A 0 O 0 0 0 O

WO 01/22264 Al

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

A A R

(10) International Publication Number

29 March 2001 (29.03.2001) PCT WO 01/22264 A1l
(51) International Patent Classification’: GOG6F 17/00 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY,BZ, CA, CH, CN, CR, CU, CZ,
(21) International Application Number: PCT/US00/26152 DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU,ID,IL,IN,IS,JP, KE,KG,KP,KR,KZ,LC, LK, LR,
(22) International Filing Date: LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
21 September 2000 (21.09.2000) NO, NZ, PL, PT, RO, RU, SD;, SE, SG, SI, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(25) Filing Language: English
(84) Designated States (regional): ARIPO patent (GH, GM,
(26) Publication Language: English KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ,MD, RU, TJ, TM), European
o tent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE
(30) Priority Data: pa T T e ?
60/156,305 24 September 1999 (24.09.1999) US g g’[I‘éi 2‘& I;TV’VSI;}’LOL‘;;I g"ée’;‘éB;ber’ (SF CG,
60/155,711 24 September 1999 (24.09.1999) US ’ PR T ’ ? PRI R ’
09/524,775 14 March 2000 (14.03.2000) US
Published:

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901
San Antonio Road, Palo Alto, CA 94303 (US).

(72) Inventor: BELKIN, Ruslan; 1901 Rock Street #105,
Mountain View, CA 94043 (US).

(74) Agents: TRUONG, Bobby, K. et al.; Hickman Palermo
Truong & Becker, LLP, 1600 Willow Street, San Jose, CA
95125 (US).

With international search report.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Titlee MECHANISM FOR ENABLING CUSTOMIZED
SERVER

SESSION MANAGERS TO INTERACT WITH A NETWORK

.
]
106
SERVER
CTIONS
SERVICE SUBSYSTEMS. m
22 HTML ERVICE L CGI 124
thms ENGINE
APPLICATION cLAssssm - SESSION MANAGEMENT I,m
) APPLICATIDN 0\ APPLICATION
CLASS n ¥ B 31 ¥
1520~ SESSION O "Session
e, MANAGER
1441, APPLICATION API’UCATION CLA 5' CLASSn
1340 | SESSION | L ONTSERSION
MANAGER o

(57) Abstract: A mechanism for enabling customized session managers to interact with a network server (106) is disclosed. The
mechanism includes a programming interface (130) which enables customized session managers (134) to “plug in" to and to interact

with the server. This programming interface makes it possible to

change session management functionality without having to make

any changes to the core server. It also makes it possible to incorporate multiple session managers into the server. These aspects of
the programming interface significantly increase the flexibility and scalability of the web server. In addition to the programming
interface, the mechanism further includes a service engine (120) for coordinating the interaction with the session managers. For each
client request, the service engine determines which application needs to be invoked. Then, based upon that application, the service
engine determines which, if any, associated session manager needs to be invoked to manager session (i.e. state) information for that
application. The service engine invokes the session manager via the programming interface. With the programming interface and the
service engine, the present invention provides a flexible and scalable mechanism for implementing session management functionality

in a network server.

WO 01/22264 PCT/US00/26152

MECHANISM FOR ENABLING CUSTOMIZED SESSION MANAGERS
TO INTERACT WITH A NETWORK SERVER

This application claims the benefit of U. S. Provisional Application entitled "Web
Server Architecture", No. 60/156,305, filed September 24, 1999, and U. S. Provisional
Application entitled "Web Server Architecture”, No. 60/155,711, filed September 24,
1999. The entire contents of these provisional applications are hereby incorporated by

reference.

BACKGROUND

This invention relates generally to computer systems, and more particularly to a
mechanism for enabling a customized session manager to interact with a network server.

On the Internet or World Wide Web, information is generally communicated on a
request-response basis. That is, a client (typically running a browser program) submits a
service request to a server. The service request may simply ask for a static page (usually
in HTML format), or it may request that a particular application or program be executed
to generate a return page. In response to the service request, the server performs whatever
tasks are necessary to service the request, and provides a return page to the client. This
request-response sequence, referred to as a "roundtrip", is carried out for each request.

Generally, the Internet is a stateless environment. That is, each service request is
treated as its own individual request, and there is no "memory" of prior requests. Put
another way, the server makes no association between a current request and a previous
request, even if the requests are from the same client, and even if the requests have some
common nexus. For simple applications in which every task that needs to be performed
can be carried out in a single roundtrip, this statelessness is not a problem. However, for
exchanges (such as transactions) that require multiple roundtrips, the lack of state presents
a significant impediment.

An example of an application in which it is necessary to maintain state across
multiple roundtrips is that of an "electronic shopping cart" application. More specifically,
a user visits a merchant's website using a particular client machine. As the user peruses
the website, he sees an item that he wishes to purchase, and puts that item into his
"shopping cart". As some point, the user invokes a link to another page of the website,

and at that point, a request is sent to the server which requests the desired page and which

WO 01/22264 PCT/US00/26152

also provides to the server all of the items currently in the shopping cart. The server
responds to the request by storing information pertaining to the shopping cart items, and
by providing the desired page to the client. Thereafter, the user peruses the new page and
puts additional items into the shopping cart. In a subsequent request by the client, the
additional items in the shopping are sent to the server. Since the subsequent request is
from the same client, the server should associate the additional items with the previous
items as being in the same shopping cart. To do this, though, the server needs to associate
the subsequent request with the previous request, which in turn requires that the server
maintain state information relating to the requests. However, as noted above, the Internet
is generally a stateless environment. As a result, without further functionality on the part
of the server, multiple roundtrip exchanges, such as those required by the electronic
shopping cart application, cannot be implemented on the Internet.

To enable exchanges which require multiple roundtrips, some servers implement a
session management functionality. Basically, this functionality maintains state
information across multiple roundtrips so that associations between multiple requests can
be made. Usually, state information is maintained by passing session ID information back
and forth between the client and the server. For example, when a service on the server
requiring state information is first invoked by a client request, a new session is created,
and a new session ID is associated with the new session. The session acts as a "container"
that can be used to store all of the necessary state information relating to that particular
session. Once the session is created (and possibly updated to include state information
relating to processing of the current request), the associated session ID is provided to the
client that requested the service. If that client makes a subsequent request to the same
service, the client includes in that request the session ID. Using the session ID, the server
accesses the associated session, and based upon the state information stored in the
associated session, the server can determine what has transpired thus far. In this manner,
the server is able to associate a current request with one or more previous requests.

Typically, the session management functionality of a server is an integral part of
the server. This means that in order to make any changes to the session management
functionality, it is necessary to change and to recompile the core server code. While this
simplifies the overall architecture of the server, it can lead to significant drawbacks, such
as inflexibility and non-scalability. Both of these limit the overall effectiveness of the

server. As aresult, there is a need for an improved session management architecture.

WO 01/22264 PCT/US00/26152

SUMMARY OF THE INVENTION

In light of the shortcomings of the prior art, the present invention provides an
improved session management mechanism which enables customized session managers to
interact with a network server. In accordance with the present invention, there is provided
a programming interface which enables customized session managers to "plug in" to and
to interact with the server. In one embodiment, the programming interface takes the form
of an abstract class definition, and each customized session manager is a subclass of the
abstract class. Each customized session manager can provide a customized method
implementation for each method defined by the abstract class.

This programming interface makes it possible to change session management
functionality without having to make any changes to the core server. More specifically, to
change session management functionality, all that needs to be done is to alter the code for
a particular session manager and to recompile that session manager. The server code does
not need to be altered or recompiled. This significantly increases the flexibility of the
server. In addition, the programming interface makes it possible to incorporate multiple
session managers into the server. Each session manager can be assigned to a certain set of
applications, and each session manager can manage sessions in its own customized
fashion. The ability to incorporate multiple session managers into the server significantly
increases the flexibility and scalability of the server.

In addition to the programming interface, the present invention further provides a
service engine for coordinating the interaction with the session managers. More
specifically, for each client request, the service engine determines which application needs
to be invoked. Then, based upon that application, the service engine determines which, if
any, associated session manager needs to be invoked to manager session (i.e. state)
information for that application. The service engine invokes the session manager via the
programming interface. With the programming interface and the service engine, the
present invention provides a flexible and scalable mechanism for implementing session

management functionality in a network server.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a functional block diagram of a system in which one embodiment of the

present invention may be implemented.

WO 01/22264 PCT/US00/26152

Fig. 2 is a diagrammatic representation of one embodiment of the session
management API of the present invention.

Fig. 3 is a diagrammatic representation of one embodiment of a session object
class which may be used in connection with the present invention.

Fig. 4 is an operational flow diagram of the server of Fig. 1.

Fig. 5 is a hardware block diagram of a computer system in which the present

invention may be implemented.

DETAILED DESCRIPTION OF THE EMBODIMENT(S)

With reference to Fig. 1, there is shown a functional block diagram of a system
100 in which one embodiment of the present invention may be implemented, the system
comprising a client 102, a network 104, and a server 106. For the sake of simplicity, only
one client 102 is shown; however, it should be noted that multiple clients 102 may
communicate with the server 106 via the network 104. For purposes of the present
invention, the client 102 may be any mechanism capable of communicating with the
server 104, including but not limited to a computer running a browser program. The
client 102 may communicate with the server using any known protocol, including but not
limited to HTTP and FTP. The network 104 may be any type of network, including but
not limited to a local area network and a wide area network such as the Internet. The
network 104 may even be as simple as a direct connection. Any mechanism capable of
facilitating communication between the client 102 and the server 106 may serve as the
network 104.

The server 106 is the component responsible for providing most of the
functionality of the system 100. More specifically, the server 106 receives requests from
the client 102 and responds to the requests by providing response pages. The response
pages may be derived by simply accessing static files, or by executing one or more
applications to dynamically generate the response pages. The term application is used
broadly herein to refer to any type of program or routine (e.g. Java servlets) that is capable
of performing one or more particular functions. What actions need to be carried out by
the server 106 to derive the response pages is typically specified in the requests. Each
request-response sequence is referred to as a roundtrip.

In one embodiment, the server 106 comprises a listener 110, a set of name

translation functions 112, and a set of service subsystems 114. The primary function of

WO 01/22264 PCT/US00/26152

the listener 110 is to receive a client request, parse the request into its various components
(e.g. method, headers, universal resource identifier (URI), parameters, etc.), and store the
various components into predefined structures. Once the request is parsed, it is ready for
processing by the other components of the server 106.

In particular, the name translation functions 112 determine, based upon the URI of
the request, which of the service subsystems 114 need to be invoked in response to the
request. In one embodiment, there is a name translation function associated with each of
the subsystems 120, 122, 124 in the service subsystems 114. These name translation
functions are executed in turn to determine which subsystem 120, 122, 124 needs to be
invoked to process the request. For example, the name translation function associated
with the HTML engine 122 is invoked to determine whether the HTML engine 122 needs
to be invoked to respond to the request. If not, then the name translation function
associated with the service engine 120 is invoked to determine whether the service engine
120 needs to be invoked to respond to the request. This process of executing the name
translation functions 112 continues until it is determined which of the service subsystems
114 needs to be invoked to process the request. Once the proper subsystem is determined,
processing of the request continues with that subsystem.

As shown in Fig. 1, one of the service subsystems is the service engine 120. In
one embodiment, the service engine 120 coordinates interaction between the applications
144 and the session managers 134 to manage session (i.e. state) information for exchanges
that span multiple client requests. In carrying out its coordination function, the service
engine 120 performs at least three major functions. First, it determines based upon the
URI of the client request which application class 142 needs to be invoked to process the
client request. Then, it invokes the proper application class 142 to give rise to an
application instance 144. Thereafter, based upon the application class 142, the service
engine 120 determines which session manager 134 to invoke to manager session
information for that application class instance 144, and then invokes that session manager
134. Once that is done, the application instance 144 and the session manager 134 interact
with each other to access and to update session information relating to a particular
session.

To enable the service engine 120 to determine which application class 142 to
invoke in response to a particular URI, each application class 142 is registered when it is

incorporated into the server 106. In one embodiment, this registration takes the form of

WO 01/22264 PCT/US00/26152

an entry in a configuration file. This entry comprises a reference to a particular
application class 142, and a URI associated with that class 142. Given this information,
the service engine 120 can determine, based upon the URI of the request, which
application class 142 to invoke to service the request. In addition to this information,
each entry may further comprise a context name and the name of the session manager 134
associated with that context. The context name allows multiple application classes 142 to
be grouped together for purposes of session management so that the same session
manager 134 can be invoked to manage session information for that group of application
classes 142.

To enable the service engine 120 to invoke the one or more session managers 134,
there is provided a session management application programming interface (API) 130. In
one embodiment, the API 130 takes the form of an abstract class definition which sets
forth a set of methods that need to be implemented by subclasses of that abstract class.
Since the API 130 is an abstract class, it does not provide any actual implementations for
the specified methods. It only specifies the methods themselves. It will be up to the
subclasses of the abstract class to provide the actual method implementations.

The session manager classes 132 "plug in" to and interact with the server 106 by
way of the API 130. More specifically, in one embodiment, the session manager classes
132 take the form of subclasses of the abstract class which is the API 130. Because each
session manager class 132 is a subclass of the abstract class, each session manager class
132 provides an implementation for each method of the abstract class. These method
implementations can be different for each session manager class 132. As a result, each
session manager class 132 can be customized.

To enable the service engine 120 to determine which session manager class 132 to
associate with which application class 142, each session manager class 132 is registered
when it is incorporated into the server 106. In one embodiment, this registration takes the
form of an entry in a configuration file. This entry comprises a reference to a particular
session manager class 132, and either an associated context or a reference to an
application class 142. Given this information, the service engine 120 can determine,
based upon the application class 142, which session manager class 132 (and hence, which
session manager 134) to invoke to manage session information for instances of that
application class 142. In one embodiment, each of the session manager classes 132 is

instantiated upon system startup to give rise to the session manager instances 134. Since

WO 01/22264 PCT/US00/26152

it is the instances 134 that are actually invoked by the service engine 120, this makes the
server 106 ready for session management operation from the very outset.

With reference to Fig. 2, there is shown one possible embodiment for the session
management API 130. As noted previous, the API 130 takes the form of an abstract class
definition. This definition specifies the methods that need to be implemented by the
session manager classes 132. These methods include: (1) Init; (2) CreateSession; (3)
DeleteSession; (4) GetSession; (5) PutValue; (6) GetValue; (7) Update; and (8) Reaper.

The Init method is called upon initialization of a session manager 134 and is called
only once. When invoked, the Init method prepares a session manager instance 134 for
normal operation. The CreateSession method is invoked when a new session needs to be
created. This typically occurs when a client invokes an application class 142 for the first
time. The DeleteSession method is invoked to render an existing session invalid. This
may occur at the end of a transaction or when a session "times out". The GetSession
method is invoked to access an existing session. This is used to continue an ongoing
session. The PutValue method is invoked to write information into an existing session.
This is usually invoked to write additional state information into an existing or new
session. The GetValue method is invoked to retrieve state information from an existing
session. This method makes it possible to ascertain what has transpired thus far in a
particular session. The Update method is invoked when current processing of a session is
completed. It gives the session manager 134 an opportunity to perform certain functions
(such as making the session information persistent in a database) if it wishes. The Reaper
method is invoked periodically by an external mechanism (such as a dedicated thread) to
cause the session manager 134 to delete old or invalid sessions. This method causes the
session manager 134 to perform "clean up" operations on outdated sessions.

In maintaining state information pertaining to sessions, the session managers 134
use session objects. A sample session object class definition 302 is shown in Fig. 3.
Unlike the API 130, class definition 302 is an actual class definition, not an abstract class
definition; thus, an implementation for each of the specified methods is provided with the
object class 302. Two methods defined by the session object class 302 are the PutValue
and the GetValue methods. The PutValue method is invoked to write additional
information into a session, while the GetValue method is invoked to retrieve information
from a session. In one embodiment, the implementations for these methods are

straightforward: they invoke the corresponding methods on the appropriate session

WO 01/22264 PCT/US00/26152

manager 134. That is, the PutValue method of the session object class 302 invokes the
PutValue method of the session manager class 132, and the GetValue method of the
session object class 302 invokes the GetValue method of the session manager class 132.
Thus, it is the session manager 134 associated with a particular session object instance
that actually writes and retrieves information pertaining to a session.

Another method of the session object class 302 is the GetAccessTime method.
When invoked, this method returns the time of the last access of a particular session
object. This method may be used by a session manager 134 to determine whether a
particular session has "timed out". Yet another method of the session object class 302 is
the IsValid method. This method is invoked to determine whether a session object is
valid and may still be used.

The structure of the server 106 has been disclosed. With reference to the flow
diagram of Fig. 4, the operation of the server 106 will now be described. Fig. 4 presents
an overview of the interaction between the service engine 120, the application classes
142, and the session managers 134. Basically, the service engine 120 receives (402) a
client request after the request has been parsed by the listener 110 and determined by the
name translation functions 112 to be eligible for processing by the service engine 120.
This client request may or may not include (as will be explained further below) a session
ID. The session ID may be provided as part of the URI, or in the form of a "cookie", or
both. Based upon the URI, the service engine 120 determines (404) which of the
application classes 142 to invoke to process the request. In one embodiment, this
determination is made by consulting the configuration file previously described.

Once the service engine 120 determines the proper application class 142, it
invokes (406) the application class 142 to give rise to an application instance 144. The
application instance 144 then starts executing to process the client request. If the
application instance 144 is of the type that processes exchanges involving multiple
roundtrips, and hence, requires session information to be maintained, then one of the first
acts of the application instance 144 is to request a session object from the service engine
120. If a session ID was included with the client request (thereby indicating that this
client request relates to an already existing session object), then the service engine 120
uses the provided session ID to get the requested session object. If no session ID was

included with the client request, then the service engine 120 generates a new session ID.

WO 01/22264 PCT/US00/26152

To get a session object for the application instance 144, the service engine 120
invokes one of the session managers 134. Before it does this, however, the service engine
120 first determines (408) which session manager 134 to invoke. In one embodiment, this
determination is made based upon the application class 142. More specifically, using the
configuration file described previously, the service engine 120 determines which session
manager 134 is associated with the class of the application instance 144. Once the proper
session manager 134 is determined, it is invoked (410) by the service engine 120. In one
embodiment, the service engine 120 invokes the proper session manager 134 by way of
the API 130.

In invoking a session manager 134, the service engine 120 calls one of two
methods defined by the API 130 and implemented by the session manager 134. If the
service engine 120 just generated a new session ID and, hence, needs a new session object
to be created, then the service engine 120 calls the CreateSession method of the proper
session manager 134. If the service engine 120 was provided a session ID with the client
request, then the service engine 120 calls the GetSession method of the proper session
manager 134 to get an already existing session object. With either call, the service engine
120 passes the session ID to the session manager 134.

In response to a CreateSession call, the proper session manager 134: (1)
instantiates a new session object; (2) associates the session ID with the new session
object; and (3) inserts into the new session object a pointer to itself (the proper session
manager 134). Once that is done, the session manager 134 provides a reference to the
new session object to the service engine 120. In response to a GetSession call, the session
manager 134: (1) determines which already existing session object is associated with the
session ID; (2) determines whether that session object is still valid; and (3) if the session
object is still valid, provides a reference to the session object to the service engine 120. In
response to either call, an object reference is returned to the service engine 120 (unless the
session object associated with the session ID is no longer valid).

Once the service engine 120 receives an object reference from the proper session
manager 134, it passes the object reference on to the application instance 144. Thereafter,
the application instance 144 interacts with the session object referenced by the object
reference to access and to update session information relating to that session object. To
add session information to the session object, the application instance 144 calls the

PutValue method of the session object. To access session information from the session

WO 01/22264 PCT/US00/26152

object, the application instance 144 calls the GetValue method of the session object. As
noted previously, the PutValue and GetValue methods of the session object call the
corresponding PutValue and GetValue methods of the proper session manager 134 (the
session object knows which session manager 134 to call because it contains a pointer to
the session manager 134 that created it, as discussed above). Thus, it is really the session
manager 134 that accesses and updates the session information relating to a session
object. Since each session manager 134 can provide a different implementation for the
PutValue and GetValue methods, each session manager 134 can maintain session
information differently. For example, one session manager 134 may write session
information to a persistent storage whereas another may just store the session information
in memory. These different implementations can be accommodated by the present
invention.

This interaction between the application instance 144, the session object, and the
session manager 134 may continue until the application instance 144 completes
processing of the client request. At that point, the application instance 144 generates and
provides a response page to the service engine 120. In turn, the service engine 120
provides (412) the response page, along with the session ID, to the client 102. The
session ID may be provided to the client 102 either in the form of a "cookie", as part of
the URI, or both. This session ID is used by the client 102 in future related requests. In
addition, the service engine 120 calls the update method of the proper session manager
134 to give the session manager 134 an opportunity to perform any final session
management functions. With that done, processing of the client request is complete.
Thereafter, the service engine 120 loops back to (402) to process another client request.

The process described above may be used to process different sets of related
requests, with each set of requests involving a different application class 142 and a
different session manager 134. For example, one set of requests may involve application
class 142(1) and session manager 134(1), while another set of requests may involve
application class 142(n) and session manager 134(n). These and other uses are within the
scope of the present invention.

At this point, it should be noted that the session management API 130 gives rise to
several significant advantages. First, note that to change or to augment session manager
functionality, all that needs to be done is to "plug in" and to register another session

manager class 132. It is not necessary to change any of the core code of the server. Once

10

WO 01/22264 PCT/US00/26152

registered, the new session manager class 132 can be invoked by the service engine 120.
This ability to easily change session management functionality greatly increases the
flexibility of the server 106. Also, note that the API 130 makes it possible to
accommodate multiple session manager classes 132. Each class 132 can provide
customized method implementations and functionality, and each class can be associated
with different application classes 142. This ability to accommodate multiple session
managers classes 132 significantly increases the flexibility and the scalability of the server

106. Hence, the present invention represents a significant improvement over the prior art.

Hardware Overview

In one embodiment, the present invention is implemented as a set of instructions
executable by one or more processors. The invention may be implemented as part of an
object oriented programming system, including but not limited to the Java™
programming system manufactured by Sun Microsystems, Inc. of Mountain View,
California. Fig. 5 shows a hardware block diagram of a computer system 500 in which an
embodiment of the invention may be implemented. Computer system 500 includes a bus
502 or other communication mechanism for communicating information, and a processor
504 coupled with bus 502 for processing information. Computer system 500 also
includes a main memory 506, such as a random access memory (RAM) or other dynamic
storage device, coupled to bus 502 for storing information and instructions to be executed
by processor 504. Main memory 506 may also be further used to store temporary
variables or other intermediate information during execution of instructions by processor
504. Computer system 500 further includes a read only memory (ROM) 508 or other
static storage device coupled to bus 502 for storing static information and instructions for
processor 504. A storage device 510, such as a magnetic disk or optical disk, is provided
and coupled to bus 502 for storing information and instructions.

Computer system 500 may be coupled via bus 502 to a display 512, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
514, including alphanumeric and other keys, is coupled to bus 502 for communicating
information and command selections to processor 504. Another type of user input device
is cursor control 516, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to processor 504 and for

controlling cursor movement on display 512. This input device typically has two degrees

11

WO 01/22264 PCT/US00/26152

of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the
device to specify positions in a plane.

According to one embodiment, the functionality of the present invention is
provided by computer system 500 in response to processor 504 executing one or more
sequences of one or more instructions contained in main memory 506. Such instructions
may be read into main memory 506 from another computer-readable medium, such as
storage device 510. Execution of the sequences of instructions contained in main
memory 506 causes processor 504 to perform the process steps described herein. In
alternative embodiments, hard-wired circuitry may be used in place of or in combination
with software instructions to implement the invention. Thus, embodiments of the
invention are not limited to any specific combination of hardware circuitry and software.

The term “‘computer-readable medium” as used herein refers to any medium that
participates in providing instructions to processor 504 for execution. Such a medium may
take many forms, including but not limited to, non-volatile media, volatile media, and
transmission media. Non-volatile media includes, for example, optical or magnetic disks,
such as storage device 510. Volatile media includes dynamic memory, such as main
memory 506. Transmission media includes coaxial cables, copper wire and fiber optics,
including the wires that comprise bus 502. Transmission media can also take the form of
acoustic or electromagnetic waves, such as those generated during radio-wave, infra-red,
and optical data communications.

Common forms of computer-readable media include, for example, a floppy disk, a
flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, any
other optical medium, punchcards, papertape, any other physical medium with patterns of
holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, any other memory chip or
cartridge, a carrier wave as described hereinafter, or any other medium from which a
computer can read.

Various forms of computer readable media may be involved in carrying one or
more sequences of one or more instructions to processor 504 for execution. For example,
the instructions may initially be carried on a magnetic disk of a remote computer. The
remote computer can load the instructions into its dynamic memory and send the
instructions over a telephone line using a modem. A modem local to computer system
500 can receive the data on the telephone line and use an infra-red transmitter to convert

the data to an infra-red signal. An infra-red detector can receive the data carried in the

12

WO 01/22264 PCT/US00/26152

infra-red signal and appropriate circuitry can place the data on bus 502. Bus 502 carries
the data to main memory 506, from which processor 504 retrieves and executes the
instructions. The instructions received by main memory 506 may optionally be stored on
storage device 510 either before or after execution by processor 504.

Computer system 500 also includes a communication interface 518 coupled to bus
502. Communication interface 518 provides a two-way data communication coupling to a
network link 520 that is connected to a local network 522. For example, communication
interface 518 may be an integrated services digital network (ISDN) card or a modem to
provide a data communication connection to a corresponding type of telephone line. As
another example, communication interface 518 may be a local area network (LAN) card to
provide a data communication connection to a compatible LAN. Wireless links may also be
implemented. In any such implementation, communication interface 518 sends and
receives electrical, electromagnetic or optical signals that carry digital data streams
representing various types of information.

Network link 520 typically provides data communication through one or more
networks to other data devices. For example, network link 520 may provide a connection
through local network 522 to a host computer 524 or to data equipment operated by an
Internet Service Provider (ISP) 526. ISP 526 in turn provides data communication services
through the world wide packet data communication network now commonly referred to as
the “Internet” 528. Local network 522 and Internet 528 both use electrical, electromagnetic
or optical signals that carry digital data streams. The signals through the various networks
and the signals on network link 520 and through communication interface 518, which carry
the digital data to and from computer system 500, are exemplary forms of carrier waves
transporting the information.

Computer system 500 can send messages and receive data, including program code,
through the network(s), network link 520 and communication interface 518. In the Internet
example, a server 530 might transmit a requested code for an application program through
Internet 528, ISP 526, local network 522 and communication interface 518. The received
code may be executed by processor 504 as it is received, and/or stored in storage device
510, or other non-volatile storage for later execution. In this manner, computer system
500 may obtain application code in the form of a carrier wave.

At this point, it should be noted that although the invention has been described

with reference to a specific embodiment, it should not be construed to be so limited.

13

WO 01/22264 PCT/US00/26152

Various modifications may be made by those of ordinary skill in the art with the benefit
of this disclosure without departing from the spirit of the invention. Thus, the invention
should not be limited by the specific embodiments used to illustrate it but only by the

scope of the appended claims.

14

WO 01/22264 PCT/US00/26152

What is claimed is:

1. A computer implemented method for servicing client requests, comprising:
receiving multiple associated client requests;
in response to each of said associated client requests:
invoking an application;
determining, based upon said application, a session manager to
associate with said application; and
invoking said session manager to manage state information for said

application across said multiple associated client requests.

2. The method of claim 1, wherein said session manager is invoked via a

programming interface.

3. The method of claim 2, wherein said programming interface comprises a
definition of an abstract class, and wherein said session manager is a subclass of said

abstract class.

4. The method of claim 3, wherein said session manager comprises an
implementation for each method defined for said abstract class, and wherein said session
manager is invoked by invoking a particular method implementation provided by said

session manager.

5. The method of claim 1, wherein said associated client requests are

associated with each other by way of a session ID.

6. The method of claim 1, wherein determining a session manager to
associate with said application comprises:
accessing a set of configuration information which specifies which session

manager to associate with said application.

7. A computer implemented method for servicing client requests, comprising:

receiving a first set of multiple associated client requests;

15

WO 01/22264 PCT/US00/26152

invoking a first application in response to said first set of associated client
requests;

invoking a first session manager to manage state information for said first
application across said first set of multiple associated client requests;

receiving a second set of multiple associated client requests;

invoking a second application in response to said second set of associated client
requests; and

invoking a second session manager to manage state information for said second

application across said second set of multiple associated client requests.

8. The method of claim 7, wherein said first and second session managers are

invoked via a programming interface.

9. The method of claim 8, wherein said programming interface comprises a
definition of an abstract class, and wherein each of said first and second session managers

is a subclass of said abstract class.

10. The method of claim 9, wherein each of said first and second session
managers comprises a customized implementation for each method defined for said
abstract class, and wherein each of said first and second session managers is invoked by
invoking a particular method implementation provided by said first and second session

managers.

11. An apparatus for servicing client requests, comprising:
a mechanism for receiving multiple associated client requests; and
a mechanism for responding to each of said associated client requests by:
invoking an application;
determining, based upon said application, a session manager to
associate with said application; and
invoking said session manager to manage state information for said

application across said multiple associated client requests.

16

WO 01/22264 PCT/US00/26152

12. The apparatus of claim 11, wherein said apparatus further comprises a
programming interface, and wherein said session manager is invoked via said

programming interface.

13. The apparatus of claim 12, wherein said programming interface comprises
a definition of an abstract class, and wherein said session manager is a subclass of said

abstract class.

14. The apparatus of claim 13, wherein said session manager comprises an
implementation for each method defined for said abstract class, and wherein said session
manager is invoked by invoking a particular method implementation provided by said

session manager.

15. The apparatus of claim 11, wherein said associated client requests are

associated with each other by way of a session ID.

16. The apparatus of claim 11, wherein determining a session manager to
associate with said application comprises:
accessing a set of configuration information which specifies which session

manager to associate with said application.

17. An apparatus for servicing client requests, comprising:

a mechanism for receiving a first set of multiple associated client requests;

a mechanism for invoking a first application in response to said first set of
associated client requests;

a mechanism for invoking a first session manager to manage state information for
said first application across said first set of multiple associated client requests;

a mechanism for receiving a second set of multiple associated client requests;

a mechanism for invoking a second application in response to said second set of
associated client requests; and

a mechanism for invoking a second session manager to manage state information

for said second application across said second set of multiple associated client requests.

17

WO 01/22264 PCT/US00/26152

18. The apparatus of claim 17, wherein said apparatus further comprises a
programming interface, and wherein said first and second session managers are invoked

via said programming interface.

19. The apparatus of claim 18, wherein said programming interface comprises
a definition of an abstract class, and wherein each of said first and second session

managers is a subclass of said abstract class.

20. The apparatus of claim 19, wherein each of said first and second session
managers comprises a customized implementation for each method defined for said
abstract class, and wherein each of said first and second session managers is invoked by
invoking a particular method implementation provided by said first and second session

managers.

21. A computer readable medium having stored thereon instructions which,
when executed by one or more processors, cause the one or more processors to service
client requests, said computer readable medium comprising:

instructions for causing one or more processors to receive multiple associated
client requests; and

instructions for causing one or more processors to respond to each of said
associated client requests by:

invoking an application;
determining, based upon said application, a session manager to

associate with said application; and

18

WO 01/22264 PCT/US00/26152

invoking said session manager to manage state information for said

application across said multiple associated client requests.

22. The computer readable medium of claim 21, wherein said session manager

is invoked via a programming interface.

23. The computer readable medium of claim 22, wherein said programming
interface comprises a definition of an abstract class, and wherein said session manager is a

subclass of said abstract class.

24. The computer readable medium of claim 23, wherein said session manager
comprises an implementation for each method defined for said abstract class, and wherein
said session manager is invoked by invoking a particular method implementation

provided by said session manager.

25. The computer readable medium of claim 21, wherein said associated client

requests are associated with each other by way of a session ID.

26. The computer readable medium of claim 21, wherein determining a
session manager to associate with said application comprises:
accessing a set of configuration information which specifies which session

manager to associate with said application.

27. A computer readable medium having stored thereon instructions which,
when executed by one or more processors, cause the one or more processors to service
client requests, said computer readable medium comprising:

instructions for causing one or more processors to receive a first set of multiple
associated client requests;

instructions for causing one or more processors to invoke a first application in
response to said first set of associated client requests;

instructions for causing one or more processors to invoke a first session manager
to manage state information for said first application across said first set of multiple

associated client requests;

19

WO 01/22264 PCT/US00/26152

instructions for causing one or more processors to receive a second set of multiple
associated client requests;

instructions for causing one or more processors to invoke a second application in
response to said second set of associated client requests; and

instructions for causing one or more processors to invoke a second session
manager to manage state information for said second application across said second set of

multiple associated client requests.

28. The computer readable medium of claim 27, wherein said first and second

session managers are invoked via a programming interface.

29. The computer readable medium of claim 28, wherein said programming
interface comprises a definition of an abstract class, and wherein each of said first and

second session managers is a subclass of said abstract class.

30. The computer readable medium of claim 29, wherein each of said first and
second session managers comprises a customized implementation for each method
defined for said abstract class, and wherein each of said first and second session managers
is invoked by invoking a particular method implementation provided by said first and

second session managers.

20

PCT/US00/26152

1/4

WO 01/22264

UYADOVNVIN | , o o |1 YIDOVNVIA
NOISSHS |y, ¢, NOISSAS (el
A A u I
TSSYID 1SSV D NOILVOITddV |\ Y~ | NOLLVOITddY [(D]
YIOVNVIN | . o o | JIOVNVIN A A
NOISSHS K)z NoIssdas [M(Deel i _
A A ussvi |, . . 1 SSVIO
v NOLLYOI'ddV |\ ‘-~ | NOLLYOITddV (vl
0€1 LINAWAOVNVYI NOISSHS SASSVID NOLLVOI1ddV
ANIONA « o o INIONA e o o INIONA
vzl 10 0Z1-] 901AN¥ES TALH [Ncal
pi1-] SINALSASENS IDIAYAS
A
SNOLLONNA
T} NOILVISNVYL JNVN
A
A
7
901
001 —

AIOMLIN

o / Vs

WO 01/22264 PCT/US00/26152
2/4

Session Manager Abstract Class 130
L~

o Init
o (reateSession
» DeleteSession

» GetSession

« PutValue
« GetValue
» Update
« Reaper
Fg. 2
Session Object Class 302
« PutValue
« GetValue
« GetAccessTime
- IsValid

Fig. S

WO 01/22264 PCT/US00/26152
3/4

Y

RECEIVE CLIENT |} 402
REQUEST

'

DETERMINE WHICH APPLICATION | 404
CLASS TO INVOKE

'

INVOKE APPLICATION | 406
CLASS

'

DETERMINE WHICH SESSION | - 408
MANAGER TO INVOKE

!

INVOKE SESSION | -410
MANAGER

!

PROVIDE RETURN |} 412
PAGE TO CLIENT

!

Fig. 4

PCT/US00/26152

4/4

WO 01/22264

783
LSOH
0¢S m m 9T
2\ | = - N 10d1N0D
SMOMLAN | Srrassar HOVIIdINI m HOSANO
V0T | NOILVOINNIAINOD OSSAD0Ud _
dsI m 08 m VIS
! " N
N A]
N @ Mw MW
| 4DIAEA AMOWNEN | || LN
dIAYES | | 4OVIOLS WO NIVIA ' L— Avidsia

INTERNATIONAL SEARCH REPORT

Intemnational application No.
PCT/US00/26152

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) :GO6F 17/00
US CL :707/10;380/25:348/15:709/206

According to Intemational Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed

US. : 707/10;380/25;348/15,709/206; 370/58.2

by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

session manager, server and client, plug-in, customized.

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US (5,790,790) A (SMITH et al) 04 AUGUST 1998, see entire 1-30

document
US (5,918,228) A (RICH et al) 29 JUN
document
US (5,793,415) A (GREGORY III et

entire document

entire document

US (5,809,145) A (SLIK et al) 15 SEPTEMBER 1998, see entire

US (5,691,973) A (RAMSTROM et al) 25 NOVEMBER 1997, see

E 1999, see entire document | 1-30

1-30
al) 11 AUGUST 1998, see| 1-30

1-30

Ij Further documents are listed in the continuation of Box C.

D See patent family annex.

* Special categories of cited documents:

A" document defining the general state of the art which is not considered
to be of particular relevance

"E" carlier document published on or after the international filing date

L document which may throw doubts on priority claim(s) or which 1s
cited to establish the publication date of another citation or other
special reason (as specified)

"o" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than

the priority date claimed

later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document 1s taken alone

document of particular relevance; the claimed mvention cannot be
considered to involve an inventive step when the document 18
combined with one or more other such d ts, such bi

being obvious to a person skilled in the art

& document member of the same patent family

Date of the actual completion of the intemational search

08 NOVEMBER 2000

Date of mailing of the intemational search report

1

g oo

PO

L

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

. |
Authonized officer (), %&V\O d»
ROBERT HARRELL

Telephone No. (703) 308-9000

Form PCT/ISA/210 (second sheet) (July 1998)%

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

