Office de la Propriete Canadian CA 2501718 A1 2005/04/24

Intellectuell Intellectual P
du Canada_ Office T ey 2 501 718
g,rngags?:i‘:g:na " ﬁgﬁg‘?y‘éyaﬁ; " 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2004/07/21 (51) Cl.Int.’/Int.Cl." GOBF 17/00

(87) Date publication PCT/PCT Publication Date: 2005/04/24 | (71) Demandeur/Applicant:
(85) Entree phase nationale/National Entry: 2005/04/13 MICROSOFT CORPORATION, US

o ST . (72) Inventeurs/Inventors:
(86) N° demande PCT/PCT Application No.: US 2004/023547 MILLIGAN ANDREW D. US:

(87) N° publication PCT/PCT Publication No.: 2005/045563 REEVES, CHARLES R. US:

(30) Priorité/Priority: 2003/10/24 (10/693 653) US PARHAM, JEFFREY B., US;
KAKIVAYA GOPAL KRISHNAR., US:

BUERK, LAWRENCE A., US;
MILLS, ANGELA, US;
HASHA, RICHARD L., US

(74) Agent: SMART & BIGGAR

(54) Titre : DECOUVERTE DE SERVICES ET PUBLICATION
(54) Title: SERVICE DISCOVERY AND PUBLICATION

(57) Abrégée/Abstract:

A system and methods for service discovery and publication are disclosed. Application programs write reguests for service
discovery, publication, and subscription to a service discovery application programming interface. The service discovery application
programming interface invokes one or more lower-level protocols to satisfy the discovery, publication and/or subscription request.
Service Information retrieved from lower-layer protocols Is formatted into a consistent data model and returned to the client
application. In addition, service information may be stored In a persistent data store managed by a discovery persistence service
communicatively connected to the service discovery API.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

10

CA 02501718 2005-04-18

335

ABSTRACT

A system and methods for service discovery and publication are disclosed.
Application programs write requests for service discovery, publication, and
subscription to a service diécovery application programming interface. The service
discovery application programming interface invokes one or more lower-level
protocols to satisfy the ‘discovery, publication and/or subscription request. Service
information retrieved from lower-layer protocols is formatted into a consistent data
model and returned to the client application. In addition, service information may
be stored in a persistent data store managed by a discovery persistence service

communicatively connected to the service discovery API.

4

3

10

13

20

CA 02501718 2005-04-18

SERVICE DISCOVERY AND PUBLICATION

TECHNICAL FIELD
[0001] The described subject matter relates to digital computing, and more

particularly to service discovery in computing devices and computing networks.

BACKGROUND OF THE INVENTION
[0002] Application programs that execute on computing devices and

computer networks may require the use of services provided by other physical or
logical devices connected to the computing device or network. Presently,
application programs use a wide range of application programming interfaces
(APIs), protocols, and object models to discover, enumerate, and describe services
and ‘devices on a local computing device or across a plurality of devices in a
computer network. The mechanisms available to discover, enumerate, and describe
services and devices differ significantly, even when the services and devices
involved are conceptually similar.

[0003] For example, consider a situation in which an application seeks to
enumerate available printers. When executing within an administered, corporate
environment, the application may need to use Lightweight Directory Access
Protocol (LDAP) to communicate with a Microsoft Active Directory® directory
service store to discover registered corporate printers, NetBT to discover print

queue servers, and Bluetooth to discover personal area network printers. In

addition, the application might have to invoke device management APIs to discover

¥ “.‘*“‘MQQMQ«QA-‘ e e P AP A A2 - - w4

WS WA M -

10

15

20

CA 02501718 2005-04-18

2
direct attached printers, and UPnP™ APIs to discover UPnP printers. Each of these

mechanisms requires understanding of a particular API, protocol, and query
semantic.

[0004] The number of APIs and protocols required to for an application to
discover, enumerate, and descrnibe services complicates the task of software

development.

SUMMARY OF THE INVENTION
[0005] Implementations described and claimed herein address these and

other problems by providing a uniform interface that simplifies discovery and
publication tasks. The uniform interface permuts underlying protocols to be

leveraged and eliminates the need for application developers to understand low-

- level protocols. The uniform interface provides a consistent, high-level abstraction

of services and associated Operaﬁdns that targets the discovery and publication of
service details over a wide range of lower-level APIs, protocols, stores, and network
environments.

[0006] In one exemplary implementation, a method for discovering services
available in a computing environment 1s provided. The method comprises: in an
application program, defining a discovery scope; defining a discovery filter; and
initiating a search request to a first application programming interface; and in the
first application programming interface: parsing the search request; retrieving
service information corresponding to the requested discovery scope and discovery

filter; and returning the service information to the application program.

\\\\\

10

135

20

CA 02501718 2005-04-18

3
[0007] In another exemplary implementation, a method for publishing

services available in a computing environment i1s provided. The method comprises,
in an application program: defining a service entry object; defining a publication
scope; assigning a unique key to the service; assigning a service type; defining
properties for the service; and defining endpoints for the service; and initiating a
publication request to a first application programming interface; and in the first
application programming interface: parsing the search request; and executing at
least one low-level API call to publish the service.

[0008] In another exemplary implementation, a method for deleting a
published service in a computing environment is provided. The method comprises,
in an application program: defining a service entry object; specifying a key
corresponding to the published service; defining a deletion scope; and initiating a
dél‘e‘t‘:i.(;ﬁ\ ‘rc;,q.ues‘tu to a .f;rrst aﬁﬁlicﬁtion programming interface; and in the first
application programming interface: parsing the search request; and executing at
least one low-level API call to delete the service.

[0009] In another exemplary implementation, a method of subscribing to
service events in a computing environment is provided. The method comprises, In
an application program: defining a scope; defining a filter; defining a callback
function; and initiating a subscription request to a first application programming
interface; and in the first application programming interface: parsing the search
request; and executing at least one low-level API call to subscribe to service events;

and returning information from service events to the application program.

10

15

20

CA 02501718 2005-04-18

4
[0010] In another exemplary implementation, a system for managing

information about services available in a computing environment is provided. The
system comprises a first application programming interface configured to accept
service queries from an application, wherein the first application programming
interface receives service queries in a first service query protocol, processes the
service queries, and launches at least one corresponding service query to a second
protocol; a discovery persistence service communicatively connected to the first
application programming interface, wherein the discovery persistence service
receives service information from the first application programming interface and

stores the service information in a data store.

BRIEF DESCRIPTION OF THE DRAWINGS

-~ [0011] - Fig. 1 is'a schematic illustration of an exemplary computing device;

[0012] Fig. 2 is a block diagram illustrating an exemplary software
architecture;

[0013] Fig. 3 is a flowchart illustrating operations for service discovery,

[0014] Fig. 4 is a flowchart illustrating operations for service publication;

[0615] Fig. 5 is a flowchart illustrating operations for service deletion;

[0016] Fig. 6 is a flowchart illustrating operations for subscribing to service
events,

[0017] Fig. 7 is a block diagram illustrating the relationship between

concrete scopes and abstract scopes

“.-wmwwmhn-urmhpq.wbunn cemmrr e e cene midy BIRIERTL W W e bt W, et - e
G | AT 4 d 13 st WP B Pl o Sl e el "W“‘M’WW

10

15

20

CA 02501718 2005-04-18

5
[0018] Fig. 8 is pseudo-code illustrating how to use the C# programming

language to locate color printers that print 50 pages per minute using a SimpleFilter
object on the Active Directory protocol;

[0019] Fig. 9 is pseudo-code illustrating how to use the C# programming
language to locate Web services;

[0020] Fig. 10 is pseudo-code illustrating the use of the C# programming
language to find services supporting a specific tModel interface using a
SimpleFilter object and the UDDI protocol;

[0021] Fig. 11 is pseudo-code illustrating the use of Visual Basic.NET to find
services supporting a specific tModel interface using a SimpleFilter object and the
UDDI protocol,

[0022] Fig. 12 is pseudo-code illustrating the use of the C# programming
language to locate a printer with a name like Office Printer using the RichFilter
with Active Directory;

[0023] Fig. 13 is pseudo-code illustrating the use of Visual Basic.NET to
locate a printer with a name like Office Printer using the RichFilter with Active
Directory;

(0024] Fig. 14 is pseudo-code illustrating the use of the C# programming

language to publish a service of a specific type, identified by a specific unique

identifier, using the SSDP protocol;

- ‘une [FISSEEES s . - - Wlu”mﬂhimm—“‘ﬂw Mbiay Al d e T TR e L S e e e =Ty 4 EREPUSIS W o “idnna 4
PR T I e T I RIPEE " v~ . At - VA rir y oL Uit i e WA PN+ i, oL iyl

o e cew v rme s e e AN TV, YA AL roe d dd e { AL o WAL AR ¢

10

CA 02501718 2005-04-18

6
[0025] Fig. 15 is pseudo-code illustrating the use of Visual Basic.NET to

publish a service of a specific type, identified by a specific unique identifier, using
the SSDP protocol;

[0026] Fig. 16 is pseudo-code illustrating the use of the C# programming
language to delete a service from the SSDP protocol;

[0027] Fig. 17 is pseudo-code illustrating the use of Visual Basic.NET to
delete a service from the SSDP protocol;

[0028] Fig. 18 is pseudo-code illustrating the use of the C# programming
language to use a SimpleFilter to register for events of a specific type that use the
SSDP protocol. The registered callback function will be invoked for every event
that matches the filter and the corresponding ServiceEntry object will be provided
to that handler; and

[6029] - Fig.. 19 fs pse\udo-codc;:. iliusu'ating the use of Visual Basic.NET to use

a SimpleFilter to register for events of a specific type that use the SSDP protocol.

MW“'“'N.l'.'ualf“.'n‘w.“ﬁ' s LI LI LN} .

10

15

20

CA 02501718 2005-04-18

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0030] Described herein are exemplary methods and software architecture for
service discovery and publication. The methods descnibed herein may be embodied
as logic instructions on a computer-readable medium. When executed on a
processor, the logic instructions cause a general purpose computing device to be
programmed as a special-purpose machine that implements the described methods.
The processor, when configured by the logic instructions to execute the methods
recited herein, constitutes structure for performing the described methods.

Exempla erating Environment

[0031] Fig. | is a schematic illustration of an exemplary computing device

- 130 that can be utilized to implement one or more computing devices in accordance

with the described embodiment. Computing device 130 can be utilized to
implement various implementations in accordance with described embodiments.
[0032] Computing device 130 includes one or more processors or processing
units 132, a system memory 134, and a bus 136 that couples various system
components including the system memory 134 to processors 132. The bus 136
represents one or more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an accelerated graphics port,
and a processor or local bus using any of a variety of bus architectures. The system
memory 134 includes read only memory (ROM) 138 and random access memory

(RAM) 140. A basic input/output system (BIOS) 142, containing the basic routines

' i i &7 A S b Ay A AP et g A s =+ n 18 1S o+ Ay o ey = VY YVIVIMIVE P ALY 4 ARG o A N e - WV | T 1 1A A AN | e e R, P41 |t AL SR e RA e R AR R S '

10

15

20

CA 02501718 2005-04-18

8
that help to transfer information between elements within computing device 130,

such as during start-up, is stored in ROM 138.

[0033] Computing device 130 further includes a hard disk drive 144 for
reading from and writing to a hard disk (not shown), a magnetic disk drive 146 for
reading from and writing to a removable magnetic disk 148, and an optical disk
drive 150 for reading from or writing to a removable optical disk 152 such as a CD
ROM or other optical media. The hard disk drive 144, magnetic disk drive 146, and
optical disk drive 150 are connected to the bus 136 by an SCSI interface 154 or
some other appropriate interface. The drives and their associated computer-
readable media provide nonvolatile storage of computer-readable instructions, data

structures, program modules and other data for computing device 130. Although

the exemplary environment descnbed hereln employs a hard ChSk a removable

magnetic disk 148 and a removable optical disk 152, it should be apprecnated by
those skilled in the art that other types of computer-readable media which can store
data that is accessible by a computer, such as magnetic cassettes, flash memory
cards, digital video disks, random access memonies (RAMs), read only memories
(ROMs), and the like, may also be used in the exemplary 6pérating environment.
[0034] A number of program modules may be stored on the hard disk 144,
magnetic disk 148, optical disk 152, ROM 138, or RAM 140, including an
operating system 138, one or more application programs 160, other program
modules 162, and program data 164. A user may enter commands and information

into computing device 130 through input devices such as a keyboard 166 and a

e e Wt B B A ol A M e e - - .

CA 02501718 2005-04-18

9
pointing device 168. Other input devices (not shown) may include a microphone,

joystick, game pad, satellite dish, scanner, or the like. These and other input
devices are connected to the processing unit 132 through an interface 170 that is
coupled to the bus 136. A monitor 172 or other type of display device is also
5 comnected to the bus 136 via an interface, such as a video adapter 174, In addition
to the monitor, personal computers typically include other peripheral output devices

(not shown) such as speakers and printers.
{0035] Computing device 130 commonly operates in a networked
environment using logical connections to one or more remote computers, such as a
10 remote computer 176. The remote computer 176 may be another personal
computer, a server, a router, a network PC, a peer device or other common network
node, and typically includes many or all of the elements described above relative to
computing dev.ic.el 130, although only a memory storage device 178 has been
tllustrated in Fig. 1. The logical connections depicted in Fig. 1 include a local area
15 network (LAN) 180 and a wide area network (WAN) 182. Such networking
environments are commonplace in offices, enterprise-wide computer networks,

intranets, and the Internet.

[0036] When used in a LAN networking environment, computing device 130
1s connected to the local network 180 through a network interface or adapter 184.
20 When used in a WAN networking environment, computing device 130 typically
includes a modem 186 or other means for establishing communications over the

wide area network 182, such as the Internet. The modem 186, which may be

— i Wt Shadre e e — cev v Aw O e - -
e AR s R . LA g PP A e b o, — Y & - . . - P e T T T T T Y W e e ———— e w cvws AWV L A i - - =R e A VD L A A e T b, Wb Sl - VY ~ - e

10

15

20

CA 02501718 2005-04-18

10
internal or external, is connected to the bus 136 via a senal port interface 156. In a

networked environment, program modules depicted relative to the computing
device 130, or portions thereof, may be stored in the remote memory storage device.
It will be appreciated that the network connections shown are exemplary and other
means of establishing a communications link between the computers may be used.
[0037] Geﬁerally, the data processors of computing device 130 are
programmed by means of instructions stored at different times in the various
computer-readable storage media of the computer. Programs and operating systems
are typiéally distributed, for example, on floppy disks or CD-ROMs. From there,
they are installed or loaded into the secondary memory of a computer. At
execution, they are loaded at least partially into the computer’s primary electronic
computer-readable storage media when such media contain instructions or programs
for implementing the steps described below in conjunc\tion with a microprocessor or
other data processor. The invention also includes the computer itself when

programmed according to the methods and techniques described below.

Exemplary Software Architecture Overview

[0038] Fig. 2 is a block diagram of an exemplary software architecture 200
for service discovery that may reside in system memory 134 of Fig. 1. In this
implementation, system memory 134 may comprise a plurality of application

programs 210. In a networked environment the application programs may function

10

15

20

CA 02501718 2005-04-18

i1
as client programs, while in a PC environment the applications may execute as

stand-alone programs. The particular nature of the application programs is not
critical.

[0039] Application programs 210 invoke service discovery API 214 to
discover services available in the computing environment. Service discovery API
214 provides a high-level grammar for expressing discovery queries. The grammar
may be implemented in OPath, a natural query language used for expressing
discovery queries. This high-level grammar provides software developers a more
conceptual mechanism to express the service(s) the developer is looking for, rather
than requiring a more granular and protocol-specific expression that may be

required by the underlying protocols 220-234. The developer can construct a query

using the high-level grammar, which may then be forwarded to either a specific set

of protocols, referred to as a number of “concrete scopes”, or use an “abstract
scope” which 1s a predefined or configured set of concrete scopes. In addition to
supporting service discovery, the system supports service publication/deleting, and
monitoring fof events.

[0040] Service discovery API 214, tn turn, invokes one or more underlying
protocols, represented in the diagram by Protocol 1 220 through Protocol 8 234.
The particular number of underlying protocols is not important. Certain of the
protocols 220-234 may be directory-backed protocols such as, e.g., LDAP,
Universal Description, Discovery and Integration (UDDI), and Domain Name

System (DNS) Server. Other protocols may be ad-hoc protocols such as, e.g.,

1 e Py g et A+ A A A VAR P RS PP 4 A s T L e T AP e Al Y s e e e - e tes P - T M AR ARy P A TR MO AP VMR {4 LKr SO (ol oA T A AR e BASS m S e st et e .-

10

15

20

CA 02501718 2005-04-18

12
Bluetooth, UPnP, and NetBT. One or more of the underlying protocols 220-234

uses a communication connection 236 to communicate with other components or
services avatlable in the computing environment.

[0041] In response to the discovery request, the service discovery API returns
a collection of ServiceEntry objects that represent matching services discovered
either on the local machine or on the network. A ServiceEntry object is a
generalized data structure that can represent much of the relevant detail returned by
the underlying protocols that system supports. Each ServiceEntry object
corresponds to a single instance of a service. In one implementation, thé
ServiceEntry object provides descriptive and identifying properties including: (1) a
service name; (2) a service description; (3) endpoints, which typically contain a
network address(es) for the service; (4) a key, that identifies the service instance;
(5.)“.pro.per“t'i'és, e.g., an. cxténsiblé ‘list of .name‘-va]ue pairs fbr service or device
characteristics; and (6) a provider, e.g., an identifier that identifies the entity that
provides the service.

[0042] A discovery persistence service 212 communicates with service
discover API 214. Among other things, discovery persistence service 212 registers
for announcement events over ad-hoc protocols. The discovery persistence service
is notified when an announcement event is detected, and the discovery persistence
service copies information about the service announcement into a memory location

in data store 240. Storing service details in a memory location enables discovery of

services that may be currently unavailable. For example, even if a printer is

O PP —— - A A S AN T g Y PV Sl Th b oF o3 B Sy~

10

15

20

CA 02501718 2005-04-18

13
currently switched off details about the printer may be registered in the memory

location and can be discovered. In addition, service queries are not restricted to the
protocol that communicates with the service. Moreover, the performance of
querying the memory location may be much better than issuing a broad network

discovery query.

Exemplary Operations

[0043] In an exemplary implementation, the service discovery API 214

provides methods for service discovery, service publication, and subscribing to
service event notifications. Fig. 3 1s a flowchart illustrating operations 300 for
service discovery. At operation 310 an application defines a scope, at operation 315
the application defines a filter, and at operation 320 the application issues a search
request. The service discovery API 214 receives the search roquest and, at
operation 325, the service discovery API 214 parses the search request. At optional
operation 330, the service discovery APl 214 determines whether the search request
1s resolvable using information stored in the discovery persistence service 212. In
one implementation, information managed by the discovery persistence service 212
includes a time-of-life indicator that specifies the lifespan of the information in the
discovery persistence service 212. Depending upon control and configuration, the
service discovery APl 214 may query the discovery persistence service 212 to
determine whether the discovery request can be satisfied using information the

discovery persistence service 212 manages on the data store 240. If the discovery

10

15

20

CA 02501718 2005-04-18

14
request is resolvable using the discovery persistence service 212, then control

passes to operation 350, and the service entry objects retrieved from the discovery
persistence service 212 are returned to the application.

[0044] By contrast, if the discovery request is not resolved or resolvable
using information managed by the discovery persistence service 212, then control
passes to operation 335, and the service discovery APl 214 executes the low-level
API call(s) required to fulfill the discovery request. At operation 340 the service
information retumned from the low-level API calls is formatted into service entry
objects, and at optional operation 345 the service entry objects are forwarded to the
discovery persistence service, which may store the service entry objects on data
store 240. At optional operation 347 further processing-and.filtering of the service
entry results such as duplicate detection and removal may be performed. At
operation 350 the service entry objects are returned to the application for further
processing, at operation 355. The particular details of the further processing
performed by the application are not important.

- [0045] Fig. 4 1s a flowchart illustrating operations for service publication. At
operation 410 an application defines a service entry object for 'the service
publication. At operation 415 the application defines the scope for the service

publication. At operation 420 the application assigns a unique key to the service
publication, and at operation 425 the application assigns a service type to the
service publication. At operation 430 the application defines endpoints for the

service publication, at operation 432 the application defines properties for the

e b e — 8 v PRI P A, A A YT A A Fe s 8 A VWA | IRV T4 et 41 AT e WEatP e MO

10

I35

20

CA 02501718 2005-04-18

15
service publication and at operation 435 the application generates a publication

request. The steps performed may vary according to the detail of information that is
to be published and the low-level API that will be used.

[0046] The service discovery API 214 receives the publication request and, at
operation 440, parses the publication request. At operation 450 the service
discovery APl 214 executes the low-level API calls to execute the service
publication request. At optional operation 455 the service publication is stored in
the discovery persistence service 212.

[0047] The service publication facilities of the service discovery API 214 can

also be used to delete a published service. Fig. S is a flowchart illustrating
operations for service deletion. At operation 510 an application defines a service
entry object for the service publication. At operation 515 the application specifies
the umque kcy for .thé. semce ' At éﬁéféﬁon 520 ;hé #ppl.icét‘ionuc.le.:.ﬁnes a sc;pe for
the service deletion. At operation 530 the application generates a service deletion
request.

{0048] The serﬁce discovery APl 214 receives the deletion request and, at
operation 540, parses the deletion feduest. At operation 550 the service discovery
API 214 executes the low-level API calls to execute the service deletion request. At
optional operation 555 the service publication is deleted from the discovery

persistence service 212.

[0049] The service discovery API 214 can also be used to allow applications

to be notified of service events, such as the arrival or departure of a new service or

TP At L A e N T A AT Tk AL b &1 A T PR R L vy e o SR I A £ L < BT A T BN AN | A TR SR i e ket

10

15

20

CA 02501718 2005-04-18

16
device of a particular type. Fig. 6 15 a flowchart illustrating operations 600 for

subscribing to service events. At operation 610 an application defines a scope that
specifies the particular low-level protocol to monitor. At operation 615 the
application defines a filter that specifies the type of event. At operation 620 the
application defines a callback function that will receive ServiceEntry details as
matching events occur. At operation 625 an application generates a subscription
request, which is forwarded to the service discovery API 214.

[0050] The service discovery request API 214 receives the subscription
request and, at operation 630, parses the subscription request. At operation 635 the
service discovery request executes the low-level protocol calls required to
implement the subscription service. When a service event occurs the low-level

protocol will provide the service discovery APl with a notification of the event. At

------------ LR . = .~ - - . - -

operation 640 the event notification is formatted into a service entry object. At

optional operation 645 the service entry object may be stored in the discovery
persigtence service 212, and at operation 650 the service entry object is returned to
the application using the previously specified callback function. At operation 655
the application performs further processing on the service entry object. The
particular details of the further processing performed by the application are not
important.

[0051] The system’s components and operations are discussed in greater

detail below.

10

15

20

CA 02501718 2005-04-18

17

API Classes

Filters

[0052] A Filter is a set of rules by which a service description can be
evaluated, resulting in true (i.e., service description matches the filter) or false (i.e.,
service description doesn’t match the filter). A filter can be expressed either as a
simple filter, which specifies particular properties, or as a nch filter, which uses
more expressive grammar. Whether expressed as a simple filter or a rich filter,
queries can be specified and executed over more than one protocol without
modification, subject to the capabilities of the underlying protocols. The service

discovery request API 214 manages the re-expression of the higher level query into

. the correct format for the underlying low-level protocol. For.example, the service

discovery request API 214 can receive a query for a particular service type and
ekpresé and‘ e?ﬁluété if .ﬁSiﬁg .LI‘)AP .for Acﬁve Directory and using the @DI'
protocol for a UDDI Web service registry. An application developer is not required
to work directly with the individual protocols.

[0053] In an exemplary implementation, the service discovery request API
214 requires discovery modules to support a simple filter, providing exact match
semantics for provided criteria, and a rich filter containing a query expressed in the
OPath grammar. It will be appreciated that each may also support additional
“native” filter types. Different discovery modules may have protocol-specific

native filter types, e.g2., UPnP may use XPath filters, Active Directory may natively

use LDAP filters, and UDDI may natively use a UDDI filter.

10

15

20

CA 02501718 2005-04-18

18
[0054]) The base level of OPath filter functionality across the modules further

insulates applications from underlying discovery protocols. The filter class exposes
additional methods to parse and interpret the filter in a way that is shared across the
modules.

[0055] A simple filter provides for expression of queries by specifying a
service type, services interfaces, and/or properties. Any combination of these
settings may be provided in a search query, and services will be included in the
resulting service entry collection only if all of the criteria exactly match.

[0056] The service type may be implemented as a string that specifies the
type that must match the service instances. A common set of service types are
predefined in the service discovery request API 214. This set may be extended as
key entities within protocols and stores are identified. For example, for printers in
Active Directory, this would specify: filterServiceType =
CommonServiceTypes.Printer.

[0057] The service interfaces may be implemented as a string collection that
specifies identifiers for interfaces that services must match. As an example, for web
services in UDDI, the following tModel identifiers could be specified:
filter.Servicelnterfaces.Add("uuid:ac104dcc-d623-452£-88a7-f8acd94d9b2b");
filter.Servicelnterfaces.Add("uuid:4d2aclca-¢234-142f-€217-4d9b2{8acd9b")

{0058] Properties may be implemented in a property dictionary that specifies

service characteristics that services must match. As an example, for printers in

" AN s AL e A VW, L4l e D M Vi B A0 AR § b o {

10

15

‘A4)]

CA 02501718 2005-04-18

19
Active Directory, the following properties could be specified: filter.Properties.Add

("printcolor”, "TRUE"); filter.Properties.Add ("pagesperminute", "50")

[0059] A rich ‘ﬁlter provides a mechanism for expressing significantly richer
query semantics using, e.g., the OPath grammar, by setting a Query string property.
As an example, for web services in UDDI, the Query string would specify the
required name and a required supported interface: filter.Query = "WebService]
name = 'Fabrikam' and Servicelnterface = ‘'uuid:acl04dcc-d623-452f-88a7-
{8acd94d9b2b’ }"

[0060] As a more expressive example to find printers in Active Directory
capable of printing more than 25 pages per minute where A4 paper is not available:

filter.Query = “Printer| printPagesPerMinute > 20 + 5 and not(printmediaReady =

from identical, ranging from the basic NetBT to the rich Active Directory query

semantics, the ability to use the more expressive constructs of OPath will depend

upon the scope (protocol) selected.

10

15

20

CA 02501718 2005-04-18

20
Scopes

[0062] A scope identifies a query domain that can be searched, usually coarse
and by network location or administrative boundary. Discovery queries are directed
to one or more scopes, and the query result includes a subset of the services within
those scopes, i.e., the query result is the subset of all services within the scope that
match the given filter. Exemplary scopes include workgroup, localmachine, and
domain.

[0063] The service discovery APl 214 accommodates concrete scopes and
abstract scopes. A concrete scope specifies a query domain in three pieces. A
Protocol identifier that identifies a specific protocol, e.g., mapping to a single
discovery module such as ConcreteScope.NetBtProtocol. or
ConcreteScope.ADProtocol, an Address (optional) identifier that specifies a server
td thi;:h to direct operations on this scope such a-s. “http// intﬁ
uddi/uddi/inquire.asmx” for an intranet UDDI server, and a path identifier
(optional) that identifies a partition of the module’s namespace, such as an LDAP
search base which could be set to “CN=joe-
dev,CN'-'-'Computers,DC=corp,DC==fabrikarri,DC=com”, or a UPnPv2 scope name.

[0064] The service discovery request APl 214 passes concrete scopes to
modules. The service discovery request API 214 does not preclude modules from

performing additional indirection on concrete scopes such as, e.g., transmitting the

concrete scope over the wire to a second machine and passing the concrete scope to

a corresponding API on that second machine.

10

15

-address = “http://uddi.fabrikam.com/inquire.asmx™

CA 02501718 2005-04-18

21
[0065] An abstract scope is a moniker for one or more concrete scopes and

possibly further abstract scopes. Abstract scopes provide a mechanism for targeting
a query across a logical predefined or configured concrete scope collection. This
provides an additional abstraction that allows the developer to target, for example,
an “‘enterprise” scope, without requiring explicit protocol, address, and connection
details for particular directory servers.

[0066] The mapping of abstract scopes to concrete scopes is machine-wide
and configurable. For example, an abstract scope AbstractScope.Enterprise might

map to include both of the concrete scopes in Table 1.

| protocol = ConcreteScope.ADProtocol

address = “ldap://dev.corp.fabrikam.com”

path = null

protocol = ConcreteScope.UddiProtocol

path = null
Table 1
[0067] Fig. 7 is a block diagram illustrating an exemplary relationship
between concrete scopes and abstract scopes. Concrete scopes 730-750 provide the
specification of 'the domain across which queries will be evaluated. Concrete
scopes 730-750 comprise protocol identification details and, as required, specifics
of a store or server to use, with the potential for further scoping within that store or

server. Within the service discover API 214, these are specified in the Protocol,

Address and Path properties respectively.

10

15

20

CA 02501718 2005-04-18

22
[0068] Abstract scopes 710-725 provide a higher level hierarchical

abstraction over and above concrete scopes. Abstract scopes are configured to
include the concrete or abstract scopes that make them up. This scope mapping will
be available to system administrators, who can be able to configure exactly how, for
example, the AbstractScope.EnterpriseScope should be resolved.

[0069] Both concrete and abstract scopes can be used by a user of the service
discovery APl 214. In the case where an abstract scope is provided, the service
discovery APl 214 will resolve this down, through the hierarchy, to a number of
concrete scopes.

[0070] Abstract scopes allow developers of application programs 210 to
work at a relatively high level and include scope identifying terms such as
“AbstractScope.Enterprise” in code. In this way, for example, the developer is not
required to hardoode the specifics of a particular UDDI server into his code. This
abstraction provides for greater reuse and portability of code. The same piece of
code can be used in a variety of enterprise environments without change or
recompilation. Only the abstract scope configuration would change between
environments.

[0071] There may be multiple hierarchies of abstract to concrete scope
mappings. In Fig. 7 AbstractScope.LocalMachine does not map up into
AbstractScope.All even though all of its constituents are included.

[0072] In an exemplary implementation the scope map configuration may be

manipulated through group policy by a system administrator to control the use of

: e — e PR e s w s em B S T I L L L TR T P RN SR = S Y PP 2 U et O) b WP PR b iy wde meeg L tesmssssmaasanto e e ae BT .
s] A gy L W r— P T s AN AN

10

15

CA 02501718 2005-04-18

23
the service discover API 214 in the enterprise. By way of example, an administrator

could define one or more abstract scopes available in the enterpnise computing
environment, or in a portion of the enterprise computing environment. This permits
a system administrator to regulate the discovery and use of resources by

applications.

ServiceEntry Results

[0073] An application developer can select appropriate Scope and Filter
expression, which may then be set as properties on a service finder object. The
application can then use the FindOne or FindAll methods to execute a discovery
request. The FindAll method returns all services matching the supplied criteria,
whereas the FindOne method returns a single matching service. The methods may
bc'e. &ecuted usiin'g' a gﬁﬁhronous or an asynchronous calling pattern.

[0074] Assuming that there are services that match the provided filter within
the specified scope, the FindOne or FindAll methods will return one, or a collection
of, service entry objects. The service entry object is an abstraction over the various
representations of services that the undétlying protocols can provide. Each service
entry object corresponds to a single instance of a service and as such, offers

descriptive and identifying properties including those set forth in Table 2.

Property Comments

Description Description of Service Instance

+ L b, Mg i e ¢ e A s a A ke s e SR | YIRS RSV A Y—- W“h- A . Ly, s S LR

10

15

Key The identifying key for the service

Scopes The scopes that an entity was
discovered from or is to be published
L Into
Credentials Specifies the credentials that will be |
used when publishing this service.

CA 02501718 2005-04-18

24
Endpoints The set of endpoints at which the
service Instance can be accessed

g ap—, ——

instance

| Provider References the “provider” (container) of

| the service, if any

| Expiration Time at which the service entry will

expire, based on a time-to-hive
Table 2

[0075] A public void Save() function is provided to create or update the
service entry representation in the scopes specified in the scopes collection.
[0076] A public void Delete() method removes this ServiceEntry object from

the scopes specified in the Scopes property. An exception will be thrown if the

‘service is not already published.

Pseudo-Code

[0077] Figs. 8-24 illustrate pseudo-code for performing various service
discovery, publication, and subscription functions.

[0078] Fig. 8 is pseudo-code illustrating how to use the C# programming
language to locate color printers that print 50 pages per minute using a SimpleFilter
object on the Active Directory protocol.

[0079] Fig. 9 is pseudo-cbde tllustrating how to use the C# programming
language to locate Web services that implement the uddi-org:inquiry v2 interface

and are named Fabrikam using the RichFilter object over the UDDI protocol.

10

135

20

CA 02501718 2005-04-18

25
[0080] Fig. 10 is pseudo-code illustrating the use of the C# programming

language to find services supporting a specific tModel interface using a
SimpleFilter object and the UDDI protocol.

(0081) Fig. 11 is pseudo-code illustrating the use of Visual Basic.NET to find
services supporting a specific tModel interface using a SimpleFilter object and the
UDDI protocol.

[0082] Fig. 12 is pseudo-code illustrating the use of the C# programming
language to locate a printer with a name like Office Printer using the RichFilter
with Active Directory.

[0083] Fig. 13 is pseudo-code illustrating the use of Visual Basic.NET to
locate a printer with a name like Office Printer using the RichFilter with Active
Directory.
© [0084] Fig 14 is pseudo-code illustrating the use of the CH programming
language to publish a service of a specific type, identified by a specific unique
identifier, using the SSDP protocol.

[0085] Fig. 15 is pseudo-code illustrating the use of Visual Basic.NET to
publish a service of a specific type, identified by a specific unique identifier, using
the SSDP protocol

[0086] Fig. 16 is pseudo-code illustrating the use of the C# programming
language to delete a service from the SSDP protocol.
[0087] Fig. 17 is pseudo-code illustrating the use of Visual Basic.NET to

delete a service from the SSDP protocol.

10

CA 02501718 2005-04-18

26
[0088] Fig. 18 is pseudo-code illustrating the use of the C# programming

language to use a SimpleFilter to register for events of a specific type that use the

SSDP protocol. The registered callback function will be invoked for every event

that matches the filter and the corresponding ServiceEntry object will be provided

to that handler.

[0089] Fig. 19 is pseudo-code illustrating the use of Visual Basic.NET to use

a SimpleFilter to register for events of a specific type that use the SSDP protocol.

Exempla Path Syntax
[0090] Table 3 provides exemplary OPath syntax for various discovery

functions.

.. Refers to

Find all printers and pnnt queues.

| Printer

i Printer][printPagesPerMinute > 20 + 5 and || Find all printers capable of

| printerName like 'Home' or name like "Work'

Printer][name = 'Upstairs Printer’] Find all prmtcrs where the name is
Up stairs Printer.

printing more than 25 pages per
minute and A4 paper is not
available.

not(printmediaReady = 'A4’)]

| Printer[Properties.name like 'Pri' and (|| Find all printers where the name
| printPagesPerMinute > 10 or || begins with Pri and either the

| printMediaReady = 'letter’)] pages per minute is greater than 10
| or letter paper 1s available.

| Printer] supportsColor = true && (|| Find all printers which support |
color and the name begins with

)] Home or Work.

Service[Find all services which are
| Servicelnterface=ServiceConnectionPoint] ServiceConnectionPont objects.

CA 02501718 2005-04-18

Service[(serviceType = 'Printer' or

serviceType= 'Computer’) and name like
'Work']

Find all services, either printers or
computers, that have a name like
Work.

Computer][operatingSystemVersion like

. Find all computers that are running
'%3790%' |

an operating system whose version

number contains 3790. l
Computer| operatingSystem="Windows || Find all computers that are running
Server 2003"] a particular operating system. The

operatingSystem attribute is not |

Table 3

[0091] Table 4 contains examples of OPath syntax that can be used on the

UDDI protocol.

- "o . .) -
0
v
'
’
.
5 '
| a
.
!
rl . - . B . - .. . e - .
» P . LI v v . At
- - —r o amy ol . [

| WebService[name = 'Fabrikam'] |
| { Fabrikam.

Find all Web services where the name strt
with UDDI and that supports the identified |

interface (i.e. the tModel uddi- |
org:inquiry v2). '

- al.e4

| WebService[] name = 'UDDI%'
| && Servicelnterface =
| 'uuid:ac104dcc-d623-452£-88a7-

| f8acd94d9b2b' _

[0092] Table 5 contains examples of OPath syntax that can be used on the

NetBT protocol.

e A A R A T DT Y PN AP AT Il Wt - = et A s S i e

10

15

CA 02501718 2005-04-18

Find ail workstations.

Find all services of type
PrintQueueServer,

Sewnce[Serv:ccType
'PrintQueueServer

Computer[servxceInterface =
"DomainController' and Servicelnterface
= 'TcnalServer’

Find all domain controller computers
running as a terminal server.

le 5

Discovery Persistence Service

[0093] As described briefly above, the discovery persistence service 212
manages a persistent data store for service information. Periodically, or at
predetermined events, such as startup, the discovery persistence service registers to

receive ad-hoc device/service announcements. As an example, when a new UPnP

device is introduced it will generate a device announcement that will be handled by

the UPnP protocol module, This module will then surface details of that event (the
device and its services) to the discovery persistence service through the service
discovery API 214.

[0094] Using its persistent data store, the discovery persistence service then
determines whether this is a new device/service or a returning device/service. If it
is a new device/service, the details of the device and its services will be registered
in the persistent data store. When another consumer of the service discovery API

214 then attempts to find services, the service discovery API 214 will be able to

return services for ad-hoc devices/services, even if the devices are not currently

10

15

20

CA 02501718 2005-04-18

29
available. For the above example, in the case where the device/service is currently

available, depending upon the scope specified, both the UPnP protocol module and
the persistent data store module may return results for the device. In addition to
UPnP, this functionality applies to other ad-hoc discovery mechanisms.

[0095] Thus, the discovery persistence service 212, the service discovery API
214, and the local database store 240 provide a layer of abstraction over the various
low-level protocols used for device and service discovery. This additional layer of
abstraction establishes a common and improved search semantic that application
developers may use in developing applications.

[0096] In addition, the discovery persistence service 212, the service
discovery API 214, and the local database store 240 provide a consolidated
discovery model for services and devices on a local machine, a home network(s), an
enterprise network(s), and the intermet. Thus, application deveiopers can discover

services in a wide variety of locations by writing to a single, consistent API.

Conclusion

[0097] Although the described arrangements have been described in
language specific to structural features and/or methodological operations, it is to be
understood that the subject matter defined in the appended claims is not necessarily

limited to the specific features or operations described. Rather, the si)ecific features

and operations are disclosed as preferred forms of implementing the claimed

present subject matter.

CA 02501718 2005-04-18

30

CLAIMS

1 A method for discovering services available in a computing
environment, comprising:
in an application program:
5 ' defining a discovery scope;
defining a discovery filter; and
initiating a search request to a first application programming
interface;
in the first application programming interface:
10 parsing the search request;
retrieving service information corresponding to the requested
discovery scope and discovery filter; and

- returning the service information to the application program.

15 2. The method of claim 1, wherein retrieving service information
corresponding to the requested discovery scope and discovery filter comprises

executing a call to at least one low-level API or protocol.

3. The method of claim 1, wherein retrieving service information
20 corresponding to the requested discovery scope and discovery filter comprises

querying a persistent data store service.

' N AR see e A A A R WA AR I e e P S G A it v a——l L Y 4 RN W A . A ‘*mm‘w'ﬂﬂﬁmm - . AR g A A VS . . .
NP A - . — WVe—— - cmme = e s

10

15

20

CA 02501718 2005-04-18

31
4. The method of claim 1, further comprising formatting retrieved

service information into a consistent service entry object data format.

3. The method of claim 2, further comprising saving information

received from the at least one low-level API or protocol in a persistent data store.

6. A method for publishing services available in a computing
environment, comprising:
in an application program:
defining a service entry object;
defining a publication scope;
assigning a unique key to the service; and
assigning a service type;
defining properties for the service;
defining endpoints for the service; and
initiating a publication request to a first application programming
interface;
in the first application programming interface:
parsing the search request; and

executing at least one low-level API call to publish the service.

ran '--v-'Wf-'-w-'vmmmmmwmwuwm#u_ evbasme=s 0 Vesie dee

L T R T R LU CTEECE L

10

15

20

PO NI Sy | A) ekt o= A Bt

CA 02501718 2005-04-18

32
7. The method of claim 6, further comprising storing the service
information in a persistent data store.
8. A method for deleting a published service in a computing

environment, comprising:
in an application program:
defining a service entry object;
specifying a key corresponding to the published service;
defining a deletion scope; and
initiating a deletion request to a first application programming
interface;
in the first application programming interface:
parsing fﬁe searcﬁ request; and

executing at least one low-level API call to delete the service.

9. The method of claim 8, further comprising deleting the service

information from a persistent data store.

10. The method of claim 8, further comprising registering the deleted

service information in a persistent data store,

R e v Ay R S M A K -ty ks e 2 et ot - '

R s TR e v o e 4 v ST

10

15

20

CA 02501718 2005-04-18

33
11. A method of subscribing to service events in a computing

environment, COMprising:
in an application program:
defining a scope;
defining a filter;
defining a callback function; and
Initiating a subscription request to a first application programming
interface;
in the first application programming interface:
parsing the search request; and
executing at least one low-level API call to subscribe to service

events; and

returning information from service events to the application program.

12. The method of claim 11, further comprising formatting retrieved

service information into a service entry object data format.

13. The method of claim 12, further comprising saving information

received from the at least one low-level API in a persistent data store.

14. A system for managing information about services available in a

computing environment, comprising:

WA Y A e = Prar—asshve S W AMPREA T WY ey - o m—— AN g g o e AP P A A v G b Srerad. . s - w okt MYy

CA 02501718 2005-04-18

34
a first application programming interface configured to accept service

queries from an application, wherein the first application programming interface
receives service queries in a first service query protocol, processes the service
queries, and launches at least one corresponding service query to a second protocol;
5 a discovery persistence service communicatively connected to the first
application programming interface, wherein the discovery persistence service
receives service information from the first application programming interface and

stores the service information 1n a data store.

10 15. The system of claim 14, wherein the first application programming

interface provides an interface to at least one directory-based protocol and at least

16. The system of claim 14, wherein the first application programming

15 interface discovers services available on a local computing device.

17. The system of claim 14, wherein the first application programming

interface discovers services available on a remote computing device.

20 18. The system of claim 14, wherein the first application programming
interface implements a scope map, and wherein the scope map is configurable by a

system administrator.

Smart & Blggar
Ottawa, Canads
Patent Agents

W - et A A D S, St = 8 Sy = . Wil s S AP e = = O 8 8 P e N e Y WA v A = B o, MM D m—— . me—— a4 e ees ANy . - - - * T oamme e e b PN - =
I i W-ﬁnﬂw e —-—wtanwan = - . . S - i AW m e = mnaataw cpem—a sy w4

CA 02501718 2005-04-18

: —A| aoepaju || pog
d IsSNo
081 \.— ———————/| womaN | | leuss A

swelboig
uoneoyddy

POl J NwwL.N C 091 (8Gl
- eleqg sanpoyy | sweiboig | wejshg
sk weiboid BYIO | uoyediddy | bugesadQ
gyl ~ _ T

- » - A = m = o - W W T T B 8% & A R A= Aas - l--.l.lll.l‘(‘t.‘f".““"."‘
- A I I N . T -

Wr w
ejeq weiboid

701 m&:vo?{ ‘ﬂq

TTI0TT

_ . | 0BT sweibosg
_ “ uonedlddy

P iahatteds

—— Gl R
jaydepy | m n WaSAS m:w&waﬂuu

e g, o W B Bl S— S

o m-:...ia
SOig

e L)
ceEL - 0cl \ Aowapy Wa)sAS

m OSpPIA : m
m — ~ 7 (Wvy) :
v/t 4 | 'ﬁ | HUN @mewmuvo»nw D pmem e .

Pre Viee

tmsims el

CA 02501718 2005-04-18

2/19

g |00010)d K

\{

212

- ljoo0)oid kK s

¥
?l’l

g[0o0l0ld kK

Cg
C.
®
s
:
2
2.
%
®
Q.
-
®
>
0
O
Qg
»

G 10901014 K

ploo0jold k

Vl

g 10001044 k

210

A 4
7!

2 10000ld k

Application Programs

v

| [000J0id K

220

e e e AR AT e AT, T rerainagr o v

| 214
Service Discovery AP

A

236

Data
Store

-
¥
N

CA 02501718 2005-04-18

3/19

S9A

Gct

0G¢

$108iqQO Ajju3
90IAIRS uINjaYy

Buissadoiy
J|/yund

Sd(d ul 8I0jS

s108lqO Anu3g
S0IAI3Q JBelIO

siieD IdV 19A97]
-M07] 8jn%ax3

ON

$SdQ ul
BjqeAj0Sa)-

1sanbayy
yoleag asied

|V

GEE

_

_

m |
0ge |
| |

_

_

Buissanoid
dayun4

}senboyy
yoleas

1e)i4 suyeq

2doog aula

uonesiddy

GGE

0Zt

GILE

] 35

Al 1 ABIA S MO s s T s s s sreppm s g g oA

L T R e .

CA 02501718 2005-04-18

4/19

GGV

0}°] 4

Ovvy

SdQ utl aio)g

Sl 1dV [9AT]

-M0O"] 8}NoaxX3

1sanboyy
uonediigndg
aslied

IdV

}senbay
uonedliqnd

sojuadoid
auyaQ

sjuiodpuy
auyaq

adA}
90IAI8g ubissy

A9y} ubissy

2doog aulag

J8iqo Au3g
SDIAIBS Ul

uoljestjddy

GEv

ety

Oty

GCV

Ocy

GLy

Oiv

P AR LA L wh 4t ot m e ges s

B MDA el

v ovw el raga. ras) 0

b N Tl S Al A8 S b MR AT ek s, B ¥ C By g s S NS ea L s = e e

0 e e vve e Y s el b e

CA 02501718 2005-04-18

5/19

GGG

066

OvS

UOoneuLIojul
Sda AjpoN

Siied idV 19A97
-MO] 8JNdoaXx3

1sonbay

uonsaq asied

IdV

|

|

|

D
|
|

}senbay ajsjeq

adoog aulaq

AaY Ajioadg

103igo Aju3z

30IA18G auya(]

uonesnddy

0EG

0CS

GLG

01L&

D L R T PR

ARt e T e e MR

W A P AP WY A A e A T T I T S,

— e — g ——— . - “ "e s mass s Csmbafhoy o

L I —

CA 02501718 2005-04-18

6/19

0ts

059

palgo Anug
SOIAIDS WIN}ay

Sd(ut 8i0]g

103lg0o Au3
90IAJ8S JelUlIO

SiieD IdV {9A97]
-MO] 8Inoax3

jsenbayy
uonduosqng

asied

|dV

Gvo

0¥9

Buissa00.iy
By 4

1senbayy
uonduosgng

uonoun 4
yoegjeD suyeq

19lji4 |ulasQd

doog aula(]

uonedijddy

GGO

Gco

029

619

019

(o

A L iy by of TP el e B Al g 0 em e s e reme s e e

CA 02501718 2005-04-18

7/19

052 Sv. ov. GEL 0E.
j000)014SaIN3(]

j000J01d | GION SHnbuianiasippn

_ j0230j0144j00)8nig 09, '1000j0iddepT , ,
.m.wwm_ww = 2d02% = 8d02g = 8doog /1y, _Mmmwow,_m%n:
. . yioojenig 161N dva1-2doogajesouos -
waoowmw&ocoo ‘2d0289}1810U09) '9d00g8}810U0D 1aan8dodgsjaIouod
SCL — 02
[uoneinbiyuo)] [uoneinByuon] [uoieinByuon)]
wc_comﬁ_moo._.maoowuogmeq o0y u<.maoowucw.amn< asudisjug-adoogioensqy QL/

[uoneinbyuon)] .

| v-edoogensay N— g1/

— A e YRR Ve Y M e s, Gers s e e s s ey e s i 'h et ee b

N e dana gt £ b

CA 02501718 2005-04-18

8/19

‘() auraupnajosuo)
Ay as + ,, :A3Y,) SUIMSILAA 3jOSU0)

{

}
((0<iuno) sutodpu3-as) 9P (jinu=jsiuiodpuz-as)) ji
‘(uonduosag-as + ,, :uoNdiISa(Q,) SUTSILAA SjOSUOD
(SWeN oS + , atuey,) SuNndBIAA JJoSU0)

| }

(10D9s Ul 3s AlJUJadIAI9S]) yoealo}

‘(ssasppy {0lsiuiodpuzas + , :SS31pPY,) BUMAIIM SI0SUOD

UNODOD8S + , (pUNO SHNS3Y,) SUINBIUAASjOSUOD)
S}nNsat Hoday //

() liypuld puIdAIBS = Jj0DaS UONDB}I0DANUTBOINSS
adoos ay} uiyum Ja) ay) buyojews sayyua e puid //

(.08, 'WOinuiuLadsebed,) ppy sepadoid sy
(.3INY.L. "Jojodjuud,) ppy setiadoid Ialy
Uo yojetu o} sailadoid oy} a1e(daq //

JO)jl} = Jelji4 puUIjAIaS

18Ul SBdA | DUAIBSUOURLOY) = 8dA | 30IAIDS JO)I
() Jol4eidwis mau = Jayy Jaji4sidung

siajuud Ajuo 104 J19)114 //

_” {{gnu -
‘0209, 10001014V 2d00G8)a10u0)) 2d0dGI2I0U0D M3U) PPy $adodg PUIJAIDS
-bojejes feqoib ayy ul Aioyoanq aaoy Buisn yasess o} Ajioads

()19pUIJEDIAISG MBU = PUIJAISS JBPUILBIAIDG AIBA0DSI(Y WalSAS
| 19PUI DINAIBG B asejoa(] //

}
()Qvieijeidung pioA one)s

+ NN PR A

CUVRETE (b, s 4 e LA D o Sy .Y 2 S ek A A L

B v TRt V= U Y. M s =i mmeee .

CA 02501718 2005-04-18

9/19

() SUIalIAN BjOSU0)
(Aay'as + ,, :A8),) DUINBIAA BIOSUD)
{

‘ }
((0<uno) syutodpul as) 973 (jinu=isjuiodpul ashij
{SWeN as + , .aweN,) SUISJUAA SIosu0)

}

(10D®s ut 3s Agugzadines) Yyoesio)

(JUNOD II0D3S + ,, PUNO SHNS3Y,.) SUINBILUAA BJOSU0)

synsas poday //

'(ssa1ppy [olsiuiodpuz as + , 'SSa1ppY,) BUINBILA 9j0SUO0D

*() Iivpuid puldAlas = |}0D3S UOoID8loDAIIUTaIAISS
adoos ay ulyim 1)y ayy buiyojew saniua e puld jf

19l = JaYIY PUIIAIDS

. | . Gl
qza6pyepoess-/e88-1zSy-£Z9p-00pH0 i de pinn, = S0BLIBIUIBDIAISS pUE Wejuqge, = suieu Jodinsaggap.,)
| JSYLAYOIY MU = 18jjY JBjji YOIy

A Annbui:B10-1ppn,, [2PON //

ay) '9'I adeudjul yi0ads e Juawajdun yey) //

wenuqe. paweu sadinas gap Ajuo 104 1834 //

{(ynu * @unbuiauod yososoiw ippniisayyduy,
1020301 41pPN adooga1a10u0)) 2d02S8}a10U0D Mau) PPy Sadodg puljalas -
Ansibay ssauisng |GanN JOSOIIN UL JO UOISIBA 1S3} //
ay) ui joo0j0id 1aaN 3y Buisn yoseas o} Aoadg Jf

‘() JapUIJBOIAIBS MBU = PUIJAIDS JOPUIJBIINISS
12pui490iA1ag e a1eea /f

}

() 13aNIaN4YORY PIOA DIE)S

P L T T I TV O ———

e s & L sl

B L ATS L e VMG

et R I Ll s S L at ainam s s e s e et BTNV TIPS

CA 02501718 2005-04-18

10/19

0l V%

‘(ssaippy[olsiviodpues + , :SSAIPPY,) BUITBIIAL BIOSUO)

[(Ao)'as + , :A9),) BUITBJLIAA 9j0SUOY)

{

}
((0<dunoy sjuiodpu3-as) 33 (jjnu=jsjuiodpuz as))j
‘(uonduasaQy-es + , ‘uoiduasaq.) SUIBIUAA BI0SU0Y)
(swreNos + , ‘awieN,) SUINDILAA 910SUDN)

}

(jl0D8s ul s Anuzedinieg) yoealo)

‘JunoD oSS + ,, (punNO4 SYNS3N.) mc_._ozhg.m.omcoo
‘Sjinsal poday //

() IVPUI4'PUIIAISS = [j0DES UONIS|I0DARUTIAIRS
'2doos ay) uiynm Jaljy ay) Buiysjew sannua e pui4

Ay = JaYji4 puUI4AIaS

(.a2a6PPEPOeY)- BEB-IZSH-EZOP-0oPP | OB pINN,
)PPV SS0BLIBIUISIINISS 1OYl)
() 181 dodung mau = Jayy Jeyjeiduns
WA Annbui:6i0-ippn,, |3pow} 8y} o1 //

- ‘aoeydlul oy1dads e Juswaldus Jey) S301AIS Ajuo 10} JoYid /f

(i *, 35nbuipwod Yosoiaiu 1ppny/.dyy,
| 'J020}0441PPN 2d02581810U0D)
2doogaja1ou0) MaU) ppy sadoog puijAres

‘apou Ansibay ssauisng 1aN YOSOIW /7
2y} ui jooojoud |QQN @y Buisn yoseas o} Adads

() 19puUIO0IAIBS MBU = PUIJAIBS JBPUIJ3DIAIRS AIBA0DSI(] WOISAS

"J9puUI48JIAIag B aiel08(//

}
() 1Igani8li48idung ploA diels

97D N AP PN M a A sad s sl WL el b lra e e W A e st NV e e

Ae v - .t

CA 02501718 2005-04-18

11/19

) DE

iaanisyigejdung, gng pug

3S XN
(Aay'as g , [Aay),)aurTalupm ‘sjosuo)
}i pu3
~ (ssaippy(g)sjutodpuz-as @ , :SSaIppy,)Buraiup 9josuo)
uayy o < Juno) sjulodpu3-as osfypuy (BuiyioN s| sjutodpug-as) JoN i
(uonduosaq-as 1 ,, :uoldUIS(],)oUITOILAN BI0SUOY)
(SweN 8s 9, ‘SWeN,)aureup 9josuo)

HOD9S U} as yoe Jo4
AJUTJO0INISG Sy B8S Ui}

(JUNOD1j0D3S 9 , (pUNO SHNS3Y, JOUITBIIAA Bj0SUO)
S)insal poday ,

ONvpul 4 puiAISS = UORDBJIODANIUTBOIAIRG SY |J0D8S UK(]
‘2d0as ay} uiyum 1ajjy sy Buiyojews sajus ye putd

Jol = Joli4 puIJAISS

(.9296PY6POBg)-LB88-JZSH-CTIP-00pYOLIe:piNn,,
)PPV S30BLIBIUIBIIAIDG 1O
18yl Jojdwig map sy Je)y unQ
WA Aunbuy:6i0-1ppn, jopopt ay) ‘o1,
‘aoepejul 0410ads e Juawaiduwi Jey) sadlasas Ajuo Jog 1ol ,

((BuryioN *,2anbuiauos yosossww ippny/:duy,
_ooo.oiﬁub 2d02g2}8s0u00))3d0oSa1310U07) MAN)PPY S8d00g puUiJAIaS

‘apou AisiDoYy ssauisng 11N HOSOIONN |
3y} w j0d0j01d |QAN 3Y3 Buisn yotess 0} Aj0adg

J3PULJBDIAIOS MAN = PUIJAISS WiI(]
JOpUIJADIAIAS € Bleaq

igansaygeiduag gng

On e o e g] AR e A A kY Y VP YA W e b e B % Yl e m B omee s e e e e

b =t ey v vt Gl relasvh A YT RO L Xy A e Bt s e A e .. -

CA 02501718 2005-04-18

12/19

(Ao as + , :AaY|,) aurnsjuan 8josuon
{

((ssaippy [plsjuiodpug-es
+ , 'SS8IpPY,,) BUITSIUAA S|OSUOD
}

((0<unoysjurodpu3-as) 93 (jnu=isjuodpuz as))y
~ .(BWeN'9s + ,, :aWeN,) SUINSILUAA BjosSuo)

. }

(lloDas ul as AnjugzeviALg) yoealo}

(JUNODJI0DBS + , (pUNO SHNSIY,,) SUITSNIAL SjOSUON

| s}nsai poday //

() ivPul4 pUI4AISS = Jj0DBs co%m__ooaz.wmo_zmw
‘8doos ay) uiyuMm JaljY au) Buyojew sanius jje puld //

. JO)Y = JOYI4 PUIJAIDS

(.l d8juLd 80y)0, alj aweu Lidjuud,,
|) J8Y14UDIY MBU = 1B)jY JaYlI YOIy
"J8julld 82y, Yim suibaq aweu ay} asoym siajulid 10} N4 /Y

‘({(ynu ...“o.o.. ._ooouen_o/w.maoowmum_ocoo
) 8d00S9}310U0) MdU) PPy S2d00S PULJAIDS
‘Bojejes jeqoib ayy ut Aioyoang aady Buisn yaseass o} As10adg

'() J19puUI430IAIG MBU = PUIJAIDS JBPUIJBIIAISG
'J9pUIJBOIAIG B asepaq J/

}

() Qvisni4ydty pioA oljels

TN s m o m L AE e eV Ay g

T W A T ERAAA W

L el o ’-"{M"“W - A ARG TR Bl Be a s . S .

AN T iV LA va sma

AL PETY AP AN PP L At s s e e

LI (A, JANATE | W AR o s

re—— ey ey Ay A by o LU

CA 02501718 2005-04-18

13/19

»

Avisji4yony, qng pu3

3S JIXON
(Aoy'as B ,, A9y,)aur]ajiipy 9j0suo)
jl pu3
(ssaippy onﬁc_oancm as @ ,, 'SS3IPPY,.)3UITOIAA D|0SU0)
usyy

0 < JunoH’ .&Eo%cm 9s os|ypuy (buyjoN s} sjuiodpuz-as) JoN Ji
(SWeNas B ,, :aweN, JauIsjupn 3josuo)
1003 U} as yoe3 104
| Anu3aoiInies sy s wig
{(JunoDJj0D3s 2, pUNO SHNSIY, JaUITIUIN 'B|OSUO)
sjnsal poday ,

o=<vc.n_ PUIJAIBS = UOROSJ|0DANUTIDIAIRG SY JjODSS Wi
'8doos ay) uiypm Jaly sy Buiyoyew sanpua e puty

1}l = JoYlIJ puIJAIaS

([JolULd 20WO, Bxlf BWeY LiBjuLd,)ISHIHYORY MIN SY Jojy Wig
..metn_q 30O, Yum suibaq aweu ayj asaym siajuud soj sa)i4

:mc.&oz .09, '10001014QY maoowmﬁmhocoo
. -)ado2gaja10uo)) MaN)ppY sadoag pui4AIas
mo*mamo _mno.m m£c.bouoo=oo>ao<mc.w= cohmmwou %omaw..

hwoc_u.mowamw MON SY PUIJAISS Wi(]
J9PUIJBVIAISG B 3se}03(] ,
(Javisyidyory gng

E IR LT TR i

WAL dbs AR 4 AW . suMAr | L AR g

VAT P AN T U ALY S IATA MLt gt N4 - e e 8 e e g s ren ATV g -~

e e A 1 Pl CT AT AT NI e & A, eEda

CA 02501718 2005-04-18

14/19

p) DL

'()oAeg 82IAIoS
‘2doos paijioads ay) ot J/
bw:ocecogm UOIBULIOJUl B2IAISS B} ysiand //

'(do)ppy sjuiodpu3-92iAIas
(inu oEmzw:Eoms_ JuswiuoliAug)ulodpug mau = da juiodpuz
‘8o1uBs ay) buisssooe 10 ssalppe ay) 0) 8duaiayal Julodpus UB PPy /f

‘(adA .rmo_aoww_asmm)a0BHSJUIBOINISS MBU = 9dA | 90IAIBG BOIAIES
‘Auadosd adA j aoinleg ay) //
m:_uwm AqQ paijioads st aoialas au) jo adA} au| //

. ‘Aayjaoiniagajdwes = A9y aoiAlos
"8uo wumhmcmm Aew sjooojoid sawos ‘Aay anbiun e ubissy //

(_ooo“o,iavmw.oaoow&&omoo)8d0o0g8)810u0) Mau)ppy sadoag asinas
‘ojui Aijue 8o1AJ8s Sy ysiignd 03 8doos sy} ppy //

'()Anugeoineg mau = 20iIA19s Aljugeoineg
1o9iqo AuganiAleg mau e sjenue)suy //

}

(JoAeg pioa onels

”c@c_wa L (pinomaN pino = Aeysoiniegajdwes Buils oiels

WwLIVCLLLY 1603-0836-vYPY-1 L.3-GV8YIdG .. = adA j eoiuagajdwes Buus Jsuod

"'"'"W"'-'4-‘=‘“AMW<-WMW_\WQ...m-Mﬁ.-..-..._ i te m e

’ R L e R g Y T L A T e e N S e S L ST

CA 02501718 2005-04-18

15/19

9AES, gng pu3

()aneg-a0inIBs
‘adoos payjioads ay) o,
Aisnouosyouds uogeuwsojul 821AI9S 8] ysiiand

| (da)ppy sjutodpuz-aoinias
(BuIYION 'aWBNauIyoeWy JuswuosiAuUIjulodpug maN Sy de wig
"S0IAISS BY) mc_mmwoom 10§ SSaIppe 8Y) 0} 8ouadiajal Juiodpus ue ppy ,

(8dA | @oinIegBjdWeS)a0e1BIUIRDIAIBS MON = 9dA | 90IAISS 9DIAISS
‘Auadoud adA j 8oialag ay;
bumes Ag payioads si ao1ales ay) Jo adA} ayy |

Aayeoiniegaidwes = Aoy aoinies
‘8uo ajesauab Aews sjooojoid swos ‘Aey anbiun e ubissy

((jJooojoiq4dpss adoagselaroun))adosgsainuo)) M3N)PPY $2d02S 8dIAISS
~"ojui Ajus soines siyj ysiignd o} adoos ay ppy,

AlJU3301AI8G MBN SY 901AJBS Wi
108(qo Aljugaoineg mau e ajenuesy)
(Jeneg gng paseys

()buinso ._..ov_:ogmz.v_:o = buing m< Aoyaoiniegajdwes paseys

| WAR ZANRR AN
-0836-v¥PY-1 L/3-8V8Y 446G, = Bulig sy adA | aointegajdwes jsuo)

A T G AL g

CA 02501718 2005-04-18

16/19

9) 9L

()a1919() 901A18S
'28d0os payioads ay) wol //
>_m:oco..co:>m UofjewLIojul adIAIas ay} a)alaq //

(,ooouo.&%mw.maoommum‘_ocou }2d00ga}a10u0) Mau vnu,q.moaoom.oo_zwm
"WoJlj 3VIAIBS SiY} a8iap 0) adoos ay) ppy //

Aayjeoiniagajduwies = A9y 90iAIaS
Qm_mu 0} 82IAIaS 8Y) Jo Ay anbiun ayy Ajioads 4/

m {)A1JuToIAIG MBU = m.o_aow Au3a0IAI8g
108iq0 Anu3adiAIeS MaU B ajelue)suy J//

}

()a1e|aQ pioa oyess

oy s drrdelaniccimmens = s smans « . . P S AN Y e AMTee 1%a 804 A

CA 02501718 2005-04-18

17/19

2] DFE

Sj8|e(, qngS pu3

()sjeleQ aoinies
‘2doos paiyioads ayj woly
AjSnOuUOIYOUAS uoljewLIojUl 0IAIS Y] 9j9la(] ,

((jo00)01ddpsg adooga}aisuos))edoogs)aiouos)
MIN)PPY s2d0og a2iIAIas
WO} 80IAI8S SiY) a)9|ap 0] adoos ay} ppy

Aoyjaoiniagajduwes = A9)} aoialas

'8}ajap 0} 801AI8S 3y} Jo Aay anbiun ay) Aoadg

AUZa0IAIBG MBN SYY S0IAIaS Wi
199(qo Au380IAI8S MBU B S)eluelsuy)

()a1ejeQ gns

Lok

CA 02501718 2005-04-18

18/19

{
| {
Aoy [o Jseoinag e ‘adAjajepdnys
({1 }=Aaxn{0}odA 1 s1epdn, Jouralum sjosuo)
‘9184 ajepdn adIAI3S 3Y) JjpueH //
}

3 sbiyjuangsiepdnaoieg ‘Japuas 109/qo Jisjpuel pioa mzﬁm ajeaud
‘ayebaiap syl Yum pala)sibal Sem jey) uoliouny yoeqgjeo ayj st Siyy //

{
Liejpuey =- ajepdnoedinIeg JBpuy
w&mca: 8.23 10} 9)ebajap aij) Woi} JSjPULY JNO SAOUISY //

}

(yaquosgnsuf pIoA anejs ognd

{
| sjpuey =+ 8jepdNadiAIag Iapuy
'sajepdn ao1AIes Jo} 9jebajap ay) o} Jejpuey sno ppY //

(JYHOMJONSWOH sadA } adiaBguUowILIc?)
)12l Ja1dwns mau = a4 1epul
- { 1020)014dpsS adooga)aiou0)
}ad0og21310U0) MBU)PPy Sad0ag 18puUly
mx..ozamc SLUIOY DJISBD, 10} 00| 0} Japul ay} azienuy //
}

()aquosgng pioA oijels Jlgnd
. {)19pU1 JOIIAIBS MDU = JOPUI) JBPUI4adIAIBS Jljels djeAud
‘(JO|PUBH)JO|PUBHIUBATSIEPANSOIAIDG JOPUIJODINIBS MBU
= Jojpuey JojpueHIuaATa}epdNadIAIRG JBPUIJSDIAISS JNjels ajeAud
| 'SINJ20 oAl sjduweg ay) uo ajepdn
U JO LUOIEeJYNOU B aUH) YOBa Pajjed aq jim ajebajap siyy /7
}

sjdweguondiosqng ssejo pajeas djgnd

-~ - e g gl ol AT VAP MFTR, =t .0 ceme mes @ o o ces wesees

"WM‘WWM"H O TP, [LR

CA 02501718 2005-04-18

19/19

ajdweguonduosqng, ssej) pu3

. J9jpueH, gng puj
(Asy(0)seomsag e "adA | sjepdn’a
~“i}=Aev), 7 qeLaA 2 {0}adA i atepdn,)auriaiip ajosuo)
‘3iay ajepdn a2iA19S aY] ajpueH ,

(sbinyuangajepdnacialeg sy @ [eAAYH
~ '108lq0O sy Japuas jeahq)isipueH QNS paseys aleAlid
‘ajebajap ay) yum pasasibal sem Jey; uonouny yoeqyed ay; st siyy ,

aquasqnsun, gng pu3
JsjpueH JOSSaIppY 'SjepdNasinieg 1apul JajpueHaAoWwaY
‘sajepdn 82iA13s 10} ajebajap 8y} w0y Jsjpuey N0 SA0WIAY ,

()aguosgnsuf) qng paJseys diagnd

aquosqng, gng pu3j
13jpuel JOSSaIppY ‘BjepdadiAIag 1apuy JBjpueHpPPY
‘sajepdn 92IA9S 10} 3)ebaiap oy} 0} Ja|puey N0 PPV,

(>HoMIaNBWOH sadA | 20IAIBSUOWIWIOD)IBYI421dWIS MON = IS4 Japul
((1020}1014dpsq ad02ga)a10u0) }adoaSa)a10u0)
M3N)PPV sad00g 1opuly
'SHJOM]SU SUIOY B{ISED 10] HOO] O] Japuly 3y azZijeliui
(Joquosgns gQng paseys diqnd

JOPUIJOIAIIS MBN SV JSPUY PaleyS 3jeAlld

'SIN320 INSQadwes ay; uo ajepdn
UE JO UOHIBOYROU € 3lul} yoea pajjed aq {jim aebajep siy]

ajidweguonduosqgng ssej) ajgejsayujioN ostiqnd

TSR SN ST LS YTV IRIVIE S AT SN CELITC S LMY P oy w1 W0 Samerrihd srybiebuedtih vl >

Pl T A S b eI AW W SRS e m o, g mpes s sy

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings

