

(12)

Übersetzung der europäischen Patentschrift

(97) EP 1 150 944 B1

(21) Deutsches Aktenzeichen: 600 04 637.0
(86) PCT-Aktenzeichen: PCT/GB00/00345
(96) Europäisches Aktenzeichen: 00 901 791.4
(87) PCT-Veröffentlichungs-Nr.: WO 00/46184

(86) PCT-Anmeldetag: 04.02.2000

(87) Veröffentlichungstag

der PCT-Anmeldung: 10.08.2000

(97) Erstveröffentlichung durch das EPA: 07.11.2001

(97) Veröffentlichungstag

der Patenterteilung beim EPA: 20.08.2003 (47) Veröffentlichungstag im Patentblatt: 15.04.2004

(30) Unionspriorität:

9902592 06.02.1999 GB

(73) Patentinhaber:

Aventis CropScience GmbH, 65929 Frankfurt, DE

(74) Vertreter:

Beetz & Partner, 80538 München

(84) Benannte Vertragsstaaten:

AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LI, LU, MC, NL, PT, SE

(51) Int Cl.7: **C07C 233/37**

C07D 333/58, C07D 285/00, C07D 273/00, C07C 251/04, A01N 37/52, A01N 43/82

(72) Erfinder:

CHARLES, David, Mark, Brighton BN1 1NA, GB; FRANKE, Wilfried, 7130 Somerset West, ZA; GREEN, Eric,, David, Essex CB10 1XL, GB; HOUGH, Lawley,, Thomas, Essex CB10 1XL, GB; MITCHELL, Robert,, Dale, Essex CB10 1XL, GB; SIMPSON, James,, Donald, Essex CB10 1XL, GB; ATHERALL, F.,, John, Essex CB10 1XL, GB

(54) Bezeichnung: N2-PHENYLAMIDINE DERIVATE

Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäische Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist (Art. 99 (1) Europäisches Patentübereinkommen).

Die Übersetzung ist gemäß Artikel II § 3 Abs. 1 IntPatÜG 1991 vom Patentinhaber eingereicht worden. Sie wurde vom Deutschen Patent- und Markenamt inhaltlich nicht geprüft.

Beschreibung

[0001] Die vorliegende Erfindung betrifft die Verwendung von Verbindungen als Fungizide.

[0002] WO 95/22532 betrifft substituierte Phenyltriazolinone, die als Herbizide beansprucht werden, und beschreibt unter anderem eine Verbindung der Formel A, für die keine charakterisierenden Daten vorliegen.

[0003] Die Zusammenfassung, der Verbindungsanspruch und der Verwendungsanspruch beziehen sich nur auf die Verwendung solcher Verbindungen als Herbizide, und die Beschreibung stützt die Erfindung tatsächlich nur mit Daten, die die Herbizidwirkung betreffen. Obwohl sich in der Beschreibung ein Satz findet, in dem behauptet wird, daß gewisse Verbindungen eine Fungizidwirkung aufweisen, werden keine Daten, die die Fungizidwirkung betreffen, bereitgestellt. Es findet sich kein Hinweis auf diejenigen Verbindungen, die fungizid sein sollen, und es wird nicht vorgeschlagen, daß die Verbindung A fungizid sein könnte.

[0004] In US 3,284,289 wird ein Verfahren zum Schutz von Pflanzen gegen Schadpilze durch Verwendung einer Phenylamidinverbindung beschrieben.

[0005] Es wurde nun gefunden, daß gewisse Amidine fungizide Wirksamkeit aufweisen. Die Erfindung stellt daher die Verwendung einer Verbindung der allgemeinen Formel I und deren Salze

in der

R¹ Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, oder Wasserstoff bedeutet.

R² und R³, die gleich oder verschieden sein können, eine beliebige für R¹ definierte Gruppe, Cyan, Acyl, -ORª oder -SRª, wobei Rª Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, bedeutet, bedeuten; oder R² und R³, oder R² und R¹, gemeinsam mit den sie verbindenden Atomen einen Ring, der substituiert sein kann, bilden können,

 R^4 Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, oder Hydroxy, Mercapto, Azido, Nitro, Halogen, Cyan, Acyl, gegebenenfalls substituiertes Amino, Cyanato, Thiocyanato, $-SF_5$, $-OR^a$, $-SR^a$ oder $-Si(R^a)_3$ bedeutet, m 0 bis 3 ist,

 R^5 , falls vorhanden, gleich oder unterschiedlich zu jedem beliebigen anderen R^5 sein kann und eine beliebige für R^4 definierte Gruppe bedeutet,

R⁶ gegebenenfalls substituiertes Carbo- oder Heterocyclyl bedeutet, und

A eine direkte Bindung, -O-, -S(O)_n-, -NR⁹-, -CR⁷=CR⁷-, -C≡C-, -A¹-, -A¹-A¹-, -O-(A¹)_k-O-, -O-(A¹)_k-, -A³-, -A⁴-, -A¹O-, -A¹S(O)_n-, -A²-, -OA²-, -NR⁹A²-, -OA²-A¹-, -OA²-C(R⁷)=C(R⁸)-, -S(O)_nA¹-, -A¹-A⁴-, -A¹-A⁴-C(R⁸)=N-N=CR⁸-, -A¹-A⁴-C(R⁸)=N-X²-X³-, -A¹-A⁴-A³-, -A¹-A⁴-N(R⁹)-, -A¹-A⁴-X-CH₂-, -A¹-A⁴-C(R⁸)=N-X²-X³-X¹-, -A¹-X-C(R⁸)=N-, -A¹-X-C(R⁸)=N-N=CR⁸-, -A¹-X-C(R⁸)=N-N(R⁹)-, -A¹-X-C(R⁸)=N-N=CR⁸-, -A¹-X-C(R⁸)=N-N(R⁹)-, -A¹-X-A²-X¹-, -A¹-O-A³-, -A¹-O-C(R⁷)=C(R⁸)-, -A¹-O-N(R⁹)-A²-N(R⁹)-, -A¹-O-N(R⁹)-A²-, -A¹-N(R⁹)-A²-, -A¹-N(R⁹)-N=C(R⁸)-, -A³-A¹-, -A⁴-A³-, -A²-NR⁹-, -A¹-A²-X¹-, -A¹-A²-X¹-, -O-A²-N(R⁹)-A²-, -CR⁷=CR⁷-A²-X¹-, -C≡C-A²-X¹-, -N=C(R⁸)-A²-X¹-, -C(R⁸)=N-N=C(R⁸)-, -C(R⁸)=N-N(R⁹)-, -(CH₂)₂-O-N=C(R⁸)-oder -X-A²-N(R⁹)- bedeutet,

wobei

n 0, 1 oder 2 ist,

k 1 bis 9 ist,

A1 -CHR7- bedeutet,

 A^2 -C(=X)- bedeutet,

A3 -C(R8)=N-O- bedeutet.

A⁴ -O-N=C(R⁸)- bedeutet.

X O oder S bedeutet,

X¹ O, S, NR⁹ oder eine direkte Bindung bedeutet,

X² O, NR⁹ oder eine direkte Bindung bedeutet,

X³ Wasserstoff, -C(=O)-, -SO₂- oder eine direkte Bindung bedeutet,

R⁷, das gleich oder unterschiedlich zu beliebigen anderen R⁷ sein kann, Alkyl, Cycloalkyl oder Phenyl, die jeweils substituiert sein können, oder Wasserstoff, Halogen, Cyan oder Acyl bedeutet,

R⁸, das gleich oder unterschiedlich zu beliebigen anderen R⁸ sein kann, Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkylthio, Carbo- oder Heterocyclyl, die jeweils substituiert sein können, oder Wasserstoff bedeutet,

R⁹, das gleich oder unterschiedlich zu einem beliebigen anderen R⁹ sein kann, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Carbo- oder Heterocyclyl, Wasserstoff oder Acyl bedeutet, oder zwei R⁹-Gruppen an A gemeinsam mit den sie verbindenden Atomen einen 5- bis 7-gliedrigen Ring bilden,

wobei der rechts von der Bindung A dargestellte Rest an R⁶ gebunden ist,

oder -A-R⁶ und R⁵ gemeinsam mit dem Benzolring M ein gegebenenfalls substituiertes anelliertes Ringsystem bedeuten.

als Fungizide bereit.

[0006] R^1 bedeutet vorzugsweise Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder gegebenenfalls substituiertes Phenyl (vorzugsweise Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio, die jeweils 1 bis 5 Kohlenstoffatome enthalten, oder Halogen substituiert ist) substituiert sein können, oder Wasserstoff. R^1 bedeutet ganz besonders C_1 - C_{10} -Alkyl (z. B. Methyl) oder Wasserstoff.

[0007] R^2 und R^3 , die gleich oder verschieden sein können, bedeuten Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder gegebenenfalls substituiertes Phenyl (vorzugsweise Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio, die jeweils 1 bis 5 Kohlenstoffatome enthalten, oder Halogen substituiert ist) substituiert sein können, oder Wasserstoff, Alkoxy, Alkoxyalkoxy, Benzyloxy, Cyan oder Alkylcarbonyl. R^2 und R^3 , die gleich oder verschieden sein können, bedeuten ganz besonders C_1 - C_{10} -Alkyl (z. B. Methyl oder Ethyl) oder Wasserstoff.

[0008] R^4 bedeutet vorzugsweise Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder gegebenenfalls substituiertes Phenyl (vorzugsweise Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio, die jeweils 1 bis 5 Kohlenstoffatome enthalten, oder Halogen substituiert ist) substituiert sein können, oder Hydroxy, Halogen, Cyan, Acyl (vorzugsweise -C(=O)R c , -C(=S)R c oder -S(O) $_p$ R c , wobei R c Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Amino, Monoalkylamino, Dialkylamino oder Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio substituiert ist, bedeutet), Alkoxy, Halogenalkoxy oder Alkylthio. R 4 bedeutet ganz besonders C $_1$ -C $_{10}$ -Alkyl (z. B. Methyl oder Ethyl) oder Halogen.

[0009] m bedeutet vorzugsweise 0 oder 1, ganz besonders 1.

[0010] Ist R^5 vorhanden, so bedeutet es vorzugsweise eine für R^4 oben definierte Gruppe. R^5 bedeutet ganz besonders C_1 - C_{10} -Alkyl oder Halogen.

[0011] Falls vorhanden, ist die R⁵-Gruppe vorzugsweise in 5-Position des Rings M gebunden.

[0012] A bedeutet vorzugsweise eine direkte Bindung, -O-, -S(O)_nA¹-, -O(A¹)_k-, -S(O)_n-, -NR⁰A²-, -A²-, -OA²-, -OA²-, -OA²-A¹-, -NR⁰- oder -O(A¹)_kO-. Insbesondere bedeutet A eine direkte Bindung, -O-, -S-, -NR⁰-, -CHR⁷- oder -O-CHR⁷. Ganz besonders bedeutet A eine direkte Bindung oder -O-. Falls vorhanden, bedeutet R⁰ Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder gegebenenfalls substituiertes Phenyl (vorzugsweise Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio, die jeweils 1 bis 5 Kohlenstoffatome enthalten, oder Halogen substituiert ist) substituiert sein können, oder Wasserstoff (R⁰ bedeutet ganz besonders C₁-C₁₀-Alkyl oder Wasserstoff). Falls vorhanden, be-

deutet R^7 Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder gegebenenfalls substituiertes Phenyl (vorzugsweise Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio, die jeweils 1 bis 5 Kohlenstoffatome enthalten, oder Halogen substituiert ist) substituiert sein können, oder Hydroxy, Halogen, Cyan, Acyl, Alkoxy, Halogenalkoxy, Alkylthio oder Wasserstoff (R^7 bedeutet ganz besonders C_1 - C_{10} -Alkyl oder Wasserstoff).

[0013] A ist vorzugsweise in 4-Stellung des Benzolrings M gebunden.

[0014] R⁶ ist vorzugsweise gegebenenfalls substituiertes Phenyl oder gegebenenfalls substituiertes aromatisches Heterocyclyl [vorzugsweise Thiazolyl, Isothiazolyl, Thiadiazolyl (insbesondere 1,2,4-Thiadiazolyl), Pyridyl oder Pyrimidinyl].

[0015] Ist R⁶ substituiert, so kann es durch einen oder mehrere Substituenten, die gleich oder verschieden sein können und aus der bevorzugten Aufzählung Alkyl, Alkenyl, Alkenyl, Carbo- oder Heterocyclyl, die jeweils gegebenenfalls substituiert sein können, Hydroxy, Mercapto, Azido, Nitro, Halogen, Cyan, Acyl, gegebenenfalls substituiertes Amino, Cyanato, Thiocyanato, -SF₅, -OR^a, -SR^a oder -Si(R^a)₃, wobei R^a Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, bedeutet, stammen, substituiert sein. [0016] Eine bevorzugte Aufzählung von Substituenten an R⁶ lautet: Hydroxy, Halogen, Cyano, Acyl (vorzugsweise -C(=O)R^C, -C(=S)R^C oder -S(O)_pR^C, wobei R^C Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Amino, Monoalkylamino, Dialkylamino oder Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Halogenalkyl, Alkoxy, Halogenalkyl, R^aO-Alkyl, Acyloxyalkyl, Cyanoxyalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Carbocyclyl (vorzugsweise Cyclohexyl oder Cyclopentyl), das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio substituiert ist, und Benzyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio substituiert ist.

[0017] Eine besonders bevorzugte Aufzählung von Substituenten an R⁶ lautet: Cyclopentyl, Cyclohexyl oder Benzyl, gegebenenfalls substituiert durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio; oder Halogen, Alkyl, Halogenalkyl, Alkoxyalkyl, Hydroxyalkyl, Alkoxy oder Alkylthio.

[0018] In einer bevorzugten Ausführungsform stellt die Erfindung die Verwendung einer Verbindung der allgemeinen Formel I und deren Salze, in der

R¹ Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio oder Halogen substituiert ist, substituiert sein können, oder Wasserstoff bedeutet,

R² und R³, die gleich oder verschieden sein können, in dieser Ausführungsform wie für R¹ definiert sind oder Alkoxy, Alkoxy, Benzyloxy, Cyano oder Alkylcarbonyl bedeuten,

 R^4 Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio oder Halogen substituiert ist, substituiert sein können, oder Hydroxy, Halogen, Cyan oder Acyl (vorzugsweise -C(=O) R^c , -C(=S) R^c oder -S(O) $_pR^c$, wobei R^c Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Amino, Monoalkylamino, Dialkylamino oder Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio substituiert ist, bedeutet) bedeutet,

m 0 oder 1 ist,

R⁵, falls vorhanden, in dieser Ausführungsform eine für R⁴ definierte Gruppe bedeutet,

A eine direkte Bindung, -O-, -S-, -NR9-, -CHR7- oder -O-CHR7- bedeutet,

wobei R⁹, falls vorhanden, Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio oder Halogen substituiert ist, substituiert sein können, oder Wasserstoff bedeutet, und R⁷ in dieser Ausführungsform eine für R⁹ definierte Gruppe oder Hydroxy, Halogen, Cyan, Acyl, Alkoxy, Halogenalkoxy oder Alkylthio bedeutet,

A in 4-Stellung des Benzolrings M gebunden ist, und

R⁶ Phenyl oder aromatisches Heterocyclyl, die gegebenenfalls durch einen oder mehrere Substituenten, die gleich oder verschieden sein können und aus der Aufzählung Hydroxy, Halogen, Cyan, Acyl (vorzugsweise -C(=O)R^c, -C(=S)R^c oder -S(O)_PR^c, wobei R^c Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Amino, Monoalkylamino, Dialkylamino oder Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio substituiert ist, bedeutet), Amino, Alkylamino, Dialkylamino, Alkyl, Halogenalkyl, R^aO-Alkyl, Acyloxyalkyl, Cyanoxyalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Carbocyclyl (vorzugsweise Cyclohexyl oder Cyclopentyl), das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio substituiert ist, und Benzyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio substituiert ist, stammen, substituiert sind, bedeutet,

als Fungizide bereit.

[0019] Die meisten Verbindungen der allgemeinen Formel I sind neu. In einem zweiten Aspekt stellt die Erfindung daher Verbindungen der Formel I bereit, in der

R¹ Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, oder Wasserstoff bedeutet,

R² und R³, die gleich oder verschieden sein können, eine beliebige für R¹ definierte Gruppe bedeuten oder gemeinsam mit dem Stickstoff, an den sie gebunden sind, einen Ring, der substituiert sein kann, bilden können, R⁴ Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, bedeutet, m 1 ist.

R⁵ eine beliebige für R⁴ definierte Gruppe, die in 5-Stellung des Benzolrings M gebunden ist, bedeutet, R⁶ gegebenenfalls substituiertes Carbo- oder Heterocyclyl bedeutet, und

A eine direkte Bindung, -O-, -S-, -NR⁹-, wobei R⁹ Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder gegebenenfalls substituiertes Phenyl substituiert sein können, bedeutet, -CHR⁷- oder -O-CHR⁷-, wobei R⁷ Alkyl, Alkenyl oder Alkinyl, die durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio substituiert ist, substituiert sein können, bedeutet, oder Hydroxy, Halogen, Cyan, Acyl, Alkoxy, Halogenalkoxy oder Alkylthio bedeutet,

wobei sich -A-R⁶ in 4-Stellung des Benzolrings M befindet und der rechts von der Bindung A dargestellte Rest an R⁶ gebunden ist.

oder -A-R⁶ und R⁵ gemeinsam mit dem Benzolring M ein gegebenenfalls substituiertes anelliertes Ringsystem bilden.

[0020] Jede beliebige Alkylgruppe kann geradkettig oder verzweigt sein und besteht vorzugsweise aus 1 bis 10 Kohlenstoffatomen, ganz besonders 1 bis 7 und insbesondere 1 bis 5 Kohlenstoffatomen.

[0021] Jede beliebige Alkenyl- oder Alkinylgruppe kann geradkettig oder verzweigt sein und besteht vorzugsweise aus 2 bis 7 Kohlenstoffatomen und kann bis zu 3 Doppel- oder Dreifachbindungen, die konjugiert sein können, enthalten, z. B. Vinyl, Allyl, Butadienyl oder Propargyl.

[0022] Jede beliebige Carbocyclylgruppe kann gesättigt, ungesättigt oder aromatisch sein und 3 bis 8 Ringatome enthalten. Bevorzugte gesättigte Carbocyclylgruppen sind Cyclopropyl, Cyclopentyl oder Cyclohexyl. Bevorzugte ungesättigte Carbocyclylgruppen enthalten bis zu 3 Doppelbindungen. Eine bevorzugte aromatische Carbocyclylgruppe ist Phenyl. Der Ausdruck "carbocyclisch" ist ähnlich zu verstehen. Außerdem beinhaltet der Ausdruck Carbocyclyl eine beliebige anellierte Kombination von Carbocyclylgruppen, z. B. Naphthyl, Phenanthryl, Indanyl und Indenyl.

[0023] Jede beliebige Heterocyclylgruppe kann gesättigt, ungesättigt oder aromatisch sein und 5 bis 7 Ringatome enthalten, von denen bis zu 4 Heteroatome wie Stickstoff, Sauerstoff und Schwefel sein können. Heterocyclylgruppen sind z. B. Furyl, Thienyl, Pyrrolyl, Pyrrolinyl, Pyrrolidinyl, Imidazolyl, Dioxolanyl, Oxazolyl, Thiazolyl, Imidazolyl, Imidazolinyl, Imidazolidinyl, Pyrazolyl, Pyrazolinyl, Pyrazolidinyl, Isoxazolyl, Isothiazolyl, Oxadiazolyl, Triazolyl, Thiadiazolyl, Pyranyl, Pyridyl, Piperidinyl, Dioxanyl, Morpholino, Dithianyl, Thiomorpholino, Pyridazinyl, Pyrimidinyl, Pyrazinyl, Piperazinyl, Sulfolanyl, Tetrazolyl, Triazinyl, Azepinyl, Oxazepinyl, Thiazepinyl, Diazepinyl und Thiazolinyl. Außerdem beinhaltet der Ausdruck "Heterocyclyl" anellierte Heterocyclylgruppen, z. B. Benzimidazolyl, Benzoxazolyl, Imidazopyridinyl, Benzoxazinyl, Benzothiazinyl, Oxazolopyridinyl, Benzofuranyl, Chinolinyl, Chinozalinyl, Dihydrochinazolinyl, Benzothiazolyl, Phthalimido, Benzofuranyl, Benzodiazepinyl, Indolyl und Isoindolyl. Der Ausdruck "heterocyclisch" ist ähnlich zu verstehen. [0024] Jede beliebige substituierte Alkyl-, Alkenyl-, Alkinyl-, Carbocyclyl- oder Heterocyclylgruppe kann durch einen oder mehrere Substituenten, die gleich oder verschieden sein und aus der folgenden Aufzählung stammen können, substituiert sein: Hydroxy, Mercapto, Azido, Nitro, Halogen, Cyan, Acyl, gegebenenfalls substituiertes Amino, gegebenenfalls substituiertes Carbocyclyl, gegebenenfalls substituiertes Heterocyclyl, Cyanato, Thiocyanato, -SF₅, -OR^a, -SR^a und -Si(R^a)₃, wobei R^a Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, bedeutet. Bei einer beliebigen Carbocyclyl- oder Heterocyclylgruppe beinhaltet die Aufzählung außerdem: Alkyl, Alkenyl und Alkinyl, die jeweils substituiert sein können. Bevorzugte Substituenten an einer beliebigen Alkyl-, Alkenyl- oder Alkinylgruppe sind Alkoxy, Halogenalkoxy oder Alkylthio, die jeweils 1 bis 5 Kohlenstoffatome enthalten, Halogen oder gegebenenfalls substituiertes Phenyl. Bevorzugte Substituenten an einer beliebigen Carbocyclyl- oder Heterocyclylgruppe sind Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio, die jeweils 1 bis 5 Kohlenstoffatome enthalten, Halogen oder gegebenenfalls substituiertes Phenyl.

[0025] Bei einer beliebigen Alkylgruppe oder einem beliebigen ungesättigten Ringkohlenstoff in einer beliebigen Carbocyclyl- oder Heterocyclylgruppe beinhaltet die Aufzählung eine zweiwertige Gruppe wie Oxo oder Imino, die durch gegebenenfalls substituiertes Amino, Ra oder -OR (wobei Ra wie oben definiert ist) substituiert sein kann. Bevorzugte Gruppen sind Oxo, Imino, Alkylimino, Oximino, Alkyloximino oder Hydrazono.

[0026] Jede beliebige Aminogruppe kann gegebenenfalls und wenn sie substituiert ist, durch einen oder zwei Substituenten, die gleich oder verschieden sein können und aus der folgenden Aufzählung stammen, substituiert sein: gegebenenfalls substituierte Alkylgruppen, gegebenenfalls substituierte Aminogruppen, -OR^a (wobei R^a wie oben definiert ist) sowie Acylgruppen. Es können jedoch auch zwei Substituenten gemeinsam mit dem Stickstoff, an den sie gebunden sind, eine Heterocyclylgruppe bilden, vorzugsweise eine 5- bis 7-gliedrige Heterocyclylgruppe, die substituiert sein kann und andere Heteroatome enthalten kann, z. B. Morpholino, Thiomorpholino oder Piperidinyl.

[0027] Der Ausdruck "Acyl" beinhaltet die Reste von schwefel- und phosphorhaltigen Säuren sowie Carbonsäuren. Typischerweise entsprechen die Reste den allgemeinen Formeln $-C(=X^a)R^b$, $-S(O)_pR^b$ und $-P(=X^a)(OR^a)(OR^a)$, wobei X^a gegebenenfalls O oder S bedeutet, R^b wie R^a definiert ist, $-OR^a$, $-SR^a$, gegebenenfalls substituiertes Amino oder Acyl bedeutet und p 1 oder 2 bedeutet. Bevorzugte Gruppen sind $-C(=O)R^c$, $-C(=S)R^c$ und $-S(O)_pR^c$, wobei R^c Alkyl, C_1 - bis C_5 -Alkoxy, C_1 - bis C_5 -Alkylthio, Phenyl, Heterocyclyl oder Amino, die jeweils substituiert sein können, bedeutet.

[0028] Komplexe von erfindungsgemäßen Verbindungen werden üblicherweise mit einem Salz der Formel MAn₂ gebildet, wobei M ein zweiwertiges Metallkation, z. B. Kupfer, Mangan, Cobalt, Nickel, Eisen oder Zink bedeutet und An ein Anion, z. B. Chlorid, Nitrat oder Sulfat, bedeutet.

[0029] Wenn die erfindungsgemäßen Verbindungen als E- und Z-Isomere vorliegen, so beinhaltet die Erfindung die einzelnen Isomere sowie deren Mischungen.

[0030] Wenn die erfindungsgemäßen Verbindungen als tautomere Isomere vorliegen, so beinhaltet die Erfindung die einzelnen Tautomere sowie deren Mischungen.

[0031] Wenn die erfindungsgemäßen Verbindungen als optische Isomere vorliegen, so beinhaltet die Erfindung die einzelnen Isomere sowie deren Mischungen.

[0032] Die erfindungsgemäßen Verbindungen wirken als Fungizide, insbesondere gegen pilzliche Pflanzen-krankheiten, z. B. Mehltaupilze und insbesondere den Echten Mehltau des Getreides (Erysiphe graminis) sowie den Falschen Mehltau der Rebe (Plasmopara viticola), Reisbrennen (Pyricularia oryzae), die Halmbruch-krankheit (Pseudocercosporella herpotrichoides), Pellicularia sasakii, den Grauschimmel (Botrytis cinerea), die Wurzeltöterkrankheit (Rhizoctonia solani), den Braunrost des Weizens (Puccinia recondita), die Braunfäule der Tomate bzw. Kraut- und Knollenfäule der Kartoffel (Phytophthora infestans), den Apfelschorf (Venturia inaequalis) sowie die Spelzenbräune (Leptosphaeria nodorum). Zu weiteren Pilzen, gegen die die Verbindungen wirksam sein können, zählen andere Echte Mehltaupilze, andere Rostpilze sowie andere allgemeine Krankheitserreger der Deuteromyceten, Ascomyceten, Phycomyceten und Basidomyceten.

[0033] Die Erfindung stellt also auch ein Verfahren zur Bekämpfung von Pilzen an einem Ort, der mit ihnen befallen ist bzw. befallen werden kann, bereit, das dadurch gekennzeichnet ist, daß man auf diesen Ort eine Verbindung der Formel I ausbringt.

[0034] Die Erfindung stellt auch eine landwirtschaftliche Zusammensetzung enthaltend eine Verbindung der Formel I in Abmischung mit einem landwirtschaftlich unbedenklichen Streckmittel oder Träger bereit.

[0035] Die erfindungsgemäße Zusammensetzung kann natürlich mehr als eine erfindungsgemäße Verbindung enthalten.

[0036] Die Zusammensetzung kann zusätzlich einen oder mehrere weitere Wirkstoffe, z. B. Verbindungen, von denen bekannt ist, daß sie pflanzenwachstumsregulatorische, herbizide, fungizide, insektizide, akarizide, antimikrobielle oder antibakterielle Eigenschaften aufweisen, enthalten. Die erfindungsgemäße Verbindung und der weitere Wirkstoff können jedoch auch der Reihe nach verwendet werden.

[0037] Bei dem Streckmittel oder Träger in der erfindungsgemäßen Zusammensetzung kann es sich um einen Feststoff oder eine Flüssigkeit, gegebenenfalls gemeinsam mit einem Tensid, z. B. einem Dispergiermittel, Emulgator oder Netzmittel, handeln. Zu geeigneten Tensiden zählen anionische Verbindungen wie ein Carboxylat, z. B. ein Metallcarboxylat einer langkettigen Fettsäure, ein N-Acylsarcosinat, Mono- oder Diester der Phosphorsäure mit Fettalkoholethoxylaten oder Alkylphenolethoxylaten, oder Salze solcher Ester, Fettalkoholsulfate wie Natriumdodecylsulfat, Natriumoctadecylsulfat oder Natriumcetylsulfat, ethoxylierte Fettalkoholsulfate, ethoxylierte Alkylphenolsulfate, Lignosulfonate, Petroleumsulfonate, Alkylarylsulfonate wie Alkylbenzolsulfonate oder Niederalkylnaphthalinsulfonate, z. B. Butylnapthalinsulfonat, Salze von sulfonierten Naphthalin-Formaldehyd-Kondensationsprodukten, Salze von sulfonierten Phenol-Formaldehyd-Kondensationsprodukten oder komplexere Sulfonate wie die Amidsulfonate, z. B. das sulfonierte Kondensationsprodukt von Ölsäure und N-Methyltaurin, die Dialkylsulfosuccinate, z. B. das Natriumdioctylsulfosuccinat, saure Derivate der Alkylglykosid- und Alkylpolyglykosidsubstanzen sowie deren Metallsalze, z. B. Alkylpolyglykosidcitrat- oder tartratsubstanzen, oder Mono-, Di- und Trialkylester der Citronensäure sowie ihre Metallsalze.

[0038] Zu den nichtionischen Mitteln zählen Kondensationsprodukte der Fettsäureester, Fettalkohole, Fettsäureamide oder fettalkyl- oder fettalkenylsubstituierte Phenole mit Ethylenoxid und/oder Propylenoxid, Fettester mehrwertiger Alkoholether, z. B. Sorbitanfettsäureester, Kondensationsprodukte solcher Ester mit Ethylenoxid, z. B. Polyoxyethylensorbitanfettsäüreester, Alkylglykosid- und Alkylpolyglykosidsubstanzen, Ethylenoxid-Propylenoxid-Blockcopolymere, Acetylenglykole wie 2,4,7,9-Tetramethyl-5-decin-4,7-diol, ethoxylierte Acetylenglykole, Pfropfcopolymere auf Acrylbasis, alkoxylierte Siloxantenside oder Tenside des Imidazolintyps, z. B. 1-Hydroxyethyl-2-alkylimidazolin.

[0039] Zu den kationischen Tensiden zählen z. B. ein aliphatisches Mono-, Di- oder Polyamin als Acetat, Naphthenat oder Oleat, ein sauerstoffhaltiges Amin wie ein Aminoxid, Polyoxyethylenalkylamin oder Polyoxypropylenalkylamin, ein Amin mit Amidbindung, das durch Kondensation einer Carbonsäure mit einem Di- oder Polyamin hergestellt wurde, oder ein quartäres Ammoniumsalz.

[0040] Die erfindungsgemäßen Zusammensetzungen können auf jede beliebige fachbekannte Art und Wei-

se, die sich für die Formulierung von Agrarchemikalien eignet, formuliert werden, z. B. als Lösung, Aerosol, Dispersion, wäßrige Emulsion, Mikroemulsion, dispergierbares Konzentrat, Stäubemittel, Beizmittel, gaserzeugendes Produkt, Räuchermittel, dispergierbares Pulver, Emulsionskonzentrat, Granulat oder imprägnierter Streifen. Außerdem kann es in einer geeigneten Form für die Direktanwendung oder als Konzentrat oder Primärzusammensetzung, das bzw. die vor der Ausbringung mit einer geeigneten Menge Wasser oder anderem Verdünnungsmittel verdünnt werden muß, vorliegen.

[0041] Ein dispergierbares Konzentrat enthält eine erfindungsgemäße Verbindung, die in einem oder mehreren teilweise oder ganz mit Wasser mischbaren Lösungsmitteln in Kombination mit einer oder mehreren oberflächenaktiven und/oder polymeren Substanzen gelöst ist. Gibt man die Formulierung in Wasser, so hat dies das Kristallisieren des Wirkstoffs zur Folge, wobei dieser Vorgang durch die Tenside und/oder Polymere kontrolliert wird, und man erhält eine feinteilige Dispersion.

[0042] Ein Stäubemittel enthält eine erfindungsgemäße Verbindung, die mit einem festen pulverförmigen Streckmittel, z. B. Kaolin, innig vermischt und vermahlen wird.

[0043] Ein Emulsionskonzentrat enthält eine erfindungsgemäße Verbindung, die in einem mit Wasser nicht mischbaren Lösungsmittel gelöst ist, wodurch man bei Zugabe zu Wasser in Gegenwart eines Emulgators zu einer Emulsion oder Mikroemulsion gelangt.

[0044] Ein granulatförmiger Feststoff enthält eine erfindungsgemäße Verbindung zusammen mit ähnlichen Streckmitteln, wie sie für Stäubemittel verwendet werden können, die Mischung wird jedoch nach bekannten Verfahren granuliert. Der granulatförmige Feststoff kann jedoch den Wirkstoff auch als Absorbat oder Beschichtung auf einem zuvor hergestellten Granulatträger, z. B. Fullererde, Attapulgit, Silica oder grobem Kalksteinsand, enthalten.

[0045] Spritzpulver, Granulate oder Körner enthalten den Wirkstoff im allgemeinen in Abmischung mit geeigneten Tensiden und einem inerten Pulverstreckmittel wie Ton oder Diatomeenerde.

[0046] Ein anderes geeignetes Konzentrat ist ein unter der Bezeichnung "Flowable" bekanntes Suspensionskonzentrat, das dadurch herausgestellt wird, daß man die Verbindung mit Wasser oder einer anderen Flüssigkeit, Tensiden und einem Suspendiermittel vermahlt.

[0047] Die Konzentration des Wirkstoffs in der erfindungsgemäßen Zusammensetzung liegt bei der Rusbringung auf Pflanzen vorzugsweise im Bereich von 0,0001 bis 1,0 Gewichtsprozent, insbesondere 0,0001 bis 0,01 Gewichtsprozent. In einer Primärzusammensetzung kann die Wirkstoffmenge in einem weiten Bereich schwanken und kann z. B. 5 bis 95 Gewichtsprozent der Zusammensetzung ausmachen.

[0048] Zur Verwendung wird eine erfindungsgemäße Verbindung im allgemeinen auf Saatgut, Pflanzen oder ihre Umgebung ausgebracht. So kann die Verbindung vor, während oder nach der Saat direkt so auf den Boden ausgebracht werden, daß das Vorhandensein des Wirkstoffs im Boden das Wachstum von Pilzen, die Saatgut befallen können, bekämpfen kann. Wird der Boden direkt behandelt, so kann der Wirkstoff auf eine beliebige Art und Weise ausgebracht werden, die eine innige Vermischung mit dem Boden gewährleistet, z. B. durch Spritzen, Streuen einer festen Granulatform oder durch Ausbringen des Wirkstoffs gleichzeitig mit der Saat, indem man ihn in dieselbe Sämaschine wie das Saatgut gibt. Eine geeignete Aufwandmenge liegt im Bereich von 5 bis 1000 g pro Hektar, stärker bevorzugt 10 bis 500 g pro Hektar.

[0049] Der Wirkstoff kann jedoch auch direkt auf die Pflanze ausgebracht werden, z. B. durch Spritzen oder Stäuben, und zwar entweder zu dem Zeitpunkt, wenn der Pilz auf der Pflanze beobachtet werden kann, oder vor dem Erscheinen des Pilzes als Schutzmaßnahme. In beiden Fällen ist die Blattspritzung die bevorzugte Art der Ausbringung. Im allgemeinen ist es wichtig, eine gute Bekämpfung der Pilze während der Frühstadien des Pflanzenwachstums zu erzielen, da zu diesem Zeitpunkt die Pflanze am stärksten geschädigt werden kann. Das Spritzmittel bzw. Stäubemittel kann geeigneterweise ein Vor- oder Nachauflaufherbizid enthalten, falls dies als notwendig erachtet wird. Manchmal ist es praktisch, die Wurzeln, Zwiebeln, Knollen oder andere vegetative Fortpflanzungsorgane einer Pflanze vor oder während des Setzens zu behandeln, z. B. indem man die Wurzeln in eine geeignete flüssige oder feste Zusammensetzung taucht. Wird der Wirkstoff direkt auf die Pflanze ausgebracht, so beträgt die Aufwandmenge geeigneterweise 0,025 bis 5 kg pro Hektar, vorzugsweise 0,05 bis 1 kg pro Hektar.

[0050] Außerdem können die erfindungsgemäßen Verbindungen auf geerntete Früchte, Gemüse oder Samen ausgebracht werden, um einen Befall während der Lagerung zu verhindern.

[0051] Außerdem können die erfindungsgemäßen Verbindungen auf Pflanzen oder Pflanzenteile, die genetisch modifiziert wurden und so ein Merkmal wie Pilz- und/oder Herbizidresistenz aufweisen, ausgebracht werden.

[0052] Außerdem können die erfindungsgemäßen Verbindungen zur Behandlung von Pilzbefall bei Holz und auf dem Gebiet des öffentlichen Gesundheitswesens verwendet werden. Die erfindungsgemäßen Verbindungen können auch zur Behandlung von Pilzbefall bei Haus- und Nutztieren verwendet werden.

[0053] Erfindungsgemäße Verbindungen lassen sich auf verschiedene bekannte Wege herstellen.

[0054] Verbindungen der allgemeinen Formel I lassen sich aus Verbindungen der allgemeinen Formel II gemäß Schema 1 herstellen. Zur Umsetzung können die folgenden Reaktionsbedingungen verwendet werden:

- a) Umsetzen mit R²R³NC(R¹)(OR)₂, wobei R eine Gruppe wie Alkyl bedeutet,
- b) Umsetzen mit ROC(R1)=NCN,
- c) bedeutet R¹ Wasserstoff, durch Umsetzen mit H(C=O)NR²R³ in Gegenwart von POCl₃ oder SOCl₂, oder d) in zwei Schritten durch Umsetzen mit Phosgen unter Bildung des Isocyanats und anschließende Behand-
- lung mit R²R³N(C=O)R¹.

Schema 1

[0055] Außerdem lassen sich R^2 - und R^3 -Gruppen in Verbindungen der allgemeinen Formel I in andere, für R^2 und R^3 definierte Gruppen umwandeln, und zwar durch Behandlung mit einem entsprechenden Amin oder, wenn R^2 oder R^3 Wasserstoff bedeutet, durch Acylierung oder Alkylierung.

[0056] Verbindungen der allgemeinen Formel II lassen sich durch Reduktion der Nitrogruppe in Verbindungen der Formel III gemäß Reaktionsschema 2 herstellen. Zu bevorzugten Reaktionsbedingungen zählt die Reaktion mit Zinn(II)-Chlorid in konzentrierter Salzsäure.

Schema 2

[0057] Verbindungen der Formel IIa, d. h. Verbindungen der allgemeinen Formel II, in der A eine direkte Bindung bedeutet, lassen sich gemäß Reaktionsschema 3, wobei X^v eine Abgangsgruppe bedeutet, herstellen.

Schema 3

$$R^{6}$$
 R^{6}
 R^{6}

[0058] Verbindungen der Formel IIb, d. h. Verbindungen der allgemeinen Formel II, in der R⁴ Halogen bedeutet, lassen sich gemäß Schema 4 herstellen, wobei X^T Halogen bedeutet. Bedeutet R⁴ Brom, so zählt zu bevorzugten Reaktionsbedingungen das Rühren mit Brom in einem geeigneten Lösungsmittel.

Schema 4

$$\mathbb{R}^{6}$$
 \mathbb{N}^{H_2}
 \mathbb{R}^{6}
 \mathbb{N}^{H_2}
 \mathbb{R}^{6}
 \mathbb{N}^{H_2}
 \mathbb{R}^{5}
 \mathbb{R}^{5}

[0059] Verbindungen der Formel IIc, d.h. Verbindungen der allgemeinen Formel II, in der A NHC(=O)- bedeutet, Verbindungen der Formel III, in der A eine direkte Bindung bedeutet und R⁶ gegebenenfalls substituiertes Phthalimido bedeutet, wobei der Bogen, der die 3- und 4-Stellung der Phthalimidogruppe verbindet, den gegebenenfalls substituierten Carbocyclus darstellt, und Verbindungen der Formel IIe, d. h. Verbindungen der allgemeinen Formel II, in der A eine direkte Bindung bedeutet und R⁶ Pyrrolyl, das gegebenenfalls in 2- und 5-Stellung durch eine oder mehrere Gruppen R, die gleich oder verschieden sein können, substituiert ist, lassen sich aus Verbindungen der Formel IV nach der in Reaktionsschema 5 gezeigten Methodik herstellen. Für bestimmte Verbindungen der Formel IV kann zur Verbesserung der Ausbeute das Schützen/Entschützen der Aminogruppe in ortho-Stellung zu R⁴ erforderlich sein.

Schema 5

$$H_2N$$
 NH_2
 R^6
 R^6
 R^5
 R^6
 $R^$

[0060] Verbindungen der Formel IIIa, d. h. Verbindungen der allgemeinen Formel III, in der A eine Gruppe Az bedeutet, lassen sich dadurch herstellen, daß man Verbindungen der Formel V mit Verbindungen der Formel VI gemäß Reaktionsschema 6 umsetzt. Az ist eine Gruppe, die in der Verbindung V unter basischen Bedingungen ein Anion bildet. Az ist entweder ein basisches primäres oder sekundäres Stickstoffatom. Xz ist eine Abgangsgruppe, vorzugsweise Halogen. Bedeutet Az Sauerstoff, so zählt zu bevorzugten Reaktionsbedingungen das Behandeln von V mit Natriumhydrid und anschließende Zugabe von VI. Bedeutet Az Schwefel, so zählt zu bevorzugten Reaktionsbedingungen das Umsetzen von V mit VI in Gegenwart einer tertiären Aminbase, wie Ethyldiisopropylamin. Bedeutet Az -CHR⁷-, so zählt zu bevorzugten Reaktionsbedingungen das Behandeln von V mit Kalium-tert.-butylat in Dimethylformamid bei niedriger Temperatur. Bedeutet Az ein basisches Stickstoffatom, so ist keine Base erforderlich.

Schema 6

$$R^{6}-A^{2}-H$$

(V)

1) Base

 R^{6}
 R^{6}
 R^{6}
 R^{7}
 R^{7}

[0061] Verbindungen der Formel IIIb, d. h. Verbindungen der allgemeinen Formel III, in der A eine Gruppe A^w bedeutet, lassen sich dadurch herstellen, daß man Verbindungen der Formel VII mit Verbindungen der Formel VIII gemäß Reaktionsschema 7 umsetzt. A^w ist eine Gruppe, die in der Verbindung VII unter basischen Bedin-

gungen ein Anion bildet. X^w ist eine Abgangsgruppe, vorzugsweise Halogen. Zu bevorzugten basischen Bedingungen zählt das Umsetzen von VII mit Kaliumcarbonat oder Natriumhydrid und anschließende Zugabe von VIII.

Schema 7

[0062] Verbindungen der Formel IIIc, d. h. Verbindungen der allgemeinen Formel III, in der A O bedeutet, lassen sich dadurch herstellen, daß man Verbindungen der Formel IX mit Boronsäuren der Formel X gemäß Schema 8 umsetzt. Zu bevorzugten Reaktionsbedingungen zählt das Umsetzen mit Kupferacetat und Triethylamin.

Schema 8

[0063] Verbindungen der Formel IIId, d. h. Verbindungen der Formel III, in der A eine direkte Bindung bedeutet, lassen sich gemäß Reaktionsschema 9 aus Verbindungen der Formel XI, in der X^z eine Abgangsgruppe, vorzugsweise Halogen, bedeutet, herstellen.

Schema 9

$$R^{6}$$
-B(OH)₂(X)/Pd(II)

 R^{6} -B(OH)₂(X)/Pd(II)

 R^{6} -B(OH)₂(X)/Pd(II)

 R^{5} -B(OH)₂(X)/Pd(II)

 R^{5} -B(OH)₂(X)/Pd(II)

[0064] Verbindungen der Formel III, in der A eine direkte Bindung und R⁶ Heterocyclyl bedeutet, lassen sich nach verschiedenen Verfahren, mit denen der Fachmann auf dem Gebiet der Chemie vertraut ist, herstellen (siehe z. B. "Comprehensive Heterocyclic Chemistry" [Umfassende Chemie der Heterocyclen], Bd. 1–7, A. R. Katritzky und C. W. Rees). Als Beispiel sind Wege, die zu Verbindungen der Formel III mit einer 1,2,4-Oxadiazol-3-ylgruppe (Verbindung IIIe) und einer 1,3,4-Oxadiazol-2-ylgruppe (Verbindung IIIf) führen, in Schema 10

und 11 gezeigt.

Schema 10

NC
$$R^4$$
 NO_2 R^4 NO_2 R^4 NO_2 R^5 R^5

Schema 11

$$MeO_2C$$
 R^4
 $NH_2OH.HCI$
 R^5
 R^4
 $RC(=O)CI$
 $RC(=O)NHNH$
 R^4
 $RC(=O)CI$
 R^5
 R^4
 $RC(=O)CI$
 R^5
 R^6
 R^6

[0065] Unter Verwendung einer ähnlichen Synthese wie oben beschrieben können Verbindungen der Formel I jedoch auch dadurch hergestellt werden, daß man R⁶ nach Bildung des Amidinrests einführt.

[0066] Insbesondere wurde gefunden, daß, wenn man Verbindungen der Formel XII den Reaktionsbedingungen nach Schema 7 aussetzt, Verbindungen der Formel Ia, d. h. Verbindungen der allgemeinen Formel I, in der A Sauerstoff bedeutet, in besonders hoher Ausbeute erhalten werden (siehe Schema 12).

[0067] Verbindungen der Formel XII lassen sich durch Verfahren ähnlich denen in Tetrahedon Letters, 38 (31) 5403–5406, herstellen.

Schema 12

[0068] Gewisse Verbindungen der allgemeinen Formel XII sind neu; gemäß einem dritten Aspekt stellt die Erfindung daher Verbindungen der allgemeinen Formel XIIa

(Xila)

bereit, in der

R¹ Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, oder Wasserstoff bedeutet,

R² und R³, die gleich oder verschieden sein können, eine beliebige für R¹ definierte Gruppe, Cyan, Acyl, -ORa oder -SRa, wobei Ra Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, bedeuten, oder R² und R³, oder R² und R¹, gemeinsam mit den sie verbindenen Atomen einen Ring, der substituiert sein kann, bilden können,

R⁴ Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, bedeutet, und R⁵ eine beliebige für R⁴ definierte Gruppe bedeutet, mit der Maßgabe, daß R⁵ nicht tert.-Butyl bedeutet.

[0069] Dem Chemiker, der auf diesem Gebiet Fachmann ist, werden weitere Verfahren sowie Verfahren zur Herstellung von Ausgangsmaterialien und Zwischenprodukten leicht ersichtlich sein.

[0070] Außerdem lassen sich erfindungsgemäße Verbindungen nach der Methodik der kombinatorischen Chemie herstellen.

[0071] Die Erfindung wird durch die folgenden Beispiele erläutert. Die Strukturen isolierter neuer Verbindungen wurden mittels NMR und/oder anderer geeigneter Analysen bestätigt. Die Protonen-NMR-Spektren (1 H-NMR) wurden in Deuterochloroform bestimmt, und die chemische Verschiebung (5) wird in "Parts per Million"-Tieffeld vom Tetramethylsilan angegeben.

Beispiel 1

N,N-Dimethyl-N'-[4-(3-trifluormethylbenzylthio)-2,5-xylyl]formamidin

(Verbindung 3)

[0072] Das Produkt aus Schritt b) (1,0 g) und N,N-Dimethylformamiddimethylacetal (1,0 ml) wurden 4 Stunden lang auf 100°C erhitzt. Nach dem Abkühlen wurde mittels Silicagel-Chromatographie mit Diethylether als Elutionsmittel gereinigt, wodurch man die Titelverbindung erhielt; 1 H-NMR δ (ppm) 2,15 (s, 3H, ArCH₃), 2,20 (s, 3H, ArCH₃), 3,00 (s, 6H, N(CH₃)₂), 3,95 (s, 2H, S<u>CH</u>₂).

Herstellung der Ausgangsmaterialien

a) 2-Nitro-5-(3-trifluormethylbenzylthio)-p-xylol

[0073] Eine Mischung aus 3-Trifluormethylbenzylmercaptan (3,42 g), Diisopropylethylamin (2,3 g) und 3-Chlor-6-nitro-p-xylol (3,0 g) in trockenem N-Methylpyrrolidinon (20 ml) wurde 6 Stunden lang auf 130°C erhitzt. Nach dem Abkühlen wurde auf Eiswasser gegossen und die erhaltene Mischung wurde filtriert, wodurch man einen Feststoff erhielt, der mit Eiswasser gewaschen und dann an der Luft getrocknet wurde. Der Feststoff wurde mittels Silicagel-Chromatographie mit Leichtbenzin (60–80°C)/Essigester (9:1) als Elutionsmittel gereinigt, wodurch man die Titelverbindung als Feststoff vom Fp. 85–7°C erhielt.

b) 4-(3-Trifluormethylbenzylthio)-2,5-xylidin

[0074] Eine Mischung aus Zinn(II)-chlorid (10,8 g) in konzentrierter Salzsäure (24 ml) und Ethanol (50 ml) wurde unter Rühren mit dem Produkt aus Schritt a) oben (2,46 g) versetzt und es wurde 2 Stunden lang auf 75°C erhitzt. Nach dem Abkühlen wurde langsam unter Kühlen mit Kalilauge versetzt. Es wurde mit Diethylether extrahiert (3 ×) und die vereinigten Extrakte wurden mit Kochsalzlösung gewaschen, getrocknet (MgSO₄), filtriert und zur Trockne eingeengt, wodurch man als Rohprodukt einen Rückstand erhielt, der mittels Silicagel-Chromatographie mit Leichtbenzin (Kp. 60– 80°C)/Essigester (3 : 1) als Elutionsmittel gereinigt wurde, wodurch man die Titelverbindung vom Fp. 58–60°C erhielt.

Beispiel 2

N,N-Diethyl-N'-[4-(3-trifluormethylphenoxy)-2,5-xylyl]formamidin

(Verbindung 37)

[0075] Eine Lösung von N,N-Diethylformamid (1,43 g) in trockenem Diethylether (3 ml) wurde tropfenweise unter Rühren unter Stickstoffatmosphäre mit Phosphoroxychlorid (2,18 g) in trockenem Diethylether (3 ml) versetzt und es wurde noch 20 Minuten lang weiter gerührt. Dann hörte man mit dem Rühren auf und ließ zwei Schichten bilden. Die obere Etherschicht wurde abdekantiert und die untere Schicht wurde mit Diethylether gewaschen (3 ×). Dann wurde tropfenweise mit dem Produkt aus Schritt b) (2 g) in trockenem Diethylether (4 ml) versetzt. Nach der Zugabe wurde kräftig 1 Stunde lang bei Raumtemperatur gerührt. Die obere Etherschicht wurde abdekantiert und die untere Schicht wurde mit Ether gewaschen (2 ×). Die untere Schicht wurde auf Wasser gegossen und der pH wurde mit Natriumcarbonatlösung auf 9 eingestellt. Es wurde mit Diethylether extrahiert (3 ×) und die vereinigten Extrakte wurden getrocknet (MgSO₄), filtriert und zur Trockne eingeengt, wodurch man als Rohprodukt ein Öl erhielt, das mittels Silicagel-Chromatographie mit Diethylether als Elutionsmittel gereinigt wurde, wodurch man die Titelverbindung erhielt; 1 H-NMR δ (ppm) 1,20 (t, 6H, CH₂CH₃), 2,10 (s, 3H, ArCH₃), 2,20 (s, 3H, ArCH₃), 3,30–3,50 (br, 4H, CH₂CH₃).

Herstellung der Ausgangsmaterialien

a) 2-Nitro-5-(3-trifluormethylphenoxy)-p-xylol

[0076] Eine Suspension von Natriumhydrid (0,4 g in Öl, 60%ig) in trockenem N-Methylpyrrolidinon (10 ml) wurde langsam mit 3-Trifluormethylphenol (1,62 g) versetzt. Nach Beendigung des Aufbrausens wurde mit 3-Chlor-6-nitro-p-xylol (1,85 g) versetzt und 5 Stunden lang bei 120–140°C gerührt. Nach dem Abkühlen wurde auf Wasser gegossen und mit Diethylether extrahiert (3 ×). Die vereinigten Etherextrakte wurden getrocknet (MgSO₄), filtriert und eingedampft, wodurch man die Titelverbindung als Feststoff vom Fp. 68–71°C erhielt.

b) 4-(3-Trifluormethylphenoxy)-2,5-xylidin

[0077] Diese Verbindung wurde ähnlich wie für das Produkt in Beispiel 1, Schritt b), beschrieben hergestellt.

Beispiel 3

N-Ethyl-N-methyl-N'-[4-(3-trifluormethylphenoxy)-2,5-xylyl]formamidin

(Verbindung 45)

[0078] Eine Mischung des Produkts aus Beispiel 4 (1 g) und Methylethylamin (0,885 g) in Acetonitril (20 ml) wurde 1,5 Stunden lang bei Raumtemperatur gerührt. Das Lösungsmittel wurde im Vakuum entfernt und es wurde mit Wasser versetzt. Es wurde mit Diethylether extrahiert (3 ×) und die vereinigten Etherextrakte wurden getrocknet (MgSO₄), filtriert und zur Trockne eingeengt. Der als Rohprodukt erhaltene Rückstand wurde mittels Silicagel-Chromatographie mit Essigester/Leichtbenzin (Kp. 40–60°C) (4 : 6) als Elutionsmittel gereinigt, wodurch man die Titelverbindung erhielt; 1 H-NMR δ (ppm) 1,20 (t, 3H, CH₂CH₃), 2,10 (s, 3H, ArCH₃), 2,20 (s, 3H, ArCH₃), 3,00 (s, 3H, NCH₃), 3,40 (br, 2H, NCH₂).

Beispiel 4

N-Cyano-N'-[4-(3-trifluormethylphenoxy)-2,5-xylyl]formamidin

(Verbindung 44)

[0079] Eine Lösung des Produkts aus Beispiel 2, Schritt b), (2 g) in Ethanol (5 ml) wurde tropfenweise bei Raumtemperatur mit Ethylcyanimidat (0,7 g) versetzt und es wurde 2 Stunden lang bei Raumtemperatur weitergerührt. Das Ethanol wurde im Vakuum entfernt, wodurch man einen Rückstand als Rohprodukt erhielt, der durch Verreiben mit Leichtbenzin (Kp. 40–60°C) und anschließend mittels Silicagel-Chromatographie mit Essigester/Leichtbenzin (Kp. 40–60°C) (4 : 6) als Elutionsmittel gereinigt wurde, wodurch man die Titelverbindung vom Fp. 138–40°C erhielt.

Beispiel 5

N,N-Dimethyl-N'-[4-(3-phenyl-1,2,4-thiadiazol-5-yloxy)-2,5-xylyl]formamidin

(Verbindung 48)

[0080] Eine Suspension des Ausgangsmaterials (siehe unten) (0,57 g) in Dimethylformamid (10 ml) wurde mit Kaliumcarbonat (0,62 g) versetzt und die Lösung wurde 40 Minuten lang bei Raumtemperatur gerührt. Man versetzte mit 5-Brom-3-phenyl-1,2,4-thiadiazol (0,72 g) und rührte 3 Stunden lang bei 60°C. Nach dem Abkühlen wurde auf Wasser gegossen (150 ml) und mit Diethylether extrahiert (3 × 70 ml). Die vereinigten Etherextrakte wurden mit Wasser (20 ml) gewaschen, getrocknet (MgSO₄), filtriert und zur Trockne eingeengt, wodurch man als Rohprodukt einen Feststoff erhielt, der mittels Silicagel-Chromatographie mit Diethylether als Elutionsmittel gereinigt wurde, wodurch man die Titelverbindung als Feststoff vom Fp. 100–5°C erhielt.

Herstellung der Ausgangsmaterialien

N,N-Dimethyl-N'-(4-hydroxy-2,5-xylyl)formamidin

[0081] Diese Verbindung wurde aus 4-Amino-2,5-dimethylphenol ähnlich wie in Beispiel 1, 2 oder 3 beschrieben hergestellt; Fp. 212°C.

Beispiel 6

N, N-Dimethyl-N'-[4-(3-trifluor methyl phenoxy)-2, 6-xylyl] for mamiding a constant of the property of the p

(Verbindung 20)

[0082] Diese Verbindung wurde aus dem Produkt von Schritt b) unten und Dimethylformamiddimethylacetal nach dem in Beispiel 1 beschriebenen Verfahren hergestellt; 1 H-NMR δ (ppm) 2,15 (s, 6H, ArCH₃), 3,00 (s, 6H,

 $N(CH_3)_2$).

Herstellung der Ausgangsmaterialien

a) 2-Nitro-5-(3-trifluormethylphenoxy)-m-xylol

[0083] Eine Mischung aus 3,5-Dimethyl-4-nitrophenol (1,67 g), 3-Trifluormethylbenzolboronsäure (3,8 g), Kupfer(II)-acetat (1,82 g) und Triethylamin (2,02 g) in Dichlormethan (50 ml) wurde 48 Stunden lang bei Raumtemperatur gerührt. Die Mischung wurde zur Trockne eingeengt und mittels Silicagel-Chromatographie mit Leichtbenzin (Kp. 60–80°C)/Essigester (19 : 1) als Elutionsmittel gereinigt, wodurch man die Titelverbindung als Öl erhielt.

b) 4-(3-Trifluormethylphenoxy)-2,6-xylidin

[0084] Diese Verbindung wurde aus dem Produkt von Schritt a) oben nach dem in Beispiel 1, Schritt b), beschriebenen Verfahren hergestellt.

Beispiel 7

N,N-Dimethyl-N'-[6-brom-4-(3-trifluormethylphenoxy)-2,5-xylyl]formamidin

(Verbindung 12)

[0085] Die Titelverbindung wurde aus dem Produkt von Schritt c) unten und Dimethylformamiddimethylacetal gemäß Beispiel 1 hergestellt; ¹H-NMR δ (ppm) 2,17 (s, 3H, ArCH₃), 2,22 (s, 3H, ArCH₃), 3,05 (s, 6H, N(CH₃)₂).

Herstellung der Ausgangsmaterialien

a) 2-Nitro-5-(3-trifluormethylphenoxy)-p-xylol

[0086] Die Titelverbindung wurde gemäß Beispiel 6, Schritt a), aus 2,5-Dimethyl-4-nitrophenol und 3-Trifluormethylbenzolboronsäure hergestellt.

b) 4-(3-Trifluormethylphenoxy)-2,5-xylidin

[0087] Die Titelverbindung wurde gemäß Beispiel 1, Schritt b), aus dem Produkt von Schritt a) hergestellt.

c) 6-Brom-4-(3-trifluormethylphenoxy)-2,5-xylidin

[0088] Eine Lösung des Produkts aus Schritt b) oben (1,12 g) in Dichlormethan (20 ml) wurde bei 0°C unter Rühren tropfenweise mit Brom (0,64 g) in Dichlormethan (5 ml) versetzt. Es wurde mit Natriumbicarbonatlösung gewaschen, getrocknet (MgSO₄), filtriert und eingeengt, wodurch man als Rohprodukt ein Öl erhielt, das mittels Silicagel-Chromatographie mit Essigester/Leichtbenzin (Kp. 60–80°C) (1 : 4) als Elutionsmittel gereinigt wurde, wodurch man die Titelverbindung erhielt.

Beispiel 8

N,N-Dimethyl-N'-[4-(3-trifluormethylphenyl)-2,5-xylyl]formamidin

(Verbindung 53)

[0089] Die Titelverbindung wurde gemäß Beispiel 1 aus dem Produkt von Schritt c) unten und Dimethylformamiddimethylacetal hergestellt; 1 H-NMR δ (ppm) 2,00 (s, 3H, ArCH $_3$), 2,20 (s, 3H, ArCH $_3$), 3,00 (s, 6H, N(CH $_3$) $_2$).

Herstellung der Ausgangsmaterialien

a) N-(4-Brom-2,5-xylyl)pivalamid

[0090] Eine Lösung von 4-Brom-2,5-xylidin (8 g) in Pyridin (60 ml) wurde bei Raumtemperatur mit Pivaloyl-chlorid (4,7 ml) versetzt. Nach 30 Minuten wurde auf verdünnte Salzsäure/Eis-Lösung gegossen. Der Nieder-

schlag wurde abfiltriert und mit Wasser gewaschen, wodurch man die Titelverbindung erhielt.

b) N-(4-(3-Trifluormethylphenyl)-2,5-xylyl)pivalamid

[0091] Eine Lösung des Produkts aus Schritt a) (9,1 g) in Dimethoxyethan (14 ml) wurde mit Triphenylphosphinpalladium(II)-chlorid (katalytische Menge) versetzt und 10 Minuten lang gerührt. Man versetzte mit 3-Trifluormethylphenylboronsäure (6,03 g), Natriumbicarbonat (8,1 g) und Wasser (102 ml) und erhitzte 4 Stunden lang unter Rückfluß. Nach dem Abkühlen wurde mit 1 N Natronlauge (94 ml) versetzt und mit Essigester extrahiert. Die organischen Extrakte wurden mit gesättigter Natriumchloridlösung gewaschen, getrocknet (MgSO₄) und eingeengt, wodurch man die Titelverbindung erhielt.

c) 4-(3-Trifluormethylphenyl)-2,5-xylidin

[0092] Das Produkt aus Schritt b) (10,4 g) in Eisessig (36 ml) wurde bei 70°C mit Salzsäure (24,5 ml einer 15%igen Lösung) versetzt. Es wurde 3 Tage lang bei 100°C gerührt. Nach dem Abkühlen wurde mit Wasser versetzt und mit Essigester extrahiert. Die organische Phase wurde mit Natriumbicarbonatlösung gewaschen, getrocknet (MgSO₄) und eingeengt, wodurch man die Titelverbindung erhielt.

Beispiel 9

N,N-Dimethyl-N'-[4-(3-trifluormethylbenzyl)-2,5-xylyl]formamidin

(Verbindung 264)

[0093] Die Titelverbindung wurde ähnlich wie in Beispiel 1 beschrieben aus dem Produkt von Schritt d) unten hergestellt; Fp. 75–7°C.

Herstellung der Ausgangsmaterialien

a) 2-Nitro-5-(α-cyan-3-trifluormethylbenzyl)-p-xylol

[0094] Die Titelverbindung wurde nach der in J. Med. Chem., 40, 3942 (1997), beschriebenen Methodik aus 2-Chlor-5-nitro-p-xylol und 3-Trifluormethylbenzylcyanid hergestellt.

b) 2-Nitro-5-(3-trifluormethylbenzoyl)-p-xylol

[0095] Eine Lösung des Produkts aus Schritt a) (3,3 g) in trockenem Dimethylformamid (30 ml) wurde bei 0°C mit Kalium-tert.-butylat (1,12 g) versetzt und 5 Minuten lang bei 0°C gerührt. Man versetzte tropfenweise mit Wasserstoffperoxid (3,5 ml, 30%) und es wurde 6 Stunden lang bei ungefähr 3°C weitergerührt. Es wurde 2 Tage lang bei Raumtemperatur stehen gelassen und dann in verdünnte Salzsäure (500 ml) gegossen und mit Natriummetabisulfit versetzt. Es wurde mit Diethylether $(2 \times 200 \text{ ml})$ extrahiert, mit Wasser $(2 \times 20 \text{ ml})$ gewaschen, getrocknet $(MgSO_4)$ und eingeengt, wodurch man ein Rohprodukt erhielt. Durch Verreiben mit Leichtbenzin (Kp. 40–60°C) erhielt man einen Feststoff, der aus Diisopropylether umkristallisiert wurde, wodurch man die Titelverbindung erhielt.

c) 2-Nitro-5-(3-trifluormethylbenzyl)-p-xylol

[0096] Eine Lösung des Produkts von Schritt b) (1 g) in Dichlormethan (20 ml) wurde bei 0°C mit einer Lösung von Trifluormethansulfonsäure (0,6 ml) in Dichlormethan (10 ml) versetzt. Es wurde mit Triethylsilan (0,8 ml) in Dichlormethan (10 ml) versetzt und 10 Minuten lang bei 0°C gerührt. Es wurde mit einer weiteren Portion Trifluormethansulfonsäure (0,6 ml) und dann mit einer weiteren Portion Triethylsilan (0,8 ml) versetzt. Der Ansatz wurde auf Raumtemperatur kommen gelassen und 1 Stunde lang gerührt. Es wurde auf gesättigte Natriumbicarbonatlösung (100 ml) gegossen und vom anorganischen Feststoff abfiltriert. Die Schichten wurden getrennt und die wäßrige Schicht wurde mit Dichlormethan extrahiert (2 × 50 ml). Die vereinigten organischen Schichten wurden eingedampft und umkristallisiert, wodurch man einen Feststoff vom Fp. 75–7°C erhielt.

d) 4-(3-Trifluormethylbenzyl)-2,5-xylidin

[0097] Die Titelverbindung wurde gemäß Beispiel 1, Schritt b), aus dem Produkt von Schritt c) hergestellt.

Beispiel 10

N,N-Dimethyl-N'-[4-(4-fluorbenzamido)-2,5-xylyl]-formamidin

(Verbindung 98)

[0098] Die Titelverbindung wurde aus dem Ausgangsmaterial ähnlich wie in Beispiel 1 beschrieben hergestellt; Fp. 166–8°C.

Herstellung der Ausgangsmaterialien

N-(4-Amino-2,5-xylyl)-4-fluorbenzamid

[0099] Eine Lösung aus p-Xylylendiamin (3,0 g) und Ethyldiisopropylamin (3,8 ml) in Dichlormethan (300 ml) wurde bei 0°C tropfenweise mit 4-Fluorbenzoylchlorid (3,5 g) versetzt. Es wurde auf Raumtemperatur erwärmt und noch 4 Stunden weitergerührt. Man versetzte mit Wasser (200 ml) und rührte 30 Minuten lang. Es wurde filtriert und mit Wasser und Dichlormethan nachgewaschen. Die organische Phase wurde mit Wasser gewaschen, getrocknet (MgSO₄) und eingedampft, wodurch man einen Feststoff vom Fp. 174–6°C erhielt.

Beispiel 11

N,N-Dimethyl-N'-(4-phthalimido-2,5-xylyl)formamidin

(Verbindung 80)

[0100] Die Titelverbindung wurde aus dem Ausgangsmaterial ähnlich wie in Beispiel 1 beschrieben hergestellt; Fp. 170–3°C.

Herstellung der Ausgangsmaterialien

N-(4-Amino-2,5-xylyl)phthalimid

[0101] Eine Lösung aus p-Xylylendiamin (1,0 g) in N-Methylpyrrolidinon wurde mit Phthalsäureanhydrid (1,1 g) in N-Methylpyrrolidinon (10 ml) versetzt. Es wurde 4 Stunden lang auf 150°C erhitzt. Nach dem Abkühlen wurde auf Wasser gegossen und dann filtriert. Der Filterkuchen wurde mit Wasser gewaschen und getrocknet; Fp. 167–9°C.

Beispiel 12

N,N-Dimethyl-N'-[4-(2,5-dimethyl-1-pyrrolyl)-2,5-xylyl]formamidin

(Verbindung 79)

[0102] Die Titelverbindung wurde aus Schritt c) unten ähnlich wie in Beispiel 1 beschrieben hergestellt; Fp. 90–1°C.

Herstellung der Ausgangsmaterialien

a) N-(4-Amino-2,5-xylyl)acetamid

[0103] Eine Lösung von p-Xyloldiamin (2,0 g) in Dichlormethan (200 ml) wurde mit N,N-Diisopropylamin (2,52 ml) und anschließend tropfenweise mit Acetylchlorid (1,15 g) versetzt, wobei die Temperatur unter 10°C gehalten wurde. Es wurde auf Raumtemperatur kommen gelassen und über Nacht gerührt. Es wurde mit Wasser (120 ml) versetzt und die Suspension wurde filtriert. Der feste Filterrückstand wurde mit Dichlormethan (2 × 100 ml) und Wasser (100 ml) gewaschen. Alle Filtrate wurden vereinigt und die organische Schicht wurde abgetrennt. Die organische Schicht wurde mit Wasser gewaschen, getrocknet (MgSO $_4$) und eingedampft, wodurch man die Titelverbindung als Feststoff vom Fp. 133–5°C erhielt.

b) N-[4-(2,5-Dimethyl-1-pyrrolyl)-2,5-xylyl]acetamid

[0104] Acetonylaceton (0,7 ml) wurde mit dem Produkt aus Schritt a) (1,0 g) versetzt und es wurde 4 Stunden lang auf 140°C erhitzt. Nach dem Abkühlen wurde in Dichlormethan gelöst und die Lösung wurde filtriert (MgSO₄). Durch Einengen erhielt man ein Rohprodukt, das mittels Silicagel-Chromatographie mit Diethylether als Elutionsmittel gereinigt wurde, wodurch man die Titelverbindung erhielt.

c) 2,5-Dimethyl-4-(2,5-dimethyl-1-pyrrolyl)anilin

[0105] Eine Mischung aus dem Produkt aus Schritt b) (0,6 g), Natronlauge (10 ml, 10%) und Ethanol (30 ml) wurde 24 Stunden unter Rückfluß erhitzt. Nach dem Abkühlen wurde mit Diethylether extrahiert (2 ×). Die vereinigten Diethyletherextrakte wurden mit Wasser gewaschen, getrocknet (MgSO₄) und eingeengt, wodurch man ein Rohprodukt erhielt. Durch Filtrieren über Silica erhielt man die Titelverbindung.

Beispiel 13

N,N-Dimethyl-N'-[4-(2-benzo[b]thiophenyl)-2,5-xylyl]formamidin

(Verbindung 187)

[0106] Die Titelverbindung wurde ähnlich wie in Beispiel 1 beschrieben aus Schritt b) unten hergestellt; Fp. 67–8°C.

Herstellung der Ausgangsmaterialien

a) 2-(4-Nitro-2,5-xylyl)benzo[b]thiophen

[0107] Eine Mischung aus 2-Brom-5-nitro-p-xylol (200 g), 2-Benzo[b]thiophenboronsäure (200 g), $(PH_3P)_4Pd$ (0,36 g) in Toluol (60 ml) und Ethanol (22 ml) wurde über Nacht unter Rückfluß erhitzt. Man versetzte mit Essigester und Wasser und trennte die organische Phase ab. Die organische Phase wurde mit Wasser gewaschen, getrocknet (MgSO₄) und über ein Silicakissen filtriert, wodurch man die Titelverbindung erhielt.

b) 2,5-Dimethyl-4-(2-benzo[b]thiophenyl)anilin

[0108] Die Titelverbindung wurde gemäß Beispiel 1, Schritt b), aus dem Produkt von Schritt a) oben hergestellt.

Beispiel 14

N,N-Dimethyl-N'-{4-[5-(4-chlorphenyl)-1,2,4-oxadiazol-3-yl]-2-tolyl}formamidin

(Verbindung 179)

[0109] Die Titelverbindung wurde gemäß Beispiel 1 aus dem Produkt von Schritt c) unten hergestellt; Fp. 136–7°C.

Herstellung der Ausgangsmaterialien

a) 3-Methyl-4-nitrobenzamidoxim

[0110] Eine Lösung von 3-Methyl-4-nitrobenzonitril (5 g) in Ethanol (100 ml) wurde bei Raumtemperatur mit Hydroxylamin-hydrochlorid (2,25 g) und anschließend mit Triethylamin (4,5 ml) versetzt. Es wurde 2,5 Stunden lang unter Rückfluß erhitzt. Nach dem Abkühlen wurde die Mischung auf ein Drittel des Ausgangsvolumens eingeengt und auf Wasser (200 ml) gegossen. Durch Filtrieren erhielt man die Titelverbindung als Feststoff vom Fp. 127–9°C.

b) 5-(4-Chlorphenyl)-3-(3-methyl-4-nitrophenyl)-1,2,4-oxadiazol

[0111] Eine Lösung des Produkts aus Schritt a) (1,9 g) und Triethylamin (1,62 ml) in Dichlormethan (50 ml) wurde bei Raumtemperatur mit 4-Chlorbenzoylchlorid (2,05 g) versetzt. Es wurde 2 Stunden lang bei Raum-

temperatur gerührt und dann mit Wasser gewaschen. Man versetzte mit Toluol (100 ml) und erhitzte 5 Stunden lang unter Dean-Stark-Bedingungen. Nach dem Abkühlen wurde filtriert und eingeengt. Durch Verreiben mit Diisopropylamin und Leichtbenzin (Kp. 40–60°C) erhielt man die Titelverbindung vom Fp. 145–7°C.

c) 4-[5-(4-Chlorphenyl)-1,2,4-oxadiazol-3-yl]-2-methylanilin

[0112] Die Titelverbindung wurde gemäß Beispiel 1, Schritt b), aus dem Produkt von Schritt b) hergestellt.

Beispiel 15

N,N-Dimethyl-N'-[4-(5-tert.-butyl-1,3,4-oxadiazol-2-yl)-2-methylphenyl]formamidin

(Verbindung 211)

[0113] Die Titelverbindung wurde gemäß Beispiel 1 aus dem Produkt von Schritt c) unten hergestellt; Fp. 79–80°C.

Herstellung der Ausgangsmaterialien

a) N-(3-Methyl-4-nitrobenzoyl)-N'-pivaloylhydrazin

[0114] Eine Lösung von 3-Methyl-4-nitrobenzoylhydrazin (3,9 g) in Dichlormethan (100 ml) wurde mit Triethylamin (3,06 ml) und anschließend mit Pivaloylchlorid (2,6 ml) versetzt. Es wurde 2 Stunden lang bei Raumtemperatur gerührt. Es wurde mit Wasser gewaschen, getrocknet (MgSO₄) und eingeengt. Durch Verreiben mit Leichtbenzin (Kp. 60–80°C) erhielt man die Titelverbindung vom Fp. 125–7°C.

b) 5-tert.-Butyl-2-(3-methyl-4-nitrophenyl)-1,3,4-oxadiazol

[0115] Das in Schritt a) hergestellte Produkt (5,0 g) wurde mit Toluol (200 ml) verrührt und mit Phosphorpentoxid (10 g) behandelt. Es wurde 2 Stunden lang unter Rückfluß erhitzt und dann auf Eiswasser gegossen. Der Ansatz wurde mit Diethylether extrahiert und der Extrakt wurde getrocknet (MgSO₄) und eingeengt. Der Rückstand wurde mittels Silicagel-Chromatographie mit Diethylether/Leichtbenzin (Kp. 60–80°C) als Elutionsmittel gereinigt, wodurch man die Titelverbindung vom Fp. 123–5°C erhielt.

c) 2-(4-Amino-3-methyl)-5-tert.-butyl-1,3,4-oxadiazol

[0116] Die Titelverbindung wurde gemäß Beispiel 1, Schritt b), aus dem Produkt von Schritt b) hergestellt.

Beispiel 16

N-Cyano-N-methyl-N'-[4-(4-chlor-3-trifluormethylphenoxy)-2-xylyl]formamidin

(Verbindung 373)

[0117] Das Produkt aus Schritt c) (0,4 g) in Tetrahydrofuran (10 ml) wurde mit Natriumhydrid (0,05 g) behandelt. Man versetzte mit Iodmethan (0,075 ml) und rührte. Es wurde mit Wasser gequencht und mit Dichlormethan extrahiert. Die Extrakte wurden getrocknet (MgSO₄) und eingeengt. Das als Rückstand erhaltene Produkt wurde mittels Silicagel-Chromatographie gereinigt, wodurch man die Titelverbindung erhielt; 1 H-NMR δ (ppm) 2,10 (s, 3H, ArCH₃), 2,20 (s, 3H, ArCH₃) und 3,35 (s, 3H, NCH₃).

Beispiel 17

N-Cyano-N'-[4-(4-chlor-3-trifluormethylphenoxy)-2,5-xylyl]formamidin

(Verbindung 397)

[0118] Die Titelverbindung wurde gemäß Beispiel 4 aus dem Produkt von Schritt b) oben hergestellt; Fp. 111–4°C.

Herstellung der Ausgangsmaterialien

a) 2-Nitro-5-(4-chlor-3-trifluormethylphenoxy)-p-xylol

[0119] Die Titelverbindung wurde gemäß Beispiel 2, Schritt a), hergestellt.

b) 4-(4-Chlor-3-trifluormethylphenoxy)-2,5-xylidin

[0120] Die Titelverbindung wurde gemäß Beispiel 1, Schritt b), aus dem Produkt von Schritt a) oben hergestellt.

[0121] Die folgenden Verbindungen der Formel Ia (siehe Tabelle 1), d. h. Verbindungen der allgemeinen Formel I, in der -A-R⁶ in para-Stellung zum Amidinrest steht, lassen sich nach Verfahren analog den in Beispielen 1 bis 17 beschriebenen Verfahren herstellen. Wobei der rechts von der Bindung A dargestellte Rest an R⁶ gebunden ist;

Tabelle 1

Verb.	r _r	R ²	R ³	R4	(R ⁵) _m	A	R ⁶	Fp./°C
П	Н	Me	Me	Me	5-Me	0	3-CF ₃ -Phenyl	49-50
2	Me	Ме	Me	Me	5-Me	0	3-CF ₃ -Phenyl	Öl
3	н	Me	Me	Me	5-Me	-SCH ₂ -	3-CF ₃ -Phenyl	Öl
4	Н	Me	Me	Me	5-Me	ß	3-CF3-Pheny1	Öl
5	Ме	Me	Me	Me	5-Me	-SCH ₂ -	3-CF ₃ -Phenyl	Öl
9	Me	Me	Me	Ме	5-Me	ß	3-CF ₃ -Phenyl	Öl
7	н	Ме	Me	Me	5-Me	0	3-C1-Phenyl	Öl
8	Н	Me	Me	Me	5-Me	0	3-Bu ^t -Phenyl	69-71
6	н	Me	Me	Me	5-Me	0	4-Tolyl	Öl
10	Ме	Me	Me	Me	5-Me	-0CH ₂ -	3-CF ₃ -Phenyl	Öl
11	н	Me	Me	Me	5-Me	-0CH ₂ -	3-CF ₃ -Phenyl	50-4
12	н	Me	Me	Me	5-Me,	0	3-CF ₃ -Phenyl	Öl
					6-Br			
13	н	Ме	Me	Me	1	0	3-CF ₃ -Phenyl	Öl
14	н	Ме	Me	CF_3	1	0	3-CF ₃ -Phenyl	Öl
15	Н	Me	Me	Br	5-0Me	0	3-CF ₃ -Phenyl	68-70
16	Н	Ме	Me	Me	5-Me	-0CH (Me) -	3-CF ₃ -Phenyl	97-9
17	н	Me	Me	Me	5-Me	-0CH ₂ -	3-PhO-Phenyl	Öl
18	Н	Me	Me	Br	3-Me,	0	3-CF ₃ -Phenyl	Öl

Verb.	R	R ²	R ³	R ⁴	(R ⁵) _m	А	R ⁶	Fp./°C
					6-Br			
19	н	Me	Ме	Br	5-Me	0	3-CF ₃ -Phenyl	Öl
20	Н	Ме	Me	Ме	6-Me	0	3-CF ₃ -Phenyl	Öl
21	н	Ме	Me	Me	5-Pr ⁱ	0	3-CF ₃ -Phenyl	Öl
22	Н	Me	Me	Me	5-Me	0	2-Biphenylyl	Öl
23	Н	Ме	Me	Me	5-Me	0	3-F-Phenyl	Öl
24	Н	Me	Me	Me	5-Me	0	4-CF3-Phenyl	Öl
25	Н	Ме	Me	Me	5~Me	0	2-CF ₃ -Phenyl	Öl
26	Н	Me	Me	Ме	5-Me	0	3,4-DiMeO-phenyl	Öl
27	Н	Me	Ме	Me	5-Me	0	2-MeO-Phenyl	Öl
28	Н	Me	Me	Me	5-Me	0	3-PhO-Phenyl	Öl
29	Н	Ме	Me	Me	5-Me	0	3-CN-Phenyl	Öl
30	Н	Ме	Me	Me	5-Me	0	Benzoxazol-2-yl	107-9
31	Н	Ме	Me	Me	5-Me	0	2,6-Xylyl	Öl
32	Н	Ме	Me	Me	5-Me	0	3,4-DiCl-phenyl	Öl
33	Н	Ме	Me	Me	5-Me	0	3-EtOC(=0)-Phenyl	Öl
34	Н	Ме	Ме	Ме	5-Me	0	4-Tolyl	Öl
35	Н	- (CH ₂) ₂ O (CH ₂) ₂	(CH ₂) ₂ -	Me	5-Me	0	3-CF ₃ -Pheny1	Öl
36	Н	Н	Me	Me	5-Me	0	3-CF ₃ -Phenyl	122-3
37	Н	Et	Et	Me	5-Me	0	3-CF3-Phenyl	Öl
38	Н	Pr	Pr	Me	5-Me	0	3-CF3-Phenyl	Öl

Verb.	R	R ²	R ³	₽4	(R ⁵) _m	A	R ⁶	Fp./°C
39	Н	Bu	Bu	Ме	5-Me	0	3-CF ₃ -Phenyl	Öl
40	Н	Pr^{1}	${ m Pr}^{ m i}$	Ме	5-Me	0	3-CF ₃ -Pheny1	Öl
41	Н	- (CH ₂) ₄ -	2) 4-	Me	5-Me	0	3-CF ₃ -Pheny1	71-3
42	Н	Ph	Me	Me	5-Me	0	3-CF ₃ -Phenyl	Öl
43	Н	- (CH ₂) ₅ -	2) 5-	Me	5-Me	0	3-CF ₃ -Pheny1	Öl
44	Н	Н	CN	Me	5-Me	0	3-CF ₃ -Phenyl	138-40
45	Н	Et	Me	Ме	5-Me	0	$3-CF_3-Phenyl$	Öl
46	Н	Pr	Н	Me	5-Me	0	3-CF ₃ -Phenyl	44-6
47	Н	Benzyl	Н	Ме	5-Me	0	$3-CF_3-Pheny1$	121-3
48	Н	Me	Me	Ме	5-Me	0	3-Ph-1,2,4-Thiadiazol-5-yl	100-5
49	Н	Me	Me	Ме	5-Me	- OCH (Me) -	3-CF ₃ -Phenyl	97-9
50	Н	Ме	Me	Ме	5-Me	0	4-CF ₃ -Phenyl	Öl
51	н	Ме	Me	Me	5-Me	0	2-CF ₃ -Pheny1	Öl
52	Н	Ме	Me	Me	5-Me	0	3-C1-5-CF ₃ -2-Pyridyl	Öl
53	Ħ	Me	Me	Me	5-Me	direkte	$3-CF_3-Phenyl$	Öl
						Bindung		
54	Н	Me	Ме	Me	5-Me	0	4,6-DiMe-pyrimidin-2-yl	95-9
55	Н	Me	Ме	Me	5-Me	0	3,5-DiCl-phenyl	6-19
56	Н	Ме	Me	Me	5-Me	0	3-MeO-Phenyl	Öl
57	Н	сунех	н	Me	5-Me	0	3-CF ₃ -Phenyl	93-4
58	Н	${ m Pr}^{ m i}$	Н	Ме	5-Me	0	3-CF ₃ -Pheny1	62,5-4,5

Verb.	\mathbb{R}^1	R ²	R3	R4	(R ⁵) _m	A	R ⁶	Fp./°C
59	н	Et	H	Me	5-Me	0	3 -CF $_3$ -Pheny 1	100-2
09	н	Ме	Ме	Ме	5-Me	-NH-C(=0)-	3,5-DiMe-4-oxazolyl	215-8
61	н	Me	Ме	Ме	5-Me	0	4-Bu ^t -Pheny1	95-6
62	Н	НО	Н	Me	5-Me	0	$3-CF_3-Pheny1$	130-1
63	Н	МеО	н	Me	5-Me	0	3-CF ₃ -Pheny1	59-61
64	н	EtO	н	Ме	5-Me	0	3-CF ₃ -Phenyl	68-8
65	Н	Me	Me	Me	5-Me	0	Phenyl	Ö1
99	Н	Me	Me	Ме	5-Me	0	3-C1-1,2,4-Thiadiazol-5-y1	120-2
67	Н	Ме	Ме	${ m Pr}^{ m i}$	5-Me	0	3-CF ₃ -Pheny1	Öl
89	н	Me	Me	Me	5-C1	0	3-Ph-1,2,4-Thiadiazol-5-yl	99-101
69	Н	Me	Me	Ме	5-Me	SO_2	3-CF ₃ -Phenyl	122-3
7.0	H	Me	Me	Me	5-Me	-N(Me)-	3,5-DiMe-isoxazol-4-yl	Öl
						C(=0)-		
71	н	Ме	Me	Me	3-Me	0	3-CF ₃ -Pheny1	Öl
72	Н	Ме	Me	Me	5-Me	0	3-Br-1,2,4-Thiadiazol-5-yl	129-31
73	Н	Me	Me	Me	5-Me	-NHC (=0) -	Phenyl	180-1
74	н	Me	Me	Me	5-Me	-N (Me) -	Phenyl	Öl
						C(=0)-		
75	н	Me	Me	Me	5-Me	direkte	Piperidinyl	93-4
						Bindung		

H Me Me Me 5-Me H Me Me 5-Me H Me Me 5-Me		Z-\Z	124-6
Me Me Me		Z	
Me Me Me		Z-\Z	
Me Me Me		Z Z Z	
Me Me Me			
Me Me Me		Ph,	
Ме Ме	(7-C1-4-Chinazolinyl	160-2
)		170-2
		Z// S\	
_			
		Z	-
		Bŕ	
H Me Me Me 5-Me	direkte	2,5-DiMe-1-pyrrolyl	90-1
	Bindung		
H Me Me Me 5-Me	direkte	Phthalimido	170-3
	Bindung		
H Me Me Me 5-Me	0	5-CF ₃ -1,3,4-Thiadiazol-2-yl	Öl
H Me Me Me 5-Me	0	$5-Bu^{t}-1$, 3, $4-Thiadiazol-2-yl$	104-6
H Me Me Me 5-Me	0	5-Ph-1,3,4-Thiadiazo1-2-y1	Öl

Verb.	R	R ²	R ³	R4	(R ⁵) _m	A	R ⁶	Fp./°C
84	Н	Me	Ме	Me	5-Me	0	6-C1-Benzthiazol-2-y1	109-11
85	Н	Me	Me	Ме	5-Me	0	$5-NO_2-2-Thiazolyl$	Öl
86	Н	Me	Ме	Ме	5 - Me	0	5-Ph-2-Thiazolyl	111-14
87	н	Me	Me	Ме	5-Me	direkte	Morpholino	93-4
						Bindung		
88	Н	Ме	Ме	Ме	5-Me	0	8-F-4-Chinazolinyl	98-100
89	н	Ме	Me	Me	5-Me	0	3,6-DiNO2-4-cumarinyl	178-81
90	H	Me	Me	Me	5-Me	0	2-F-Phenyl	Öl .
91	Н	Ме	Me	Ме	5-Me	0	4,6-DiMeO-1,3,5-triazin-2-yl	82-4
92	н	Me	Me	Me	5-Me	direkte	3-Et ₂ NC(=0)-1-Piperidinyl	Öl
						Bindung		
93	н	Me	Ме	Me	5-Me	Ø	z″	Öl
							人	
							, o,	
94	Н	Ме	Ме	Me	5-Me	S	4-(4-Cl-Phenyl)-2-oxazolyl	Öl
95	H	Me	Ме	Ме	5-Me	0	4-(4-C1-Pheny1)-2-oxazoly1	Öl
96	Н	Ме	Me	Me	5-Me	0	2-CF ₃ -4-Chinazolinyl	119-21
97	Н	Ме	Me	Me	5-Me	direkte	4,5-DiCl-phthalimido	196-8
						Bindung		
86	Н	Ме	Me	Me	5-Me	-NHC (=0) -	4-F-Phenyl	166-8
66	Н	CN	Н	Me	5-Me	0	3-Bu ^t -Phenyl	Öl

Verb.	R1	R ²	R ³	R ⁴	(R ⁵) _m	А	R ⁶	Fp./°C
100	Н	Et	Me	Me	5-Me	0	3-Bu ^t -Phenyl	Öl
101	н	Me	Ме	Me	5-Me	0	4-CF ₃ -Pyrimidin-2-yl	123-5
102	н	Me	Me	Me	5-Me	direkte	2,6-DiMe-morpholin-4-yl	102-3
						Bindung		
103	Н	Ме	Me	Me	5-Me	0	2-CF ₃ -4-Chinolinyl	126-8
104	Н	Me	Me	Ме	5-Me	0	2-Tolyl	Öl
105	Н	Me	Me	Me	5-Me	0	2-Pr ⁱ -Phenyl	Öl
106	н	Et	н	Me	5-Me	0	3-Bu ^t -Phenyl	74-6
107	Et	Ме	Me	Н	5-Me	0	3-Bu ^t -Phenyl	89-91
108	Me	Me	Me	Н	5-Me	0	3-Bu ^t -Phenyl	Öl
109	Н	Me	Me	Н	5-Me	0	3-Bu ^t -Phenyl	Öl
110	Et	Ме	Me	Ме	5-Me	0	3-Bu ^t -Phenyl	113-6
111	н	Me	Me	Me	5-Me	direkte	4-Me-1-Piperazinyl	67-8
						Bindung		
112	Н	Me	Me	Me	5-Me	0	4-(2-Thiazolyl)-2-thiazolyl	110-12
113	Н	Ме	Ме	Me	5-Me	0	4-Bu ^t -2-Thiazolyl	Öl
114	н	Me	Me	Me	5-Me	0	3-(4-C1-Phenyl)-1,2,4-	106-8
							oxadiazol-5-yl	
115	н	Ме	Ме	Me	5-Me	direkte	$2-Me-5-(3-CF_3-Phenyl)-1-$	Öl
						Bindung	pyrrolyl	
116	н	Ме	Ме	Me	5-Me	0	3-MeO-1,2,4-Thiadiazol-5-yl	99-101

Verb.	m ₁	R ²	R³	æ4	(R ⁵) _m	A	R ⁶	Fp./°C
117	Н	Me	Me	Ме	5-Me	0	3-Me-1,2,4-Thiadiazol-5-yl	92-4
118	Н	Me	Me	Me	5-Me	0	6-Ph-3-Pyridazinyl	86-9
119	Н	Me	Ме	Ме	5-Me	0	3-Mes-1,2,4-Thiadiazol-5-yl	Öl
120	Н	Me	Me	Ме	5-Me	0	$4-(3-CF_3-Phenyl)-2-thiazolyl$	93-5
121	Н	Me	Me	Me	5-Me	S	4-Me-1,2,4-Triazol-3-yl	Öl
122	Н	Me	Me	Me	5-Me	0	3-CN-2-Pyrazinyl	128-30
123	н	Me	Ме	Me	5-Me	0	3-But-1,2,4-Thiadiazol-5-yl	Öl
124	н	Me	Ме	Me	5-Me	0	2-secButylphenyl	Ö1
125	Н	Me	Ме	Ме	5-Me	0	2-Biphenylyl	Öl
126	н	Me	Me	Me	5-Me	0	5-Isopropenyl-1,3,4-	Öl
							thiadiazol-2-yl	
127	H	Me	Me	Me	5-Me	0	5-Ph-1,3,4-Oxadiazol-2-yl	120-2
128	н	Me	Me	Me	5-Me	direkte	1,2,3,4-Tetrahydro-2-	Öl
						Bindung	isochinolinyl	
129	H	Me	Me	Me	5-Me	0	3-NEt ₂ -Phenyl	Öl
130	Н	Ме	Ме	Me	5-Me	0	4-secButylphenyl	Öl
131	Н	Ме	Ме	Me	5-Me	0	5-C1-6-Et-Pyrimidin-4-yl	100-1
132	Н	Me	Me	Me	5-Me	0	2-CF3-Pyrimidin-4-yl	62-3
133	Н	Me	Me	Me	5-Me	0	1-Me-5-Cl-6-Oxopyridazin-4-yl	142-5
134	Н	Me	Me	Me	5-Me	0	3-Ph-5-Isoxazolyl	Öl
135	Н	Me	Me	Ме	5-Me	0	3-Br-Phenyl	Öl

Verb.	R1	R ²	R³	R4	(R ⁵) m	A	R ⁶	Fp./°C
136	Н	Me	Ме	Me	5-Me	0	3-(Dimethylamino-	Öl
						ARE Extended to the Control of the C	methylenamino)phenyl	
137	н	Me	Me	Me	5-Me	0	4-Cl-1,2,5-Thiadiazol-3-yl	Öl
138	Н	Me	Me	Me	5-Me	0	3-CF ₃ -1,2,4-Thiadiazol-5-yl	Öl
139	н	Me	Me	Me	5-Me	0	2-C1-Phenyl	Öl
140	н	Me	Ме	Ме	5-Me	0	2-MeS-5-EtOC(=0)-Pyrimidin-4-	Öl
							y1	
141	н	Me	Me	Me	5-Me	0	1-Naphthy1	Ül
142	н	Me	Me	Me	5-Me	0	2-Naphthy1	Öl
143	Me	Me	Me	Me	5-Me	0	1-Naphthy1	Öl
144	Me	Me	Me	Me	5-Me	0	2-Naphthyl	110-12
145	Н	Me	Me	Ме	5-Me	0	1-Ph-Tetrazol-5-yl	123-6
146	Н	Me	Ме	Me	5-Me	0	1,1-Dioxobenzothiazol-3-yl	177-8
147	н	Me	Ме	Ме	5-Me	direkte	2-Benzo[b]furanyl	90-1
						Bindung		
148	Н	Me	Me	Me	5-Me	0	6-Ph-Pyrimidin-4-yl	Öl
149	Н	Me	Me	Ме	5-Me	0	4-Pr ¹ -Phenyl	Öl
150	Н	Me	Ме	Me	5-Me	0	3-Acetylphenyl	Öl
151	н	Me	Me	Me	5-Me	0	4-(1,1,3,3-	Öl
							Tetramethylbutyl)phenyl	
152	н	Ме	Me	Ме	5-Me	0	3-Pr ⁱ -Phenyl	Öl

Verb.	R	R ²	R ³	R4	(R ⁵) _m	A	R ⁶	Fp./°C
153	Н	Me	Me	Me	5-Me	-0C(=0)-	3,4-DiCl-phenyl	Öl
154	Н	Me	Ме	Me	5-Me	-0C(=0)-	4-Hexylphenyl	Öl
155	Н	Me	Ме	Me	5-Me	-0C(=0)-	2, 6-Xy1y1	Öl
156	Н	Me	Me	Me	5-Me	-0C (=0) CH ₂ -	4-C1-Phenyl	Öl
157	Н	Me	Me	Me	5-Me	-0C(=0)CH ₂ -	Phenyl	Öl
158	Н	Me	Me	Me	5-Me	-0C (=0) CH ₂ -	3-MeO-Phenyl	Öl
159	Н	Me	Me	Me	5-Me	-0C(=0)-	2,6-DiCl-phenyl	Öl
160	н	Me	Me	Me	5-Me	-0C(=0)-	3-C1-2-Benzo[b]thiophenyl	Öl
161	щ	Me	Me	Ме	5-Me	-0C(=0)-	Cyclohexyl	Öl
162	н	Me	Ме	Ме	5-Me	-0C(=0)-	2,4-DiCl-phenyl	Öl
163	н	Me	Me	Me	5-Me	-0C(=0)-	2-CH ₃ -Phenyl	Öl
164	Н	Me	Ме	Me	5-Me	-0C(=0)-	2,3-DiCl-phenyl	Öl
165	Н	Me	Ме	Ме	5-Me	-0C(=0)-	3,5-DiMe-isoxazol-4-yl	Öl
166	Н	Me	Ме	Me	5-Me	-0C(=0)-	4-Me-1,2,3-Thiadiazol-5-yl	Öl
167	Н	Ме	Me	Ме	5-Me	-0C(=0)-	2-F-3-CF ₃ -Phenyl	Öl
168	н	Me	Ме	Ме	5-Me	-0C(=0)-	3-C1-2-MeO-5-Pyridyl	Öl
169	Н	Me	Ме	Ме	5-Me	- (0=) DO-	2-C1-3-Pyridyl	Öl
170	Н	Me	Ме	Ме	5-Me	0	4-(tertPentyl)phenyl	Öl
171	Н	Me	Ме	Ме	5-Me	0	3-Et-Phenyl	Öl
172	Ме	Me	Me	Me	5-Me	0	4-(tertPentyl)phenyl	Öl
173	н	Me	Ме	Me	5-Me	0	4-C1-3-Me-Phenyl	Öl

Verb.	R	R ²	R ³	R4	(R ⁵) _m	A	R ⁶	Fp./°C
174	H	Me	Me	Me	5-Me	0	3,4-Xy1y1	Ül
175	ш	Ме	Ж	Ме	5-ме	0	Me Me	94-6
176	н	Ме	Ме	Ме	5-Me	direkte Bindung	2-Thienyl	Öl
177	Н	Ме	Me	Ме	5-Me	direkte Bindung	5-C1-2-Thienyl	Öl
178	Н	Ме	Ме	Ме	5-Me	direkte Bindung	3-C1-2-Benzo[b]furanyl	114-5
179	Н	Ме	Ме	Ме	Н	direkte Bindung	5-(4-Cl-Phenyl)-1,2,4- oxadiazol-3-yl	136-7
180	н	Me	Me	Me	5-Me	0	4-Nonylphenyl	Ö1
181	н	Ме	Me	Ме	5-Me	0	4-Et-Phenyl	Öl
182	н	Me	Me	Ме	5-Me	0	4-Biphenylyl	Öl
183	н	Ме	Me	Me	5-Me	0	4-C1-Phenyl	Öl
184	н	Ме	Me	Me	5-Me	0	4-MeS-Phenyl	Öl
185	Н	Me	Me	Me	5-Me	0	4-Br-Phenyl	Öl
186	Н	Me	Me	Me	5-Me	-0CH ₂ -	2-(4-C1-Phenyl)-4-thiazolyl	86-9
187	Н	Me	Me	Me	5-Me	direkte	2-Benzo[b]thiophenyl	67-8

Verb.	R	R ²	R ³	R4	(R ⁵) _m	4	R ⁶	Fp./°C
						Bindung		
188	н	Me	Ме	Ме	5-Me	0	2-(5,6,7,8-Tetrahydro)naphthyl	84-6
189	н	Me	Ме	Me	5-Me	0	$4-(\alpha,\alpha-\text{DiMe-benzyl})$ phenyl	Öl
190	н	Me	Me	Me	5-Me	0	3-CF ₃ O-Phenyl	Öl
191	Ме	Ме	Me	Me	5-Me	direkte	3-Et ₂ NC(=0)-1-Piperidinyl	Öl
						Bindung		
192	н	Me	Ме	Me	5-Me	S	Phenyl	72-3
193	н	Me	Ме	Ме	5-Me	0	4-MeO-Phenyl	57-8
194	н	Me	Ме	Ме	5-Me	0	5-CF ₃ -2-Benzthiazolyl	106-7
195	Н	Ме	Ме	Me	5-Me	0	4-C1-2-Benzthiazolyl	109-11
196	н	Me	Ме	Ме	5-Me	0	5-C1-2-Benzthiazolyl	Öl
197	н	Me	Me	Me	5-Me	0	2-Benzthiazolyl	Öl
198	Н	Me	Ме	Me	5-Me	0	2-Pr ¹ -5-Me-Phenyl	Öl
199	Me	Me	Me	Ме	5-Me	0	2-Pr ⁱ -5-Me-Phenyl	Öl
200	Н	Ме	Ме	Ме	5-Me	0	4-Cl-3-Et-Phenyl	Öl
201	Me	Ме	Me	Ме	5-Me	0	4-Cl-3-Et-Phenyl	Öl
202	Н	Me	Me	Me	5-Me	0	3-Me-4-MeS-Phenyl	Öl
203	Н	Me	Me	Me	5-Me	0	4-Benzoylphenyl	Öl
204	н	Ме	Me	Me	5-Me	0	4-Propionylphenyl	Öl

Verb.	R	R ²	R³	R4	(R ⁵) _m	A	R ⁶	Fp./°C
205	н	Me	Me	Me	5-Me	0	4-(3-Me-1,2,4-Thiadiazol-5-	109,5-11
							yl)phenyl	
206	Me	Ме	Me	Me	5-Me	0	3-Ph-1,2,4-Thiadiazol-5-yl	113-4
207	Н	Me	Ме	Ме	Н	0	3-Ph-1,2,4-Thiadiazol-5-yl	Öl
208	н	Me	Me	Ме	$5-\mathrm{Pr}^{\mathrm{i}}$	0	3-Ph-1,2,4-Thiadiazol-5-yl	Öl
209	Me	Ме	Me	Me	н	0	3-Ph-1,2,4-Thiadiazol-5-yl	Öl
210	H	Me	Me	Me	н	direkte	5-Bu ^t -1,2,4-Oxadiazol-3-yl	Öl
						Bindung		
211	н	Me	Me	Me	ж	direkte	5-Bu ^t -1,3,4-Oxadiazol-2-yl	79-80
						Bindung		
212	Н	Me	Me	Me	5-Me	0	4-Acetylphenyl	80-1
213	Н	Me	Me	Me	5-Me	0	$3-(3-CF_3-Phenoxy)$ phenyl	Öl
214	Н	Me	Me	Me	5-Me	-CH (CN) -	3-CF ₃ -Pheny1	Öl
215	Н	Me	Me	Me	5-Me	0	4-(4-C1-Phenyl)-2-thiazolyl	Öl
216	н	Me	Me	Me	5-Me	0	4-(4-Tolyl)-2-thiazolyl	Öl
217	н	Me	Me	Ме	5-Me	0	4-(4-MeO-Phenyl)-2-thiazolyl	Öl
218	Н	Me	Me	Ме	5-Me	0	6-C1-Pyrimidin-4-yl	205-7
219	н	Me	Ме	Ме	5-Me	0	4-0xo-2-Ph-4H-1-benzopyran-6-	Öl
							y1	
220	Н	Me	Ме	Me	5-Me	0	2-(Benzyloxy)phenyl	Öl
221	Н	Me	Me	Ме	5-Me	0	3,4-Methylendioxyphenyl	Öl

Verb.	R ¹	R ²	R ³	₽4	(R ⁵) _m	A	R ⁶	Fp./°C
222	Н	Me	Me	Me	5-Me	0	3,5-Xy1y1	Öl
223	Н	Me	Me	Me	5-Me	0	3,5-DiMeO-phenyl	Ö1
224	Н	Me	Me	Me	5-Me	0	6-PhO-Pyrimidin-4-yl	Öl
225	Н	Et	Ме	Me	5-Me	0	3-Ph-1,2,4-Thiadiazol-5-yl	Öl
226	н	Me	Me	Me	5-Me	direkte	3-C1-2-Benzo[b]thiophenyl	84-6
						Bindung		
227	Н	CN	н	Me	5-Me	0	3-Ph-1,2,4-Thiadiazol-5-yl	Öl
228	Н	Me	Me	Me	н	direkte	5-(4-C1-Phenyl)-1,3,4-	168-9
						Bindung	oxadiazol-2-yl	
229	Ме	Me	Me	Me	Н	direkte	5-(4-Cl-Phenyl)-1,3,4-	133-5
						Bindung	oxadiazol-2-yl	
230	Ме	Me	Me	Me	5-Me	0	3-Pr¹-Phenyl	Öl
231	н	Ме	Me	Ме	5-Me	-CH (СО ₂ Ме) -	3-CF ₃ -Phenyl	Öl
232	н	Et	Н	Me	5-Me	0	3-Ph-1,2,4-Thiadiazol-5-yl	Öl
233	Ме	Me	Me	Ме	н	direkte	5-Bu ^t -1,3,4-Oxadiazol-2-yl	Öl
						Bindung		
234	н	Me	Me	Me	5-Me	0	3-(4-Toly1)-1,2,4-thiadiazol-	121-4
							5-y1	
235	Н	Ме	Ме	Me	5 – Me	0	4-Propargyloxyphenyl	Ül
236	н	Me	Ме	Ме	5-Me	0	6-Br-2-Pyridyl	Öl
237	Me	Me	Ме	Н	5-Me	0	3-Ph-1,2,4-Thiadiazol-5-yl	Ö1

Verb.	R.	R ²	R ³	R4	(R ⁵) _m	A	R ⁶	Fp./°C
238	Ме	Ме	Me	Me	5-Me	0	3-Br-Phenyl	Öl
239	Me	Me	Ме	Me	5-Me	0	4 - Et - Pheny 1	Öl
240	Me	Me	Me	Me	5-Me	0	4-Biphenylyl	Öl
241	Me	Me	Me	Me	5-Me	0	4-Cl-Phenyl	Öl
242	Me	Ме	Me	Me	5-Me	0	4-MeS-Phenyl	Öl
243	Me	Ме	Me	Me	5-Me	0	4-Br-Phenyl	Öl
244	Me	Ме	Me	Me	5-Me	0	4-Benzoylphenyl	Öl
245	Me	Me	Me	Me	5-Me	0	4-Propionylphenyl	Öl
246	н	- (CH ₂) ₅ -	5-	Me	5-Me	0	3-Ph-1,2,4-Thiadiazol-5-yl	Öl
247	Н	Me	Me	Me	Н	0	$5-CF_3-1$, 3, $4-Thiadiazol-2-yl$	Öl
248	н	Ме	Me	Ме	5-Me	0	6-(Trimethylsilylethinyl)-2-	Öl
	!						pyridyl	
249	Н	Me	Me	Me	5-Me	0	6-Ethinyl-2-pyridyl	Öl
250	Н	Me	Me	Me	5-Me	0	2,4-DiCl-phenyl	2-96
251	н	Me	Me	Ме	5-Me	0	5-Pr ¹ -2-Me-Phenyl	Öl
252	Н	Me	Ме	Ме	5-Me	0	3-(4-C1-Phenyl)-1,2,4-	118-22
							thiadiazol-5-yl	
253	Н	Me	Me	Ме	5-Me	0	$3-(3-NO_2-Phenyl)-1,2,4-$	125-8
							thiadiazol-5-yl	
254	Et	Me	Me	Me	5-Me	0	3-Ph-1,2,4-Thiadiazol-5-yl	Öl
255	Et	Ме	Me	Н	5-Me	0	3-Ph-1,2,4-Thiadiazol-5-yl	Öl

Verb.	R1	R ²	R³	R4	(R ⁵) _m	A	ъ́в	Fp./°C
256	н	Me	Me	Me	5-Me	0	4-Pr ¹ -3-Me-Phenyl	Öl
257	Н	Me	Me	н	н	0	3-Bu ^t -Phenyl	Öl
258	Н	Me	Me	Me	5-Me	0	9-0xofluoren-2-yl	Öl
259	н	Me	Ме	Me	5-Me	0	3-(3,5-DiCF ₃ -pheny1)-1,2,4-	112-5
							thiadiazol-5-yl	
260	Н	Me	Me	C1	н	0	3-Bu ^t -Phenyl	Öl
261	н	Me	Me	Me	5-Me	0	4-Benzyloxyphenyl	Öl
262	Н	Me	Me	Me	5-Me	0	6-(4-Cl-Phenyl)-2-pyridyl	Öl
263	Н	Me	Ме	Me	5-Me	0	4-HO-Phenyl	Öl
264	Н	Me	Me	Me	5-Me	0	3-CF ₃ -Benzyl	75-7
265	н	Me	Me	Ме	5-Me	0	6-(3-CF ₃ -Phenylthio)-	Öl
							pyrimidin-4-yl	
266	н	Me	Ме	Ме	5-Me	0	3-Benzyloxyphenyl	Öl
267	н	Me	Me	Me	5-Me	-0CH ₂ -	Cyclohexyl	Öl
268	н	Ме	Me	Me	5-Me	-0CH ₂ CH ₂ 0-	4-Cl-Phenyl	Öl
269	Н	Me	Me	Me	5-Me	-0CH2CH2O-	4-Bu ^t -Phenyl	Öl
270	Н	Me	Me	Ме	5-Me	-0 (CH ₂) 40-	Phenyl	Öl
271	Н	Me	Ме	Me	5-Me	-0 (CH ₂) 4-	Phthalimido	Öl
272	Н	Ме	Ме	Ме	5-Me	-0 (CH ₂) ₅ -	Phenyl	Öl
273	Н	Me	Ме	Ме	5-Me	-0 (CH ₂) 30-	4-But-Phenyl	Öl
274	Н	Ме	Me	Me	5-Me	-0 (CH ₂) 40-	4-Bu ^t -Phenyl	Öl

Verb.	R1	R ²	R³	R4	(R ⁵) _m	A	R ⁶	Fp./°C
275	Н	Me	Me	Me	5-Me	-0(CH ₂) ₄ 0-	2-Bu ^t -Phenyl	Öl
276	Н	Ме	Ме	Ме	5-Me	-0CH ₂ -	2-Tetrahydropyranyl	Öl
277	н	Me	Me	Me	5-Me	-0(CH ₂) ₃ 0-	Pheny1	Öl
278	Н	Me	Me	Me	5-Me	-0 (CH ₂) 90-	2-Tetrahydropyranyl	Öl
279	н	Me	Me	Me	5-Me	-0CH ₂ -	2-(1-Methoxycarbonyl-2-	Öl
							methoxyvinyl)phenyl	
280	Н	Ме	Ме	Ме	5-Me	-OCH ₂ CH ₂ -	2-Phenylethyl	Öl
281	H	Pr	Ме	Me	5-Me	0	3-Bu ^t -Phenyl	Öl
282	Н	Bu	Me	Me	5-Me	0	3-Bu ^t -Phenyl	Öl
283	н	Pr^{i}	Ме	Ме	5-Me	0	3-Bu ^t -Phenyl	Öl
284	Н	Allyl	Ме	Ме	5-Me	0	3-Bu ^t -Phenyl	Öl
285	Н	Bu	Et	Me	5-Me	0	3-Bu ^t -Pheny1	Öl
286	Н	Bt	Et	Me	5-Me	0	3-Bu ^t -Phenyl	Öl
287	Н	Ме	Ме	Ме	5-Me	0	6-Bu ^t S-Pyrimidin-4-yl	Öl
288	н	Me	Me	Me	5-Me	0	3,3-DiMe-2-EtO-2,3-	Öl
							dihydrobenzfuran-5-yl	
289	Н	Ме	Ме	Ме	5-Me	0	6-cyHexS-Pyrimidin-4-yl	Öl
290	Н	Ме	Me	Me	5-Me	-0CH ₂ -	4-cyHexylmethyloxyphenyl	Ö1
291	Н	Ме	Ме	Me	5-Me	0	3-Pr ⁱ 0-Phenyl	Öl
292	Н	Ме	Me	Me	П	0	2-(2-Phenoxyethoxy)phenyl	Öl
293	н	CN	н	Н	5-Me	0	3-Ph-1,2,4-Thiadiazol-5-yl	152-4

Verb.	R1	R ²	R³	₩	(R ⁵) _m	A	R ⁶	Fp./°C
294	Н	Me	Me	C1	Н	0	3-CF ₃ -Phenyl	Öl
295	Н	Ме	Me	Me	5-Me	0	6-(2-Phenylethylthio)-	Öl
							pyrimidin-4-yl	
296	Н	Me	Me	Me	5-Me	0	$4-(3-CF_3-Benzyloxy)$ phenyl	Öl
297	н	Me	Me	CF_3	Н	0	3-Bu ^t -Phenyl	Öl
298	Н	Me	Me	Me	5-Me	0	4-(2-C1-Phenyl) thiazol-2-yl	Öl
299	Н	Me	Me	Ме	5-Me	0	4-(3-C1-Phenyl) thiazol-2-yl	122-5
300	н	Me	Me	Ме	5-Me	0	$4-(4-CF_3-Phenyl)$ thiazol-2-yl	123-5
301	H	Me	Me	Ме	5-Me	0	3-(3-CF ₃ -Benzyloxy)phenyl	Öl
302	Н	Me	Ме	Me	5-Me	0	2-(4-Me-Butoxy)phenyl	Öl
303	Н	Me	Me	Ме	5-Me	0	4-Pr ⁱ O-Phenyl	Öl
304	н	Ме	Me	Ме	5-Me-6-NO ₂	0	3-Bu ^t -Phenyl	Öl
305	н	Me	Me	Me	5-Me	0	2-(3-CF3-Benzyloxy)phenyl	Öl
306	н	Ме	Me	Ме	Н	0	2-(3-CF3-Benzyloxy)phenyl	Öl
307	Н	CN	Н	Ме	5-Me	0	3-C1-Phenyl	134-5
308	Н	CN	н	Me	5-Me	0	4-Pr ¹ -Phenyl	159-60
309	н	CN	Н	Me	5-Me	0	3-MeO-Phenyl	104-8
310	Н	Bt	Ме	Me	5-Me	0	3-C1-Phenyl	Öl
311	н	Εt	Me	Me	5-Me	0	4-Pr ⁱ -Phenyl	Öl
312	Н	Et	Ме	Me	5-Me	0	3-MeO-Phenyl	Öl
313	Н	Bt	Me	Me	5-Me	0	4-(tertPentyl)phenyl	Öl

Verb.	R1	R ²	R ³	R4	(R ⁵) _m	4	ъé	Fp./°C
314	Н	Me	Ме	Me	5-Me	0	3-(1-Me-Undecyloxy)phenyl	Öl
315	Н	Ме	Ме	Me	5-Me	0	2-Pr ¹ O-Pheny1	Öl
316	Н	Ме	Me	Me	5-Me	0	3,5-DiPr ⁱ -phenyl	Öl
317	н	Me	Me	Me	5-Me	0	3-MeO-5-Me-Phenyl	Öl
318	Ħ	Me	Me	Ме	5~Me	0	3,5-DiCF3-phenyl	Öl
319	н	Me	Ме	Me	5-Me	0	2-(1-Me-Undecyloxy)phenyl	Öl
320	н	Me	Me	Me	Н	0	2-(Isopentoxy)phenyl	Öl
321	н	Me	Me	Me	Н	0	2-Pr¹O-Phenyl	Öl
322	н	Me	Me	Me	5~Me	0	6-C1-Benzoxazol-2-y1	118-20
323	H	CN	н	Me	5-Me	0	3-PhO-Pheny1	Öl
324	Н	CN	Н	Me	5-Me	0	4-Bu ^c -Phenyl	Öl
325	Н	Et	Me	Me	5-Me	0	3-PhO-Phenyl	Öl
326	Н	Et	Me	Me	5-Me	0	4-Bu ^t -Phenyl	Öl
327	Н	Me	Me	Ме	5 - Me	0	5-Cl-Benzoxazol-2-yl	190
328	Н	Me	Me	Ме	5-Me	0	5-NO ₂ -Benzoxazol-2-yl	Öl
329	Н	Allyl	Me	Me	5-Me	0	3-CF ₃ -Phenyl	Öl
330	Н	Pr^{1}	Me	Me	5-Me	0	3-CF3-Phenyl	Öl
331	н	Bu	Me	Me	5-Me	0	3-CF ₃ -Phenyl	Öl
332	Н	Me	Ме	Me	5-Me	0	3-HO-Phenyl	155-7
333	Н	CN	н	Me	5-Me	0	3,5-DiCl-phenyl	199-201

Verb.	R	R ²	R ³	R4	(R ⁵) _m	A	Re	Fp./°C
334	н	Me	Me	Me	5-Me	0	3-(3-Ph-1,2,4-Thiadiazol-5-	Öl
							yloxy)phenyl	
335	Н	Et	Me	Ме	5-Me	0	3,5-DiCl-phenyl	Öl
336	н	Me	Ме	Me	5-Me	0	5-Br-Benzthiazol-2-yl	Öl
337	н	Me	Me	Me	5-Me	0	5-(4-CF ₃ -Phenyl)benzthiazol-2-	131-3
							y1	
338	Н	Me	Me	Me	5-Me	0	5-Ph-Benzthiazol-2-y1	107-9
339	Ħ	Me	Me	Me	5-Me	0	5-(4-CF ₃ O-Phenyl)benzthiazol-	138-40
							2-y1	
340	Н	Me	Me	Me	5-Me	0	3-(Isopentoxy)phenyl	Öl
341	Н	Me	Me	Me	5-Me	0	3-(Cyclohexylmethoxy)phenyl	Öl
342	Н	Me	Me	Me	5-Me	0	3-(4-Biphenylylmethoxy)phenyl	Öl
343	н	Me	Me	Me	5-Me	0	3-(Propargyloxy)phenyl	Öl
344	н	Me	Me	Me	5-ме	0	3-(Allyloxy)phenyl	Öl
345	Н	Me	Me	Me	5-Me	0	3-(PhO-Ethoxy)phenyl	Ö1
346	Н	Me	Me	Me	5-Me	0	3-(2-Thienyl) phenyl	Öl
347	н	Me	Me	Me	5-Me, 6-Br	0	3-Bu ^t -Phenyl	Ö1
348	Н	Me	Me	Me	5-Me	0	3-(Cyclopropylmethoxy)phenyl	Ö1
349	Н	Me	Me	Me	5-Me	0	3-(Phenacyloxy)phenyl	Öl
350	Н	Me	Me	Me	5-Me	0	3-(Methoxycarbonylmethyl)-	Ö1
							phenyl	

Verb.	\mathbb{R}^1	R ²	R ³	R4	(R ⁵) _m	Ą	R ⁶	Fp./°C
351	H	Me	Me	Ме	5-Me	0	4-(3,4-DiCl-phenyl)thiazol-2-	121-3
							yl	
352	Н	Ме	Ме	Ме	5-Me	0	3-(Benzyloxycarbonyl-	Öl
							methoxy)phenyl	
353	Н	Me	Me	Me	5-Me	0	3-(3-C1-4-F-Phenyl)phenyl	Ö1
354	H	Me	Me	Me	5-Me	0	3-(Tetrahydrofuran-2-yl-	Öl
							methoxy)phenyl	
355	н	Ме	Me	Me	5-Me	0	3-(Tetrahydropyran-2-y1-	Öl
							methoxy)phenyl	
356	Н	Ме	Ме	Me	5-F	0	3-Ph-1,2,4-Thiadiazol-5-yl	67-9
357	н	Me	Ме	Ме	5-Me	0	4-(4-C1-Benzoyl)phenyl	Öl
358	н	Me	Me	Me	5-Me	0	3-[1-(Ethoxycarbonyl)-	Öl
							ethoxy]phenyl	
359	Н	Me	Ме	Me	5-Me	0	3-(2,2,2-Trifluorethoxy)phenyl	Öl
360	Н	Ме	Ме	Me	5-Me	0	3-(4-CN-Butoxy)phenyl	Öl
361	н	Me	Ме	Me	5-Me	0	4-C1-3-CF3-Phenyl	Öl
362	Н	Ме	Ме	Ме	5-Me	0	5-CF ₃ -Benzthiazol-2-yl	Öl
363	Н	Ме	Me	Me	5-F	0	3-CF ₃ -Phenyl	Öl
364	Н	Et	Ме	Ме	5-Me	0	4-C1-3-CF3-Phenyl	Öl
365	Н	Ме	Ме	Ме	5-Me	0	4-F-3-CF3-Phenyl	Öl
366	Н	Ме	Me	Me	5-Me	0	3-Iodphenyl	Öl

Verb.	R	R ²	R ³	R4	(R ⁵) _m	4	R ⁶	Fp./°C
367	Н	Me	Me	Me	5-Me	0	3-Acetoxyphenyl	Öl
368	н	Me	Me	Me	5-Me	0	5-CF ₃ -Benzthiazol-2-yl	Öl
369	Н	Me	Me	Me	5-Me	0	3-(4,6-DiMe-pyrimidin-2-	Öl
							yloxy)phenyl	
370	н	Me	Me	Me	5-Me	0	3-Bu ⁱ -Phenyl	Öl
371	н	Me	Ме	Ме	5-Me	0	3-(1-Benzoyl-1-	Öl
							methylethoxy)phenyl	
372	н	Me	Ме	Me	5-Me	0	3-(1-Ethoxycarbony1-2-	Öl
							methylprop-1-yloxy)phenyl	
373	Н	CN	Ме	Ме	5-Me	0	4-C1-3-CF3-Phenyl	Öl
374	Н	Et	CN	Ме	5-Me	0	4-C1-3-CF3-Phenyl	Öl
375	Н	AC	CN	Me	5-Me	0	4-C1-3-CF3-Phenyl	Öl
376	Н	Ме	Ме	Me	5-Me	0	3-(1-Acetylethoxy)phenyl	Öl
377	Н	Me	Me	Me	5 - Me	0	3-(1-Ethylpropoxy)phenyl	Öl
378	Н	Me	Ме	Me	5-Me	0	3-Cyclopentylphenyl	Öl
379	н	Me	Me	Me	5-Me	0	3-(3,5-DiC1-2-	Öl
							pyridyloxy)phenyl	
380	н	Ме	Me	Me	5-Me	0	3-[Ethoxycarbonyl(N-methoxy-	Öl
							imino)methoxy]phenyl	
381	Н	Me	Me	Me	5-Me	0	$4-(2-CF_3-Benzoy1)$ pheny1	Öl
382	Н	Me	Ме	Me	5-Me	0	3-Hexylphenyl	Öl

Verb.	\mathbb{R}^1	R ²	R³	R ⁴	(R ⁵) _m	A	R ⁶	Fp./°C
383	н	Me	Me	Me	5-Me	0	5-Ph-Thiazol-2-yl	Öl
384	н	Ме	Me	Me	5-Me	0	3-(2,2-Dimethoxyethoxy)phenyl	Ül
385	Н	Me	Me	Me	5-Me	0	3-(2,2-Diethoxyethoxy)phenyl	Öl
386	Н	Ме	Me	Ме	5-Me	0	3-[2-(3-Bu ^t -Phenoxy)ethoxy]-	Öl
		-					phenyl	
387	н	Ме	Me	Me	5-Me	0	3-[2-(4-F-Phenoxy)ethoxy]-	102-4
							phenyl	
388	н	Me	Ме	Me	5-Me	0	3-CF ₃ SO ₂ O-Pheny1	Öl
389	Н	Me	Me	Me	5-Me	0	4-Br-3-C1-Phenyl	8-98
390	Н	Ме	Me	Me	5-Me	0	3-(2-Me-2-Phenylpropyl)phenyl	Öl
391	н	Me	Ме	Me	5-Me	0	3-(1-HO-1-Me-Ethyl)phenyl	Öl
392	Н	Ме	Ме	Ме	5-Me	0	3-(1-MeO-1-Me-Ethyl) phenyl	Öl
393	н	Et	Ме	Me	5-Me	0	4-F-3-CF ₃ -Phenyl	Öl
394	Н	Me	Me	Me	5-Me	0	4-Me-3-CF ₃ -Phenyl	Öl
395	н	西た	Me	Ме	5-Me	0	4-Me-3-CF ₃ -Pheny1	Öl
396	Н	- (CH ₂) ₅ -	2)5-	Me	5-Me	0	3-Bu ^t -Phenyl	Öl
397	Н	Н	CN	Me	Ме	0	$3-CF_3-4-C1-Pheny1$	111-4
398	н	Ме	Ме	Ме	Me	C=0	3-CF ₃ -Phenyl	Öl

Die Verbindungen in Tabelle 1 ohne genaue Schmelzpunkte weisen die in Tabelle 2 unten angegebenen $^{1}\mathrm{H-NMR-Daten}$ auf.

Tabelle 2

Verb.	Daten
2	1,78 (s, 3H, N=CCH ₃), 2,00 (s, 3H, ArCH ₃), 2,18
	$(s, 3H, ArCH_3), 3,05 (s, 6H, N(CH_3)_2)$
3	2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	6H, $N(CH_3)_2$, 3,95 (s, 2H, SCH_2)
4	2,00 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂)
5	1,70 (s, 3H, N=CCH ₃), 1,90 (s, 3H, ArCH ₃), 2,10
	(s, 3H, ArCH3), 3,00 (s, 6H, N(CH3)2), 3,90 (s, 2H,
	SCH ₂)
6	1,80 (s, 3H, N=CCH ₃), 2,00 (s 3H, ArCH ₃), 2,20 (s,
	6H, $N(CH_3)_2$, 3,00 (s, 6H, $N(CH_3)_2$)
7	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
-	6H, N(CH ₃) ₂)
9	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s,
	3H, ArCH ₃), 3,00 (s, 6H, $N(CH_3)_2$)
10	1,75 (s, 3H, N=CCH ₃), 2,00 (s, 3H, ArCH ₃), 2,20
	(s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 5,10 (s, 2H,
	ArCH ₂)
12	$2,17$ (s, $3H$, $ArCH_3$), $2,22$ (s, $3H$, $ArCH_3$), $3,05$ (s,
	6H, N(CH ₃) ₂)
13	2,25 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂)
14	3,00 (s, 6H, N(CH ₃) ₂)
17	$2,18$ (s, $3H$, $ArCH_3$), $2,22$ (s, $3H$, $ArCH_3$), $2,99$ (s,
	6H, $N(CH_3)_2$), 5,00 (s, 2H, ArCH ₂)
18	2,20 (s, 3H, ArCH ₃), 3,00 (bs, 6H, N(CH ₃) ₂)
19	2,10 (s, 3H, ArCH ₃ , 3,00 (s, 6H, N(CH ₃) ₂)
20	2,15 (s, 6H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂)
21	1,15 (d, 6H, $CH(CH_3)_2$), 2,20 (s, 3H, $ArCH_3$), 3,00
	(m, 7H, CH und N(CH ₃) ₂)
22	$2,15$ (s, $3H$, $ArCH_3$), $2,22$ (s, $3H$, $ArCH_3$), $3,04$ (s,
	6H, N(CH ₃) ₂)
23	$2,10$ (s, $3H$, $ArCH_3$), $2,22$ (s, $3H$, $ArCH_3$), $3,02$ (s,
	6H, N(CH ₃) ₂)
24	$2,10$ (s, $3H$, $ArCH_3$), $2,20$ (s, $3H$, $ArCH_3$), $3,00$ (s,
	[6H, N(CH ₃) ₂)

Verb.	Daten
25	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	$6H, N(CH_3)_2)$
26	2,14 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 3,00 (s,
	6H, $N(CH_3)_2$), 3,82 (s, 3H, OCH_3), 3,96 (s, 3H,
	OCH ₃)
27	2,14 (s, 3H, ArCH ₃), 2,18 (s, 3H, ArCH ₃), 3,00 (s,
	6H, $N(CH_3)_2$, 3,93 (s, 3H, OCH_3)
28	2,13 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂)
29	2,08 (s, 3H, ArCH ₃), 2,22 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂)
31	2,07 (s, 3H, ArCH ₃), 2,11 (s, 6H, ArCH ₃), 2,36 (s,
	3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂)
32	2,08 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,01 (s,
	6H, N(CH ₃) ₂)
33	1,38 (t, 3H, CH ₂ CH ₃), 2,09 (s, 3H, ArCH ₃), 2,20 (s,
	3H, ArCH ₃), 3,03 (s, 6H, N(CH ₃) ₂), 4,35 (q, 2H,
	CH ₂)
34	(s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H,
	ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂)
35	2,05 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,45-
	3,55 (br, 4H, CH ₂), 3,75 (d, 4H, CH ₂)
37	1,20 (t, 6H, $CH_2C\underline{H}_3$), 2,10 (s, 3H, ArCH ₃), 2,20 (s,
	3H, ArCH ₃), 3,30-3,50 (br, 4H, CH ₂ CH ₃)
38	0,95 (t, 6H, $CH_2C\underline{H}_3$), 1,70 (br, 4H, $CH_3C\underline{H}_2$), 2,10
	(s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,10-3,50
	(br, 4H, NCH ₂)
39	1,00 (t, 6H, CH_2CH_3), 1,35 (q, 4H, CH_2CH_3), 1,60
{	(q, 4H, NCH2CH2), 2,10 (s, 3H, ArCH3), 2,20 (s, 3H,
	ArCH ₃), 3,15-3,45 (br, 4H, NCH ₂)
40	1,3 (d, 12H, CCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s,
	3H, ArCH ₃), 3,6-4,9 (br, 2H, CH)
42	2,10 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,55 (s,
	3H, NCH ₃)
43	1,55-1,75 (m, 6H, \underline{CH}_2), 2,10 (s, 3H, ArCH ₃), 2,20
	(s, 3H, ArCH ₃), 3,40 (br, 4H, NCH ₂)
45	1,20 (t, 3H, CH_2CH_3), 2,10 (s, 3H, $ArCH_3$), 2,20 (s,
	3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,40 (br, 2H, NCH ₂)

Verb.	Daten
50	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	$6H, N(CH)_3)_2)$
51	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂)
52	2,18 (s, 6H, ArCH ₃), 2,98 (s, 6H, N(CH ₃) ₂)
53	2,00 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	6H, (NCH ₃) ₂)
56	2,09 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 3,00 (s,
	6H, $N(CH_3)_2$) und 3,77 (s, 3H, OCH ₃)
65	$2,1$ (s, $3H$, $ArCH_3$), $2,2$ (s, $3H$, $ArCH_3$) und $3,0$ (s,
	6H, N(CH ₃) ₂)
67	1,15 (d, 6H, CH (CH ₃) ₂), 2,10 (s, 3H, ArCH ₃), 3,05
	$(s, 6H, N(CH_3)_2)$ und 3,43 (m, 1H, $CH(CH_3)_2)$
70	2,20 (s, 6H, ArCH ₃ O, 1,85 (s, 3H, CH ₃), 1,90 (s,
	$3H$, CH_3), $3,00$ (s, $6H$, $N(CH_3)_2$), $3,35$ (s, $3H$, NCH_3)
71	2,05 (s, 3H, ArCH ₃), 2,28 (s, 3H, ArCH ₃) und 3,00
	(s, 6H, N(CH ₃) ₂)
74	2,06 (s, 3H, ArCH ₃), 2,13 (s, 3H, ArCH ₃), 3,00 (s,
	6H, $N(CH_3)_2$) und 3,35 (s, 3H, CONCH ₃)
81	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	3H, N(CH ₃) ₂)
83	$2,21$ (s, $3H$, $ArCH_3$), $2,22$ (s, $3H$, $ArCH_3$), $3,02$ (s,
	6H, N(CH ₃) ₂)
85	$2,10$ (s, $3H$, $ArCH_3$), $2,19$ (s, $3H$, $ArCH_3$), $2,97$ (s,
	6H, N(CH ₃) ₂)
90	2,16 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,01 (s,
	6H, N(CH ₃) ₂)
92	1,00 (t, 6H, $(NCH_2CH_3)_2$), 2,10 (s, 3H, $ArCH_3$), 2,20
	(s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,35 (m, 4H,
	N(CH ₃) ₂)
93	2,20 (s, 6H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂)
94	2,20 (s, 6H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂)
95	$2,1$ (s, $3H$, $ArCH_3$), $2,20$ (s, $3H$, $ArCH_3$), $3,00$ (s,
	6H, N(CH ₃) ₂)
99	1,30 (s, 9H, C(CH3)3), 2,30 (m, 6H, ArCH3),

Verb.	Daten
100	1,20 (t, 3H, NCH ₂ CH ₃), 1,30 (s, 9H, C(CH ₃) ₃), 2,10
	(s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,0 (s, 3H,
	NCH_3), 3,40 (b, 2H, NCH_2CH_3)
104	$2,12$ (s, $3H$, $ArCH_3$), $2,20$ (s, $3H$, $ArCH_3$), $2,37$ (s,
	3H, ArCH ₃), 3,02 (s, 6H, N(CH ₃) ₂)
105	1,30 (d, 6H, CHCH ₃), 2,16 (s, 3H, ArCH ₃), 2,20 (s,
	3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,43 (m, 1H,
	CH(CH ₃) ₂)
108	1,30 (s, 3H, $C(CH_3)3$), 1,95 (s, 3H, CCH_3), 2,15
	(s, 3H, ArCH3), 3,00 (s, 6H, N(CH3)2)
109	1,30 (s, 9H, $C(CH_3)3$), 2,20 (s, 3H, $ArCH_3$), 3,00
	(s, 6H, N(CH ₃) ₂)
110	1,00 (t, 3H, CH_2CH_3), 1,25 (s, 9H, $C(CH_3)_3$), 2,00
	(s, 3H, ArCH3), 2,10 (s, 3H, ArCH3), 2,25 (q, 2H,
	CH_2CH_3), 3,05 (s, 6H, $N(CH_3)_2$)
113	1,31 (s, 9H, $C(CH_3)_3$), 2,19 (s, 3H, $ArCH_3$), 2,22
	(s, 3H, ArCH ₃), 3,03 (s, 6H N(CH ₃) ₂)
115	1,74 (s, 3H, PyrrCH ₃), 2,00 (s, 3H, ArCH ₃), 2,23
7.10	(s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂)
119	2,1 (s, 3H, ArCH ₃), 2,2 (s, 3H, ArCH ₃), 2,6 (s,
101	3H, SCH ₃), 3,0 (s, 6H, N(CH ₃) ₂) $\frac{15}{2} = \frac{15}{2} = \frac{15}{2} = \frac{3}{2} = 3$
121	$2,15$ (s, $3H$, $ArCH_3$), $2,39$ (s, $3H$, $ArCH_3$), $2,99$ (s, $6H$, N (CH_3) ₂), $3,42$ (s, $3H$, NCH_3)
123	1,4 (s, 9H, C(CH ₃)3), 2,2 (s, 3H, ArCH ₃), 2,25 (s,
123	3H, ArCH ₃), 3,0 (s, 6H, N(CH ₃) ₂)
124	0,88 (t, 3H, CH ₂ CH ₃), 1,27 (d, 3H, CHCH ₃), 1,66 (m,
	2H, CHCH ₂ CH ₃), 2,14 (s, 3H, ArCH ₃), 2,20 (s, 3H,
	$ArCH_3$), 3,01 (s, 6H, $N(CH_3)_2$), 3,19 (m, 1H, $CHCH_3$)
125	2,10 (s, 3H, ArCH ₃), 2,18 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂)
126	2,20-2,22 (m, 9H, ArCH ₃ , CH=CCH ₃), 3,04 (s, 6H,
	N(CH ₃) ₂)
128	2,26 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s,
	6H, $N(CH_3)_2$, 4,07 (s, 2H, NCH_2)
129	1,10 (t, 6H, NCH_2CH_3) ₂), 2,12 (s, 3H, $ArCH_3$), 2,20
	(s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H,
	$N(CH_3)_2$, 3,22 (q, 4H, $N(CH_2CH_3)_2$)

Verb.	Daten
130	0,82 (t, 3H, CHCH ₃), 1,21 (d, 3H, CHCH ₃), 1,57 (q,
	2H, $\underline{CH_2CH_3}$), 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H,
	$ArCH_3$), 2,54 (q, 1H, $CHCH_3$), 3,01 (s, 6H, $N(CH_3)_2$)
134	2,20 (s, 3H, ArCH ₃), 2,23 (s, 3H, ArCH ₃), 3,02 (s,
	6H, N(CH ₃) ₂)
135	2,08 (s, 3H, ArCH ₃), 2,22 (s, 3H, ArCH ₃), 3,04 (s,
	6H, N(CH ₃) ₂)
136	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,90-
	3,00 (m, 12H, 2xN(CH ₃) ₂)
137	$2,1$ (s, $3H$, $ArCH_3$), $2,2$ (s, $3H$, $ArCH_3$), $3,0$ (s,
	6H, N(CH ₃) ₂)
138	$2,2$ (s, $3H$, $ArCH_3$), $2,3$ (s, $3H$, $ArCH_3$), $3,1$ (s,
	6H, N(CH ₃) ₂)
139	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,01 (s,
	6H, N(CH ₃) ₂)
140	1,35 (t, 3H, OCH_2CH_3), 2,05 (s, 3H, $ArCH_3$), 2,20
	(s, 3H, ArCH ₃), 2,28 (s, 3H, SCH ₃), 3,00 (s, 6H,
	N(CH ₃) ₂), 4,35 (q, 2H, OCH ₂ CH ₃)
141	2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,05 (s,
1.40	6H, NCH ₃)
142	$2,10$ (s, $3H$, $ArCH_3$), $2,20$ (s, $3H$, $ArCH_3$), $2,95$ (s,
1/12	6H, N(CH ₃) ₂)
143	1,85 (s, 3H, N=CCH ₃ , 2,05 (s, 3H, ArCH ₃), 2,10 (s, $\frac{3}{3}$ H, $\frac{3}{4}$ CCH ₃), 3,05 (s, 6H, NCH ₃)
148	3H, ArCH ₃), 3,05 (s, 6H, NCH ₃) 2,09 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s,
140	6H, N(CH ₃) ₂)
149	1,20 (d, 6H, $CH(CH_3)_2$), 2,12 (s, 3H, $ArCH_3$), 2,20
	(s, 3H, ArCH ₃), 2,85 (m, 1H, CH(CH ₃) ₂), 3,00 (s,
	6H, N(CH ₃) ₂)
150	2,09 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,57 (s,
	3H, COCH ₃), 3,03 (s, 6H, N(CH ₃) ₂)
151	0,75 (s, 9H, C(CH ₃) ₃), 1,35 (s, 6H, C(CH ₃) ₂), 1,70
	(s, 2H, CCH ₂ C), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H,
	ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂)
152	1,21 (d, 6H, CH(CH ₃) ₂), 2,10 (s, 3H, ArCH ₃), 2,20
	(s, 3H, ArCH ₃), 2,83 (m, 1H, $\underline{CH}(CH_3)_2$), 3,00 (s,
	6H, N(CH ₃) ₂)

Verb.	Daten
153	2,15 (s, 3H, ArCH ₃), 2,3 (s, 3H, 3,0, ArCH ₃), 3,00
	(s, 6H, N(CH ₃) ₂)
154	$0.9 \text{ (m, 9H, CH}_3(\text{CH}_2)3), 1.6 \text{ (m, 2H, CH}_2), 2.05 \text{ (s,}$
	3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,74 (m, 2H,
	ArCH ₂), 3,0 (s, 6H, N(CH ₃) ₂)
155	2,25 (s, 6H, ArCH ₃), $2,55$ (s, 6H, ArCH ₃), $3,05$ (s,
	6H, N(CH ₃) ₂)
156	2,0 (s, 3H, ArCH ₃), 2,2 (s, 3H, ArCH ₃), 3,0 (s,
	$6H, N(CH_3)_2), 3,8 (s, 2H, CH_2)$
157	1,95 (s, 3H, ArCH ₃), 2,2 (s, 3H, ArCH ₃), 3,0 (s,
	$(SH_3)_2$, 3,85 (s, 2H, CH_2)
158	1,95 (s, 3H, ArCH ₃), 2,2 (s, 3H, ArCH ₃), 3,0 (s,
	$(6H, N(CH_3)_2), 3,85 (m, 5H, OCH_3, CH_2)$
159	2,3 (s, 6H, ArCH ₃), 3,0 (s, 6H, N(CH ₃) ₂)
160	2,2 (s, 6H, ArCH ₃), 3,0 (s, 6H, N(CH ₃) ₂)
161	1,2-1,9 (m, 10H, CyCH ₂), 2,1 (s, 3H, ArCH ₃), 2,2
	(s, 3H, ArCH ₃), 2,6 (m, 1H, CH), 3,0 (s, 6H,
1.50	N(CH ₃) ₂)
162	2,2 (s, 3H, ArCH ₃), 2,3 (s, 3H, ArCH ₃), 3,05 (s,
1.63	6H, $N(CH_3)_2$
163	2,2 (s, 3H, ArCH ₃), 2,3 (s, 3H, ArCH ₃), 3,05 (s,
164	6H, $N(CH_3)_2$) 2,2 (s, 3H, ArCH ₃), 2,3 (s, 3H, ArCH ₃), 3,05 (s,
164	6H, N(CH ₃) ₂)
165	2,15 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 2,5 (s,
103	$3H$, CH_3), 2,75 (s, $3H$, CH_3), 3,0 (s, $6H$, $N(CH_3)_2$)
166	2,1 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,0 (s,
	6H, $N(CH_3)_2$), 3,7 (s, 3H, CH_3)
167	2,2 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,05 (s,
	6H, N(CH ₃) ₂)
168	2,15 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,0 (s,
	6H, N(CH ₃) ₂), 4,15 (s, 3H, OCH ₃)
169	2,2 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,0 (s,
	6H, N(CH ₃) ₂)
170	0,70 (t, 3H, CH_2CH_3), 1,25 (s, 6H, $C(CH_3)_2$), 1,60
	(q, 2H, CH2CH3), 2,10 (s, 3H, ArCH3), 2,20 (s, 3H,
	ArCH ₃), 3,00 (s, 6H, NCH ₃)

Verb.	Daten
171	1,20 (t, 3H, CH_2CH_3), 2,15 (s, 3H, $ArCH_3$), 2,20 (s,
	3H, ArCH ₃), 2,60 (q, 2H, <u>CH₂CH₃), 3,00 (s, 6H,</u>
	N(CH ₃) ₂)
172	0,70 (t, 3H, CH_2CH_3), 1,25 (s, 6H, CH_3), 1,60 (q,
	2H, \underline{CH}_2CH_3), 1,80 (s, 3H, N=CCH ₃), 2,00 (s, 3H,
	$ArCH_3$), 2,10 (s, 3H, $ArCH_3$), 3,00 (s, 6H, $N(CH_3)_2$)
173	2,09 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s,
	3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂)
174	2,10 (s, 3H, ArCH ₃), 2,19 (s, 9H, ArCH ₃), 3,01 (s,
	6H, N(CH ₃) ₂)
176	$2,23$ (s, $3H$, $ArCH_3$), $2,35$ (s, $3H$, $ArCH_3$), $3,02$ (s,
	6H, N(CH ₃) ₂)
177	(2,22 (s, 3H, ArCH3), 2,34 (s, 3H, ArCH3), 3,01 (s,
	6H, N(CH ₃) ₂), 6,74 (d, 1H, Thioph-H), 6,84 (d, 1H,
	Thioph-H)
180	$0,45-1,75$ (m, 19H, C_9H_{19}), 2,10 (s, 3H, ArCH ₃),
	2,18 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂)
181	1,21 (t, 3H, CH_2CH_3), 2,10 (s, 3H, $ArCH_3$), 2,20 (s,
	3H, ArCH ₃), 2,60 (q, 2H, $\underline{\text{CH}}_{2}\text{CH}_{3}$), 3,01 (s, 6H,
182	$N(CH_3)_2)$ 2,15 (s, 3H, ArCH ₃), 2,22 (s, 3H, ArCH ₃), 3,04 (s,
102	$(S, SH, AlCH_3), 2,22 (S, SH, AlCH_3), 3,04 (S, GH, N(CH_3)_2)$
183	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,02 (s,
103	6H, N(CH ₃) ₂)
184	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,01 (s,
	6H, N(CH ₃) ₂), 2,40 (s, 3H, SCH ₃)
185	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,02 (s,
	6H, N(CH ₃) ₂)
186	1,60 (s, 6H, C(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2.10
	(s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂)
190	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂)
191	[1,00 (t, 6H, N(CH2CH3)2),1,76 (s, 3H, N=CCH3), 1,97]
	(s, 3H, ArCH ₃), 2,18 (s, 3H, ArCH ₃), 3,00 (s, 6H,
	$N(CH_3)_2)$, 3,35 (m, 4H, $N(CH_2)_2$)
196	$2,16$ (s, $3H$, $ArCH_3$), $2,19$ (s, $3H$, $ArCH_3$), $2,96$ (s,
	6H, N(CH ₃) ₂)

Verb.	Daten
197	2,20 (s, 3H, ArCH ₃), 2,23 (s, 3H, ArCH ₃), 3,02 (s,
	6H, N(CH ₃) ₂)
198	1,20 (d, 6H, CHCH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,05
	(s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H,
	$N(CH_3)_2$, 3,30 (q, 1H, $CH(CH_3)_2$)
199	$1,25$ (d, $3H$, $CHCH_3$), $1,85$ (s, $3H$, $=CCH_3$), $2,00$ (s,
	$3H$, $ArCH_3$), 2,15 (s, $3H$, $ArCH_3$), 2,20 (s, $3H$,
	$ArCH_3$), 3,05 (s, 6H, $N(CH_3)_2$), 3,40 (q, 1H, $CHCH_3$)
200	1,10 (t, 3H, CH_2CH_3), 2,05 (s, 3H, $ArCH_3$), 2,15 (s,
	3H, ArCH ₃), 2,60 (s, q, 2H, CH ₂ CH ₃), 2,95 (s, 6H,
<u></u>	N(CH ₃) ₂)
201	1,15 (t, 3H, CH_2CH_3), 1,80 (s, 3H, = CCH_3), 1,95 (s,
	$3H$, $ArCH_3$), 2,05 (s, $3H$, $ArCH_3$), 2,65 (q, $2H$,
	CH_2CH_3), 3,00 (s, 6H, $N(CH_3)_2$)
202	$2,10$ (s, $3H$, $ArCH_3$), $2,20$ (s, $3H$, $ArCH_3$), $2,233$
	(s, $3H$, $ArCH_3$), 2,40 (s, $3H$, SCH_3), 3,01 (s, $6H$,
	N(CH ₃) ₂)
203	2,10 (s, 3H, ArCH ₃), 2,22 (s, 3H, ArCH ₃), 3,02 (s,
	6H, N(CH ₃) ₂)
204	1,20 (t, 3H, CH_2CH_3), 2,08 (s, $ArCH_3$), 2,20 (s,
207	ArCH ₃), 2,92 (q, CH ₂ CH ₃), 3,02 (s, 6H, N(CH ₃) ₂)
208	2,30 (s, 3H, ArCH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 1,20 (s, 6H, CH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,05
200	(s, 6H, N(CH3)2), 3,30 (q, 1H, CH(CH3)2)
209	1,85 (s, 3H, NCCH ₃), 2,10 (s, 3H, ArCH ₃), 3,10 (s,
	6H, N(CH ₃) ₂)
210	1,47 (s, 9H, C(CH ₃) ₃), 2,32 (s, 3H, ArCH ₃), 3,04
_	(s, 6H, N(CH ₃) ₂)
213	2,13 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂)
214	2,2 (s, 3H, ArCH ₃), 2,3 (s, 3H, ArCH ₃), 3,0 (s,
	6H, $N(CH_3)_2$, 5,2 (s, 1H, CHCN)
215	$2,16$ (s, $3H$, $ArCH_3$), $2,18$ (s, $3H$, $ArCH_3$), $2,97$ (s,
	6H, N(CH ₃) ₂)
216	2,10-2,25 (m, 9H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂)
217	$2,17$ (s, $3H$, $ArCH_3$), $2,18$ (s, $3H$, $ArCH_3$), $2,99$ (s,
	$6H, N(CH_3)_2), 3,78 (s, 3H, OCH_3)$

Verb.	Daten
219	2,10 (s, 3H, ArCH ₃), 2,22 (s, 3H, ArCH ₃), 3,02 (s,
	6H, N(CH ₃) ₂)
220	2,20 (s, 6H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 5,18
	(s, 2H, ArCH ₂ O)
221	2,10 (s, 3H, ArCH ₃), 2,19 (s, ArCH ₃), 3,00 (s, 6H,
	$N(CH_3)_2)$, 5,92 (s, 2H, OCH ₂ O)
222	$2,10$ (s, $3H$, $ArCH_3$), $2,20$ (s, $3H$, $ArCH_3$), $2,27$ (s,
	6H, ArCH ₃), 3,01 (s, 6H, $N(CH_3)_2$)
223	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,01 (s,
	$6H, N(CH_3)_2), 3,73 (s, 6H, OCH_3)$
224	2,10 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂)
225	1,25 (m, 3H, NCH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,25
	(s, 3H, ArCH ₃), 2,35 (m, 2H, NCH_2CH_3), 3,00 (s, 3H,
	NCH ₃)
227	2,35 (m, 6H, Ar (CH ₃) ₂)
230	1,22 (d, 6H, CH(CH ₃) ₂), 1,82 (s, 3H, N=CCH ₃), 2,00
	$(s, 3H, ArCH_3), 2,10 (s, 3H, ArCH_3), 3,03 (s, 6H, ArCH_3))$
221	$N(CH_3)_2$), 3,30 (q, 1H, $CH(CH_3)_2$) 2,1 (s, 3H, $ArCH_3$), 2,15 (s, 3H, $ArCH_3$), 2,9 (s,
231	$(S, 3H, APCH_3), 2,15 (S, 3H, APCH_3), 2,9 (S, 6H, N(CH_3)_2), 3,7 (S, 3H, OCH_3), 5,1 (S, 1H,$
	CHCO ₂ CH ₃)
232	1,30 (t, 3H, NCH ₂ CH ₃), 2,30 (m, 8H,
	$Ar(CH_3)_2) + NCH_2CH_3)$, 3,45 (br, 1H, NH)
233	1,47 (s, 9H, C(CH ₃) ₃), 1,79 (s, 3H, N=CCH ₃), 2,15
	(s, 3H, ArH), 3,06 (s, 6H, N(CH ₃) ₂)
235	2,12 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,50 (m,
	1H, CH_2CCH), 3,00 (s, 6H, $N(CH_3)_2$), 4,60 (d, 2H,
	CH ₂ CCH)
236	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂)
237	1,90 (s, 3H, NCCH ₃), 2,30 (s, 3H, ArCH ₃), 3,10 (s,
	6H, N(CH ₃) ₂)
238	1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,02
	(s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂)
239	1,15 (t, 3H, CH ₂ CH ₃), 1,75 (s, 3H, N=CCH ₃), 1,95
	(s, 3H, ArCH3), 2,05 (s, ArCH3), 2,54 (q, 2H,

CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 240 1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,05 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 241 1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,02 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 242 1,80 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,02 (s, 3H, ArCH ₃), 2,40 (s, 3H, SCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 243 1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 244 1,75 (s, 3H, N=CCH ₃), 1,95 (is 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 245 1,15 (t, 3H, CH ₂ CH ₃), 1,78 (s, 3H, N=CCH ₃), 1,93 (s, 3H, ArCH ₃), 1,99 (s, ArCH ₃), 2,88 (s, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (g, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂)	Verb.	Daten
240 1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,05 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 241 1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,02 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 242 1,80 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,02 (s, 3H, ArCH ₃), 2,40 (s, 3H, SCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 243 1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 244 1,75 (s, 3H, N=CCH ₃), 1,95 (is 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 245 1,15 (t, 3H, CH ₂ CH ₃), 1,78 (s, 3H, N=CCH ₃), 1,93 (s, 3H, ArCH ₃), 1,99 (s, ArCH ₃), 2,88 (s, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25		CH_2CH_3), 3,00 (s, 6H, $N(CH_3)_2$)
(s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 241 1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,02 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 242 1,80 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,02 (s, 3H, ArCH ₃), 2,40 (s, 3H, SCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 243 1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 244 1,75 (s, 3H, N=CCH ₃), 1,95 (is 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 245 1,15 (t, 3H, CH ₂ CH ₃), 1,78 (s, 3H, N=CCH ₃), 1,93 (s, 3H, ArCH ₃), 1,99 (s, ArCH ₃), 2,88 (s, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, A	240	
241 1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,02 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 242 1,80 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,02 (s, 3H, ArCH ₃), 2,40 (s, 3H, SCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 243 1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 244 1,75 (s, 3H, N=CCH ₃), 1,95 (is 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 245 1,15 (t, 3H, CH ₂ CH ₃), 1,78 (s, 3H, N=CCH ₃), 1,93 (s, 3H, ArCH ₃), 1,99 (s, ArCH ₃), 2,88 (s, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,		$(s, ArCH_3), 3,00 (s, 6H, N(CH_3)_2)$
242 1,80 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,02 (s, 3H, ArCH ₃), 2,40 (s, 3H, SCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 243 1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 244 1,75 (s, 3H, N=CCH ₃), 1,95 (is 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 245 1,15 (t, 3H, CH ₂ CH ₃), 1,78 (s, 3H, N=CCH ₃), 1,93 (s, 3H, ArCH ₃), 1,99 (s, ArCH ₃), 2,88 (s, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ARCH ₃), 2,21 (s, 3H, ARCH ₃), 3,01 (s,	241	
(s, 3H, ArCH ₃), 2,40 (s, 3H, SCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 243 1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 244 1,75 (s, 3H, N=CCH ₃), 1,95 (is 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 245 1,15 (t, 3H, CH ₂ CH ₃), 1,78 (s, 3H, N=CCH ₃), 1,93 (s, 3H, ArCH ₃), 1,99 (s, ArCH ₃), 2,88 (s, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 255 1,0 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,		(s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂)
N(CH ₃) ₂) 243 1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 244 1,75 (s, 3H, N=CCH ₃), 1,95 (is 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 245 1,15 (t, 3H, CH ₂ CH ₃), 1,78 (s, 3H, N=CCH ₃), 1,93 (s, 3H, ArCH ₃), 1,99 (s, ArCH ₃), 2,88 (s, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,	242	1,80 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,02
1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 244 1,75 (s, 3H, N=CCH ₃), 1,95 (is 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 245 1,15 (t, 3H, CH ₂ CH ₃), 1,78 (s, 3H, N=CCH ₃), 1,93 (s, 3H, ArCH ₃), 1,99 (s, ArCH ₃), 2,88 (s, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃), 3,01 (s, 2,20 (s, 3H, ArCH ₃), 3,01 (s, 2,20 (s, 3H, ArCH ₃)), 3,30 (q, 1H, CH(CH ₃) ₂)		(s, 3H, ArCH ₃), 2,40 (s, 3H, SCH ₃), 3,00 (s, 6H,
(s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 244 1,75 (s, 3H, N=CCH ₃), 1,95 (is 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 245 1,15 (t, 3H, CH ₂ CH ₃), 1,78 (s, 3H, N=CCH ₃), 1,93 (s, 3H, ArCH ₃), 1,99 (s, ArCH ₃), 2,88 (s, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,		$N(CH_3)_2)$
244 1,75 (s, 3H, N=CCH ₃), 1,95 (is 3H, ArCH ₃), 2,00 (s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 245 1,15 (t, 3H, CH ₂ CH ₃), 1,78 (s, 3H, N=CCH ₃), 1,93 (s, 3H, ArCH ₃), 1,99 (s, ArCH ₃), 2,88 (s, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃), 3,01 (s, 6H, N(CH ₃) ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s, 6H, NCH ₃), 3,01 (s,	243	1,75 (s, 3H, N=CCH ₃), 1,95 (s, 3H, ArCH ₃), 2,00
(s, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 1,15 (t, 3H, CH ₂ CH ₃), 1,78 (s, 3H, N=CCH ₃), 1,93 (s, 3H, ArCH ₃), 1,99 (s, ArCH ₃), 2,88 (s, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃), 3,01 (s, 6H, N(CH ₃) ₃), 2,10 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₃), 3,01 (s, 6H,		$(s, ArCH_3), 3,00 (s, 6H, N(CH_3)_2)$
245 1,15 (t, 3H, CH ₂ CH ₃), 1,78 (s, 3H, N=CCH ₃), 1,93 (s, 3H, ArCH ₃), 1,99 (s, ArCH ₃), 2,88 (s, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,	244	1,75 (s, 3H, N=CCH ₃), 1,95 (is 3H, ArCH ₃), 2,00
(s, 3H, ArCH ₃), 1,99 (s, ArCH ₃), 2,88 (s, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,		$(s, ArCH_3), 3,00 (s, 6H, N(CH_3)_2)$
CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃), 3,01 (s, 6H, N(CH ₃)	245	1,15 (t, 3H, CH_2CH_3), 1,78 (s, 3H, $N=CCH_3$), 1,93
246 1,70 (m, 6H, CH ₂ CH ₂ CH ₂), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,		(s, 3H, ArCH3), 1,99 (s, ArCH3), 2,88 (s, 2H,
(s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂) 247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,		CH_2CH_3), 3,00 (s, 6H, $N(CH_3)_2$)
247 2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂) 248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃), 3,01 (s,	246	1,70 (m, 6H, $CH_2CH_2CH_2$), 2,20 (s, 3H, $ArCH_3$), 2,25
248 0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,		(s, 3H, ArCH ₃), 3,50 (m, 4H, CH ₂ NCH ₂)
(s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂) 249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃)), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,	247	2,3 (s, 3H, ArCH ₃), 3,04 (s, 6H, N(CH ₃) ₂)
249 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,	248	0,20 (s, 9H, Si(CH ₃) ₃), 2,05 (s, 3H, ArCH ₃), 2,15
6H, N(CH ₃) ₂), 3,1 (s, 1H, CCH) 251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,		
251 1,15 (d, 6H, CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,	249	
(s, 3H, ArCH ₃), 2,30 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,		
N(CH ₃) ₂), 3,30 (q, 1H, CH(CH ₃) ₂) 254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,	251	
254 1,00 (t, 3H, CH ₂ CH ₃), 2.10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,		
3H, ArCH ₃), 2,25 (q, 2H, CH ₂ CH ₃), 3,05 (s, 6H, N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,	054	
N(CH ₃) ₂) 255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,	254	
255 1,05 (t, 3H, CH ₂ CH ₃), 2,20 (s, 3H, ArCH ₃), 2,30 (m, 2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,		<u> </u>
2H, CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,	255	
256 1,10 (d, 6H, CH(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,	∠55	
(s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,95 (s, 6H, NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,	256	
NCH ₃), 3,30 (q, 1H, CH(CH ₃) ₂) 257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,	256	
257 0,85 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₃) 268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,		
268 2,10 (s, 3H, ArCH ₃), 2,21 (s, 3H, ArCH ₃), 3,01 (s,	257	
IV/ 411 V443 / / /		$(SH, N(CH_3)_2)$
260 1,00 (s, 9H, C(CH ₃) ₃), 3,05 (S, 6H, N(CH ₃) ₂)	260	

Verb.	Daten
261	2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	6H, $N(CH_3)_2$), 5,00 (s, 2H, OCH_2Ph)
262	2,15 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂)
263	2,10 (s, 3H, ArCH ₃), 2,18 (s, 3H, ArCH ₃), 3,03 (s,
	6H, 2N(CH ₃) ₂)
265	2,15 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂)
266	$2,15$ (s, $3H$, $ArCH_3$), $2,10$ (s, $3H$, $ArCH_3$), $3,00$ (s,
	6H, $N(CH_3)_2$, 5,00 (s, 2H, CH_2)
267	0,9-1,3 (m, 5H), $1,6-1,8$ (m, 6H), $2,1$ (s, 3H),
	2,15 (s, 3H), 3,6 (d, 2H), 2,95 (d, 6H)
268	$2,1$ (s, $3H$, $ArCH_3$), $2,2$ (s, $3H$, $ArCH_3$), $2,9$ (s,
	6H, N(CH ₃) ₂), 4,2 (m, 4H, O(CH ₂) ₂ O)
269	1,2 (s, 9H, C(CH ₃) ₃), 2,1 (s, 3H, ArCH ₃), 2,15 (s,
	3H, ArCH ₃), 2,9 (s, 6H, N(CH ₃) ₂), 4,1-4,25 (br, 4H,
270	O(CH ₂) ₂ O)
270	1,85-2,0 (m, 4H, CH_2CH_2), 2,1 (s, 3H, $ArCH_3$), 2,15 (s, 3H, $ArCH_3$), 2,9 (s, 6H, $N(CH_3)_2$), 3,8-4,0 (m,
	$(S, SH, AlCH_3), 2, y (S, SH, N(CH_3)_2), 3, 0 4, 0 (M),$ $(S, SH, AlCH_3), 2, y (S, SH, N(CH_3)_2), 3, 0 4, 0 (M),$
271	$1,65-1,9$ (m, 4H, $(CH_2)_2$), 2,1 (s, 3H, ArCH ₃), 2,2
	$(s, 3H, ArCH_3), 2,9 (s, 6H, N(CH_3)_2), 3,65-3,9 (m,$
	4H, OCH ₂ , NCH ₂)
272	1,4-1,8 (m, 6H, (CH ₂) ₃), 2,1 (s, 3H, ArCH ₃), 2,2
	(s, 3H, ArCH ₃), 2,9 (s, 6H, N(CH ₃) ₂), 3,8 (m, 4H,
	OCH ₂ , ArCH ₂)
273	1,2 (s, 9H, C(CH ₃) ₃), $1,90$ (m, 2H, CH ₂), $2,1$ (s,
	3H, ArCH ₃), 2,2 (s, 3H, ArCH ₃), 2,9 (s, 6H,
	$N(CH_3)_2$, 3,95-4,1 (m, 4H, $(CH_2)_3$)
274	$1,1-1,2$ (m, $2H$, CH_2), $1,3$ (s, $9H$, $C(CH_3)_3$), $1,9-2,0$
	(m, 2H, CH2), 2,1 (s, 3H, ArCH3), 2,2 (s, 3H,
	$ArCH_3$), 2,9 (s, 6H, $N(CH_3)_2$), 3,9-4,0, OCH_2 , OCH_2)
275	1,25 (s, 9H, $C(CH_3)_3$), 1,9 (brs, 4H, $(CH_2)_2$), 2,1
	(s, 3H, ArCH ₃), 2,2 (s, 3H, ArCH ₃), 2,9 (s, 6H,
	$N(CH_3)_2)$, 3,8-4,0 (brd., 4H, O(CH ₂), OCH ₂)

Verb.	Daten
276	$1,35-1,8$ (m, 6H, $(CH_2)_3$), $2,1$ (d, 6H, $Ar(CH_3)_2$),
	2.9 (s, $6H$, $N(CH_3)_2$), 3.45 (m, $1H$, CH), $3.6-4.0$
	(m, 4H, OCH ₂ , OCH ₂)
277	2,1 (s, 3H, ArCH ₃), 2,2 (s, 3H, ArCH ₃), 2,2 (s,
	$2H$, CH_2), 2.9 (s, $6H$, $N(CH_3)_2$), 4.05 (m, $2H$, CH_2),
	4,1 (m, 2H, CH ₂)
278	$1,2-1,8$ (m, 20H, $(CH_2)_{10}$), 2,05 (s, 3H, ArCH ₃), 2,2
	$(s, 3H, ArCH_3), 2,9 (s, 6H, N(CH_3)_2), 3,3 (m, 1H,$
	CH), 3,45 (m, 1H, CH), 3,7 (m, 1H, CH), 3,8-3,9
	(m, 3H, CH + CH2), 4,5 (m, 1H, CH)
279	2,15 (d, 6H, (ArCH ₃) ₂), 2,9 (s, 6H, N(CH ₃) ₂), 3,6
	(s, 3H, OCH ₃), 3,75 (s, 3H, COOCH ₃), 4,8 (s, 2H,
	CH ₂)
280	2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,9 (s,
	6H, $N(CH_3)_2$, 3,0 (m, 2H, CH_2), 4,05 (m, 2H, CH_2)
281	0,95 (t, 3H, CH_2CH_3), 1,30 (s, 9H, CCH_3), 1,65 (q,
	2H, $\underline{CH_2CH_3}$), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H,
	ArCH ₃), 3,05 (s, 3H, NCH ₃), 3,30 (m, 2H, NCH ₂)
282	0,90 (t, 3H, CH_2CH_3), 1,20 (s, 9H, CCH_3), 1,30 (m,
	$2HCH_2CH_2$), 1,50 (m, 2H, CH_2CH_2), 2,05 (s, 3H,
	$ArCH_3$), 2,10 (s, 3H, $ArCH_3$), 2,90 (s, 3H, NCH_3),
	3,20 (m, 2H, NCH ₂)
283	1,25 (d, 6H, CH(CH ₃) ₂), 1,30 (s, 9H, C(CH ₃) ₃), 2,15
	(s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,90 (s, 3H,
	N(CH ₃) ₂), 3,70 (m, 1H, CH(CH ₃) ₂)
284	1,30 (s, 9H, C(CH ₃) ₃), 2,20 (s, 3H, ArCH ₃), 2,25
	(s, 3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,95 (m, 2H,
	NCH_2), 5,25 (d, 2H, $CH=CH_2$), 5,90 (m, 1H, $CH=CH_2$)
285	1,00 (t, 3H, CH ₂ CH ₃), 1,25 (t, 3H, CH ₂ CH ₃), 1,30
	$(s, 9H, C(CH_3)_3), 1,40 (q, 2H, CH_2CH_3), 1,65 (m, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H, 2H$
	$2H$, CH_2CH_2), 2,20 (s, $3H$, $ArCH_3$), 2,25 (s, $3H$,
200	ArCH ₃), 3,40 (m, 4H, NCH ₂ , NCH ₂)
286	1,15 (t, 6H, $(CH_2CH_3)_2$), 1,20 (s, 9H, $C(CH_3)_3$),
	2,05 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 3,35 (m,
287	4H, $N(CH_2CH_3)_2$) 1,50 (s, 9H, $C(CH_3)_3$), 2,00 (s, 3H, ArCH ₃), 2,20
201	(s, 3H, ArCH3) 2,95 (s, 6H, N(CH3)2)
	10, 311, 111013, 2,733 (3, 511, 14(6113)2)

Verb.	Daten
288	1,21 (m, 9H, $\underline{CH_2CH_3}$, $\underline{C(CH_3)_3}$), 2,15 (d, 6H, $\underline{ArCH_3}$),
	3,00 (s, 6H, $N(CH_3)_3$), 3,61 (m, 1H, $\underline{CH_2CH_3}$), 3,05
	(s, 6H, N(CH3)2), 3,92 (m, 1H, CH2CH3)
289	$1,20-1,80$ (m, $10H$, C_5H_{10}), $2,05$ (s, $3H$, $ArCH_3$),
	$2,20$ (s, $3H$, $ArCH_3$), $3,00$ (s, $6H$, $N(CH_3)_2$), $3,90$
	(m, 1H, SCH)
290	$0,80-2,00$ (m, $11H$, C_6H_{11}), $2,15$ (s, $3H$, $ArCH_3$),
	$2,18$ (s, $3H$, $ArCH_3$), $3,00$ (s, $6H$, $N(CH_3)_2$), $3,70$
	(d, 2H, OCH ₂ C ₆ H ₁₁)
291	1,30 (d, 6H, $CH(CH_3)_2$), 2,10 (s, 3H, $ArCH_3$), 2,20
	(s, 3H, ArCH3), 3,00 (s, 6H, N(CH3)2), 4,45 (m, 1H,
	CH (CH ₃) ₂)
292	2,22 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 4,20
	(t, 2H, OCH ₂ CH ₂ O), 4,35 (t, 2H, OCH ₂ CH ₂ O)
294	3,00 (s, 6H, N(CH3)2)
295	$[2,00 \text{ (m, 6H, (ArCH}_3)_2), 2,95 \text{ (m, 6H, N(CH}_3)_2), 3,30]$
ļ	(m, 2H, ArCH ₂ CH ₂), 4,05 (m, 2H, ArCH ₂ CH ₂)
296	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂), 5,05 (s, 2H, ArCH ₂ O)
297	1,25 (s, 9H, C(CH ₃) ₃), 3,00 (s, 6H, N(CH ₃) ₂)
298	2,10 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 3,05 (s,
	6H, N(CH ₃) ₂)
301	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
200	6H, N(CH ₃) ₂), 5,05 (s, 2H, ArCH ₂ O)
302	0,90 (d, 6H, $CH(CH_3)_2$), 1,70 (m, 2H, $CH_2CH(CH_3)_2$),
	1,78 (m, 1H, $\underline{CH}(CH_3)_2$), 2,15 (s, 6H, $\underline{Ar}(CH_3)_2$),
202	3,00 (s, 6H, $N(CH_3)_2$), 4,03 (t, 2H, OCH_2CH_2) 1,33 (d, 6H, $CH(CH_3)_2$), 2,15 (s, 3H, $ArCH_3$), 2,20
303	$(s, 3H, ArCH_3), 3,00 (s, 6H, N(CH_3)_2), 4,42 (m, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H, 1H$
	CH(CH ₃) ₂)
304	1,00 (s, 9H, C(CH3)3), 2,10 (s, 3H, ArCH3), 2,15
] 304	$(s, 3H, ArCH_3), 3,15$ $(s, 6H, N(CH_3)_2)$
305	2,20 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 5,20
	(s, 2H, ArCH ₂ O)
306	2,22 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 5,15
	(s, 2H, ArCH ₂ O)
L	<u> </u>

3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,40 (m, 2H, CH ₂ CH ₃) 311 1,25 (m, 9H, CH ₂ CH ₃ + CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 2,90 (q, 1H, CH(CH ₃) ₂), 3,05 (s, 3H, NCH ₃), 3,40 (m, 2H, CH ₂ CH ₃)	Verb.	Daten
311 1,25 (m, 9H, CH ₂ CH ₃ + CH(CH ₃) ₂), 2,15 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 2,90 (q, 1H, CH(CH ₃) ₂), 3,05 (s, 3H, NCH ₃), 3,40 (m, 2H, CH ₂ CH ₃) 312 1,25 (t, 3H, CH ₂ CH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,70 (s, 3H, NCH ₃), 3,40 (m, 2H, CH ₂ CH ₃), 3,75 (s, 3H, OCH ₃) 313 0,70 (t, 3H, CH ₂ CH ₃), 1,25 (t, 3H, CH ₂ CH ₃), 1,30 (s, 6H, C(CH ₃) ₂), 1,65 (q, 2H, CH ₂ CH ₃), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,40 (b, 2H, NCH ₂) 314 0,70-1,70 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,02 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂), 4,20 (m, 1H, OCH(CH ₃)C) 315 1,30 (d, 6H, CH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, ArCH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	310	1,20 (t, 3H, CH_2CH_3), 2,10 (s, 3H, $ArCH_3$), 2,25 (s, 3H, $ArCH_3$), 3,00 (s, 3H, NCH_3), 3,40 (m, 2H,
ArCH ₃), 2,25 (s, 3H, ArCH ₃), 2,90 (q, 1H, CH(CH ₃) ₂), 3,05 (s, 3H, NCH ₃), 3,40 (m, 2H, CH ₂ CH ₃) 312 1,25 (t, 3H, CH ₂ CH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,70 (s, 3H, NCH ₃), 3,40 (m, 2H, CH ₂ CH ₃), 3,75 (s, 3H, OCH ₃) 313 0,70 (t, 3H, CH ₂ CH ₃), 1,25 (t, 3H, CH ₂ CH ₃), 1,30 (s, 6H, C(CH ₃) ₂), 1,65 (q, 2H, CH ₂ CH ₃), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,40 (b, 2H, NCH ₂) 314 0,70-1,70 (m, 24H, C ₁ 0H ₂₁ + CHCH ₃), 2,02 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂), 4,20 (m, 1H, OCH(CH ₃)C) 315 1,30 (d, 6H, CH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃)), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁ OH ₂ CH ₂ CH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁ OH ₂ CH ₂ CH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH ₁ (CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,		CH ₂ CH ₃)
CH(CH ₃) ₂), 3,05 (s, 3H, NCH ₃), 3,40 (m, 2H, CH ₂ CH ₃) 1,25 (t, 3H, CH ₂ CH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,40 (m, 2H, CH ₂ CH ₃), 3,75 (s, 3H, OCH ₃) 313 0,70 (t, 3H, CH ₂ CH ₃), 1,25 (t, 3H, CH ₂ CH ₃), 1,30 (s, 6H, C(CH ₃) ₂), 1,65 (q, 2H, CH ₂ CH ₃), 2,15 (s, 3H, ArCH ₃), 3,40 (b, 2H, NCH ₂) 314 0,70-1,70 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,02 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂), 4,20 (m, 1H, OCH(CH ₃)C) 315 1,30 (d, 6H, CH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	311	1,25 (m, 9H, $CH_2CH_3 + CH(CH_3)_2$), 2,15 (s, 3H,
312 1,25 (t, 3H, CH ₂ CH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,40 (m, 2H, CH ₂ CH ₃), 3,75 (s, 3H, OCH ₃) 313 0,70 (t, 3H, CH ₂ CH ₃), 1,25 (t, 3H, CH ₂ CH ₃), 1,30 (s, 6H, C(CH ₃) ₂), 1,65 (q, 2H, CH ₂ CH ₃), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,40 (b, 2H, NCH ₂) 314 0,70-1,70 (m, 24H, C ₁ 0H ₂₁ + CHCH ₃), 2,02 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂), 4,20 (m, 1H, OCH(CH ₃)C) 315 1,30 (d, 6H, CH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁ 0H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	ļ Ļ	ArCH ₃), 2,25 (s, 3H, ArCH ₃), 2,90 (q, 1H,
3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,40 (m, 2H, CH ₂ CH ₃), 3,75 (s, 3H, OCH ₃) 313 0,70 (t, 3H, CH ₂ CH ₃), 1,25 (t, 3H, CH ₂ CH ₃), 1,30 (s, 6H, C(CH ₃) ₂), 1,65 (q, 2H, CH ₂ CH ₃), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,40 (b, 2H, NCH ₂) 314 0,70-1,70 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,02 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂), 4,20 (m, 1H, OCH(CH ₃)C) 315 1,30 (d, 6H, CH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃)), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, ArCH ₃)), 3,00 (s, 6H, N(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	<u> </u>	$CH(CH_3)_2)$, 3,05 (s, 3H, NCH_3), 3,40 (m, 2H, CH_2CH_3)
CH ₂ CH ₃), 3,75 (s, 3H, OCH ₃) 313 0,70 (t, 3H, CH ₂ CH ₃), 1,25 (t, 3H, CH ₂ CH ₃), 1,30 (s, 6H, C(CH ₃) ₂), 1,65 (q, 2H, CH ₂ CH ₃), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,40 (b, 2H, NCH ₂) 314 0,70-1,70 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,02 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂), 4,20 (m, 1H, OCH(CH ₃)C) 315 1,30 (d, 6H, CH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, ArCH ₃)), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃)), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	312	$[1,25 \text{ (t, 3H, CH}_2\text{CH}_3), 2,10 \text{ (s, 3H, ArCH}_3), 2,20 \text{ (s,}]$
313 0,70 (t, 3H, CH ₂ CH ₃), 1,25 (t, 3H, CH ₂ CH ₃), 1,30 (s, 6H, C(CH ₃) ₂), 1,65 (q, 2H, CH ₂ CH ₃), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,40 (b, 2H, NCH ₂) 314 0,70-1,70 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,02 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂), 4,20 (m, 1H, OCH(CH ₃)C) 315 1,30 (d, 6H, CH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,]	$3H$, $ArCH_3$), $3,00$ (s, $3H$, NCH_3), $3,40$ (m, $2H$,
(s, 6H, C(CH ₃) ₂), 1,65 (q, 2H, CH ₂ CH ₃), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,40 (b, 2H, NCH ₂) 314 0,70-1,70 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,02 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂), 4,20 (m, 1H, OCH(CH ₃)C) 315 1,30 (d, 6H, CH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,		
3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,40 (b, 2H, NCH ₂) 314 0,70-1,70 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,02 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂), 4,20 (m, 1H, OCH(CH ₃)C) 315 1,30 (d, 6H, CH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	313	
NCH ₃), 3,40 (b, 2H, NCH ₂) 314 0,70-1,70 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,02 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂), 4,20 (m, 1H, OCH(CH ₃)C) 315 1,30 (d, 6H, CH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,		(s, 6H, C(CH3)2), 1,65 (q, 2H, CH2CH3), 2,15 (s,
314 0,70-1,70 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,02 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂), 4,20 (m, 1H, OCH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,		
ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂), 4,20 (m, 1H, OCH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,		
4,20 (m, 1H, OCH(CH ₃)C) 315 1,30 (d, 6H, CH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	314	
315 1,30 (d, 6H, CH(CH ₃) ₂), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,		
3,00 (s, 6H, N(CH ₃) ₂), 4,55 (m, 1H, CH(CH ₃) ₂) 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,		
316 1,10 (d, 12H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	315	1
(s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	716	
317 2,10 (s, 3H, ArCH ₃), 2,19 (s, 3H, ArCH ₃), 2,26 (s, 3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	316	1
3H, ArCH ₃), 3,01 (s, 6H, N(CH ₃) ₂), 3,47 (s, 3H, OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	217	
OCH ₃) 318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	31/	
318 2,10 (s, 3H, ArCH ₃) 2,19 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,		
6H, N(CH ₃) ₂) 319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	318	
319 0,75-1,85 (m, 24H, C ₁₀ H ₂₁ + CHCH ₃), 2,18 (s, 6H, Ar(CH ₃) ₂), 3,00 (s, 6H, N(CH ₃) ₂), 4,38 (m, 1H, C ₁₀ H ₂₁ CHCH ₃) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	310	1
Ar $(CH_3)_2$, 3,00 (s, 6H, N(CH_3) ₂), 4,38 (m, 1H, $C_{10}H_{21}CHCH_3$) 320 0,90 (d, 6H, $CH(CH_3)_2$), 1,60 (t, 2H, OCH_2CH_2CH), 1,70 (m, $1HCH(CH_3)_2$), 2,20 (s, 3H, ArCH ₃), 3,00 (s,	319	
$C_{10}H_{21}CHCH_3$) 320 0,90 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH), 1,70 (m, 1HCH(CH ₃) ₂), 2,20 (s, 3H, ArCH ₃), 3,00 (s,		}
320 0,90 (d, 6H, $CH(CH_3)_2$), 1,60 (t, 2H, OCH_2CH_2CH), 1,70 (m, $1HCH(CH_3)_2$), 2,20 (s, 3H, $ArCH_3$), 3,00 (s,		1
1,70 (m, $1HCH(CH_3)_2$), 2,20 (s, $3H$, $ArCH_3$), 3,00 (s,	320	
		1
321 1,30 (d, 6H, $CH(CH_3)_2$) 2,25 (s, 3H, $ArCH_3$), 3,00	321	
(s, 6H, N(CH3)2), 4,50 (m, 1H, CH(CH3)2)		(s, 6H, N(CH3)2), 4,50 (m, 1H, CH(CH3)2)
323 2,20 (m, 6H, ArCH ₃), 8,60-8,35 (m, 1H, NH)	323	
324 1,30 (s, 9H, C(CH ₃) ₃), 2,25 (m, 6H, ArCH ₃), 8,30-	324	1,30 (s, 9H, C(CH ₃) ₃), 2,25 (m, 6H, ArCH ₃), 8,30-
8,60 (m, 1H, NH)		8,60 (m, 1H, NH)

Verb.	Daten
325	1,25 (t, 3H, CH_2CH_3), 2,15 (s, 3H, $ArCH_3$), 2,25 (s, 3H, $ArCH_3$), 3,00 (s, 3H, NCH_3), 3,40 (m, 2H,
	CH ₂ CH ₃)
326	1,30 (s, 9H, C(CH ₃) ₃), 1,25 (t, 3H, CH ₂ CH ₃), 2,15
320	(s, 3H, ArCH3), 2,25 (s, 3H, ArCH3), 3,00 (s, 3H,
	NCH_3), 3,40 (m, 2H, NCH_2CH_3)
328	2,20 (s, 3H, ArCH ₃), 2,24 (s, 3H, ArCH ₃), 3,02 (s,
	6H, N(CH ₃) ₂)
329	2,00 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃), 2,95 (s,
	3H, NCH ₃), 3,85 (m, 2H, NCH ₂), 5,15 (d, 2H, CHCH ₂),
	5,80 (m, 1H, CHCH ₂)
330	1,20 (d, 3H, CH(CH ₃) ₂), 2,00 (s, 3H, ArCH ₃), 2,15
	(s, 3H, ArCH ₃), 2,85 (s, 3H, NCH ₃), 3,60 (m, 1H,
	СНСН3)
331	0,90 (t, 3H, CH ₂ CH ₃), 1,30 (m, 2H, CH ₂ CH ₂), 1,55
	(m, 2H, CH ₂ CH ₂), 2,00 (s, 3H, ArCH ₃), 2,15 (s, 3H,
	ArCH ₃), 2,95 (s, 3H, NCH ₃), 3,20 (m, 2H, NCH ₂)
334	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
ļ	6H, N(CH ₃) ₂)
335	1,25 (t, 3H, CH_2CH_3), 2,10 (s, 3H, $ArCH_3$), 2,25 (s,
	3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,40 (m, 2H,
	CH ₂ CH ₃)
336	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
240	6H, N(CH ₃) ₂)
340	0,93 (d, 6H, CH(CH ₃) ₂), 1,60 (t, 2H, OCH ₂ CH ₂ CH),
	1,80 (m, 1H, $\underline{CH}(CH_3)_2$), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,90 (t, 2H,
	OCH ₂ CH ₂)
341	$0.70-1.85$ (m, 11H, C_6H_{11}), 2,05 (s, 3H, ArCH ₃),
344	$2,13$ (s, $3H$, $ArCH_3$), $2,92$ (s, $6H$, $N(CH_3)_2$), $3,60$
	(d, 2H, OCH ₂ Ar)
342	2,15 (s, 3H, ArCH ₃), 2,23 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂), 5,00 (s, 2H, OCH ₂ Ar)
343	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,50 (d,
	1H, CH_2CCH), 3,00 (s, 6H, $N(CH_3)_2$), 4,60 (d, 2H,
	OCH ₂ CCH)

Verb.	Daten
344	2,12 (s, 3H, ArCH ₃), 2,22 (s, 3H, ArCH ₃), 3,00 (s,
}	6H, $N(CH_3)_2$, 4,45 (d, 2H, $OCH_2CH\underline{CH}_2$), 5,22-5,42
	(m, 2H, OCH ₂ CHCH ₂), 6,00 (m, 1H, OCH ₂ CHCH ₂)
345	2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	6H, N(CH ₃) ₂), 4,25 (brs, 4H, ArOCH ₂ CH ₂ O)
346	2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,30 (s,
	6H, N(CH ₃) ₂)
347	1,25 (s, 9H, $C(CH_3)_3$), 2,10 (s, 3H, $ArCH_3$), 2,30
	(s, 3H, ArCH ₃), 3,05 (b, 6H, N(CH ₃) ₂)
348	$0,30 \text{ (m, 2H, cyCH}_2), 0,60 \text{ (m, 2H, cyCH}_2), 1,20 (m, 2H, $
	1H, cyCH), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H,
	$ArCH_3$), 3,00 (s, 6H, $N(CH_3)_2$), 3,72 (d, 2H,
	OCH ₂ C ₃ H ₅)
349	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	6H, $N(CH_3)_2$), 5,20 (s, 2H, $COCH_2O$)
350	2,07 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,75 (s,
	$3H, OCH_3), 4,52 (s, 2H, COCH_2O)$
352	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
	6H, $N(CH_3)_2$), 4,60 (s, 2H, $COCH_2O$), 5,20 (s, 2H,
	PhCH ₂ O)
353	2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,30 (s,
	6H, N(CH ₃) ₂)
354	1,60-2,30 (m, 4H, THF), 2,10 (s, 3H, ArCH ₃), 2,20
	(s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 3,70-4,00
	(m, 4H, THF + OCH ₂), 4,20 (m, 1H, THF)
355	1,20-1,95 (m, 6H, THP), 2,10 (s, 3H, ArCH ₃), 2,20
	$(s, 3H, ArCH_3), 3,00 (s, 6H, N(CH_3)_2), 3,40-4,10$
257	(m, 5H, THP + OCH ₂)
357	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
250	6H, N(CH ₃) ₂) 1 10 (+ 34 OCH-CH-) 1 60 (d 3H CHCH ₂) 2 10
358	1,10 (t, 3H, OCH_2CH_3), 1,60 (d, 3H, $CHCH_3$), 2,10 (s, 3H, $ArCH_3$), 2,20 (s, 3H, $ArCH_3$), 3,00 (s, 6H,
	$N(CH_3)_2$, 4,20 (q, 2H, OCH_2CH_3), 4,60 (q, 1H,
	CHCH ₃) 2, 4,20 (q, 2H, O <u>CH</u> ₂ CH ₃), 4,00 (q, 1H,
359	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,
] 339	$(S, SH, AICH_3), 2,20 (S, SH, AICH_3), 5,00 (S, GH, N(CH_3)_2), 4,25 (q, 2H,OCH_2CF_3)$
L	on, N(Cn3/2), 4,25 (4, 2n,00n20n3)

Verb.	Daten						
360	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,40 (m,						
	4H, OCH ₂ CH ₂ CH ₂), 3,00 (s, 6H, N(CH ₃) ₂), 3,40 (t,						
	2H, CH ₂ CH ₂ CN), 3,90 (t, 2H, OCH ₂ (CH ₂) ₃)						
361	2,05 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,						
	6H, N(CH ₃) ₂)						
362	1,00 (s, 9H, C(CH ₃) ₃), 2,00 (s, 6H, ArCH ₃), 3,00						
	(s, 6H, N(CH ₃) ₂)						
363	2,20 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂)						
364	1,2 (t, 3H, NCH_2CH_3), 2,05 (s, 3H, $ArCH_3$), 2,2 (s,						
	$3H$, $ArCH_3$), 3 (s, $3H$, NCH_3), $3,35$ (br, $2H$, NCH_2CH_3)						
365	2,1 (s, ArCH ₃), 2,2 (s, 3H, ArCH ₃), 3,0 (s, 6H,						
	N(CH ₃) ₂)						
366	2,1 (s, 3H, ArCH ₃), 2,2 (s, 3H, ArCH ₃), 3,0 (s,						
	6H, N(CH ₃) ₂)						
367	$2,00$ (s, $3H$, CH_3CO), $2,10$ (s, $3H$, $ArCH_3$), $2,20$ (s,						
	3H, ArCH ₃), 2,98 (s, 6H, $N(CH_3)_2$)						
368	2.00 (s, 6H, ArCH3), 3.00 (s, 6H, N(CH3)2)						
369	$2,10$ (s, $3H$, $ArCH_3$), $2,20$ (s, $3H$, $ArCH_3$), $2,40$ (s,						
	6H, Het(CH_3) ₂), 3,00 (s, 6H, $N(CH_3)_2$)						
370	0,90 (d, 6H, $CH_2CH(CH_3)_2$), 1,80 (m, 1H,						
	$CH_2CH(CH_3)_2$, 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H,						
	ArCH ₃), 2,40 (d, 2H, $\underline{\text{CH}}_2\text{CH}(\text{CH}_3)_2$), 3,00 (s, 6H,						
	N(CH ₃) ₂)						
371	1,60 (s, 6H, C(CH ₃) ₂), 1,95 (s, 3H, ArCH ₃), 2,10						
270	(s, 3H, ArCH ₃), 2,95 (s, 6H, N(CH ₃) ₂)						
372	1,05 (t, 6H, $CH(CH_3)_2$), 1,25 (t, 3H, OCH_2CH_3), 2,10						
	(s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,23 (m, 1H,						
	$\frac{\text{CH}(\text{CH}_3)_2}{\text{CH}(\text{CH}_3)_2}$, 3,00 (s, 6H, N(CH ₃) ₂), 4,20 (q, 2H,						
272	OCH ₂ CH ₃) 2,1 (s, 3H, ArCH ₃), 2,2 (s, 3H, ArCH ₃), 3,35 (s,						
373	<u> </u>						
374	3H, NCH_3) 1,45 (t, 3H, NCH_2CH_3), 2,15 (s, 3H, $ArCH_3$), 2,2 (s,						
]],4	3H, ArCH ₃), 3,8, (q, 2H, NCH ₂ CH ₃)						
375	2,15 (s, ArCH ₃), 2,25 (s, ArCH ₃), 2,6 (s, 3H,						
] ,,,	NC (0) CH ₃)						
376	1,45 (d, 3H, CHCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s,						
	3H, ArCH ₃), 2,22 (s, 3H, COCH ₃), 3,00 (s, 6H,						
L							

Verb.	Daten						
	$N(CH_3)_2$, 4,55 (q, 1H, OCHCH ₃)						
377	0,93 (m, 6H, (CHCH ₂ CH ₃) ₂), 1,60 (m, 4H,						
	$(CH_2CH_3)_2)$, 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H,						
	ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 4,00 (m, 1H, OCH)						
378	1,5-2,9 (m, 9H, cyp), 2,10 (s, 3H, ArCH ₃), 2,20						
	(s, 3H, ArCH ₃), 3,30 (s, 6H, N(CH ₃) ₂)						
379	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,						
L	6H, N(CH ₃) ₂)						
380	1,22 (t, 3H, OCH ₂ CH ₃), 2,10 (s, 3H, ArCH ₃), 2,20						
	$(s, 3H, ArCH_3), 3,00 (s, 6H, N(CH_3)_2), 4,00 (s, 3H,$						
	OCH ₃), 4,25 (q, 2H, OCH ₂ CH ₃)						
381	2,05 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,						
	6H, N(CH ₃) ₂)						
382	0.85 (t, 3H, CH ₂ CH ₃), 1,25 (m, 6H, CH ₂ CH ₂), 1,55						
	(m, 2H, ArCH ₂ CH ₂), 2,05 (s, 3H, ArCH ₃), 2,20 (s,						
	3H, ArCH ₃), 2,50 (t, 2H, $\underline{CH_2CH_3}$), 3,00 (s, 6H,						
	NCH ₃)						
383	$2,00 \text{ (s, 6H, ArCH}_3), 3,00 \text{ (s, 6H, N(CH}_3)_2)}$						
384	$2,10$ (s, $3H$, $ArCH_3$), $2,20$ (s, $3H$, $ArCH_3$), $3,00$ (s,						
	6H, $N(CH_3)_2$, 3,45 (s, 6H, $(OCH_3)_2$), 3,93 (d, 2H,						
	OCH_2), 4,68 (t, 1H, $(CH_3O)_2CHCH_2$)						
385	1,23 (t, 6H, (CH ₃ CH ₂ O) ₂), 2,10 (s, 3H, ArCH ₃), 2,20						
	$(s, 3H, ArCH_3), 3,00 (s, 6H, N(CH_3)_2), 3,55-3,80$						
	$(m, 4H, (CH_3CH_2O)_2), 3,95 (d, 2H, OCH_2), 4,78 (t,$						
	1H, (CH ₃ CH ₂ O) ₂ CH)						
386	1,32 (s, 9H, C(CH ₃) ₃), 2,13 (s, 3H, ArCH ₃), 2,20						
	(s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 4,30 (m, 4H,						
300	OCH ₂ CH ₂ O)						
388	$2,10$ (s, $3H$, $ArCH_3$), $2,20$ (s, $3H$, $ArCH_3$), $3,00$ (s,						
300	6H, $N(CH_3)_2$) 1,30 (s, 6H, PhC(CH ₃) ₂), 2,05 (s, 3H, ArCH ₃), 2,20						
390	$(s, 3H, ArCH_3), 2,80 (s, 2H, PhCCH_2), 3,05 (s, 6H, 1)$						
	$N(CH_3)_2)$						
391	1,55 (s, 6H, C(CH ₃) ₂), 2,10 (s, 3H, ArCH ₃), 2,20						
	(s, 3H, ArCH3), 3,05 (s, 6H, N(CH3)2)						
392	1,50 (s, 6H, $C(CH_3)_2$), 2,10 (s, 3H, $ArCH_3$), 2,20						
	$(s, 3H, ArCH_3), 3,00 (s, 6H, N(CH_3)_2), 3,05 (s, 3H, 3H, 3H, 3H, 3H, 3H, 3H, 3H, 3H, 3H$						
L	1, -,, , -, -, -, -, -, -, -, -, -						

Verb.	Daten					
	OCH ₃)					
393	1,25 (t, 3H, CH_2CH_3), 2,10 (s, 3H, $ArCH_3$), 2,25 (s,					
	3H, ArCH ₃), 3,00 (s, 3H, NCH ₃), 3,40 (b, 2H,					
	CH ₂ CH ₃)					
394	2,00 (s, 3H, ArCH ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s,					
	$3H, ArCH_3), 3,00 (s, 6H, N(CH_3)_2)$					
395	1,20 (t, 3H, CH_2CH_3), 2,10 (s, 3H, $ArCH_3$), 2,20 (s,					
	3H, ArCH ₃), 2,40 (s, 3H, ArCH ₃), 3,00 (s, 3H,					
	$N(CH_3))$, 3,40 (br, 2H, NCH_2)					
396	1,30 (s, 9H, C(CH ₃) ₃), 1,90 (m, 4H, CH ₂ CH ₂), 2,15					
	(s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,5 (m, 4H,					
	CH ₂ NCH ₂)					
397	2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,00 (s,					
	6H, $N(CH_3)_2$)					

[0122] Die folgenden Verbindungen der Formel Ib (siehe Tabelle 3), d. h. Verbindungen der allgemeinen Formel 2, in der R¹ Wasserstoff bedeutet, R³ Methyl bedeutet, R⁴ Methyl bedeutet, R⁵ Methyl, das in 5-Stellung des Phenylrings substituiert ist, bedeutet, -A-R⁶ in para-Stellung zum Amidinrest steht und 3-Bu¹-Phenoxy bedeutet, lassen sich nach Verfahren analog den in den Beispielen 1 bis 17 beschriebenen Verfahren herstellen, wobei der rechts von der Bindung A dargestellte Rest an R⁶ gebunden ist.

Tabelle 3

Verb.	R ²	Fp./°C
501	1-Me-Piperidin-4-yl	Öl
502	502 2-Dimethylaminoethyl	
503	Ethoxycarbonylmethyl	Öl
504	Propargyl	Öl
505	505 2,2-Dimethoxyethyl	
506 2-Hydroxyethyl		Öl
507	Cyclopropyl	Öl
508 Cyclohexyl		Öl

[0123] Die Verbindungen in Tabelle 3 ohne genaue Schmelzpunkte weisen die in Tabelle 4 unten dargestellten 1 H-NMR-Daten auf.

Tabelle 4

Verb.	Daten
501	1,25 (s, 9H, C(CH ₃) ₃), 1,70-2,05 (m, 8H, cyCH ₂), 2,10 (s, 3H, ArCH ₃), 2,15 (s, 3H, ArCH ₃),
	2,30 (s, 3H, NCH ₃), 2,90 (s, 3H, NCH ₃)
502	1,20 (s, 9H, C(CH ₃) ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 6H, CH ₂ N(CH ₃) ₂),
	2,45 (m, 2H, NCH ₂), 3,00 (s, 3H, NCH ₃), 3,40 (m, 2H, NCH ₂)
503	1,00 (t, 3H, CH ₂ CH ₃), 1,30 (s, 9H, C(CH ₃) ₃), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,10
	(s, 3H, NCH_3), 4,15 (s, 2H, NCH_2), 4,25 (q, 2H, CH_2CH_3)
504	1,30 (s, 9H, C(CH ₃) ₃), 2,15 (s, 3H, ArCH ₃), 2,20 (s, 2H, ArCH ₃), 2,30 (s, 1H, CHC), 3,10
	$(s, 3H, NCH_3), 4,20 (s, 2H, NCH_2)$
505	1,30 (s, 9H, C(CH ₃) ₃), 2,20 (s, 3H, ArCH ₃), 2,25 (s, 3H, ArCH ₃), 3,15 (s, 3H, NCH ₃), 3,50
	(s, 6H, OCH ₃), 3,60 9 (m, 2H, NCH ₂), 4,60 (m, 1H, CH)
206	1,20 (s, 9H, C(CH ₃) ₃), 2,10 (s, 3H, ArCH ₃), 2,20 (s, 3H, ArCH ₃), 3,05 (s, 3H, NCH ₃), 3,55
	(s, 2H, OCH ₂), 3,80 (s, 2H, NCH ₂), 5,95 (m, 1H, OH)
507	1,30 (s, 9H, C(CH ₃) ₃), 0,60 (s, 2H, cyCH ₂), 0,70 (s, 2H, cyCH ₂), 2,10 (s, 3H, ArCH ₃), 2,20
	(s, $3H$, $ArCH_3$)
208	0,85-1,90 (m, 10H, cyCH ₂), 1,30 (s, 9H, C(CH ₃) ₃), 2,15 (s, 3H, CH ₃), 2,20 (s, 3H, ArCH ₃),
	3,00 (s, 3H, NCH ₃)

Beispiel 18

N,N-Dimethyl-N'-[4-(3-trifluormethylphenoxy)-2,5-xylyl]formamidin-Sulfatsalz

(Verbindung 602)

[0124] Eine Lösung der Verbindung 1 (siehe Tabelle 1) (0,3 g) in Ethanol (0,3 ml) wurde tropfenweise mit konzentrierter Schwefelsäure (0,098 g) versetzt. Es wurde filtriert und der erhaltene Feststoff wurde mit Diethylether gewaschen, wodurch man die Titelverbindung als Feststoff vom Fp. 178–80°C erhielt.

[0125] Die folgenden Verbindungen der Formel X (siehe Tabelle 4), d. h. Salze der allgemeinen Formel I, in der -A-R⁶ in para-Stellung zum Amidinrest steht, R¹ Wasserstoff bedeutet, R⁴ Methyl bedeutet, An ein Anion bedeutet und u je nach der Wertigkeit des Anions 1 oder 2 bedeutet, lassen sich nach Verfahren analog Beispiel 18 herstellen.

[An]
$$\begin{array}{c}
R^{2} \\
R^{3}
\end{array}$$

$$\begin{array}{c}
Me\\
(R^{5})_{m} \\
A \\
R^{6}
\end{array}$$

Tabelle 4

Me Me Me Me	(R ⁵) _m 5-Me 5-Me, 6-Br 5-Me 5-Me	A -OCH ₂ - O	R ⁶ 3-CF ₃ -Phenyl 3-CF ₃ -Phenyl 3-CF ₃ -Phenyl	An Sulfat Sulfat Sulfat	Fp./°C 215-7 114-8
Me Me Me	5-Me, 6-Br 5-Me	0	3-CF ₃ -Phenyl	Sulfat	114-8
Me	5-Me		3-CF ₃ -Phenyl	Sulfat	170.00
Me	5-Me		3-CF ₃ -Phenyl	Sulfat	170 00
		0	l	 	178-80
Ме	E Me		3-CF ₃ -Phenyl	Chlorid	152-4
	5-Me	0	3-CF ₃ -Phenyl	p-Toluol- sulfonat	133-5
Me	5-Me	0	3-CF ₃ -Phenyl	Saccharinat	Öl
Ме	5-Me	0	3-CF ₃ -Phenyl	Trifluor- acetat	141-3
Ме	5-Me	0	3-CF ₃ -Phenyl	Methan- sulfonat	151-3
Me	5-Me	0	3-CF ₃ -Phenyl	Oxalat	184-6
Me	5-Me	0	3-CF ₃ -Phenyl	Campher- sulfonat	Öl
CH ₂) ₄ -	5-Me	0	3-CF₃-Phenyl	Chlorid	159-63
Me	5-Me	0	3-Ph-1,2,4- Thiadiazol-	Chlorid	80
	Me Me	Me 5-Me Me 5-Me TH ₂) ₄ - 5-Me	Me 5-Me O Me 5-Me O CH ₂) ₄ - 5-Me O	Me 5-Me O 3-CF ₃ -Phenyl Me 5-Me O 3-CF ₃ -Phenyl CH ₂) ₄ - 5-Me O 3-CF ₃ -Phenyl Me 5-Me O 3-Ph-1,2,4-	Me 5-Me O 3-CF ₃ -Phenyl Oxalat Me 5-Me O 3-CF ₃ -Phenyl Campher- sulfonat CH ₂) ₄ - 5-Me O 3-CF ₃ -Phenyl Chlorid Me 5-Me O 3-Ph-1,2,4- Chlorid Thiadiazol-

Verbindung 605

[0127] 1 H-NMR (ppm) 2,15 (s, 3H, ArCH₃), 2,25 (s, 3H, ArCH₃), 3,20 (s, 3H, N(CH₃)), 3,25 (s, 3H, N(CH₃)), 10,20–10,80 (br, 1H, NH)

Verbindung 609

[0128] 1 H-NMR (ppm) 0,75 (s, 3H, CCH₃), 1,05 (s, 3H, CCH₃), 1,25 (d, 2H, CH₂), 1,75–1,95 (m, 3H), 2,15 (s, 3H, ArCH₃), 2,20 (m, 1H, CH), 2,25 (s, 3H, ArCH₃), 2,35 (d, 1H, CH), 2,60 (t, 1H, CH), 2,85 (d, 1H, CH), 3,20 (s, 3H, N(CH₃)), 3,30 (s, 3H, N(CH₃)).

[0129] Die folgenden Verbindungen der Formel Ic (siehe Tabelle 5), d. h. Verbindungen der allgemeinen Formel I, in der R¹ und R⁵ Wasserstoff bedeuten, R², R³ und R⁴ Methyl bedeuten, lassen sich nach Verfahren analog den in Beispielen 1 bis 17 beschriebenen Verfahren herstellen, wobei der rechts der Bindung A dargestellte Rest an R⁶ gebunden ist.

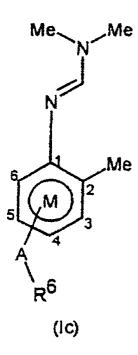


Tabelle 5

Verb.	Pos. ⁿ von -A-R ⁶	A	R6	Daten (Fp./°C bzw. ¹ H-NMR)
700	5	-OCH ₂ -	3-CF ₃ -Phenyl	2,00 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂), 5,05 (s, 2H, ArCH ₃)
701	5	-OCH ₂ -	4-Bu ^t -Phenyl	85-7°C
702	3	-0-	3-CF ₃ -Phenyl	2,10 (s, 3H, ArCH ₃), 3,00 (s, 6H, N(CH ₃) ₂)

Testbeispiele

[0130] Es wurden Verbindungen auf Wirksamkeit gegen eine oder mehrere der folgenden Krankheiten beur-

Phytophthora infestans: Braunfäule der Tomate Plasmopara viticola: Falscher Mehltau der Rebe

Erysiphe graminis f. sp. tritici: Echter Mehltau des Weizens

Pyricularia oryzae: Fleckenkrankheit des Reises

Leptosphaeria nodorum: Spelzenbräune

[0131] Der Stengelgrund der Testpflanzen wurde mit wäßrigen Lösungen oder Dispersionen der Verbindungen in der gewünschten Konzentration unter Mitverwendung eines Netzmittels je nachdem entweder durch Spritzen oder Tauchen behandelt. Nach einer bestimmten Zeit wurden die Pflanzen oder Pflanzenteile je nachdem vor oder nach der Behandlung mit den Verbindungen mit entsprechenden Test-Krankheitserregern infiziert und unter kontrollierten Umweltbedingungen, die sich für den Fortschritt des Pflanzenwachstums und die Entwicklung der Krankheit eignen, gehalten. Nach einer entsprechenden Zeit wird der Infektionsgrad des be-

fallenen Pflanzenteils visuell geschätzt. Die Verbindungen werden anhand einer Skala von 1 bis 3 beurteilt, wobei 1 einen geringen oder gar keinen Bekämpfungserfolg, 2 mittelmäßigen Bekämpfungserfolg und 3 guten bis vollständigen Bekämpfungserfolg bedeuten. Bei einer Konzentration von 500 ppm (w/v) oder darunter erhielten die folgenden Verbindungen einen Boniturwert von 2 oder mehr gegen die angegebenen Pilze.

Phytophthora infestans

[0132] 7, 8, 28, 30, 36, 46 und 271.

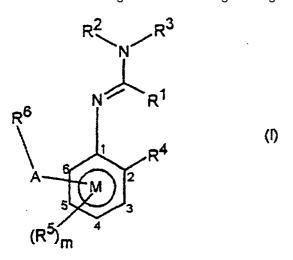
Plasmopara viticola

[0133] 149, 331, 373 und 364.

Erysiphe graminis f. sp. tritici

[0134] 1–5, 7–9, 11–13, 15–24, 26, 28–41, 43, 45, 46, 48, 51, 52, 55, 56, 58, 59, 61, 62, 65, 68, 76, 84, 86, 90, 100, 101, 104–106, 109, 112, 113, 120, 123, 124, 130, 135, 138, 139, 140, 141, 143, 146, 149, 160, 166, 171, 173–175, 183, 187–190, 193–196, 200, 203–205, 207–209, 213, 215–217, 223, 225, 228, 231, 232, 234, 237, 246, 250, 252, 253, 256, 258, 259, 261, 262, 264, 266–272, 277, 279, 281, 282, 284, 286–288, 290, 291, 295, 298, 299, 301, 303, 310–312, 318, 325, 326, 330, 331, 335, 346, 347, 349, 351, 353, 355–357, 359, 361, 364, 365–368, 370–372, 374, 376–379, 392, 396, 398, 502, 504, 600, 601, 610 und 611.

Pyricularia oryzae


[0135] 7, 17, 20, 21, 23, 26–28, 30, 32, 34, 36, 38, 41, 43, 45, 51, 54, 55, 59, 63, 94, 140, 143, 146, 163, 225, 325, 352, 353, 360, 368, 600 und 611.

Leptosphaeria nodorum

[0136] 1, 2, 5, 7, 8, 15, 27, 29, 35, 37, 41, 43, 45, 48, 56, 59, 61, 72, 100, 130, 160, 170, 181, 194, 208, 214, 235, 246, 283, 284, 290, 303, 310, 311, 312, 325, 326, 351, 364, 369, 378 und 392.

Patentansprüche

1. Verwendung einer Verbindung der allgemeinen Formel I und deren Salze

in der

R¹ Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, oder Wasserstoff bedeutet,

R² und R³, die gleich oder verschieden sein können, eine beliebige für R¹ definierte Gruppe, Cyan, Acyl, -ORª oder -SRª, wobei Rª Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, bedeutet, bedeuten; oder R² und R³, oder R² und R¹, gemeinsam mit den sie verbindenden Atomen einen Ring, der substituiert sein kann, bilden können,

R⁴ Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, oder Hydroxy, Mercapto, Azido, Nitro, Halogen, Cyan, Acyl, gegebenenfalls substituiertes Amino, Cyanato, Thiocyanato,

 $-SF_5$, $-OR^a$, $-SR^a$ oder $-Si(R^a)_3$ bedeutet,

m 0 bis 3 ist,

R⁵, falls vorhanden, gleich oder unterschiedlich zu jedem beliebigen anderen R⁵ sein kann und eine beliebige für R⁴ definierte Gruppe bedeutet,

R⁶ gegebenenfalls substituiertes Carbo- oder Heterocyclyl bedeutet, und

A eine direkte Bindung, $-O_{-}$, $-S(O)_{n^{-}}$, $-NR^{9}_{-}$, $-CR^{7}=CR^{7}_{-}$, $-C\equiv C_{-}$, $-A^{1}_{-}$, $-A^{1}_{-}$, $-O_{-}$, $-O_{-}$, $-O_{-}$, $-O_{-}$, $-A^{1}_{-}$, $-O_{-}$, $-A^{1}_{-}$, $-O_{-}$, $-A^{1}_{-}$, $-O_{-}$, $-A^{1}_{-}$

wobei

n 0, 1 oder 2 ist,

k 1 bis 9 ist,

A¹ -CHR⁷- bedeutet,

 A^2 -C(=X)- bedeutet,

 A^3 -C(R^8)=N-O- bedeutet,

A⁴ -O-N=C(R⁸)- bedeutet,

X O oder S bedeutet,

X¹ O, S, NR⁹ oder eine direkte Bindung bedeutet,

X² O, NR⁹ oder eine direkte Bindung bedeutet,

X³ Wasserstoff, -C(=O)-, -SO₂- oder eine direkte Bindung bedeutet,

R⁷, das gleich oder unterschiedlich zu beliebigen anderen R⁷ sein kann, Alkyl, Cycloalkyl oder Phenyl, die jeweils substituiert sein können, oder Wasserstoff, Halogen, Cyan oder Acyl bedeutet,

R⁸, das gleich oder unterschiedlich zu beliebigen anderen R⁸ sein kann, Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkylthio, Carbo- oder Heterocyclyl, die jeweils substituiert sein können, oder Wasserstoff bedeutet,

R⁹, das gleich oder unterschiedlich zu einem beliebigen anderen R⁹ sein kann, gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Carbo- oder Heterocyclyl, Wasserstoff oder Acyl bedeutet, oder zwei R⁹-Gruppen an A gemeinsam mit den sie verbindenden Atomen einen 5- bis 7-gliedrigen Ring bilden,

wobei der rechts von der Bindung A dargestellte Rest an R⁶ gebunden ist,

oder -A-R⁶ und R⁵ gemeinsam mit dem Benzolring M ein gegebenenfalls substituiertes anelliertes Ringsystem bedeuten,

als Fungizide.

- 2. Verwendung nach Anspruch 2, wobei R¹ Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder gegebenenfalls substituiertes Phenyl substituiert sein können, oder Wasserstoff bedeutet.
 - 3. Verwendung nach Anspruch 1, wobei R¹ C₁-C₁₀-Alkyl oder Wasserstoff bedeutet.
- 4. Verwendung nach einem vorhergehenden Anspruch, wobei R² und R³, die gleich oder verschieden sein können, Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen, gegebenenfalls substituiertes Phenyl substituiert sein können, oder Wasserstoff, Alkoxy, Alkoxyalkoxy, Benzyloxy, Cyan oder Alkylcarbonyl bedeuten.
- 5. Verwendung nach Anspruch 4, wobei R^2 und R^3 , die gleich oder verschieden sein können, C_1 - C_{10} -Alkyl oder Wasserstoff bedeuten.
- 6. Verwendung nach einem vorhergehenden Anspruch, wobei R⁴ Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder gegebenenfalls substituiertes Phenyl substituiert sein können, oder Hydroxy, Halogen, Cyan, Acyl, Alkoxy, Halogenalkoxy oder Alkylthio bedeutet.
 - 7. Verwendung nach Anspruch 6, wobei R⁴ C₁-C₁₀-Alkyl oder Halogen bedeutet.
 - 8. Verwendung nach einem vorhergehenden Anspruch, wobei m 0 oder 1 ist.
- 9. Verwendung nach einem vorhergehenden Anspruch, wobei R⁵, falls vorhanden, eine für R⁴ in Anspruch 6 definierte Gruppe bedeutet.

- 10. Verwendung nach einem vorhergehenden Anspruch, wobei die R⁵-Gruppe, falls vorhanden, in 5-Position des Rings M gebunden ist.
- 11. Verwendung nach einem vorhergehenden Anspruch, wobei A eine direkte Bindung, -O-, -S(O)_nA¹-, -O(A¹)_k-, -S(O)_n-, -NR⁹A²-, -A²-, -OA²-, -OA²-, -NR⁹- oder -O(A¹)_kO- bedeutet.
- 12. Verwendung nach Anspruch 11, wobei A eine direkte Bindung, -O-, -S-, -NR⁹-, -CHR⁷- oder -O-CHR⁷- bedeutet.
- 13. Verwendung nach einem vorhergehenden Anspruch, wobei R⁹, falls vorhanden, Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder gegebenenfalls substituiertes Phenyl substituiert sein können, oder Wasserstoff bedeutet.
- 14. Verwendung nach einem vorhergehenden Anspruch, wobei R⁷, falls vorhanden, Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder gegebenenfalls substituiertes Phenyl substituiert sein können, oder Hydroxy, Halogen, Cyan, Acyl, Alkoxy, Halogenalkoxy, Alkylthio oder Wasserstoff bedeutet.
- 15. Verwendung nach einem vorhergehenden Anspruch, wobei A in 4-Stellung des Benzolrings M gebunden ist.
- 16. Verwendung nach einem vorhergehenden Anspruch, wobei R⁶ gegebenenfalls substituiertes Phenyl oder gegebenenfalls substituiertes aromatisches Heterocyclyl bedeutet.
- 17. Verwendung nach einem vorhergehenden Anspruch, wobei R⁶, wenn es substituiert ist, durch einen oder mehrere Substituenten, die gleich oder verschieden sein können und aus der Aufzählung Alkyl, Alkenyl, Alkinyl, Carbo- oder Heterocyclyl, die jeweils gegebenenfalls substituiert sein können, Hydroxy, Mercapto, Azido, Nitro, Halogen, Cyan, Acyl, gegebenenfalls substituiertes Amino, Cyanato, Thiocyanato, -SF₅, -OR^a, -SR^a oder -Si(R^a)₃, wobei R^a Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, bedeutet, stammen, substituiert sein kann.
- 18. Verwendung nach Anspruch 17, wobei R⁶, wenn es substituiert ist, durch einen oder mehrere Substituenten, die gleich oder verschieden sein können und aus der Aufzählung Hydroxy, Halogen, Cyan, Acyl, Amino, Alkylamino, Dialkylamino, Alkyl, Halogenalkyl, RaO-Alkyl, Acyloxyalkyl, Cyanoxyalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Carbocyclyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio substituiert ist, und Benzyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio substituiert ist, stammen, substituiert sein kann.
 - 19. Verwendung einer Verbindung der allgemeinen Formel I und deren Salze

in der

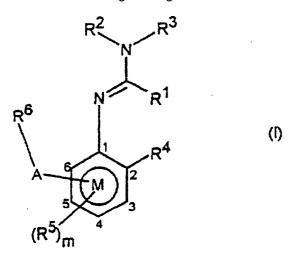
R¹ Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio oder Halogen substituiert ist, substituiert sein können, oder Wasserstoff bedeutet,

R² und R³, die gleich oder verschieden sein können, wie für R¹ definiert sind oder Alkoxy, Alkoxyalkoxy, Ben-

zyloxy, Cyano oder Alkylcarbonyl bedeuten,

R⁴ Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio oder Halogen substituiert ist, substituiert sein können, oder Hydroxy, Halogen, Cyan oder Acyl bedeutet, m 0 oder 1 ist.

R⁵, falls vorhanden, eine für R⁴ definierte Gruppe bedeutet,


A eine direkte Bindung, -O-, -S-, -NR⁹-, -CHR⁷- oder -O-CHR⁷- bedeutet,

wobei R⁹, falls vorhanden, Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy, Alkylthio oder Halogen substituiert ist, substituiert sein können, oder Wasserstoff bedeutet, und R⁷ eine für R⁹ definierte Gruppe oder Hydroxy, Halogen, Cyan, Acyl, Alkoxy, Halogenalkoxy oder Alkylthio bedeutet,

A in 4-Stellung des Benzolrings M gebunden ist, und

R⁶ Phenyl oder aromatisches Heterocyclyl, die gegebenenfalls durch einen oder mehrere Substituenten, die gleich oder verschieden sein können und aus der Aufzählung Hydroxy, Halogen, Cyan, Acyl, Amino, Alkylamino, Dialkylamino, Alkyl, Halogenalkyl, RaO-Alkyl, Acyloxyalkyl, Cyanoxyalkyl, Alkoxy, Halogenalkoxy, Alkylthio, Carbocyclyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio substituiert ist, und Benzyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio substituiert ist, stammen, substituiert sind, bedeutet, als Fungizide.

20. Verbindung der allgemeinen Formel 2 und deren Salze

in der

R¹ Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, oder Wasserstoff bedeutet,

R² und R³, die gleich oder verschieden sein können, eine beliebige für R¹ definierte Gruppe bedeuten oder gemeinsam mit dem Stickstoff, an den sie gebunden sind, einen Ring, der substituiert sein kann, bilden können, R⁴ Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, bedeutet, m 1 ist

R⁵ eine beliebige für R⁴ definierte Gruppe, die in 5-Stellung des Benzolrings M gebunden ist, bedeutet, R⁶ gegebenenfalls substituiertes Carbo- oder Heterocyclyl bedeutet, und

A eine direkte Bindung, -O-, -S-, -NR⁹-, wobei R⁹ Alkyl, Alkenyl oder Alkinyl, die jeweils durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder gegebenenfalls substituiertes Phenyl substituiert sein können, bedeutet, -CHR⁷- oder -O-CHR⁷-, wobei R⁷ Alkyl, Alkenyl oder Alkinyl, die durch Alkoxy, Halogenalkoxy, Alkylthio, Halogen oder Phenyl, das gegebenenfalls durch Alkyl, Halogenalkyl, Alkoxy, Halogenalkoxy oder Alkylthio substituiert ist, substituiert sein können, bedeutet, oder Hydroxy, Halogen, Cyan, Acyl, Alkoxy, Halogenalkoxy oder Alkylthio bedeutet,

wobei sich -A-R⁶ in 4-Stellung des Benzolrings M befindet und der rechts von der Bindung A dargestellte Rest an R⁶ gebunden ist,

oder -A-R⁶ und R⁵ gemeinsam mit dem Benzolring M ein gegebenenfalls substituiertes anelliertes Ringsystem bilden.

21. Fungizide Zusammensetzung enthaltend mindestens eine Verbindung nach Anspruch 20 in Abmischung mit einem landwirtschaftlich unbedenklichen Verdünnungsmittel oder Träger.

- 22. Verfahren zur Bekämpfung von Pilzen an einem Ort, der mit ihnen befallen ist bzw. befallen werden kann, dadurch gekennzeichnet, daß man auf diesen Ort eine Verbindung nach einem vorhergehenden Anspruch ausbringt.
 - 23. Verbindung der allgemeinen Formel XIIa

in der

R¹ Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, oder Wasserstoff bedeutet,

 R^2 und R^3 , die gleich oder verschieden sein können, eine beliebige für R^1 definierte Gruppe, Cyan, Acyl, -ORa oder -SRa, wobei R^3 Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, bedeuten, oder R^2 und R^3 , oder R^2 und R^1 , gemeinsam mit den sie verbindenen Atomen einen Ring, der substituiert sein kann, bilden können,

R⁴ Alkyl, Alkenyl, Alkinyl, Carbocyclyl oder Heterocyclyl, die jeweils substituiert sein können, bedeutet, und R⁵ eine beliebige für R⁴ definierte Gruppe bedeutet, mit der Maßgabe, daß R⁵ nicht tert.-Butyl bedeutet.

Es folgt kein Blatt Zeichnungen