Office de la Propriete Canadian CA 2524421 A1 2006/05/30

Intellectuelle Intellectual Property
du Canada Office (21) 2 524 421
Un organisme An agency of 12 DEMANDE DE BREVET CANADIEN
d'Industrie Canada Industry Canada
CANADIAN PATENT APPLICATION
(13) A1
(22) Date de dépét/Filing Date: 2005/10/25 (51) CLInt./Int.Cl. GO6F 12/02(2006.01),
(41) Mise a la disp. pub./Open to Public Insp.: 2006/05/30 GO6F 17730(2006.01)
(30) Priorité/Priority: 2004/11/30 (US10/999,380) (71) Demandeur/Applicant:

MICROSOFT CORPORATION, US

(72) Inventeurs/Inventors:
ELLER, ALEXIS J., US;
CHRISTIANSEN, NEAL R., US;
THIND, RAVINDER S., US

(74) Agent: SMART & BIGGAR

54) Titre : METHODE ET SYSTEME POUR METTRE EN MEMOIRE CACHE LOCALE DES FICHIERS DISTANTS
54) Title: METHOD AND SYSTEM FOR CACHING REMOTE FILES LOCALLY

6805 620

CONTENT SERVER CACHING SERVICE
APPLICATION
610
FILTER
615 625

REMOTE FILE SYSTEM LOCAL FILE SYSTEM

(57) Abréegée/Abstract:

A method and system for caching remote objects locally. A request to access an object is recelved. A determination Is made as to
whether the object Is cached. If the object Is cached and the request is not to create a new object, modify an existing object, or
open a directory, the request Is directed to a local file system. Otherwise, the request is directed to a remote file system. Information
about which objects are requested may be used to copy objects stored remotely to a local server as specified by a caching policy.

SoaoRRE f /[
TR - e St
R S N « w_® .-y
I ALY ""
[N

I*I) . Pen, B N o
C an ad a http:/opic.ge.ca + Ottawa-Hull K1A 0C9 - atip.://eipo.ge.ca OPIC 48 & 7%% 110

- SRR RO S 2 A\-‘
OPIC - CIPO 191 s

10

CA 02524421 2005-10-25

ABSTRACT

A method and system for caching remote objects locally.

A request to access an object 1s received. A determination 1is

made as to whether the object is cached. If the object 1is
cached and the request 1s not to create a new object, modify
an exlsting object, or open a directory, the request 1s

directed to a local file system. Otherwise, the request 1is

directed to a remote file system. Information about which

objects are requested may be used to copy objects stored

remotely to a local server as speclfied by a caching policy.

o

10

15

20

CA 02524421 2005-10-25

METHOD AND SYSTEM FOR CACHING REMOTE FILES LOCALLY

FIELD OF THE INVENTION

The invention relates generally to computers, and more

particularly to file systems.

BACKGROUND

H

A set of content servers 1n a datacenter, e.g., a server

farm, may serve content to many clients at various locations.

F

Previously, the total set of content hosted by a given server

farm was relatively small and could be transmitted to and

stored on each of the content servers in the farm without

excessive costs. Now, however, the amount of content

available from a server farm 1s often in excess of several

hundred gigabytes. Buying large capacity hard drives for

pr——
p—

servers, provisioning them with all the content of a

datacenter, and keeping the content on them up-to-date so that
they can serve any content requested 1is expensive both 1n
storage and transmission costs. This i1is particularly true

when more than one datacenter 1s used to serve the content.

What is needed is a method and system of effectively
caching remote data locally such that the entirety of the

content set can be stored 1n separate dedicated storage while

10

15

2.0

CA 02524421 2005-10-25

P

a subset of the content i1is cached on the content server hard

disk. Ideally, such a method and system would be mostly or
completely transparent to any applications requesting the
data.

SUMMARY

Briefly, the present invention provides a method and
system for caching remote objects locally. A request to

access an object 1s received. A determination 1s made as to

whether the object is cached. If the object 1s cached and the

request is not to create a new object, modify an existing
object, or open a directory, the request 1s directed to a
local file system. Otherwlise, the request 1s directed to a
remote file system.

In one aspect of the invention, a filter monitors

requests and reports to a caching service names of objects

accessed on the local and remote file systems. The caching
service may apply a policy to this information to determine
which remote objects to cache locally and which locally cached

objects to purge.

i

In another aspect of the invention, the filter monitors

requests to local and remote file systems and the filter

10

15

20

CA 02524421 2005-10-25

*

itself may apply a policy to determine which remote objects to

cache locally and which locally cached objects to purge.

In another aspect of the invention, the filter receives a

notification that an object has changed remotely and deletes a

F

local cached copy of the object.

Other aspects will become apparent from the following
detailed description when taken in conjunction with the

drawings, 1in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a block diagram representlng a computer

system into which the present invention may be incorporated;

FIG. 2 is a block diagram representing an exemplary

arrangement of components of a system in which the present

invention may operate in accordance with various aspects of

the invention:;

FIG. 3 is a block diagram representing another exemplary

B

arrangement of components of a system 1n which the present

k)

invention may operate 1n accordance with various aspects ot
the invention;
FIG. 4 is a block diagram representing another exemplary

p F

arrangement of components of a system 1n which the present

10

15

20

CA 02524421 2005-10-25

invention may operate in accordance with various aspects of
the invention;

FIG. 5 is a block diagram representing an exemplary
environment in which the present invention may be practiced 1n

accordance with various aspects of the invention;

FIG. 6 1s a block diagram representing an exemplary

grie—

arrangement of components of a system in which the present

invention may be practiced in accordance with various aspects

of the invention;

FIG. 7 is a block diagram representling an exemplary
arrangement of components of a system 1n which the present

invention may be practiced in accordance with various aspects

of the i1nvention;

FIG. 8 is a flow diagram that generally represents

actions that may occur when determining whether to redirect an

I/0 operation to a local cache in accordance with various

fr—

aspects of the invention;

FIG. 9 is a flow diagram that generally represents

actions which correspond to block 835 of FIG. 8 that may occur

when determining whether to redirect an I/0 operation to a
local cache in accordance with various aspects of the

invention;

10

15

20

CA 02524421 2005-10-25

FIG. 10 1s a flow diagram that generally represents

actions that may occur when a remote object changes 1in

S

accordance with various aspects of the invention; and

FIG. 11 is a block diagram representing another exemplary
arrangement of components of a system 1n which the present

invention may be practiced 1n accordance with various aspects

of the i1nvention

DETAILED DESCRIPTION

EXEMPLARY OPERATING ENVIRONMENT

F

Figure 1 illustrates an example of a suitable computing

system environment 100 on which the 1nvention may be
implemented. The computing system environment 100 1s only one
example of a suitable computing environment and 1s not
intended to suggest any limitation as to the scope of use or

P

functionality of the invention. Neither should the computing

environment 100 be interpreted as having any dependency oOr

P

requirement relating to any one or comblnation of components

illustrated in the exemplary operating environment 100.
The i1nvention 1is operational with numerous other general
purpose or special purpose computing system environments or

g~

configurations. Examples of well known computing systems,

10

15

20

CA 02524421 2005-10-25

environments, and/or configurations that may be suitable for
use with the invention include, but are not limited to,
personal computers, server computers, hand-held or laptop
devices, multiprocessor systems, microcontroller-based

systems, set top boxes, programmable consumer electronics,

network PCs, minicomputers, mainframe computers, distributed
computing environments that include any of the above systems

or devices, and the like.

')

The invention may be described in the general context of
computer—-executable instructions, such as program modules,
being executed by a computer. Generally, program modules

include routines, programs, objects, components, data

b

structures, and so forth, which perform particular tasks or

implement particular abstract data types. The 1nvention may

also be practiced in distributed computing environments where

tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
computing environment, program modules may be located in both
local and remote computer storage media 1ncludling memory

storage devices.

With reference to Figure 1, an exemplary system for

implementing the invention includes a general-purpose

CA 02524421 2005-10-25

computing device in the form of a computer 110. Components of
the computer 110 may include, but are not limited to, a
processing unit 120, a system memory 130, and a system bus 121
that couples various system components including the system

5 memory to the processing unit 120. The system bus 121 may be

-

any of several types of bus structures 1ncluding a memory bus

=l

or memory controller, a peripheral bus, and a local bus using

any of a variety of bus architectures. By way of example, and

not limitation, such architectures 1nclude Industry Standard

10 Architecture (ISA) bus, Micro Channel Architecture (MCA) bus,

Enhanced ISA (EISA) bus, Video Electronics Standards

Assoclation (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus also known as Mezzanline bus.
Computer 110 typically includes a variety of computer-
15 readable media. Computer-readable media can be any available

media that can be accessed by the computer 110 and includes

both volatile and nonvolatile medla, and removable and non-

P

removable media. By way of example, and not limitation,

computer-readable media may comprise computer storage medla
20 and communication media. Computer storage media includes both

volatile and nonvolatile, removable and non-removable media

VN

implemented 1n any method or technology for storage o:

CA 02524421 2005-10-25

information such as computer-readable 1nstructions, data

structures, program modules, or other data. Computer storage

media includes, but is not limited to, RAM, ROM, EEPROM, flash
memory or other memory technology, CD-ROM, digital versatile
9 disks (DVD) or other optical disk storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to store the
desired information and which can accessed by the computer
110. Communication media typically embodies computer-readable
10 instructions, data structures, program modules, or other data

in a modulated data signal such as a carrier wave or other

transport mechanism and includes any information delilvery
media. The term “modulated data signal” means a signal that

has one or more of its characteristics set or changed 1n such

15 a manner as to encode information i1n the signal. By way of
example, and not limitation, communication media includes
wired media such as a wired network or direct-wired
connection, and wireless media such as acoustic, RF, infrared
and other wireless media. Comblnations of the any of the

20 above should also be included within the scope of computer-

readable media.

10

15

20

CA 02524421 2005-10-25

The system memory 130 includes computer storage medla 1n

the form of volatile and/or nonvolatile memory such as read

only memory (ROM) 131 and random access memory (RAM) 132.

basic input/output system 133 (BIOS), containing the basic

routines that help to transfer information between elements
within computer 110, such as during start-up, 1s typically
stored in ROM 131. RAM 132 typically contains data and/or
program modules that are immediately accessible to and/or
presently being operated on by processing unit 120. By way
example, and not limitation, Figure 1 illustrates operating
system 134, application programs 135, other program modules

136, and program data 137.

The computer 110 may also include other removable/non-

removable, volatile/nonvolatile computer storage media. By

way of example only, Figure 1 illustrates a hard disk drive

140 that reads from or writes to non-removable, nonvolatile

magnetic media, a magnetic disk drive 151 that reads from or

writes to a removable, nonvolatile magnetic disk 152, and an

optical disk drive 155 that reads from or writes to a
removable, nonvolatile optical disk 156 such as a CD ROM or

other optical media. Other removable/non-removable,

volatile/nonvolatile computer storage media that can be used

of

10

15

20

CA 02524421 2005-10-25

in the exemplary operating environment include, but are not

limited to, magnetic tape cassettes, flash memory cards,
digital versatile disks, digital video tape, solid state RAM,
solid state ROM, and the like. The hard disk drive 141 is

typically connected to the system bus 121 through a non-

removable memory i1nterface such as interface 140, and magnetic
disk drive 151 and optical disk drive 155 are typically

connected to the system bus 121 by a removable memory

1nterface, such as 1nterface 150.
The drives and their associated computer storage media,

discussed above and 1llustrated 1n Figure 1, provide storage

F

of computer-readable i1nstructions, data structures, program

modules, and other data for the computer 110. In Figure 1,
for example, hard disk drive 141 1s 1llustrated as storing

operating system 144, applilication programs 145, other program

modules 146, and program data 147. Note that these components

can elther be the same as or different from operating system
134, application programs 135, other program modules 136, and
program data 137. Operating system 144, application programs
145, other program modules 146, and program data 147 are given

different numbers herein to 1llustrate that, at a minimum,

they are different copies. A user may enter commands and

10

15

20

CA 02524421 2005-10-25

information into the computer 20 through 1nput devices such as
a keyboard 162 and pointing device 161, commonly referred to
as a mouse, trackball or touch pad. Other input devices (not
shown) may include a microphone, joystick, game pad, satellilte
dish, scanner, a touch-sensitive screen of a handheld PC or

other writing tablet, or the like. These and other input

devices are often connected to the processing unit 120 through

a user input interface 160 that 1is coupled to the system bus,

but may be connected by other interface and bus structures,

such as a parallel port, game port or a universal serial bus

(USB). A monitor 191 or other type of display device 1s also

connected to the system bus 121 via an interface, such as a

video interface 190. In addition to the monitor, computers
may also include other peripheral output devices such as

speakers 197 and printer 196, which may be connected through

an output peripheral i1nterface 190.
The computer 110 may operate 1n a networked environment
using logical connections to one or more remote computers,

such as a remote computer 180. The remote computer 180 may be
a personal computer, a server, a router, a network PC, a peer
device or other common network node, and typically includes

F

many or all of the elements described above relative to the

10

15

20

CA 02524421 2005-10-25

computer 110, although only a memory storage device 181 has

been 1llustrated 1n Figure 1. The logical connections
depicted 1n Figure 1 include a local area network (LAN) 171
and a wilde area network (WAN) 173, but may also include other
networks. Such networking environments are commonplace 1n

offices, enterprise-wide computer networks, intranets and the

Internet.

When used 1in a LAN networking environment, the computer
110 1s connected to the LAN 171 through a network 1nterface or
adapter 170. When used 1n a WAN networking environment, the

computer 110 typically i1ncludes a modem 172 or other means for

establishing communications over the WAN 173, such as the

Internet. The modem 172, which may be internal or external,

may be connected to the system bus 121 via the user input

interface 160 or other appropriate mechanism. In a networked

environment, program modules depicted relative to the computer

P

110, or portions thereof, may be stored 1n the remote memory

storage device. By way of example, and not limitation, Figure

1 1llustrates remote application programs 185 as residing on

memory device 181. It will be appreciated that the network

connections shown are exemplary and other means of

CA 02524421 2005-10-25

establishing a communications link between the computers may

be used.

LB

Exemplary Filters and Arrangements Thereof

5 With contemporary operating systems, such as Microsoft

Corporation’s Windows® XP operating system with an underlying

file system such as the Windows® NTFS (Windows® NT File

System), FAT, CDFS, SMB redirector filesystem, or WebDav file

systems, one or more file system filter drivers may be

10 inserted between the I/0 manager that receives user I/0

requests and the file system driver. In general, filter

drivers (sometimes referred to herein simply as “filters”) are

processes or components that enhance the underlying file

system by performing various file-related computing tasks that

15 users desire, including tasks such as passing file system I/0

(requests and data) through anti-virus software, file system

quota providers, file replicators, and encryption/compression

products.
For example, antivirus products provide a filter that
20 watches I/0 to and from certain file types (.exe, .doc, and

the like) looking for virus signatures, while file replication

)

products perform file system-level mirroring. Other types ot

CA 02524421 2005-10-25

file system filter drivers are directed to system restoration

(which backs up system files when changes are about to be made

so that the user can return to the original state), disk quota

enforcement, backup of open files, undeletion of deleted

5 files, encryption of files, and so forth. Thus, by installing

file system filter drivers, computer users can select the file

system features they want and need, 1n a manner that enables
upgrades, replacement, insertion, and removal of the

components without changing the actual operating system or

10 file system driver code.

FIG. 2 1is a block diagram representing an exemplary

F

arrangement of components of a system in whilich the present

invention may operate in accordance with various aspects of
the invention. The components 1nclude one or more
15 applications 205, an applications programming interface (API)

210, an input/output (I/0) manager 215, a filter manger 220, a

file system 225, and one or more filters 230-232.

The applications 205 may make file system requests (e.qg.,

via function/method calls) through the API 210 to the I/0

20 manager 215. The I/O manager 215 may determine what I/O

request or requests should be 1ssued to fulfill each request

and send each I/0 request to the filter manager 220. The I/0

10

15

20

CA 02524421 2005-10-25

manager 210 may also return data to the applications 205 as

operations associated with the file system requests proceed,

complete, or abort.

In one implementation, filters comprise objects or the
like that when instantiated register (e.g., during their

initialization procedure) with a registration mechanilism 1n the

filter manager 220. For efficiency, each filter typically

4

will only register for file system requests in which 1t may Dbe

interested in processing. To this end, as part of

—

registration, each filter notifies the filter manager 220 of

the types of I/0 requests in which 1t 1s interested (e.g.,

create, read, write, close, rename, and so forth). For

example, an encryption filter may register for read and write

I/0s, but not for others wherein data does not need to Dbe

encrypted or decrypted. Similarly, a quota filter may be

interested only in object creates and object writes.

In addition to specifying the types of I/0 requests 1in

which it is interested, a filter may further specify whether

the filter should be notified for pre-callbacks and post

callbacks for each of the types of I/0. A pre-callback 1is

called as data associated with an I/0 request propagates from

the I/0 manager 215 towards the file system 225, whille a post-

10

15

20

CA 02524421 2005-10-25

p—r

callback is called during the completion of the I/0 request as

data associated with the I/0 request propagates from the file

system 225 towards the I/0 manager 215.

From each I/0 request, the filter manager 220 may create

a data structure 1n a uniform format suiltable for use by the

filters 230-232. Hereinafter, this data structure 1is

sometimes referred to as callback data. The filter manager
220 may then call and pass the callback data to each filter

that has registered to receive callbacks for the type of I/0

received by the filter manager 220. Any filters registered to

receive callbacks for the type of I/0s received by the filter

manager 220 are sometimes referred to as registered filters.

Typically, the filter manager 220 passes callback data

assocliated with a particular type of I/0 request to each

reglstered filter sequentially 1n an order 1n which the

registered filters are ordered. For example, 1f the filters

230 and 232 are registered to receive callbacks for all read

I1/0 requests and are ordered such that the filter 230 is

pefore the filter 232 1n processing such requests, then after

receiving a read I/0, the filter manager 220 may first call

and pass the callback data to the filter 230 and after the

filter 230 has processed the callback data, the filter manager

10

15

20

CA 02524421 2005-10-25

pum

220 may then call and pass the callback data (as modified, 1if

N

b

at all) to the filter 232.

A filter may be attached to one or more volumes. That

e |

1s, a filter may be registered to be called and receive

callback data for I/0s related to only one or more than one

volumes.

A filter may generate its own I/0 request which may then

be passed to other filters. For example, an anti-virus filter

may wish to read a file before i1t 1s opened. A filter may

stop an I/0 request from propagating further and may instruct

the filter manager to report a status code (e.g., success oOr

failure) for the I/0 request. A filter may store data in

memory and persist (e.g., store) this data on disk. 1In

_

general, a filter may be created to perform any set of actions

that may be performed by a kernel-mode or user-mode process

and may be reactive (e.g., wait until it receives I/0 requests

before acting) and/or proactive (e.g., initiate its own I/O

requests or perform other actions asynchronously with I/O

requests handled by the I/0 manager 215).

In one embodiment, filters may be arranged in a stacked

manner as lllustrated in FIG. 3, which i1is a block diagram

representing another exemplary arrangement of components of a

10

15

20

CA 02524421 2005-10-25

system in which the present inventilion may operate 1n

accordance with various aspects of the invention. In this

embodiment, each of the filters 305-307 may process 1/0

requests and pass the

requests (modified or unmodified) to

another filter or other component in the stack. For example,

in response to a read request received from one of the

applications 205, the

and send this request

I/0 manager 215 may issue an I/0 request

to the filter 305. The filter 305 may

examine the I/0 request and determine that the filter 305 1s

not interested in the

I/0 request and then pass the I/0

request unchanged to the filter 306. The filter 3006 may

determine that the filter 306 will perform some action based

on the I/0 request and may then pass the I/0 request (changed

or unchanged) to the

—r

filter 307. The filter 307 may determine

that the filter 307 is not interested in the I/0 request and

pass the I/0 request to the file system 235.

After the file system 235 services the I/0 request, it

passes the results to the filter 307. Typically, the results

pass in an order reverse from that in which the I/0 request

proceeded (e.g., first to filter 307, then to filter 306, and

then to filter 305).

Fach of the filters 305-307 may examine

the results, determine whether the filter 1s interested 1in the

10

15

20

CA 02524421 2005-10-25

results, and may perform actions based thereon before passing

the results (changed or unchanged) on to another filter or

component.

In another embodiment of the i1nvention, filters may Dbe

arranged in a stacked/managed manner as 1llustrated 1n FIG. 4,

which 1s a block diagram representing another exemplary

arrangement of components of a system in which the present

invention may operate in accordance wilith various aspects of

g

the invention. In this configuration, some of filters are

associated with a filter manager while other filters are not.

The filter manager 220 is placed in a stack with other filters

(e.g., filters 305 and 307).

It will be readily recognized that filters may Dbe

implemented in many other configurations without departing

F

from the spirit or scope of the 1nvention. In some

—

embodiments, a filter comprises any object that examines I/0O

between an application and a file system and that 1s capable

of changing, completing, or aborting the I/0 or performing

other actions based thereon. Such filters may execute 1n user

mode or 1n kernel mode and may be part of other components.

10

15

20

CA 02524421 2005-10-25

Returning to FIG. 2, the file system 235 may 1nclude one
or more volumes that may be located locally or remotely to the

machine or machines upon which the applications 205 execute.

Caching Remote Content Locally

FIG. 5 1is a block diagram representing an exemplary
environment in which the present invention may be practiced 1n
accordance with various aspects of the i1nvention. The
environment includes a file server 505, content servers 511-
513, and clients 520-523 and may 1nclude other components (not

shown). The various entities may communicate with each other

via various networks including intra-networks and the Internet

5105.

The file server 505 may 1nclude a set of all objects

(e.g., directories, files, other content, and the 1like) that

may be available to clients from a datacenter. The content
servers 511-513 may access these objects when providing
content to a client. A content server may, for example, host

a Web server application that serves content to clients

through networks including the Internet 515. After accessing

an object from the file server 505, a content server may then

provide the object to a client. A content server may or may

o

10

15

20

CA 02524421 2005-10-25

not cache objects obtained from the file server 505. For

example, extremely large objects that are not frequently

accessed may not be cached while relatively smaller objects

that are accessed frequently may be cached. A content server
may cache an object in main memory (e.g., RAM) and/or in non-

volatile memory such as disk. Determining which objects to

cache on a content server may be performed by a caching

component (i.e., one of caching components 525-527) 1ncluded

on the content server.

In one implementation, content servers do not modify any

cached objects that they have cached from the file server 505.

Instead, when an application requests that a remote object be
modified or that a new object be created, the content server
sends the request to the file server 505. This helps keep the

most up-to-date copy of the content on the file server 505.

Fach of the caching components 525-527 may 1nclude

various subcomponents 1ncluding a filter and caching service

as described 1n more detail below.

FIG. ©6 1s a block diagram representling an exemplary

arrangement of components of a system 1n which the present
invention may be practiced 1n accordance with various aspects

of the invention. The system i1ncludes a content server

10

15

20

CA 02524421 2005-10-25

application 6005, a filter 610, a remote file system 615, a

caching service 620, and a local file system 625 and may also
include other components (not shown).
The content server application 605 may comprise various

components (not shown) that may independently access objects

from the remote and local file systems 615 and 625. In some

embodiments, no single component of the content server
application 605 1is aware of which objects all the components

have requested or where these objects reside (e.g., locally or

remotely). To monitor which remote objects are being

requested, the filter 610 may monitor I/0s to and from the

remote file system 615. Periodically, the filter 610 may send

a list to the caching service 620 that i1ncludes the names of

objects accessed from the remote file system 615.

The caching service 620 may then use the list sent by the

filter 610 to determine which objects from the remote file

system to cache on the local file system 625. This

determination may be made based on a policy set by an

administrator or the like which may include frequency of

access to the object, size of the object, or any other caching

rules.

10

15

20

CA 02524421 2005-10-25

In one embodiment, the caching service 620 executes 1n

user mode. In another embodiment, the caching service 620

executes 1n kernel mode. In vyvet another embodiment, the

- R

functionality of the caching service 620 1s performed by the
filter 610. In this embodiment, a caching service 620
separate from the filter 610 1s unnecessary.

A system administrator or the like may set a registry key

or other configuration data to inform the caching service 620
where to cache objects. For example, a system administrator

may indicate that objects to be cached from network share

\\SERVER\SHARE be placed in the directory C:\CACHE. When an

object in a subdirectory of \\SERVER\SHARE 1s cached, any
ancestor directories of the object may also be created 1in

C:\CACHE to keep a similar directory structure. For example,

if the caching service 620 determines that

\\SERVER\SHARE\DOCUMENTS\COMPANY .HTML should be cached, a

directory called DOCUMENTS may be created in C:\CACHE and the

object COMPANY.HTML may be placed 1n that directory.

In addition to monitoring which remote objects are

accessed, the filter 610 may also be used to redirect reqgquests

to remote objects to locally cached objects as described in

more detaill below.

10

15

20

CA 02524421 2005-10-25

FIG. 7 1s a block diagram representing an exemplary
arrangement of components of a system 1n which the present
invention may be practiced 1n accordance with various aspects

r—

of the invention. The system 1ncludes a content server

application 605, an I/0 manager 215, a filter 610, a

redirector 710, a remote file system 615, and a local file
system 625 and may also include other components (not shown).
When any component of the content server application 605

reguests access to an object that i1s on the remote file system

615, the component provides a name of the object (e.g., a UNC

name) to the I/0 manager 215. The I/0 manager 215 interacts

with one or more redirectors (e.qg., redirector 710) to

F

determine i1f any of the redirectors knows where the object

corresponding to the name resides. Alternatively, the I/0
manager 215 may i1nteract with a single component that then
interacts with each available redirector to determine 1f a
redirector knows where the object corresponding to the name
resides. When a redirector responds, the redirector 1s used
to establish a session with the remote server upon which the
object resides. To the content server application 605, the
procedure for accessing remote objects may be identical to the

procedure for accessing local objects. In some

10

15

20

CA 02524421 2005-10-25

implementations, the content server application 605 may not
know whether an object is located remotely or locally.

When the caching service 620 of FIG. 6 begins executing,
the caching service 620 may provide a mapping of remote fille
system names (e.g., network shares) to local cache directory

names. For example, this mapping may i1ndicate that

\\SERVER\SHARE maps to C:\CACHE and that other remote file

system names map to other local cache directories. The filter

610 stores this information to determine when to redirect

requests for objects located remotely to local cache

directories. The filter may store the information 1n a

mapplng table for example.

When the filter 610 receilives a request to open a remote
object, the filter 610 may determine whether the request

should be mapped to the local file system 625. To do this the

filter 610 may determine whether the object 1s cached on the
local file system 625. For example, 1f the filter 610

recelves a request to open an object named

\\SERVER\SHARE\A.TXT, the filter 610 may look in the mapping

table to see 1f there 1s a mapping for a prefix of this

object. In this case, the filter 610 may determine that

\\SERVER\SHARE maps to C:\CACHE. The filter 610 may then

10

15

20

CA 02524421 2005-10-25

r—
—

determine whether the object A.TXT exists in C:\CACHE. If so,

L*]

the filter 610 may instruct the I/0 manager 215 to redirect

the request to the local file system 625 as described 1n more

detail below.

FIG. 8 1is a flow diagram that generally represents
actions that may occur when determining whether to redirect an
I/0 operation to a local cache in accordance with wvarious
aspects of the invention. At block 805, the process begins.

At block 810, a create operation 1s recelived by the

filter. A create operation may create an object or open an
already-existing object. Other operations may be 1gnored by

the filter and passed on to the redirector.

In some implementations, an application may request that

it be notified when objects 1n a directory have changed. 1In

such implementations, when the remote server sends a

pr— »

notification that a change has occurred, the filter may take

other actions as described in more detail in conjunction with

FIG. 10.

At block 815, a determination 1s made as to whether the

create operation 1is attempting to open a remote object for

pri—
—

write access. If so, processing branches to block 830;

P

otherwise, processing branches to block 820. If the create

10

15

20

CA 02524421 2005-10-25

operation is attempting to modify a remote object (the yes

branch), the filter passes the operation to the redirector so
that the remote content is updated. This allows the original
content, not the content that 1s cached locally, to be
updated.

At block 820, a determination is made as to whether the

operation is an open of a directory. If so, processing
branches to block 830; otherwise, processing branches to block
825. When a content server application 1s requesting

directory information, it typically needs to be able to view

the name of all objects in a directory, not Jjust those objects

that are cached locally. By allowing opens of directories to
proceed to the remote server as normal, the filter allows the

requestor to obtain a directory listing that 1ncludes all

objects in the remote directory. While or after opening a
directory, a content server application may operate upon the
directory in other ways (e.g., by deleting the directory or
registering for change notifications). These other operations
are also sent to the remote server but may be sent without
interaction by the filter as in some embodiments the filter

redirects creates only.

10

15

20

CA 02524421 2005-10-25

At block 825, a determination 1s made as to whether the

create operation 1s requesting that a new object be created.

T

If so, processing branches to block 830; otherwise, processing

branches to block 835. If the create operation is attempting

to create a remote object (the yes branch), the filter passes

the operation to the redirector so that the remote content 1is
updated. Thils causes the object to be created on the remote

fi1le system rather than creating the object i1in a local cache.

It will be recognized that the determinations associated with

blocks 815-825 may be performed in any order without departing

from the spirit or scope of the present i1nvention. In one

embodiment, the determination associated with 825 1s performed

first, followed by the determination associated with block
815, and then the determination associated with block 820.

At block 835, the operation 1s mapped locally or to a

remote server as described in more detail in conjunction with

FIG. 9.

FIG. 9 1s a flow diagram that generally represents

F
pr—

actions which correspond to block 835 of FIG. 8 that may occur

when determining whether to redirect an I/0 operation to a
local cache 1n accordance with various aspects of the

invention. At block 905, the process begins.

CA 02524421 2005-10-25

At block 910, a determination 1s made as to whether the

object 1s mapped by the mappling table maintained by the

filter. If so, processing branches to block 915; otherwise,

processing branches to block 935. An object 1s mapped by the

F

5 mapplng table 1f the object 1s a descendant of any directory

of a network share included 1in the mapping table.

At block 915, a determination 1s made as to whether the
object is cached. 1If so, processing branches to block 920;
otherwise, processing branches to block 920. In one

10 implementation, a filter may determine that an object 1is

cached by obtaining the cache directory from the mapping table

and attempting to open the object. In another implementation,
what objects are cached 1s maintalned 1n memory and a
determination of whether an object 1s cached may be made

15 without attempting to open the object. It will be recognized

that there are many other ways to determine that an object 1s
cached that may be used without departing from the spirit or
scope of the present invention

At block 920, the I/O is reparsed to the new name. In

20 essence, the I/0 1s redirected to the cached object of the

local file system. In some i1mplementations, this may be

accomplished by returning a STATUS REPARSE to the I/0 manager

10

15

20

CA 02524421 2005-10-25

and providing the I/0 manager with the name of the locally

cached object.

At block 925, the I/0 is sent to the local file systemn.

The I/0 manager may store information identifying what object
the I/0 was directed to so that afterwards any other

operations related to the I/0 may be sent directly to the

"local file system without needing to be reparsed or handled by

the filter.

In 1mplementations in which there is not a reparse

mechanism, the filter may monitor for subsequent I/0s related

to a recently mapped I/0 and may direct these I/0s to the

local fi1le system.
At block 930, the caching service 1s notified of the
accessed object. As indicated previously, lists of accessed

objects may be sent to the caching service periodically

instead of sending a notification each time an object is

P

accessed. Sending notification of accesses to local cached

objects to the caching service may be done, for example, sO

that the caching service may determine when to remove cached

objects from the local file system.

10

15

20

CA 02524421 2005-10-25

At block 935, the I/0 is sent to the remote file system.

This may be done through a redirector component as described

previously.

At block 940, the caching service 1s notified that an

object was accessed remotely. Agaln, as 1ndicated previously,

lists of accessed objects may be sent to the caching service

periodically instead of sending a notification each time an

object 1s accessed. Sending notification of accesses to

remote objects to the caching service may be done, for

example, so that the caching service may determine when to

obtain remote objects and cache them on the local file system.

At block 945, the process returns.
FIG. 10 1s a flow diagram that generally represents
actions that may occur when a remote object changes 1n

accordance with wvarious aspects of the i1nvention. At block

1005, the process begins.

At block 1010, notification that an object contained on a
remote server has changed 1s received by the filter. At block

1015, the object 1s deleted locally, 1f 1t exists. This helps

to ensure that stale content 1s purged from the local cache.

Furthermore, when the remote object 1s requested again, 1t

10

15

20

CA 02524421 2005-10-25

will not be found in cache, so the filter will allow the

request to be sent to the remote file system.

At block 1020, the notification 1s forwarded to the

content server which may then attempt to obtain the most

recent copy of the object from the remote server to cache 1t.

At block 1025, the process returns.

arrangement of components of a system 1n which the present

invention may be practiced in accordance wlith various aspects

of the invention. The system 1ncludes a content server

application 605, an I/0 manager 215, a filter 1105, a

redirector 710, a remote file system 615, and a local file
system 625 and may also include other components (not shown).

In some operating systems, the operating system may

provide reparse points for directories of a file system. A

reparse point is a collection of data associated with a

directory of a file system. The data of a reparse point may

indicate a directory in which cached objects associated with

the directory exist and a remote directory from which the
objects may be obtained. When an operation 1s recelved to

access a directory assoclated with a reparse point or any of

+]

its descendants, a STATUS REPARSE is returned to the I/O

FIG. 11 is a block diagram representing another exemplary

10

15

20

CA 02524421 2005-10-25

manager 215 together with the data associated with the reparse

point. Reparse points may be persisted by the file system so

that they exist even after a dismount and remount of the file

system.

When the local file system 710 responds wlth a

STATUS REPARSE, the filter 1105 may use the data associated

with the reparse point to determine whether the object 1is

cached locally. If the object is cached locally, the filter

instructs the I/0 manager 215 to redirect the I/0 operation to

the locally cached object. If the object is not cached

locally, the filter may instruct the I/O manager 215 to obtain

the object remotely via the redirector olo.
The conditions for automatically passing certain I/O

operation (e.g., that modify an object, open a directory, and

create an object) to the remote file system as described 1n

conjunction with FIG. 8 still apply with the filter 1105 of

FIG. 11. 1In addition, the reporting actions associated with

blocks 930 and 940 of FIG. 9 may also be performed by the

filter 1105 of FIG. 11.

In connection with using reparse polnts, one or more

shadow directories may be created on the local file system.

Reparse points may be associated with each directory to

10

15

20

CA 02524421 2005-10-25

indicate a local cache directory and a remote directory on

which objects may be found. In addition, the content server
application 605 may be instructed to obtain objects via the
one or more shadow directories using network names (instead of
volume names). This may be done to avoid misbehavior that may
result 1f the content server application 605 determines that
the objects are located locally. Security delegation may also

pe enabled to allow credentials to be passed to remote

machines.

As can be seen from the foregoing detailed description,

there 1s provided a method and system for caching remote data
locally. While the 1nvention 1s susceptible to various

modifications and alternative constructions, certain

1llustrated embodiments thereof are shown in the drawings and

have been described above 1n detail. It should be understood,

however, that there 1s no intenticon to limit the invention to

the specific forms disclosed, but on the contrary, the

intention 1s to cover all modifications, alternative

constructions, and equivalents falling within the spirit and

scope of the i1nvention.

10

15

20

CA 02524421 2005-10-25

WHAT 1S5 CLAIMED IS:

1. A computer-readable medium having computer-
executable 1nstructions, comprilising:

recelving a request to access an object that 1s stored on

a remote server;

examlning the request by a filter to determine whether to

forward the request to the remote server or to redirect the

request to a local file system, wherein the filter has an

opportunity to monitor requests to the remote server; and

F

1f the object 1s cached, redirecting the request to the

local file system.

2 . The computer-readable medium of claim 1, further
comprising 1f the request to access the object comprises a
request to create the object, forwarding the request to the

remote server.

gt

3. The computer-readable medium of claim 1, further

comprising 1f the request to access the object comprises a

request to modify the object, forwarding the request to the

remote server.

10

15

20

CA 02524421 2005-10-25

4 . The computer-readable medium of claim 1, further
comprising 1f the object comprises a directory, forwarding
request to the remote server.

. The computer-readable medium of claim 1, further

comprising noti:

‘ving a caching service that the object was

requested and was not contained on the local fille system.

0. The computer-readable medium of claim 5,

-

further

comprising obtaining the object from the remote server and

storing 1t on the local

7. The computer-readable medium of claim 1,

file system.

F

further

comprising notifying a caching service that the object was

requested and was contained on the local file system.

3 . The computer-readable medium of claim 7/, further

the

comprising keeping the object 1n the local file system based

on a

9. The computer-readable medium of claim 1,

filter executes 1n kernel-mode.

frequency with which the object 1s requested.

wherein the

10

15

CA 02524421 2005-10-25

10. The computer-readable medium of claim 1, further

comprising opening and closing the object and dilirecting
input/output operations that affect the object between opening

F

and closing the object without examination of the input/output

operations by the filter.

11. The computer-readable medium of claim 1, further

comprising receiving a notifilication that the object has

P

changed and deleting a cached copy of the object on the local

file system.

12. The computer-readable medium of claim 11, whereiln

the filter receives the notification and deletes the cached

copy of the object.

10

15

20

CA 02524421 2005-10-25

13. In a computing environment, a method, comprising:
receiving a request to access an object that 1s

assoclated with a reparse point, wherein the reparse poilnt

P

includes names of a local directory and a remote directory;

determining whether the object 1s cached in the local

directory;

if the object i1s cached in the local directory, providing

access to the object via the local directory.

14. The method of claim 13, wherein the local directory

is stored in a local file system and wherein the remote

directory 1s stored on a remote file system.

15. The method of claim 14, wherein the reparse polnt 1s

persisted on the local file system.

16. The method of claim 14, wherein the local file

system returns the reparse point when an attempt to access the

object i1s received by the local file system.

17. The method of claim 16, wherein determining whether

the object is cached in the local directory comprises

examining, by a filter,

system returns.

CA 02524421 2005-10-25

the reparse point that the local file

18. The method of claim 17, wherein determining whether

5 the object is cached i1n the local directory further comprises

the filter obtaining the local directory from the reparse

polnt and attempting to open the object 1n the local

directory.

10 19. The method of claim 18,

redirecting the request to the

local directory 1i:

further comprising

P

- attempting

to open the object in the local directory succeeds.

P

20. The method of claim 18, further comprising

15 redirecting the request to the remote

file system 1f

attempting to open the object in the local directory fails.

21. The method of claim 17,

opportunity of

examlnling any reqgquest

wherein the filter has an

from user-mode processes

20 to access an object on the local file system.

10

15

20

CA 02524421 2005-10-25

F

22. The method of claim 13, further comprising 1f the

object 1s not cached in the local directory, obtaining the

object from the remote directory and caching 1t in the local

directory.

23. The method of claim 13, further comprising 1f the
request to access an object 1is a request to create the object,

redirecting the request to the remote directory.

24. The method of claim 13, further comprising 1f the

request to access an object 1s a request to change the object,

redirecting the request to the remote directory.

25. The method of claim 13, further comprising 1f the
object 1s a directory, redirecting the request to the remote

directory.

26. The method of claim 13, wherein the object has a

name that identifies the object to a file system, wherein the

reparse polnt 1s assoclated with a directory that has a name

that i1dentifies the directory to the file system, and wherein

CA 02524421 2005-10-25

the object 1s assoclated with a reparse point if a prefix of

F

the name of the object includes the name of the directory.

10

15

20

CA 02524421 2005-10-25

27. An apparatus for caching, comprising:

a local file system arranged to store objects;

a component arranged to determine which objects to store

on the local file system;

and

a filter arranged to monitor input and output and to

F

report to the component names of objects for which access 1is

sought.

28. The apparatus of claim 27, wherein the objects

comprise directories and files.

n

I

29. The apparatus o:
opportunity to examine any

file system.

)

30. The apparatus o:

opportunity to examilne any

file system.

)

31. The apparatus ot

arranged to register to be

claim 27, wherein the filter has an

communication to or from the local

claim 27, wherein the filter has an

communication to or from a remote

claim 30, wherein the filter is

notified of any communication to or

from the remote file system that involves a create operation.

10

15

20

CA 02524421 2005-10-25

32. The apparatus of claim 31, wherein the create
operation comprises an operation to open an already-existing

object.

33. The apparatus of claim 31, wherein the create

operation comprises an operation to create a new object.

34. The apparatus of claim 27, wherein the filter 1is

arranged to perform actions, comprising:

receiving a request to access an object that 1s stored on

a remote server; and
determining whether to forward the request to the remote

server or to redirect the request to the local file system.

35. The apparatus of claim 34, wherein the filter 1is

further arranged to forward the request to the remote server
if the request comprises a request to create a new object,

change an existing object, or open a directory.

CA 02524421 2005-10-25

36. The apparatus of claim 34, wherein the filter is

further arranged to forward the request to the local file

P

system 1f the object 1s cached on the local file system.

37. The apparatus of claim 27, wherein the component

applies a policy to the objects reported by the filter to

determine which objects to store on the local file system.

Smart & Biggar
Ottawa, Canada
Patent Agents

1/11

CA 02524421 2005-10-25

SNVYO0Nd 2SN

NOILVYDITddY 191
3LOWIY .

[OIA

14’
SWY¥90dd

NOILVOI'lddVY

S3ITNAON
NVYO0Nd
¥IHLO

SESEEEEEEEEEES e vl

Pl Waisas
ONILYNIHO

Sd31NdWOD
310N3H

0

30VdddLN|

30V43dL1N|

dOVdJdd1N| 7¢1 viv(Q

AMOWIN
et Jovasa N 1NdN]| “10A- AYOWIN "TOA-NON WYIO0¥d
MUOMLIN TOA-NON
MHOMLIN d3SMN 3719VAONIY 319VAOWIH-NON
vIAY 1vO0T]

9¢L S3ITNAOW

|

|

|

|

|

|

| |
| |
| NVYO0¥d ¥3HLO _
E “ SNg WILSAS =sT SWV¥90dd |
_ |
_ |
_ |
|

|

|

|

|

|

|

¢l
NOILVOI'lddY/

961 L6l

LCL
sep WALSAS
ONILYY3dO

SETL 3OV4NILN]|

| 1nd1nQO O.MA 1N 1 | mememee == =

N | o8l LINQ} ONISS300¥d [ge |
IR 06l 021

HOLINON

| ott 0 L | e =—==—

AHOW3I WILSAS
er - e e === —

FIG. 2

205

215

220

225

CA 02524421 2005-10-25

2/11

APPLICATIONS

210 N

/O MANAGER

FILTER MANAGER

FILE SYSTEM

USER MODE

KERNEL MODE

230

FILTER A

231

FILTER B

232

FILTER C

CA 02524421 2005-10-25

3/11

APPLICATIONS 205

210

/O MANAGER 215

FILTER F 307

USER MODE

KERNEL MODE

CA 02524421 2005-10-25

4/11

APPLICATIONS 205

210

/O MANAGER 215

USER MODE

KERNEL MODE

230
-
231

220 FILTER MANAGER FILTER B

232

FILTER C

CA 02524421 2005-10-25

INJID

£CS

IN3IND

1
1

’

¢CS

IN3ITD

1 CS

IN3ND

025

GLG

— 2 LU Z LW -

Y¥3AY3S INILNOD

LG

d3aAGdS LINJINOD

CcLG

GCS

dINH3S INJINOD

L LG

H¥IAY3IS 3114

*10}°;

G Ol

CA 02524421 2005-10-25

6/11
FIG. 6
505 620
APPLICATION
610
-
615 625

REMOTE FILE SYSTEM L OCAL FILE SYSTEM

CA 02524421 2005-10-25

7111

FIG. 7

605
CONTENT SERVER
APPLICATION
215
/O MANAGER

FILTER

625

615

\ |
~
—
-

REMOTE FILE SYSTEM

CA 02524421 2005-10-25

8/11

RECEIVE CREATE

OPERATION 810

815

CREATE WITH Y

WRITE ACCESS?

IS OPEN OF
DIRECTORY?

830
SEND REQUEST TO
REMOTE SERVER
N

835

DIRECT OPERATION TO LOCAL OR
REMOTE SERVER APPROPRIATELY
(FIG. 9)

845

RETURN

CA 02524421 2005-10-25

9/11

FIG. 9 005

910

|S
OBJECT MAPPED
BY MAPPING
TABLE?

SEND [/O TO
REMOTE FILE
SYSTEM

|S OBJECT

CACHED? 935

REPARSE I/O TO
NEW NAME 920

SEND /0O TO LOCAL

FILE SYSTEM 9295

REPORT TO CACHING
SERVICE MISSED
FILE

REPORT TO CACHING
SERVICE ACCESSED
OBJECT

930 940

945

RETURN

FIG. 10

CA 02524421 2005-10-25

10/11

RECEIVE NOTIFICATION

FROM REMOTE SERVER 1010
OF CHANGE OF OBJECT

DELETE OBJECT IN LOCAL

CACHE 1015
FORWARD NOTIFICATION
TO CONTENT SERVER 1020

CA 02524421 2005-10-25

11/11

605
CONTENT SERVER
APPLICATION
215
/O MANAGER

1105 615
/'710 6825

LOCAL FILE SYSTEM REMOTE FILE SYSTEM

6805 620

CONTENT SERVER CACHING SERVICE
APPLICATION

610

615 625

REMOTE FILE SYSTEM L OCAL FILE SYSTEM

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - claims
	Page 38 - claims
	Page 39 - claims
	Page 40 - claims
	Page 41 - claims
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - abstract drawing

