, a removable storage unit
722 and an interface 720. Examples of such may include a program cartridge and
cartridge interface (such as that found in video game devices), a removable memory
chip (such as an EPROM, or PROM) and associated socket, and other removable
storage units 722 and interfaces 720 which allow software and data to be transferred
from the removable storage unit 722 to the computer system.

[0038] The computer system may also include a communications interface 724.
Communications interface 724 allows software and data to be transferred between the

10

WO 2006/007043 PCT/US2005/015493

10

15

20

25

30

computer system and external devices. Examples of communications interface 724
may include a modem, a network interface (such as an Ethernet card), a
communications port, a PCMCIA slot and card, etc. Software and data transferred via
communications interface 724 are in the form of signals which may be, for example,
electronic, electromagnetic, optical, or other signals capable of being received by
communications interface 724. These signals are provided to communications interface
724 via a communications path (i.e., channel) 726. This channel 726 carries signals
and may be implemented using wire or cable, fiber optics, a phone line, a cellular
phone link, an RF link, and/or other communications channels.

[0039] In this document, the terms "computer program medium," "computer
usable medium," and "computer readable medium" are used to generally refer to media
such as main memory 706 and secondary memory 712, removable storage drive 716, a
hard disk installed in hard disk drive 714, and signals. These computer program
products are means for providing software to the computer system. The computer
readable medium allows the computer system to read data, instructions, messages or
message packets, and other computer readable information from the computer
readable medium. The computer readable medium, for example, may include
non-volatile memory, such as a floppy disk, ROM, flash memory, disk drive memory, a
CD-ROM, and other permanent storage. It is useful, for example, for transporting
information, such as data and computer instructions, between computer systems.
Furthermore, the computer readable medium may comprise computer readable
information in a transitory state medium such as a network link and/or a network
interface, including a wired network or a wireless network that allows a computer to
read such computer readable information.

[0040] Computer programs (also called computer control logic) are stored in
main memory 706 and/or secondary memory 712. Computer programs may also be
received via communications interface 724. Such computer programs, when executed,
enable the computer system to perform the features of the present invention as
discussed herein. In particular, the computer programs, when executed, enable the
processor 704 to perform the features of the computer system. Accordingly, such
computer programs represent controllers of the computer system.

11

WO 2006/007043 PCT/US2005/015493

[0041] Although specific embodiments of the invention have been disclosed,
those having ordinary skill in the art will understand that changes can be made to the
specific embodiments without departing from the spirit and scope of the invention. The
scope of the invention is not to be restricted, therefore, to the specific embodiments.

[0042] Furthermore, it is intended that the appended claims cover any and all such
applications, modifications, and embodiments within the scope of the present invention.

12

WO 2006/007043 PCT/US2005/015493

10

15

20

25

30

We claim:

CLAIMS

1. A method for managing memory availability in a computer system, said method
comprising:

automatically changing a lower threshold of free memory space as a function of
memory load; and

making more memory space available when free memory space is below said lower
threshold.

2. A method for managing memory availability in a computer system, said method
comprising:

automatically changing said lower threshold when a thread wait rate becomes different
than a target thread wait rate, said thread wait rate being the average number of
threads waiting in a free memory wait list per unit time; and

making more memory space available when free memory space is below said lower
threshold.

3. A method as recited in claim 2, wherein said lower threshold is increased when said
thread wait rate becomes higher than said target thread wait rate.

4. A method as recited in claim 2, wherein said lower threshold is decreased when said
thread wait rate becomes lower than said target thread wait rate.

5. A method as recited in claim 2, wherein a higher threshold is increased when said
thread wait rate becomes higher than said target thread wait rate, wherein said higher

13

WO 2006/007043 PCT/US2005/015493

10

15

20

25

30

threshold is used to determine the amount of memory space that will be made available
when a page replacement daemon is executed.

6. A method as recited in claim 2, wherein a higher threshold is decreased when said
thread wait rate becomes lower than said target thread wait rate, wherein said higher
threshold is used to determine the amount of memory space that will be made available
when a page replacement daemon is executed.

7. A method as recited in claim 2, wherein said thread wait rate can be calculated by
counting the cumulative number of clock tics spent by all the threads that have waited
in the free memory wait list and dividing said cumulative number by the total number of
clock tics between two successive executions of said page replacement daemon.

8. A method as recited in claim 7, wherein said threads comprise first threads that are
currently in said free memory wait list and second threads that were in said free
memory wait after the first of said two successive executions of said page replacement
daemon, where said second threads are no longer in said free memory wait list.

9. A method as recited in claim 2, wherein said thread wait rate can be calculated by
dividing the current number of threads in the free memory wait list by an number.

10. A method as recited in claim 9, wherein said number is the integer two.

11. A method as recited in claim 2, wherein a page replacement daemon is executed
when free memory space falls below said lower threshold, wherein said page
replacement daemon makes more memory space available.

12. A method as recited in claim 11, wherein said page replacement daemon is
executed if the number of free memory frames falls below a lower threshold, and
wherein said page replacement daemon comprises freeing a number of frames so that
the number of free frames reaches said higher threshold.

13. A program storage device readable by a digital processing apparatus and having a
program of
14

WO 2006/007043 PCT/US2005/015493

10

15

20

25

instructions which are tangibly embodied on the storage device and which are
executable by the processing apparatus to perform a method for managing memory
availability in a computer system, said method comprising:

automatically changing a lower threshold of free memory space as a function of
memory load; and

making more memory space available when free memory space is below said lower
threshold.

14. A apparatus for managing memory availability in a computer system, said
apparatus comprising:

means for automatically changing a lower threshold of free memory space as a function
of memory load; and

means for making more memory space available when free memory space is below
said lower threshold.

15

PCT/US2005/015493

WO 2006/007043
1/7

10

50

Operating System > / /

40

-30

Figure 1

PCT/US2005/015493

WO 2006/007043

2/7

Z @Inb14

sl wepn (p

ce pealyy Buniepy e¢

mo\!q 29 Fm\nq ‘

Soyu ‘ealf xew ‘solf uju sieyweled WalsAS NINA (o

1z
RPN > > >
o > - - 181 @314 (q
NN(\ NN(\ swey a1 Nwl\ NNI\
€2
I — = Pl 18| @snh-u| (e
vml\ vNI\ skl esn-uj ¢NI\ ww(\
sz
1z
151 9313
OAUP %SIP preH
7
181 esn-uj
£
Isienn ~—"

(4 leBeuepy Aiowsyy fenuip episuj

PCT/US2005/015493

WO 2006/007043

3/7

dagis 0}
)oeq seob
uowaep Juswaoe|dsy abed

01

sabed L

asn-uj JoIne

0} 1sl} esn-u| ,
m.- m.—zm_u_ coL ey} ueag _ SOA

/\ A

‘uoneoljdde ay} ui usnib
Se 98JJ Xeuw pue aayu jO
sanfeA ay) wouy paal) 8q
0} sebed# ay) sujuusla(

A

<0l

~

8a4j” uIW > 8ajju usym
paX oAUl st
LoL uowsep Juswaoe|day sbed

~—

PCT/US2005/015493

WO 2006/007043

47

¥ 2unbi14

s WIS

8 161 8pes J1em pay;

Ne——"

e, __®jel Jlem” piyj

peaiyy yoes o} gL} enbua }sijiem

e

se.___Hem piy;

PCT/US2005/015493

WO 2006/007043

517

ole

dasjs 0} yoeq saob

uolwsep juswaoejdeysbey

02

902

80¢

99l xXew > asdu

asn-u

N
*

S0

g ainbi4

¥0

N\\

sabed

0} 81} ©sN-UJ

101N

ueos

8a4) Xew

N/\.\ sobedy au

woJj pasyy aq 0}

» so4u

A

usleq

%

s8auf

8aJf xew jo senjep
ay) ajejnojeocay

“uiw pue

A

A

€0¢

~—"

‘uoljeoijdde sy uj paquosep se
ajel JlemM™pay) syeinoen

[4V4

A

h

sanjeA yem” piy;

PUe 8w~ Ls Jesey

'S, 8} enbusTIsiem

pue ‘snjea yem puy;
‘swi s ‘s JUSIIND 395

10C

_

8aJ) Ul > sayyu usym
payoAu] s
uowaep Juswaoe|day abeyg

PCT/US2005/015493

WO 2006/007043

6/7

9 2inBi14

(“s1—"sp) /"ML = sy ewn je opes yEm Uy

"1si| Jiem uo ApuaLino spealy} ay [je o} (awy ~enbusjsipiem — Usy) Jo WINS + Jem piyj = ML
“s1 pue VUs} sewyy sy} usemyeq

sjejs swiel-salp-10)-buljiem, ul speaiyy oy jje Aq Juads awi jo junowe e30) 4L

U, uni jusweoe|dey ebed jo Buluuibeq ayyje dwejg swi] Ysy

18¢

swilL

£sy ’sy

vl g

r4 ﬂwd N
€ uni jusweoe|dey abedq '
7 uni Juswaoejdey abey | unijuswaoe|dey febed

14 §¢ 114

fau

WO 2006/007043 PCT/US2005/015493
717

A .
?0 oY

z

Processor

Main Memory 706

710
_R0p L

- Display Interface [«¢—| Display Unit

g 11

-Secondary Memory

2y — A1
/

Communication Hard Disk Drive
Infrastructure «

B o il

v

£ Removable

. Removable <> Storage
. Storage Drive Unit

22 a3

£ Removabtfa :

;
Interface &|-»{ Storage
Unit

22 72
s A b

. t' ’
Communication 1 = tion Path
Interface '

Figure. 7

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

