Title: A COG OF A COGGED BELT, OF A BELT WITH A COGGED GUIDE, AND A BELT WITH A COGGED GUIDE

THUS OBTAINED

Abstract: A cog of a coggd belt, or of a belt with a coggd profile, for conveyor organs or for transmission of drive, which in a central region (4) thereof affords a fissure (5) solely destined to at least locally increase a degree of flexibility of the belt (1) or belt with a coggd guide in a region thereof exhibiting the cog (2). A belt with a coggd guide comprising cogs of the described type is also described.
TECHNICAL FIELD

The present invention relates to the technical sector of cogged belts or belts with a cogged guide of organs for transmission of drive or conveyor organs, destined to guide and/or for application to synchronous/asynchronous conveying of articles. In particular, the invention relates to the specific conformation of cogs for cogged belts and belts with a cogged guide.

BACKGROUND ART

Cogged belts (see the example of figure 1, in which a length of a cogged belt is illustrated) can be made of a thermoplastic and be used for enmeshing with corresponding cogged pulleys in drive transmission and/or in synchronous/asynchronous transport of articles.

Cogged-guide belts are also used in drive transmissions or for conveying articles, and comprise a base belt to which are applied, for example on a side thereof, one or more longitudinal cogged guides, parallel to one another and of a limited width; in particular, cogged guides can be cogged belts applied by gluing, heat-welding or high-frequency welding to a base belt, which are destined to engage in corresponding circular channels afforded in the relative winding pulleys of the belt; the cogged channels are hollow or cogged respectively for asynchronous or synchronous applications (the pulley is destined to enmesh with the belt) of drive transmission or conveying of articles; in both cases, however, the cogged belts have a self-centring effect and, therefore, act as guides for the
corresponding belt with respect to the pulleys the belt is wound upon.

A type of belt having one or more cogged guides is known from Italian patent application no. BO2007A000275, owned by the present applicant; each cogged guide of this specific belt comprises a succession of belts that are reciprocally separated from one another and applied by fusion to the base belt, for synchronisation and self-centring applications; the fact that each cog applied to the base belt is directly separate from the adjacent one in the succession gives the cogged guide belt an overall greater flexibility with respect to known technical solutions at the moment of filing of the above application (i.e. the technical solutions referred to above).

In this technical sector, however, there emerges a need to give greater flexibility to the cogged belt and to belts with a cogged guide or in any case having a cogged profile, for example in order to enable use of smaller-diameter pulleys with the general aim of containing masses and costs of the drive transmission organs and conveying of articles, without this compromising the technical-functional characteristics of the cogged belts and the above-mentioned belts with cogged guides.

DISCLOSURE OF INVENTION

In the light of the above, an aim of the present invention is to provide a new type of cog for cogged belts with a cogged guide, or in any case provided with a cogged profile, which is able to give the belts a greater flexibility with respect to known-type solutions, without this prejudicing the relative technical-functional characteristics of resistance, reliability and working life.

A further aim is to provide a technical solution the costs of which, either directly or indirectly connected to its implementation, are relatively contained in relation to the advantages provided.

A further aim of the present invention consists also in providing a new type
of cogged-guide belt which comprises, entirely or in part, the cogs of the new type as described above, such that the belt takes on overall a greater flexibility with respect to known-type solutions, without this compromising the relative technical-functional characteristics of resistance, reliability and working life. Further provided is a belt with a cogged guide, the costs of which, directly or indirectly connected with its implementation, are relatively contained in relation to the advantages provided.

The above-mentioned aims of obtained by: a new type of cogs of a cogged belt or belt with a cogged profile for conveyor organs for drive transmission, which cogs are characterised in that each of the cogs exhibits, located in a central region thereof, a fissure of a predetermined depth and conformation, destined only to at least locally improve a degree of flexibility of the belt or the cogged belt, where the cog is located; and a new type of belt with a cogged profile, comprising a base belt on which a cogged profile is applied, for example at least a cogged guide constituted by a cogged belt or a succession of cogs, the belt with a cogged profile being characterised in that at least one of the cogs of the cogged profile is of a type described in the content of one of claims from 1 to 8.

BRIEF DESCRIPTION OF THE DRAWINGS

The characteristics of the invention which do not emerge from what is set out above will better emerge from the following, in agreement with what is stated in the claims and with the help of the accompanying figures of the drawings, in which:

figure 1 is a lateral view of a length of cogged belt of known type;

figure 2 is a lateral view of a length of cogged belt comprising only the cogs of the invention;
figure 3 is a lateral view of a further length of cogged belt, also comprising only the cogs of the invention, in a further embodiment thereof;

figure 4 is a perspective view, in a different scale to the preceding figures', of a belt with a cogged guide, also an object of the present invention, comprising only the cogs of the invention;

figure 5 is a lateral view of the belt of figure 4;

figure 6 is a lateral view of a belt such as the one in figure 4, in which the fissure fashioned in the cogs exhibit a greater depth;

figure 7 is a perspective view, in the same scale as in figure 4, of a further embodiment of the belt with a cogged guide, also an object of the present invention, comprising only the cogs of the invention;

figure 8 is a lateral view of the belt of figure 7;

figure 9 is a lateral view of a belt such as the one in figure 7, in which the fissures fashioned in the cogs have a greater depth.

BEST MODE FOR CARRYING OUT THE INVENTION

With reference to figures 2, 3, 1 denotes in its entirety a cogged belt which comprises for example only cogs 2 according to the present invention; the cogged belt 1 comprises a base 3 of a given thickness which enables a reciprocal connection of the cogs 2.

Each cog 2 affords, fashioned in the relative central region 4 thereof, a fissure 5 having predetermined dimensions and conformation, which originates at the top of the cogs 2, and develops internally thereof; in particular, the fissure 5 has a V-shape and extends for the whole width of the cog 2, in a transversal direction to the development of the cogged belt.
1, and has a depth which is given by the sum of the height of the cog 2 and a part of the thickness of the base 3.

In the embodiment illustrated in figure 3, the fissure 5 is U-shaped and extends over the whole width of the cog 2 in a transversal direction to the development of the cogged belt 1 and has a depth which is substantially equal to the height of the cog 2.

By effect of the fissure 5, which involves each cog 2 of the invention, two lateral sections 21, 22 comprising respectively the flanks of the cog 2 are defined.

The presence of the fissures 5 in the central region 4 of the cog 2 does not influence the functionality thereof, so that the cog 2 can couple well with the corresponding cogs of a cogged pulley (not illustrated).

The fissures could have different conformations and depths (for example extending only to 70% of the height of the relative cog).

In addition, with the present invention a new type of belt is defined, with a cogged guide 10 comprising the cogs 2 of the invention, in agreement with what is illustrated in figures from 4 to 9: the belt with the cogged guide 10 comprises a base belt 6 to which a cogged guide 7 is applied for example by fusion, which cogged guide 7 can be a cogged belt 1 (substantially of the same type as the cogged belt illustrated in figure 2), see figures 4 to 6, i.e. can be a succession 11 of cogs 2 which are reciprocally separated from one another, see figures 7 to 9.

Figure 5 is a lateral view of the belt with the cogged guide 10 shown in figure 4. In the example one only cogged guide 7 is shown (but in general they can be a plurality) which is constituted by the cogged belt 1 comprising, for example, only cogs 2 according to the invention and by a base 3 for reciprocally connecting the cogs 2. Each cog 2 affords a fissure 5 in a relative central region 4 thereof, the fissure 5 having predefined
dimensions and conformation and originating at the top of the cog 2 itself, developing internalwise thereof. In particular, the fissure 5 is V-shaped, extends for the whole width of the cog 2 in a transversal direction to the development of the coggd belt 1 and has a depth which is given by the sum of the height of the cog 2 and part of the thickness of the base 3.

Figure 6 is a lateral view of the belt with the cogged guide 10 of the type shown in figure 4, in which the fissures 5 exhibit a depth which is equal to the sum of the height of the cog 2 and the thickness of the base 3, thus reaching the base belt 6. In this way, the cogged guide 7 applied to the base belt 6 comprises a succession of elements 12 separated one from another, each of which comprises two sections 22, 21 of adjacent cogs 2 in reciprocal communication via the corresponding base portion 3 delimited between the fissures 5 of the adjacent cogs 2. The result obtained is a belt with a cogged guide 10 which comprises a succession of elements 12 separated from one another and applied on the base belt 6, which elements together define a same number of cogs 2 according to the invention which are able to couple with a pulley having a cogged channel (not illustrated) for example for applications of a synchronised type. A belt with a cogged guide 10 of this type exhibits a considerable flexibility thanks to the mutual separation of the elements 12 which functionally constitute the cogged guide 7.

Figure 8 is a lateral view of the belt with a cogged guide 10 shown in figure 7; also in this example a single cogged guide 7 is shown which is constituted by a succession 11 of cogs 2 which are separated from one another (in this case a reciprocal connection base for the cogs is missing). Each cog 2 exhibits, formed in a central region 4 thereof, a fissure 5 of predetermined size and conformation, which originates in the top of the cog 2 and develops internally thereof; by way of example, the fissure 5 has a V-shape, extends over the whole width of the cog 2 in a transversal direction to the development of the succession 11 of cogs 2 and is of such
a depth that for example it is greater than 70% of the height of the cog 2.

Figure 9 is a lateral view of the belt with the cogged guide 10 of the type shown in figure 7, in which the fissures 5 are as deep as the height of the cog 2 and for this reason reach the base belt 6. In this way, a belt with cogged guide 10 of this type exhibits a still greater flexibility with respect to the solution of figure 8, as each cog 2 is "divided" in half into two lateral portions 21, 22, reciprocally separated.

It is specified that a cogged belt or a cogged guide belt can exhibit totally (see figures from 2 to 9) or partially (a solution not illustrated in the figures of the drawings) the cogs 2 of the described type in the invention; where a cog of the type of the invention is used, at least locally, greater characteristics of flexibility of the cogged belt or the belt with the cogged guide have been found, with respect to known-type solution. By way of example, the fact of including a regular pattern (i.e. one cog with the fissure 5 every one, two or more cogs in the prior art) or a total implementation of the cogs of the invention in a cogged belt or a belt with a cogged guide has been shown to provide a homogeneous and optimal increase of the flexibility of the cogged belt or belt with cogged guide.

The advantage of the present invention consists in having defined a new type of cog for cogged belts and for belts with a cogged guide or in any case provided with a cogged profile, which is able to give the belts a greater flexibility with respect to the solutions of known type, without this compromising the relative technical-functional resistance characteristics, as well as reliability and working life. In agreement with the prefixed aims, the costs too, directly or indirectly connected to the implementation of the present technical solution, are seen to be relatively contained in relation to the advantages provided.

The greater flexibility of the cogged belts or the belts with cogged guides or in any case provided with a cogged profile comprising the cogs of the
invention enables an advantageous considerable reduction, with respect to the known-type solutions, of the diameters of the winding pulleys, with all the positive implications this involves, i.e. a reduction in weights, sizes and therefore also costs of the corresponding conveyor or drive transmission organ used by the cogged belts or belts with cogged guide.

A further advantage of the present invention consists in the fact that the presence of the fissure 5 in the cogs 2 does not enable industrial dusts, for example abrasive powders, to become compacted in the corresponding spaces of the cogged pulleys, i.e. the pulleys having cogged channellings (in the case of asynchronous/synchronous self-centring) with which the cogs 2 couple to and progressively damage the pulleys, differently to what exists in the prior art. With the present invention, the abrasive powders collect in the fissure 5 of the cog 2 and are expelled automatically by force of gravity during the movement of the corresponding cogged belt or belt with a cogged guide or in any case with a cogged profile.

A further advantage of the present invention consists in having defined a new type of belt with cogged guide comprising, in whole or in part, the cogs 2 of the new type of cog according to the invention; in this way, the belt takes on overall a greater flexibility with respect to the solutions of known type, without this compromising the relatively technical-functional qualities of resistance, reliability and working life. Also, the costs, directly or indirectly connected to the implementation of the belt with cogged guide, are relatively contained in relation to the advantages provided thereby.

Experts in the sector will note that the creation of fissures in the cogs of a cogged belt of a belt with a cogged profile of the present invention is easy to perform using means and techniques which are substantially of known type.

In agreement with the contents of the claims, the ambit of protection sought for the present invention extends, in the sector under examination,
any type, class or category of cogged belt, of belts with cogged guides or in general belts provided with any cogged profile comprising the type of cogs 2 which are the object of the present invention. It is however possible to use the type of cogs of the invention for example with cogged belts in which metal reinforcement elements are sunk.

The above is described by way of non-limiting example, such that any variants of a practical-applicational nature are understood to fall within the ambit of protection of the invention as described herein above and in the following claims.
CLAIMS

1). A cog of a cogged belt, or of a belt with a cogged profile, for conveyor organs or for transmission of drive, characterised in that in a central region (4) thereof it affords a fissure (5) of predetermined dimensions and conformation, solely destined to at least locally increase a degree of flexibility of the cogged belt (1) or belt with a cogged guide in a region thereof in which the cog (2) is located.

2). The cog of claim 1, characterised in that the fissure (5) extends over a whole width of the cog (2) in a transversal direction to a development of the cogged belt (1) or belt with a cogged profile.

3). The cog of claim 1 or 2, the cogged belt (1) or belt with cogged profile comprising a base (3) of a given thickness for reciprocally connecting up the cogs (2), characterised in that the fissure (5) afforded in the cog (2) is of an equal depth to a depth of the cog (2).

4). The cog of claim 1 or 2, the cogged belt (1) or belt with cogged profile comprising a base (3) of a given thickness, for reciprocally connecting up the cogs (2), characterised in that the fissure (5) made in the cog (2) has a depth which is given by a sum of a height of the cog (2) and at least a part of a thickness of the base (3).

5). The cog of claim 1 or 2, characterised in that the fissure (5) afforded in the cog (2) has a depth of above 70% of a height of the cog (2).

6). The cog of claim 1 or 2, characterised in that the fissure (5) afforded in the cog (2) has a depth which is equal to a height of the cog (2).

7). The cog of claim 1 or 2 or 3 or 4 or 5 or 6, characterised in that the fissure (5) is substantially V-shaped.
8). The cog of claim of 1 or 2 or 3 or 4 or 5 or 6, characterised in that the fissure (5) is substantially U-shaped.

9). A belt with a cogged profile, comprising a base belt (6) on which a cogged profile is applied, characterised in that at least one of the cogs of the cogged profile is of a type according to one of claims from 1 to 8.

10). The belt with a cogged profile of claim 9, characterised in that the base belt (6) comprises at least a cogged guide (7) for centring the belt with a cogged profile on an organ with which the belt couples and/or for reasons connected with synchronised advancement.

11). The belt with a cogged profile of claim 10, characterised in that the at least a cogged guide (7) comprises a plurality of cogs (2) separated from one another and applied to the base belt (6) in a succession (11).
A. CLASSIFICATION OF SUBJECT MATTER

INV. F16G1/28

According to International Patent Classification (IPC) or to both national classification and IPC.

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

F16G

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>FR 999 236 A (JACQUES PINCHART) 29 January 1952 (1952-01-29) figures 1-3</td>
<td>1-11</td>
</tr>
<tr>
<td>X</td>
<td>GB 2 116 287 A (PIRELLI) 21 September 1983 (1983-09-21) figures 1-4</td>
<td>1-2,7,9</td>
</tr>
<tr>
<td>Y</td>
<td>figures 1-9</td>
<td>10-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D Further documents are listed in the continuation of Box C

X See patent family annex

* Special categories of cited documents

1A* document defining the general state of the art which is not considered to be of particular relevance

E* earlier document but published on or after the international filing date

L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O* document referring to an oral disclosure, use, exhibition or other means

P* document published prior to the international filing date but later than the priority date claimed

T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X* document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y* document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

A document member of the same patent family

Date of the actual completion of the international search

17 April 2009

Date of mailing of the international search report

24/04/2009

Name and mailing address of the ISA/

European Patent Office, P B 5818 Patentlaan 2 NL - 2280 HV Rijswijk
Tel (+31-70) 340-2040,
Fax (+31-70) 340-3016

Authorized officer

Das Neves, Nelson
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member(s)</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR 999236 A</td>
<td>29-01-1952</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>US 4283184 A</td>
<td>11-08-1981</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>GB 2116287 A</td>
<td>21-09-1983</td>
<td>AR 231181 A1 28-09-1984</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25-07-1991</td>
<td>AT 393006 B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-06-1983</td>
<td>BE 895985 A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22-11-1983</td>
<td>BR 8301022 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-09-1983</td>
<td>DE 3306488 A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>01-03-1984</td>
<td>ES 270678 Y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>02-09-1983</td>
<td>FR 2522378 A1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03-12-1986</td>
<td>IT 1149695 B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29-03-1994</td>
<td>JP 1832590 C</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-09-1983</td>
<td>JP 58160649 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>03-03-1989</td>
<td>MX 158781 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-09-1983</td>
<td>NL 8204682 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>04-10-1993</td>
<td>SE 469909 B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27-08-1983</td>
<td>SE 8300998 A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-09-1986</td>
<td>US 4614509 A</td>
<td></td>
</tr>
<tr>
<td>DE 3510740 A1</td>
<td>25-09-1986</td>
<td>NONE</td>
<td></td>
</tr>
<tr>
<td>DE 1531867 A1</td>
<td>15-01-1970</td>
<td>NONE</td>
<td></td>
</tr>
</tbody>
</table>