(74) 代理人：特許業務法人 光陽国際特許事務所
(KOYO INTERNATIONAL PATENT FIRM); 〒1620832 東京都新宿区戸隠町 1-8 番地 日交神楽坂ビル Tokyo (JP).

添付公開書類：
- 国際調査報告（条約第21条(3)）
明細書

発明の名称：有機エレクトロミネセンス素子、その製造方法、照明装置、表示装置及びリン光発光性粒子

技術分野

[0001] 本発明は、有機エレクトロミネセンス素子、有機エレクトロミネセンス素子の製造方法、照明装置、表示装置及びリン光発光性粒子に関する。

背景技術

[0002] 有機エレクトロミネセンス素子（以下、有機EL素子ともいう）は、電極と電極の間を厚さわずか0.1 μm程度の有機材料の膜で構成する全固体素子であり、かつ、その発光が2~20V程度の比較的低い電圧で達成できることから、次世代の平面ディスプレイや照明として期待されている技術である。

[0003] リン光発光を利用した有機EL素子の発見により、以前の蛍光発光を利用するそれに比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成に関する研究開発が世界中で行われて（例えば、特許文献1、非特許文献1~3参照）いる。

[0004] 一方で、有機EL素子の製造方法には大別して2つの方法、真空化での蒸着による製膜（ドライプロセス）、溶液の塗布・蒸着（ウエットプロセス）が知られており、大面積化や高生産性等の点で優れたウエットプロセスが注目されている。

[0005] 現在主流となっている多層構成の有機EL素子においては、塗布による積層方法や塗布積層可能な材料の開発が求められ、特に実用上上の観点からは溶液安定性や製膜性の等の点でまだ不十分であり、更なる改良技術が必要である。

[0006] 特に最も重要な役割を担う発光ドーパントの水分や酸素等の影響からの脱
却は、プロセス環境の負荷低減と密接な関わりを持つ重要な課題である。

最近、ガラスカプセル発光材料（例えば、非特許文献4、5参照）に関する報告はあるが、有機発光材料と有機発光材料を保持する媒体としてコロイダルシリカやシリカエアロゲルを用いて多孔質な発光層を形成し、かつ、発光層の屈折率を1.10以上1.50未満に調整した有機EL素子（例えば、特許文献2参照）が知られている。

しかしながら、上記特許文献2に記載のよう、空孔率の高いコロイダルシリカやシリカエアロゲルを用いて形成された発光層は、物理的な耐久性が弱く（傷が発生しやすく、発光欠陥等が発生しやすい）、また、前記発光層を用いて形成された有機EL素子は、高い光取り出し効率が得られる反面、発光層の発光寿命や駆動電圧が高くなってしまい等の問題点があった。

先行技術文献

特許文献

【010】特許文献1：米国特許第6,097,147号明細書
特許文献2：特開2007−266243号公報

非特許文献

非特許文献2：M. A. Baldo et al. , Nature, 403巻、17号、750−753頁 (2000年)
非特許文献3：S. Lamansky et al. , J. Am. Chem. Soc., 123巻、4304頁 (2001年)
非特許文献4：Oke Hee Kim et al. , ACS Nano, 4巻、3397頁 (2010年)
発明の概要
発明が解決しようとする課題
[0012] 本発明の目的は、水分、酸素等、これまで有機EL性能に対する懸念が非常に高かった外的要因に対し、高い耐性を有し、長寿命の有機エレクトロルミネッセンス素子、該素子製造方法を提供し、かつ、該素子を備えた照明装置、表示装置、及びリン光発光性粒子を提供することである。

課題を解決するための手段
[0013] 本発明の上記目的は、以下の構成により達成された。
[0014] 1. 隣極と陰極の間に挟持された少なくとも一層の有機化合物層を有する有機エレクトロルミネッセンス素子において、
 該有機化合物層の少なくとも一層が発光ドーパント材料を含且、該発光ドーパント材料が、下記一般式 (1) で表される化合物をソル・ゲル反応させて得られたリン光発光性粒子であることを特徴とする有機エレクトロルミネッセンス素子。
[0015] 一般式 (1)
 \[D - (L)_a - M_1 - (X)_b \]
 式中、D はリン光発光性基を表し、L は2 個の連結基を表し、M は金属元素を表し、X はソル・ゲル反応可能な官能基を表し、a は1以上の整数、b は1以上の整数を表す。
[0016] 2. 前記一般式 (1) のD が下記一般式 (10) で表される化合物から導出される1 個の基であることを特徴とする第1項に記載の有機エレクトロルミネッセンス素子。
一般式 (10)

d) 前記発光ホスト化合物が下記一般式 (2) で表される化合物であることを特徴とする第 5 項に記載の有機エレクトロル ミネッセンス素子。
一般式(2)

式中、A は、N (R₁)、酸素原子、硫黄原子又はSi (R₂) (R₃) を表し、B₁～Bsは、各々C R₄又はN 原子を表す。R₁～R₄は、各々水素原子又は置換基を表し、R₂とR₃、及び隣接するR₄同士が結合して環を形成しても良い。B₁～Bsのうち複数の箇所がC R₄である場合、各々のR₄は、同一でも、異なるっても良い。

7. 第1項から第6項のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。

8. 第1項から第6項のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。

9. 第1項から第6項のいずれか一項に記載の有機エレクトロルミネッセンス素子を製造するにあたり、前記発光ドーパント材料を含有する有機化合物層の少なくとも一層を湿式法（ウエットプロセス）により製膜、形成する工程を有することを特徴とする有機エレクトロルミネッセンス素子の製造方法。

10. 第1項に記載の一般式 (1) で表される化合物をゾル・ゲル反応させて得られたことを特徴とするリン光発光性粒子。

発明の効果

本発明の有機EL素子材料は、従来の有機EL素子材料に比べて、水分、酸素など、これまで有機EL性能に対する懸念が非常に高かった外的要因に対し、高い耐性を有し、かつウエットプロセスで可能となったことにより、コストパフォーマンスが高く、かつ、高性能（外部取り出し量子効率が高く、長寿命）な有機EL素子を提供することが可能になった。併せて、該素子を有する照明装置や表示装置を提供することが可能になった。
図面の簡単な説明

[0028] [図1]有機EL素子から構成される表示装置の一例を示した模式図である。
[図2]表示部Aの模式図である。
[図3]画素の模式図である。
[図4]パッシブマトリックス方式フルカラー表示装置の模式図である。
[図5]照明装置の概略図である。
[図6]照明装置の模式図である。

発明を実施するための形態

[0029]本発明の有機EL素子においては、請求項1～6のいずれか一項に記載の構成を有することにより、水分、酸素、不純物など、従来、素子性能に対する懸念が非常に高かった外的要因に対し、高い耐性を示す有機EL素子を提供することができた。

[0030]詳しくは、本発明の一般式(1)で示される繰返し単位からなる発光ドーパント材料を用いると、外部取り出し量子効率が高く、発光寿命の長い有機EL素子を提供することができ、併せて、該製造方法により製造された有機EL素子、該素子を具備した表示装置及び照明装置、及びリン光発光性粒子を提供することができた。

[0031]以下、本発明の有機エレクトロルミネッセンス素子の各構成要素の詳細について、順次説明する。

発光ドーパント材料

本発明に係る発光ドーパント材料は、上記一般式(1)で表される化合物をゾル・ゲル反応させて得られたリン光発光性粒子であり、該リン光発光性粒子の好ましい形態はナノ粒子であり、該ナノ粒子の粒径は、1～100nmの範囲が好ましく、更に好ましくは、10～50nmの範囲である。

[0033]ここで、本発明に用いられるナノ粒子の粒径は、透過電子顕微鏡(JEM-2010F)により測定した。

[0034]続いて、本発明に係る発光ドーパント材料の前駆体である一般式(1)で表される化合物について説明する。
《一般式（1）で表される化合物（前駆体ともいう）》

一般式（1）において、Dはリン光発光性ドーパント残基（詳しくは、リン光発光性ドーパントから導出される残基ともいう）を表す。

ここで、リン光発光性ドーパントとは、励起三重項からの発光が観測される化合物であり、具体的には、室温（25℃）にてリン光発光する化合物であり、好ましくは元素周期表で8族～10族の金属元素を含有する有機金属錯体である。リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。

尚、リン光量子収率について、後述する有機EL素子の構成層のところで説明する。

一般式（1）において、Dで表されるリン光発光性ドーパント残基としては、上記一般式（10）で表される化合物から導出される1個の基が好ましい。

（一般式（10）で表される化合物から導出される1個の基）

一般式（10）において、A1で表される、P—Cと共に形成される芳香族炭化水素環としては、ベンゼン環、ピフェニル環、ナフタレン環、アズレン環、アントラセン環、フェイナントレン環、ピレン環、クリシン環、ナフタセン環、トリフェニル環、O-テルフエニル環、m-テルフエニル環、p-テルフエニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ベンタセン環、ピレン環、ベンタフェン環、ピセン環、ビレン環、ピラントレン環、アンスラアントレン環等が挙げられる。中でも、ベンゼン環が好ましい。

尚、これらの環は更に、後述する置換基を有してもよい。

一般式（10）において、A1で表される、P—Cと共に形成される芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリシン環、ピリダシン環、ピリミシン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサシアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール
環、ベンゾイミダゾール環、ベンゾチオフェン環、ベンゾチアゾール環、ベンゾキサゾール環、キノキサゾール環、キナゾリシ環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリシン環、カルバゾール環、カルボリン環、ジアツカルバゾール環（カルボリン環を構成する炭素原子の一つが更に窒素原子で置換されている環を示す）等が挙げられる。尚、これららの環は更に後述する置換基を有していても良い。

一般式（10）において、A2 は、Q—N と共に形成される芳香族複素環としては、例えば、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアゾン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ペンゾイミダゾール環、ペンゾチアゾール環、ペンゾキサゾール環、キナゾリシ環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリシン環、等が挙げられる。なお、これらの環は更に後述する置換基を有していても良い。

置換基

上記のA1で表される芳香族炭化水素環又は芳香族複素環が有していても良い置換基、また、A2で表される芳香族複素環が有してもよい置換基としては、置換基の例としてはアルキル基（例えば、メチル基、エチル基、プロピル基、イソプロピル基、tertプチル基、ベンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等）、シクロアルキル基（例えば、シクロペンチル基、シクロヘキシル基等）、アルケニル基（例えば、ビニル基、アリール基等）、アルキニル基（例えば、エチニル基、プロパニリル基等）、芳香族炭化水素基（芳香族炭化水素環基、芳香族炭素環基、アルール基等ともいい、例えば、フロニル基、p_クロロフエニル基、メチル基、トリル基、キシリル基、ナフチル基、アントリル基、アゾレニル基、アセナフチニル基、フルオレニル基、アントリル基、アンドニル基、ビフレニル基、ピフレニル基等）、芳香族複素環基（例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾ
リル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基（例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等）、オキサジニル基、ベンゾオキサジニル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フランニル基、チェニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチニル基、ジベンゾチニル基、インドリル基、カルバゾリル基、カルボニル基、ジアザカルバゾリル基（前記カルボニル基のカルボニル環を構成する炭素原子の一つが窒素原子で置き換わったものを示）、キノキサリン基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等）、複素環基（例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等）、アルコキシ基（例えば、メトキシ基、エトキシ基、プロピルオキシ基、ベンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等）、シクロアルコキシ基（例えば、シクロベンチルオキシ基、シクロヘキシルオキシ基等）、アリールオキシ基（例えば、フェノキシ基、ナフチルオキシ基等）、アルキルチオ基（例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ベンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等）、シクロアルキルチオ基（例えば、シクロベンチルチオ基、シクロヘキシルチオ基等）、アリールチオ基（例えば、フェニルチオ基、ナフチルチオ基等）、アルコキシカルボニル基（例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基、ナフチルオキシカルボニル基等）、アリールオキシカルボニル基（例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等）、スルファモイル基（例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等）、アシル基（例えば、アセチル基、エチルカルボニル基、
プロピルカルボニル基、ベンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等）、アミド基（例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ベンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ビリジルアミノカルボニル基等）、ウレインド基（例えば、メチルウレインド基、エチルウレインド基、ベンチルウレインド基、シクロヘキシルウレインド基、オクチルウレインド基、ドデシルウレインド基、フェニルウレインド基ナフチルウレインド基、2-ビリジルアミノウレインド基等）、スキルニル基（例えば、メチルスキルニル基、エチルスキルニル基、ブチルスキルニル基、シクロヘキシルスキルニル基、2-エチルヘキシルスキルニル基、ドデシルスキルニル基、フェニルスキルニル基、ナフチルスキルニル基、2-ビリジルスキルニル基等）、アルキルスキルホニル基（例えば、メチルスキルホニル基、エチルスキルホニル基、ブチルスキルホニル基、シクロヘキシルスキルホニル基、2-エチルヘキシルスキルホニル基、ドデシルスキルホニル基等）、アルリールスキルホニル基又はヘテロアルリールスキルホニル基（例えば、フェニルスキルホニル基、ナフチルスキルホニル基、2-ビリジルスキルホニル基等）、アミノ
基 例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等）、ハロゲン原子（例えば、フッ素原子、塩素原子、臭素原子等）、フッ化炭化水素基（例えば、フルオロメチル基、トリフルオロメチル基、ベンタフルオロエチル基、ベンタフルオロフェニル基等）、シアン基、ニトロ基、ヒドロキシ基、メルカプト基、シリン基（例えば、トリメチルシリン基、トリイソプロピルシリン基、トリフェニルシリン基、フェニルジェチルシリン基等）、ホスホノ基等が挙げられる。

また、これらの置換基は上記の置換基によって更に置換されていてもよい。
また、これらの置換基は複数が互いに結合して環を形成していてもよい。

一般式 \(1 \) において、\(P_1 \) \(L_1 \) \(P_2 \)で表される2座の配位子としては、例えば、置換又は無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラゾール、アセチルアセトン、ピロリン酸等が挙げられる。

一般式 \(1 \) において、\(L_1 \)は\(P_1 \)、\(P_2 \)と共に2座の配位子を形成するのに必要な原子群を表し、\(r \)は\(1 \sim 3 \)の整数を表し、\(s \)は\(0 \sim 2 \)の整数を表すが、\(r + s \)は\(2 \)又は\(3 \)を表すが、一般式 \(1 \)で表される化合物においては、特に\(s \)が\(0 \)である場合が好ましい。

一般式 \(1 \) において、\(M_1 \)で表される元素周期表における8族～10族の金属元素としては、\(M_1 \)は、元素周期表における8族～10族の遷移金属元（単に遷移金属ともいう）が用いられるが、中でもイリジウム、白金が好ましく、特にイリジウムが好ましい。

以下、一般式 \(1 \) で表される化合物から導出される1価の基の合成に用いられる該化合物の具体例を示すが、本発明はこれらに限定されない。
上記一般式 (10) で表される化合物は、例えば、Inorg. Chem. 40巻、1704~1711に記載の方法等を参照することにより合成できる。

一般式 (1) において、Lは、2価の連結基を表し、aは0以上の整数で
ある。a が 2 以上の場合は、各々の L は同一でも異なっていても良い。

[0053] L で表される 2 価の連結基としては、アルキレン基（例えば、エチレン基、トリメチレン基、テトラメチレン基、プロピレン基、エチルエチレン基、ベンタメチレン基、ヘキサメチレン基等）、アルケニル基（例えば、ビニル基、プロピニル基、ブチニル基、ペンテニル基、1-メチルブチニル基、2-メチルプロピニル基、1-メチルペンテニル基、3-メチルペンテニル基、1-エチルブチニル基、1-エチルプロピニル基、1-エチルペンテニル基、1-エチルブチツンニル基、3-エチルブチツンニル基、1-プロピニル基、1-ブチニル基、1-ペンテニル基、1-ヘキシニル基、2-ブチニル基、2-ペンテニル基、1-メチルエチニル基、3-メチル_1-ブチニル基等）、アルキニル基（例えば、エチニル基、1-ブロピニル基、1-ブチニル基、1-ペンテニル基、1-ヘキシニル基、2-ブチニル基、2-ペンテニル基、1-メチルエチニル基、3-メチル_1-ブチニル基等）、アリーレン基（例えば、o-フニル基、m-フニル基、p-フニル基、ナフタレンジル基、アントラセンジル基、ナフタセンジル基、ビレンジル基、ナフチルナフタレンジル基、ビフェニルジル基（例えば、[1, 1’-ビフェニル]_4, 4’-ジル基、3, 3’-ビフェニルジル基、3, 6-ビフェニルジル基等）、テルフニルジル基、クラントフニルジル基、キングフニルジル基、セキシフニルジル基、セブチフニルジル基、オクチフニルジル基、ノピフニルジル基、デジフニルジル基等）、ヘテロアリーレン基（例えば、カルバゾール環、カルボリン環、ジャザカルバゾール環（モノアザカルボリン環ともいい、カルボリン環を構成する炭素原子のひとつが窒素原子で置き換わった構成の環構成を示す）、トリアゾール環、ビロール環、ピリジン環、ピラジン環、キノキサリン環、チオフェン環、オキサジアゾール環、ジペンゾフラン環、ジペンソチオフェン環、インドール環からなる群から導出される 2 価の基等）、酸素や硫黄などのカルコゲン原子であってもよい。

[0054] また、上記のアルキレン基の末端又はアルキレン鎖の中に酸素原子や硫黄原子等のカルコゲン原子を有する 2 価の基や、アルキルイミノ基、ジアルキ
ルシランジル基やジアリールゲルマンジル基のような、ヘテロ原子を介して連結する基でもよい。

[0055] 中でも、好ましいのは、アルキレン基（例えば、エチレン基）や、アルキレン基の末端に酸素原子を有する2価の基（例えば、オキシエチレン基）など、アルキレン塩塩の中にカルコゲン原子を有する2価の基（例えば、エチレンオキシメチレン基）や、エチレンイミノカルポニル基、（1−エチル−4−ビニルペンゼン）−2，2」とジル基、エチレンカルポニルオキシ基などの前駆体をゾルゲル反応させて得られたナノ粒子である。

[0056] 一般式（1）において、Mは金属元素を表し、好ましくは、Si，Ti，Ni，W，Zr，Mg，Al，Ge，B，Ga，Sb，Sn，Ta，Vが挙げられ、より好ましくは、Si，Ti，Ni，Al，Zr，Snです。

[0057] （ゾル・ゲル反応可能な基）

一般式（1）において、Xはゾル・ゲル反応可能な官能基を表し、好ましくは、アルコキシ基（例えば、メトキシ基、エトキシ基、イソプロピルオキシ基、プロピルオキシ基など）、アミノ基等が挙げられる。bは1以上の整数を表すが、最大は、金属元素Mの価数＝1である。

[0058] 本発明に係る、一般式（1）で表される化合物をゾル・ゲル反応させて得られるリン光発光性粒子からなるリン光発光性ドーパント（後に、リン光発光ドーパントともいいう）は、半導体性を有することが望ましく、更に、1.0×10^2−1.0×10^{-10}\ \Omega \cdot \ mの範囲の比抵抗値を有することが好ましい。

[0059] （ナノ粒子の好ましい態様）

本発明に係る一般式（1）で表される化合物をゾル・ゲル反応させて得られるリン光発光性粒子の好ましい態様は、上記に示した、pre−CD−1−pre−CD−14のような前駆体をゾル・ゲル反応させて得られたナノ粒子である。

[0060] また、本発明に係るゾル・ゲル反応とは、上記一般式（1）で表される化合物（前駆体）の加水分解とそれに続く重縮合反応により、架橋重合体を製
造する方法であり、製造については、例えば、第5版実験化学講座等に記載
の方法を参照することにより合成することが可能である。

[0061] 上記一般式（1）で表される化合物をゾル・ゲル反応させて本発明に係る
リン光発光性ドーパントを得る工程については、後述する実施例1で詳細に
説明するが、例えば、以下に示す合成原料であるpre_CD_1を前駆体
として用い、該前駆体をゾル・ゲル反応させ、本発明に係る発光ドーパント
の一例である、CD−1を製造することができる。

[0062] 本発明に係るリン光発光性粒子は、本発明の有機エレクトロルミネッセン
ス素子のいずれの構成層に用いることができるが、特に好ましいのは発光層
に用いられることである。

[0063] 尚、本発明の有機エレクトロルミネッセンス素子の構成層については、後
に詳細に説明する。

[0064] 以下、本発明に係る発光ドーパント材料の合成原料（前駆体）として用い
られる、一般式（1）で示される化合物（本発明に係る発光ドーパント材料
の前駆体、単に前駆体ともいう）の具体例を示すが、本発明はこれらに限定
されない。

[0065]
[0066]
以下、一般式 (1) で示される化合物 (本発明に係る発光ドーパント材料の前駆体、単に前駆体ともいう) の具体例である pre-CD-1 の合成、次いで、pre-CD-1 を以下の工程 4 においてゲル、ゲル反応させて、本発明に係る発光ドーパント材料である CD-1 の合成例を示すが、本発明に係る発光ドーパント材料である CD-1 の合成例を示すが、
はこれらに限定されない。

[0068] [化7]

[0069] (工程1)

塩化イリジウム・n水和物（Ir換算1mmol）と4_（2_ピリジル
ベンズアルデヒド (8 m m o l 1. 4 6 g) 及び 2 _ フエニルキノリン (8 m m o l 1. 6 4 g) を 2 _ エトキシエタノール (3 0 m l) : 水 (1 0 m l) 混合溶媒中に加熱還流を行った。

析出した固体をろ別した後、エタノール中で水素化ホウ素ナトリウムを加え、I M l r _ 1 を得た。

（工程 2）
次いで I M l r _ 1 (0. 2 m m o l, 2 3 8 m g) 、 ピコリン酸 (0. 5 m m o l 6 2 m g) を塩基性 2 _ エトキシエタノール中で 1 2 時間加熱還流を行った。析出した固体をろ別し、I M l r _ 2 を得た。

（工程 3）
得られた I M l r _ 2 (0. 2 m m o l 1 3 6 m g) 、 t e r t プトキシカリウム (1 m m o l 1 1 2 m g) を無水 T H F (2 0 m l) に溶解し、ヨウ化アリル (2 m l) を加えた。窒素雰囲気下で 1 2 時間加熱還流を行
し、通常の処理を行い、I M l r _ 3 を得た。

（工程 4） （ p r e _ C D _ 1 の合成及び CD—1 の合成）
2 0 m l の無水メタノールに I M l r _ 3 (0. 2 m m o l 1 5 3 m g) を溶解した後、0. 5 m l のトリメトリシン、白金 / 活性炭 (1 0 % P t) を加え、窒素雰囲気下、一晩加熱還流を行った。

室温まで冷却した後、白金 / 活性炭をろ別し、母液を減圧下濃縮を行い P r e _ C D _ 1 (トルタル収率 2 0 %) を得た。

得られた p r e _ C D — 1 (0. 1 m m o l 1 0 0 m g) を 1 2 0 m l の無水エタノールに溶解した後、5 m l のアンモニア水を加え、5 0 0 r p m の速度で、2 4 時間攪拌を行った。

攪拌終了後、1 5 , 0 0 0 r p m で遠心分離を行い、本発明に係る発光 ドーパント C D — 1 (収量 2 0 m g、平均粒径 4 5 n m) を得た。

精製は、無水エタノールへの再分散後、遠心分離を行い、上澄み液を除去の工程を 3 度繰り返した。

（発光 ドーパント材料 C D _ 2 — C D — 4 の合成）
尚、上記で示したp r e _ C D _ 1からC D — 1の合成において、p r e
- C D - 2～p r e - C D - 1 4を各々用いた以外は同様にして合成するこ
とができる。

ま、本発明係る発光ドーパント材料の合成例としては、A C S N a n
o，4巻，3397頁（2010年）記載の方法や、特表2005—532
255号公報等のオルトメタル化錯体の製造方法や第5版実験化学講座（日本化学会編）等に記載の一般的な有機化学反応を適宜参照して合成すること
gできる。

有機EL素子の製造方法

本発明の有機EL素子の製造方法においては、前記一般式（1）で表され
る化合物をソル・ゲル反応させて得られたリン光発光性粒子を含有する有機
化合物層の少なくとも1層が、湿式法（ウエットプロセス）により製膜、形
成される工程を有することが好ましい。

以下、本発明の有機EL素子の製造方法の一例として、陽極/正孔注入層
/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極からなる素子の製造
方法について説明する。

まず、適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜
を1μm以下、好ましくは10nm～200nmの膜厚になるように形成さ
せ、陽極を作製する。

次に、この上に素子材料である正孔注入層、正孔輸送層、発光層、正孔阻
止層、電子輸送層等の有機化合物を含有する薄膜を形成させる。

これら各層の形成方法としては、蒸着法、ウエットプロセス（スピナ
ート法、キャスト法、インクジェット法、印刷法）等があるが、均質な膜が得
られやすく、かつ、ビンホールが生成しにくい等の点から、本発明において
は湿式法（ウエットプロセスともいう）による製膜、形成する方法が好まし
く、湿式法としては、スピンコート法、キャスト法、ダイコート法、プレー
ドコート法、ロールコート法、インクジェット法、印刷法、スプレーコート
法、カーテンコート法等があるが、精密な薄膜が形成可能で、かつ高生産性
の点から、ダイコーツ法、ロールコーテ法、インクジェット法、スプレーコー
- ト法などのロール・ツー・ロール方式適性の高い方法が好ましい。また、
層ごとに異なる製膜法を適用してもよい。

0085 これらの層の形成後、その上に陰極用物質からなる薄膜を1μm以下、好
ましくは50〜200nmの範囲の膜厚になるように形成させ、陰極を設け
ることにより所望の有機EL素子が得られる。

0086 また、順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸
送層、正孔注入層、陽極の順に作製することも可能である。

0087 このようにして得られた多色の表示装置に、直流電圧を印加する場合には
陽極を十、陰極を一の極性として電圧2〜40V程度を印加すると発光が観
測できる。また交流電圧を印加してもよい。尚、印加する交流の波形は任意
でよい。

0088 本発明の有機EL素子の作製は、一回の真空引きで一貫して正孔注入層か
ら陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施し
ても構わない。その際、作業を乾燥不活性ガス雰囲気下で行うことが好まし
い。

0089 有機EL素子の構成層、有機化合物層

0090 本発明の有機EL素子の構成層、有機化合物層等について説明する。本発
明の有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれ
らに限定されない。

0091 (i) 陽極/正孔輸送層/発光層/電子輸送層/陰極
(ii) 陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iii) 陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
(iv) 陽極/陰極バッファー層/正孔輸送層/発光層/正孔阻止層/電子
輸送層/ 陰極バッファーレベル/ 陰極

有機化合物層（有機層ともいう）
本発明に係る有機化合物層について説明する。本発明の有機EL素子は、構成層として複数の有機化合物層を有することが好ましく、該有機化合物層としては、例えば、上記の層構成の中で、正孔輸送層、発光層、正孔阻止層、電子輸送層等が挙げられるが、その他、正孔注入層、電子注入層等、有機EL素子の構成層に含有される有機化合物が含有されていれば、本発明に係る有機化合物層として定義される。

更に、陽極バッファーレベル、陰極バッファーレベル等に有機化合物が用いられる場合には、陽極バッファーレベル、陰極バッファーレベル等も、各々有機化合物層を形成していることになる。

尚、前記有機化合物層には、有機EL素子の構成層に使用可能な有機EL素子材料等を含有する層も含まれる。

本発明の有機EL素子においては、青色発光層の発光極大波長は430〜480nmにあるものが好ましく、緑色発光層は発光極大波長が510〜550nm、赤色発光層は発光極大波長が600〜640nmの範囲にある単色発光層であることが好ましく、これらを用いた表示装置であることが好ましい。

また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよい。更に、発光層間には非発光性の中間層を有していてもよい。

本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。

本発明の有機EL素子を構成する各層について説明する。

発光層
本発明に係る発光層は、電極又は電子輸送層、正孔輸送層から注入される電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との境界であってもよい。
発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要
な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向
上の観点から、2 n m~ 5 μmの範囲に調整することが好ましく、さらに好
ましくは2～2 0 0 n mの範囲に調整され、特に好ましくは、1 0 ~ 2 0 n
mの範囲である。

発光層の作製には、後述する発光 ドーパントやホスト化合物を、例えば、
真空蒸着法、スピンコート法、キャスト法、L B法、インクジェット法等の
公知の薄膜化法により製膜して形成することができる。

本発明の有機 E L 素子の発光層には、少なくとも1種類の一般式 (1) で
表される化合物をソル・ゲル反応させて得られたリン光発光性粒子の他に、
後述する発光ホスト化合物を含有することが好ましい。また必要に応じて、
一般によく知られた発光 ドーパント（リン光発光性 ドーパント（リン光発光
性 ドーパントともいう）や蛍光 ドーパント等）、さらには後述する正孔輸送
材料や電子輸送材料を混合して用いても良い。

（ホスト化合物（発光ホスト等ともいう））

本発明に用いられるホスト化合物について説明する。ここで、本発明にお
いてホスト化合物は、発光層に含有される化合物の中でその層中での質量
比が2 0 %以上であり、かつ室温（2 5 ℃）においてリン光発光のリン光量
子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が
0. 0 1未満である。また、発光層に含有される化合物の中で、その層中で
の質量比が2 0 %以上であることが好ましい。

また、発光 ドーパントのリン光0—0 バンドよりも短波長な0—0 バンド
をもつ化合物が好ましく、リン光の0—0 バンドが4 6 0 n m以下であるこ
とが特徴である。リン光の0—0 バンドは、4 5 0 n m以下が好ましく、4
4 0 n m以下がより好ましく、4 3 0 n m以下が更に好ましい。

本発明におけるリン光の0—0 バンドの測定方法について説明する。まず
、リン光スペクトルの測定方法について説明する。測定する発光ホスト化合物
を、よく脱酸素されたエタノール/メタノール＝4/1（vol/vol}
の混合溶媒に溶かし、リン光測定用セルに入れた後、液体窒素温度77Kで励起光を照射し、励起光照射後1000msでの発光スペクトルを測定する。

リン光は蛍光に比べ発光寿命が長いため、1000ms後に残存する光はほぼリン光であると考えることができる。なお、リン光寿命が1000msより短い化合物に対しては遅延時間を短くして測定しても構わないが、蛍光と区別できなくなるほど遅延時間を短くしてしまうと、リン光と蛍光が分離できないので問題となるため、その分離が可能な遅延時間を選択する必要がある。

また、上記溶媒系で溶解できない化合物については、その化合物を溶解しない任意の溶剤を使用してもよい（実質上、上記測定法ではリン光波長の溶媒効果はごくわずかなので問題ない）。

次に、0-0バンドの求め方であるが、本発明においては、上記測定法で得られたリン光スペクトルチャートの中で最も短波長側に現れる発光極大波長をもって0-0バンドと定義する。リン光スペクトルは通常強度が弱いことが多くいため、拡大するとノイズとピークの判別が難しくなるケースがある。

このような場合には励起光照射直後の発光スペクトル（便宜上これを定常光スペクトルという）を拡大し、励起光照射後1000ms後の発光スペクトル（便宜上これをリン光スペクトルという）と重ね合わせ、リン光スペクトルに由来する定常光スペクトル部分からピーク波長を読みとることで決定することができる。

また、リン光スペクトルをスムージング処理することでノイズとピークを分離し、ピーク波長を読みとることもできる。なお、スムージング処理としては、Savitzky & Golayの平滑化法等を適用することができる。

尚、ホスト化合物としては、公知のホスト化合物を併用で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電
荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。

[0111] また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。

[0112] 併用してもよい従来公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、なおかつ高Tg（ガラス転移温度）である化合物が好ましい。

[0113] 本発明に係るホスト化合物としては、上記一般式（2）で表される化合物が好ましく用いられる。

[0114] 《一般式（2）で表される化合物》

本発明に係るホスト化合物として好ましく用いられる一般式（2）で表される化合物について説明する。

[0115] 一般式（2）において、Aで表される、N（R₁）又はSi（R₂）（R₃）におけるR₁～R₃、で表される置換基、B～B₈で各々表されるCR₄のR₄で表される置換基は、上記一般式（10）において、A₁で表される、P－Cと共に形成される芳香族炭化水素環、芳香族複素環が各々有してもよい置換基と同義である。

[0116] 以下、本発明に係るホスト化合物の具体例を示すが、本発明はこれらに限定されない。
[0122]
OC-36

OC-37

OC-38

OC-39

[0123]
[0126]
[0127]
[化21]

OC-74

OC-75

OC-76

OC-77

[0131]
[化22]

OC-78

OC-79

OC-80 (F8-TFB)

OC-81 : R=H
OC-82 : R=Bu(n)
OC-83 : R=hexly(n)

OC-84 : R=H
OC-85 : R=Bu(n)
OC-86 : R=hexly(n)

OC-87 : R=H
OC-88 : R=Bu(n)
OC-89 : R=hexly(n)
OC-90: R=H
OC-91: R=Bu(n)
OC-92: R=hexly(n)
尚、本発明に係る一般式 (2) で表される化合物は、特開 2007-288035 号公報、Chem. Mater. 2008, 20, 5951、実験化学講座第5版 (日本化学会編) 等に記載の公知の方法を参照して合成することができる。

従来公知のホスト化合物の具体例としては、以下の文献に記載されている化合物等が挙げられる。

特開 2001-257076 号公報、同 2002-308855 号公報、

[0138]（発光ドーパント）
本発明に係る発光ドーパントについて説明する。

[0139]本発明に係る発光層に含有される発光ドーパントとしては、蛍光ドーパント（蛍光性化合物ともいう）、従来公知のリン光発光性ドーパント（リン光発光体、リン光化合物、リン光発光性化合物等ともいう）を用いることができるが、より発光寿命の長い有機EL素を扱う観点からは、本発明に係る、上記一般式（1）で表される化合物をソル・ゲル反応させて得られたリン光発光性粒子を少なくとも1層の発光層が含有することが好ましい。

[0140]本発明に係るリン光発光性ドーパントは、上記にも記載したように、励起三重項からの発光が観測される化合物であり、具体的には、室温（25℃）にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。

[0141]上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁（19
92年版、丸善）に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光発光性化合物は、任意の溶媒のいずれかにおいて上記リン光量子収率（0.01以上）が達成されればよい。

[0142] リン光発光性化合物の発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光発光性化合物に移動させることでリン光発光性化合物からの発光を得るというエネルギー移動型、もう一つはリン光発光性化合物がキャリアトラップとなり、リン光発光性化合物上でキャリアの再結合が起こり、リン光発光性化合物からの発光が得られるというキャリアトラップ型が挙げられる。

[0143] 上記のいずれの場合においても、リン光発光性化合物の励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。

[0144] 本発明の有機EL素子の発光層に用いられる発光ドーパント（単にドーパントともいう）としては、上記のように一般式（1）で表される化合物をジル・ゲル反応させて得られたリン光発光性粒子を用いることが好ましいが、従来公知の発光ドーパント材料（化合物）も適宜併用して用いることができる。

[0145] 本発明に係る発光ドーパント材料（化合物）と併用して用いられる従来公知の発光ドーパント材料としては、上記一般式（10）で表される化合物等を挙げることができるが、本発明はこれらに限定されない。

[0146] （蛻光ドーパント（蛻光性化合物ともいう））

蛻光ドーパント（蛻光性化合物）としては、クロマリン系色素、スピラン系色素、ジアミン系色素、クロロニウム系色素、スクアリウム系色素、オキソペンツァントラセン系色素、フルオレセイン系色素、ローダミン系色素、ビリリウム系色素、ベリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は共著類錯体系蛻光体等が挙げられる。

[0147] 次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層
、電子輸送層等について説明する。

[0148] 註入層（電子注入層、正孔注入層）

注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層又は正孔輸送層の間、及び陰極と発光層又は電子輸送層との間に存在させてもよい。

[0149] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、有機EL素子とその工業化最前線（1998年11月30日エヌ・ティ・エス社発行）の第2編第2章「電極材料」（123～166頁）に詳細に記載されており、正孔注入層（陽極バッファー層）と電子注入層（陰極バッファー層）とがある。

[0150] 陽極バッファー層（正孔注入層）は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、鋼フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアクリル（エメラルディン）やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。

[0151] 陰極バッファー層（電子注入層）は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層（注入層）はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm～10nmの範囲が好ましい。

[0152] 阻止層（正孔阻止層、電子阻止層）

阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び有機EL素子とその工業化最前線（1998年
11月30日エヌ・ティー・エス社発行）の237頁等に記載されている正孔阻止（ホールブロック）層がある。

正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。

また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。

本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。

また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。

更には、該位置に設けられる正孔阻止層に含有される化合物の50質量％以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。

イオン化ポテンシャルは化合物のHOMO（最高被占分子軌道）レベルにある電子を真空準位に放出するために必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。

（1）米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian 98（Gaussian 98, Revision A.11.4, M. J. Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.）を用い、キーワードとしてB3LYP/6-31G*を用いて構造最適化を行うことにより算出した値（eV単位換算値）の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。
イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC_1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。

一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有してつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。

また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3〜100 nmであり、更に好ましくは5〜30 nmである。

正孔輸送層は正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層又は複数層を合わせることができる。

正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサゾール誘導体、イミダゾール誘導体、ポリアリルアルカン誘導体、ビラゾリン誘導体及びビラゾリン誘導体、フェニレンジアミン誘導体、アリアルアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチレンオントラセン誘導体、フルオレノン誘導体、ヒドラゾリン誘導体、スチルベン誘導体、シラゾン誘導体、アミノ系共重合体、また導電性高分子オリゴマー、特にテオフェノンオリゴマー等が挙げられる。

正孔輸送材料としては上記のものを使用することができるが、ポルフイリン化合物、芳香族第3級アミン化合物及びスチールアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。

芳香族第3級アミン化合物及びスチールアミン化合物の代表例としては、

\[N,N,N',N' \text{-テトラフェニル}_4,4' \text{-ジアミノフェニル} : N, \]
著文献（*Applied Physics Letters* 80 (2002), p. 139）に記載されているような、所謂 *p* 型正孔輸送材料を用いることもできる。また、*p* 型−*S* と、*p* 型−*S* と*C* 等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
することもできる。

[01 69] 本発明においては、より高性能の発光素子が得られることから、上記一般式 (1) で表される重合性化合物又は該重合性化合物から導かれる構造単位を有する高分子化合物を有する本発明の有機 E L 素子材料を用いることが好ましく、また、上記の材料を併用してもよい。

[01 70] 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、L B 法等の公知の方法により、薄膜化することにより形成することができるが、本発明においては塗布法（ウエットプロセス）により作製されることが好ましい。正孔輸送層の膜厚については特に制限はないが、通常は 5 n m 〜 5 μ m 程度、好ましくは 5 〜 2 0 0 n m である。この正孔輸送層は上記材料の 1 種又は 2 種以上からなる一層構造であってもよい。

[01 71] また、不純物をドープした p 性の高い正孔輸送層を用いることもできる。その例としては、特開平 4 - 2 9 7 0 7 6 号公報、特開 2 0 0 0 - 1 9 6 1 4 0 号公報、同 2 0 0 1 — 1 0 2 1 7 5 号公報の各公報、J. A p p l. P h y s., 9 5 , 5 7 7 3 (2 0 0 4) 等に記載されたものが挙げられる。

[01 72] 本発明においては、このような p 性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。

[01 73] 以下、本発明の有機 E L 素子に係る正孔輸送層に用いられる正孔輸送材料の具体例を示すが本発明はこれらに限定されない。

[01 74]
電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層又は複数層設けることができる。

従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料（正孔阻止材料を兼ねる）としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては従来公知の化合物の中から任意のものを選択して用
いることができる。

例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピラジオキシド誘導体、カルボジミド、フロレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアソール誘導体等が挙げられる。

更に上記オキサジアソール誘導体において、オキサジアソール環の酸素原子を硫黄原子に置換したチアジアソール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎮に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。

また、8_キノリノール誘導体の金属錯体、例えば、トリス(8_キノリノール)アルミニウム(AIq)、トリス(5、7_ジクロロ_8_キノリノール)アルミニウム、トリス(5、7_ジプロモ_8_キノリノール)アルミニウム、トリス(2_メチル_8_キノリノール)アルミニウム、トリス(5_メチル_8_キノリノール)アルミニウム、ビス(8_キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。

その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型_Si、η型_SiC等の無機半導体も電子輸送材料として用いることができる。電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。

電子輸送層の膜厚については特に制限はないが、通常は5nm～5μm程
度、好ましくは 5〜200 nm である。電子輸送層は上記材料の 1 種又は 2
種以上からなる一層構造であってもよい。

また、不純物をドープした n 性の高い電子輸送層を用いることもよ
い。不純物をドープした n 性の高い電子輸送層を用いることがより
低消費電力の素子を作製することができるため好ましい。

陽極
有機 EL 素子における陽極としては、仕事関数の大きい (4 eV 以上) 金
属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好
ましく用いる。

このような電極物質の具体例としては、Au 等の金属、Cu し インジウ
ムチノキシド (ITO)、SnO2、ZnO 等の導電性透明材料が挙げられ
る。

また、IDIXO (In2O3-ZnO) 等非晶質で透明導電膜を作製可能
な材料を用いてもよい。陽極はこれらの電極物質を蒸着やスパッタリング等
の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパタ
ーンを形成してもよく、あるいはパターン精度を余り必要としない場合は (1
00 μm 以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形
状のマスクを介してパターンを形成してもよい。あるいは、有機導電性化合物
のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式
等湿式製膜法を用いることもできる。

この陽極より発光を取り出す場合には、透過率を 10% より大きくするこ
とが望ましく、また陽極としてのシート抵抗は数百 Ω/□ 以下が好ましい。
更に膜厚は材料にもよるが、通常 10〜1000 nm、好ましくは 10〜200 nm の範囲で選ばれる。
一方、陰極としては仕事関数の小さい（4 eV以下）金属（電子注入性金属と称する）、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム一カリウム合金、マグネシウム、リチウム、マグネシウム/銀化合物、マグネシウム/マグネシウム/アルミニウム化合物、マグネシウム/インジウム化合物、アルミニウム/酸化アルミニウム（Al₂O₃）混合物、インジウム、リチウム/アルミニウム化合物、希土類金属等が挙げられる。

これらのなかで、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀化合物、マグネシウム/アルミニウム化合物、マグネシウム/インジウム化合物、アルミニウム/酸化アルミニウム（Al₂O₃）混合物、リチウム/アルミニウム化合物、アルミニウム等が好適である。陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。

また、陰極としてのシート抵抗は数百Ω/㎡以下が好ましく、膜厚は通常10nm～5μm、好ましくは50～200nmの範囲で選ばれる。尚、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。

また、陰極に上記金属を1～200nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。

支持基板

本発明の有機EL素子に用いることのできる支持基板（以下、基体、基板、基材、支持体等ともいう）としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側か
ら光を取り出す場合には、支持基板は透明であることが好ましい。

[0196]好ましく用いられる透明な支持基板としては、ガラス可能な樹脂フィルムである。

[0197]樹脂フィルムとしては、例えば、ポリエチレンテレフタレート（P E T）、ポリエチレンナフタレート（P E N）等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリオアセテート、セルロースアセテートブチレート、セルロースアセテートブロピオネート（C A P）、セルロースアセテートフタレート（T A C）、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シジオタクティックポリスチレン、ポリカーポネート、ホルポルネ樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン（P E S）、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン（商品名J S R社製）あるいはアベル（商品名三井化学社製）といったシクロオレフィン系樹脂等を挙げられる。

[0198]樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、J I S K 7 1 2 9 - 1 9 9 2に準拠した方法で測定された、水蒸気透過度（2 5 ± 0 . 5 ℃、相対湿度（9 0 ± 2）％RH）が0 . 0 1 g / （m 2・2 4 h）以下のパリア性フィルムであることが好ましく、更には、J I S K 7 1 2 6 - 1 9 8 7に準拠した方法で測定された酸素透過度が、1 0 . 3 m l / （m 2・2 4 h ' M P a）以下、水蒸気透過度が、1 0 - 5 g / （m 2・2 4 h）以下の高パリア性フィルムであることが好ましい。

[0199]パリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、ニ酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良する
ために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。

無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。

バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スバッタリング法、反応性スパッタリング法、分子線エビタキシー法、クラストーイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザCVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。

不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。

本発明の有機EL素子の発光の室温における外部取り出し効率は、1％以上であることが好ましく、より好ましくは5％以上である。

ここに、外部取り出し量子効率（％） = 有機EL素子外部に発光した光子数 / 有機EL素子に流した電子数 × 100 である。

また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のCIEマックスは480nm以下が好ましい。

封止

本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板を接着剤で接着する方法を挙げることができる。

封止部材としては、有機EL素子の表示領域を覆うように配置されており、よく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。

具体的には、ガラス板、ポリマー板、フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロン
チウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、ベリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーポネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブデン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。

[0209] 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10⁻³m⁻³/ (m²·24h·MPa) 以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度（25 ± 0.5°C、相対湿度（90 ± 2）% RH）が1×10⁻³g/ (m²·2·24h) 以下のものであることが好ましい。

[0210] 封止部材を凹状に加工するの、サンドブラスト加工、化学エッチング加工等が使われる。

[0211] 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2 — シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。

[0212] また、エポキシ系等の熱及び化学硬化型（二液混合）を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。

[0213] なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
また、有機層を挟み支持基板と対向する側の電極の外側に有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適である。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。

これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大气圧プラズマ重合法、プラズマCVD法、レーザCVD法、熱CVD法、コーティング法等を用いることができる。

封止部材と有機EL素子の表示領域との隙間には、気相及び液相では、窒素、アルゴンを不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空することも可能である。また、内部に吸湿性化合物を封入することもできる。

吸湿性化合物としては、例えば、金属酸化物（例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等）、硫酸塩（例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等）、金属ハロゲン化物（例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、汎化バリウム、汎化マグネシウム等）、過塩素酸（例えば、過塩素酸バリウム、過塩素酸マグネシウム等）等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。

保護膜、保護板

有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板
を設けてもよい。

[0219] 特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマー・フィルムを用いることが好ましい。

[0220] 光取り出し

有機ＥＬ素子は空気よりも屈折率の高い（屈折率が１．７~２．１程度）層の内部で発光し、発光層で発生した光のうち１５％から２０％程度の光しか取り出せないことが一般的に言われている。

[0221] これは、臨界角以上の角度θで界面（透明基板と空気との界面）に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極板の発光層と透明基板との間で光が全反射を起こし、光が透明電極板の発光層を導波し、結果として光が素子側面方向に逃げるためである。

[0222] この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法（米国特許第４，７７４，４３５号明細書）、基板に集光性を持たせることにより効率を向上させる方法（特開昭６３－３１４７９５号公報）、素子の側面等に反射面を形成する方法（特開平１－２２０３９４号公報）、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法（特開昭６２－１７２６９１号公報）、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法（特開２００１－２０２８２７号公報）、基板、透明電極層や発光層のいずれかの層間（含む、基板と外界間）に回折格子を形成する方法（特開平１１－２８３７５１号公報）等がある。

[0223] 本発明においては、これらの方法を本発明の有機ＥＬ素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間（
含む、基板と外界間) に回折格子を形成する方法を好適に用いることができる。

[0224] 本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。

[0225] 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。

[0226] 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に 1.5 ～ 1.7 程度であるので、低屈折率層は屈折率がおよそ 1.5 以下であることが好ましい。また、更に 1.35 以下であることが好ましい。

[0227] また、低屈折率媒質の厚みは媒質中の波長の 2 倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。

[0228] 全反射を起こす界面若しくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。

[0229] この方法は回折格子が 1 次の回折や 2 次の回折といった所謂ブラッック回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中（透明基板内や透明電極内）に回折格子を導入することで光を回折させ、光を外に取り出すそうとするものである。

[0230] 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な 1 次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。

回折格子を導入する位置としては前述のとおり、いずれかの層間若しくは媒質中（透明基板内や透明電極内）でもよいが、光が発生する場所である有機発光層の近傍が望ましい。

このとき、回折格子の周期は媒質中の光の波長の約1/2～3倍程度が好ましい。

回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。

集光シート
本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。

マイクロレンズアレイの例としては、基板の光取り出し側に一边が30μmでその頂角が90度となるような四角錐を二次元に配列する。一边10～100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。

集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム（BEF）等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△形状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。

また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、（株）きもと製作拡散フィルム（ライトアップ）等を用いることができる。
《用途》
本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光源として用いることができる。発光源として、例えば、照明装置（家庭用照明、車内照明）、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。

本発明の有機EL素子においては、必要に応じ着膜時にメタルマスクを用いてパターンニングを行うことも良い。

パターンニングする場合は、電極のみをパターンニングしてもよいし、電極と発光層をパターンニングしてもよいし、素子全層をパターンニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。

本発明の有機EL素子や本発明に係る化合物の発光する色は、新編色彩科学ハンドブック」（日本色彩学会編、東京大学出版会、1985）の108頁の図4．16において、分光放射輝度計CS1000（コニカミノルタセンシング社製）で測定した結果をCIE色彩座標に当てはめたときの色彩で決定される。

また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/m²での○IEX 931表色系における色度がX = 0.33 ± 0.07、Y = 0.33 ± 0.1の領域内にあることをいう。

表示装置}
本発明の表示装置について説明する。本発明の表示装置は、本発明の有機EL素子を具備したものである。

本発明の表示装置は単色でも多色でもよいが、ここでは多色表示装置について説明する。多色表示装置の場合は発光層形成時のみシャドーマスクを設け、一部で蒸着法、キャスト法、スピノコート法、インクジェット法、印刷法等で膜を形成できる。
発光層のみパターニングを行う場合、その方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法である。

表示装置に具備される有機EL素子の構成は、必要に応じて上記の有機EL素子の構成例の中から選択される。

また、有機EL素子の製造方法は、上記の本発明の有機EL素子の製造の一態様に示したとおりである。

得られた多色表示装置に直流電圧を印加する場合には、陽極を十、陰極を—の極性として電圧2～4ΟV程度を印加すると発光が観測できる。また、逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。更に交流電圧を印加する場合には、陽極が十、陰極が—の状態になったときのみ発光する。尚、印加する交流の波形は任意でよい。

多色表示装置は、表示デバイス、ディスプレイ、各種発光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。

表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は単純マトリクス（パッシブマトリクス）方式でもアクティブマトリクス方式でもどちらでもよい。

発光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、本発明はこれらに限定されない。

以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。

図1は有機EL素子から構成される表示装置の一例を示した模式図である。有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。
ディスプレイ1は複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。

制御部Bは表示部Aと電気的に接続され、複数の画素それぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部Aに表示する。

図2は表示部Aの模式図である。

表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と複数の画素3等とを有する。表示部Aの主要な部材の説明を以下に行う。

図においては、画素3の発光した光Lが白矢印方向（下方向）へ取り出される場合を示している。

配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している（詳細は図示していない）。画素3は走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。

発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。

次に、画素の発光プロセスを説明する。

図3は画素の模式図である。

画素は有機EL素子10、スイッチングトランジスタ11、駆動トランジスタ12、コンデンサ13等を備えている。複数の画素に有機EL素子10として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。

図3において、制御部Bからデータ線6を介してスイッチングトランジスタ11のドレインに画像データ信号が印加される。そして、制御部Bから走査線5を介してスイッチングトランジスタ11のゲートに走査信号が印加されると、スイッチングトランジスタ11の駆動がオンし、ドレインに印加さ
した画像データ信号がコンデンサ 13 と駆動トランジスタ 12 のゲートに伝達される。

画像データ信号の伝達により、コンデンサ 13 が画像データ信号の電位に応じて充電されるとともに、駆動トランジスタ 12 の駆動がオンする。駆動トランジスタ 12 は、ドレインが電源ライン 7 に接続され、ソースが有機 E L 素子 10 の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ライン 7 から有機 E L 素子 10 に電流が供給される。

制御部 B の順次走査により走査信号が次の走査線 5 に移ると、スイッチングトランジスタ 11 の駆動がオフする。しかし、スイッチングトランジスタ 11 の駆動がオフしてもコンデンサ 13 は充電された画像データ信号の電位を保つので、駆動トランジスタ 12 の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機 E L 素子 10 の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタ 12 が駆動して有機 E L 素子 10 が発光する。

即ち、有機 E L 素子 10 の発光は、複数の画素それぞれの有機 E L 素子 10 に対して、アクティブ素子であるスイッチングトランジスタ 11 と駆動トランジスタ 12 を設けて、複数の画素 3 それぞれの有機 E L 素子 10 の発光を行っている。このような発光方法をアクティブマトリクス方式と呼んでいる。

ここで、有機 E L 素子 10 の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2 値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサ 13 の電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。

本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査されたときにデータ信号に応じて有機 E L 素子を発光させるパッシブマトリクス方式の発光駆動でもよい。
図4 はパッシブマトリックス方式による表示装置の模式図である。図4において、複数の走査線5と複数の画像データ線6が画素3を挟んで対向して格子状に設けられている。

順次走査により走査線5の走査信号が印加されたとき、印加された走査線5に接続している画素3が画像データ信号に応じて発光する。

パッシブマトリックス方式では画素3にアクティブ素子が無く、製造コストの低減が計られる。

照明装置
本発明の照明装置について説明する。本発明の照明装置は上記有機EL素子を有する。

本発明の有機EL素子に共振器構造を持たせた有機EL素子として用いてもよく、このような共振器構造を有した有機EL素子の使用目的としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるが、これらに限定されない。また、レーザ発振をさせることにより上記用途に使用してもよい。

また、本発明の有機EL素子は照明用や露光光源のような一種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示装置（ディスプレイ）として使用してもよい。

動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス（パッシブマトリクス）方式でもアクティブマトリクス方式でもどちらでもよい。又は、異なる発光色を有する本発明の有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することが可能である。また本発明の有機EL材料は照明装置として、実質白色の発光を生じる有機EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得る。複数の発光色の組み合わせとしては、青色、緑色、青色の3原色の3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の補色の関係を利用して2つの発光極大波長を含有したも
のでもよい。

また複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料を複数組み合わせたもの、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせたもののいずれでもよいが、本発明に係る白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでもよい。

発光層、正孔輸送層あるいは電子輸送層等の形成時のみマスクを設け、マスクにより塗り分ける等単純に配置するだけでよく、他層は共通であるのでマスク等のパターンニングは不要であり、一面に蒸着法、キャスト法、スピンドロート法、インクジェット法、印刷法等で例えば電極膜を形成でき、生産性も向上する。

この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素自体が発光白色である。

発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるパックライトであれば、C F (カーフィルター) 特性に対応した波長範囲に適合するように、本発明に係る金属錯体、また公知の発光材料の中から任意のものを選択して組み合わせて白色化すればよい。

本発明の照明装置の一態様

本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。

本発明の有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤（東亞合成社製ラックストラックLC0629B）を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図5、図6に示すような照明装置を形成することができる。

図5は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている（尚、ガラスカバーでの封止作業は、有機EL
素子101を大気に接触させることなく窒素雰囲気下の格ロープボックス（純度99.999%以上の高純度窒素ガスの雰囲気下）で行った。

図6は、照明装置の断面図を示し、図6において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。尚、ガラスカバー102内には窒素ガス108が充填され、捕捉剤109が設けられている。

実施例

以下、実施例により本発明を説明するが、本発明はこれらに限定されない。尚、実施例において「％」の表示を用いるが、特に断りがない限り「質量％」を表す。

実施例1

有機EL素子1_1の作製）

陽極として100mm×100mmのガラス基板上にITO（インジウムチゾキシド）を10nm厚膜した基板（NHテクノグラス社製NA—45）にパターンニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。

この透明支持基板上に、ポリ（3,4_エチレンジオキシチオフェン）—ポリスチレンスルホネート（PEDOT/PSS、Bayer社製、BayertronPAL4083）を純水で70％に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。

この正孔輸送層上に、ポリビニルカルバゾール（PVK；VP—6）30mgと3.0mgのCDD—1とをジクロロエタン3mIに溶解した溶液を、200rpm、30秒の条件下、スピンコート法により製膜し、窒素下、120℃で1時間乾燥し、膜厚50nmの発光層とした。

この発光層上に、10mgのOC—103をヘキサフルオロイソプロパンール3mIに溶解した溶液を、1000rpm、30秒の条件下、スピンコート法により製膜した。
120℃で1時間加熱乾燥し、膜厚20nmの電子輸送層を設け、これを真空蒸着装置に取付け、真空槽を4×10⁻⁴Paまで減圧した。

陰極バッファーレイアスとしてフッ化カリウム1nm及び陰極としてアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1_1を作製した。

有機EL素子1_2〜1_9の作製

有機EL素子1_1の作製において、発光ドーパントとして用いたCDー1を表1に示すように変更した以外は同様にして有機EL素子1_2〜1_9を作製した。

尚、比較の有機EL素子1_7の発光層の作製に用いた発光ドーパントPSー1と、比較の有機EL素子1_9の発光層の作製に用いた発光ドーパント1_6_BTEPy_rについては、各々下記のようにして合成したものを用いた。

尚、比較の有機EL素子1_8の発光層の作製に用いた表1のPy_rはビレンを示す。

（PSー1（多孔質シリカ内包ドーパント）の合成）
テトラエトキシシラン1mlとPDー1（0.1mmolし6.5mg）を120mlの無水エタノールに溶解した後、5mlのアノニア水を加え、500rpmの速度で、24時間攪拌を行った。攪拌終了後、15,000rpmで遠心分離を行い、多孔質シリカ内包ドーパントPSー1（収量15mg、平均粒径50nm）を得た。精製は、無水エタノールへの再分散後、遠心分離を行い、上澄み液を除去の工程を3度繰り返した。

（発光ドーパント1_6_BTEPy_rの合成）

[0291] [0292] [0293] [0294] [0295] [0296] [0297] [0298]
上記のC D ₁の合成において、pre—CD₁の代わりに、pre—1,6—BTEPyを用いる以外は同様にして1,6—BTEPyを合成した。

具体的には、pre—BTEPy（0.2mmol、106mg）を20mlの無水エタノールに溶解した後、5mlのアンモニア水を加え、500rpmの速度で、24時間攪拌を行った。

攪拌終了後、15,000rpmで遠心分離を行い、高分子発光ドーパンド1,6—BTEPy（収量20mg、平均粒径45nm）を得た。

精製は、無水エタノールへの再分散後、遠心分離を行い、上澄み液を除去の工程を3度繰り返した。

有機EL素子1_10の作製

有機EL素子1_1の作製において、有機EL素子1_1の作製と同様に正孔輸送層までを設けた後、この正孔輸送層上に、ポリビニルカルバゾール（PVK;VP-6）30mgと3.0mgのpre—CD₁をトルエン3mlに溶解した溶液を、2000rpm、30秒の条件下、スピノコーテ法により製膜し、窒素下、80℃で10分間加熱し、次いで120℃で3時間加熱し、基板上でソル・ゲル反応を生じさせ、膜厚50nmの発光層を形成した。

この発光層上に、10mgの0C—103をヘキサフルオロイソプロピノール3mlに溶解した溶液を、1000rpm、30秒の条件下、スピノコーテ法により製膜した。
[0305] 120°Cで1時間加熱乾燥し、膜厚20nmの電子輸送層を設け、これを真空蒸着装置に取付け、真空槽を4×10⁻⁴Paまで減圧した。

[0306] 陰極バッファーレットとしてフッ化カリウム1nm及び陰極としてアルミニウム110nmを蒸着して陰極を形成し、有機EL素子1_1_10を作製した。

[0307] 別途、ガラス基板上に発光層のみを形成し、ソル・ゲル化反応前後の透過電子顕微鏡及び走査型プローブ顕微鏡（エスアイアイ・ナノテクノロジー社製；SPA400）を用いた表面観察を行ったところ、ソル・ゲル反応前に見られなかった120〜200nmの架橋・凝集体が観察されるとともに、100〜150nmの突起が観察され、製膜後のソル・ゲル反応によって発光層表面が荒れたことが予想される結果であった。

[0308] | 有機EL素子 | 発光層 | 発光ート | 備考 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1_1_10</td>
<td>PVK</td>
<td>CD_1</td>
<td>本発明</td>
</tr>
<tr>
<td>1_2</td>
<td>OC_9</td>
<td>CD_9</td>
<td>本発明</td>
</tr>
<tr>
<td>1_3</td>
<td>OC_10</td>
<td>CD_13</td>
<td>本発明</td>
</tr>
<tr>
<td>1_4</td>
<td>PVK</td>
<td>PD_1</td>
<td>比較例</td>
</tr>
<tr>
<td>1_5</td>
<td>OC_9</td>
<td>PD_12</td>
<td>比較例</td>
</tr>
<tr>
<td>1_6</td>
<td>OC_10</td>
<td>PD_7</td>
<td>比較例</td>
</tr>
<tr>
<td>1_7</td>
<td>PVK</td>
<td>PS_1</td>
<td>比較例</td>
</tr>
<tr>
<td>1_8</td>
<td>PVK</td>
<td>Pyr</td>
<td>比較例</td>
</tr>
<tr>
<td>1_9</td>
<td>PVK</td>
<td>pre-1.6-BTEPy</td>
<td>比較例</td>
</tr>
<tr>
<td>1_10</td>
<td>PVK</td>
<td>pre-CD-4</td>
<td>比較例</td>
</tr>
</tbody>
</table>

[0309] 得られた有機EL素子1_1_1_1_1_0の各々について、酸素や水等の外的要因の影響を明らかにするために、封止環境と素子の耐久性（発光寿命）について詳細な検討を行った。

[0310] 具体的には、得られた有機EL素子1_1_1_1_1_0の各々を図5、図6に示すように、非発光面をガラスケースで覆い、エポキシ系光硬化型接着剤（東亜合成社製ラックストラックLCO629B）で封止を行った。

[0311] この封止を行う際に使用したグローブボックスの環境（水分濃度及び酸素濃度）を表2に記載のように変化させた際の素子の発光寿命の関係について測定を行った。
表2に示したグローブボックス環境における、有機EL素子1～9の発光寿命は以下のようにして測定、評価を行った。

発光寿命

23℃、2.5 mA/cm²の一定電流で駆動したときに、輝度が発光開始直後の輝度（初期輝度）の半分に低下するのに要した時間を測定し、これを半減寿命時間（て0.5）として寿命の指標とした。

尚、測定には同様に分光放射輝度計CS-1000（コニカミノルタセンシング製）を用いた。

得られた結果を以下、表3～表6に示す。

尚、表3～表6において、評価結果は、評価No.9（表3）、No.41（表4）、No.57（表5）、No.73（表6）を100とした時の各々相対評価を行った。
[表3]

<table>
<thead>
<tr>
<th>評価No.</th>
<th>有機EL素子</th>
<th>封止時の グローブボックス環境</th>
<th>発光寿命</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1－1</td>
<td>A</td>
<td>105</td>
<td>本発明</td>
</tr>
<tr>
<td>2</td>
<td>1－1</td>
<td>B</td>
<td>85</td>
<td>本発明</td>
</tr>
<tr>
<td>3</td>
<td>1－1</td>
<td>C</td>
<td>72</td>
<td>本発明</td>
</tr>
<tr>
<td>4</td>
<td>1－1</td>
<td>D</td>
<td>10</td>
<td>本発明</td>
</tr>
<tr>
<td>5</td>
<td>1－1</td>
<td>E</td>
<td>91</td>
<td>本発明</td>
</tr>
<tr>
<td>6</td>
<td>1－1</td>
<td>F</td>
<td>89</td>
<td>本発明</td>
</tr>
<tr>
<td>7</td>
<td>1－1</td>
<td>G</td>
<td>30</td>
<td>本発明</td>
</tr>
<tr>
<td>8</td>
<td>1－1</td>
<td>H</td>
<td>41</td>
<td>本発明</td>
</tr>
<tr>
<td>9</td>
<td>1－4</td>
<td>A</td>
<td>100</td>
<td>比較例</td>
</tr>
<tr>
<td>10</td>
<td>1－4</td>
<td>B</td>
<td>78</td>
<td>比較例</td>
</tr>
<tr>
<td>11</td>
<td>1－4</td>
<td>C</td>
<td>52</td>
<td>比較例</td>
</tr>
<tr>
<td>12</td>
<td>1－4</td>
<td>D</td>
<td>5</td>
<td>比較例</td>
</tr>
<tr>
<td>13</td>
<td>1－4</td>
<td>E</td>
<td>91</td>
<td>比較例</td>
</tr>
<tr>
<td>14</td>
<td>1－4</td>
<td>F</td>
<td>86</td>
<td>比較例</td>
</tr>
<tr>
<td>15</td>
<td>1－4</td>
<td>G</td>
<td>20</td>
<td>比較例</td>
</tr>
<tr>
<td>16</td>
<td>1－4</td>
<td>H</td>
<td>32</td>
<td>比較例</td>
</tr>
<tr>
<td>17</td>
<td>1－7</td>
<td>A</td>
<td>102</td>
<td>比較例</td>
</tr>
<tr>
<td>18</td>
<td>1－7</td>
<td>B</td>
<td>81</td>
<td>比較例</td>
</tr>
<tr>
<td>19</td>
<td>1－7</td>
<td>C</td>
<td>53</td>
<td>比較例</td>
</tr>
<tr>
<td>20</td>
<td>1－7</td>
<td>D</td>
<td>6</td>
<td>比較例</td>
</tr>
<tr>
<td>21</td>
<td>1－7</td>
<td>E</td>
<td>88</td>
<td>比較例</td>
</tr>
<tr>
<td>22</td>
<td>1－7</td>
<td>F</td>
<td>86</td>
<td>比較例</td>
</tr>
<tr>
<td>23</td>
<td>1－7</td>
<td>G</td>
<td>23</td>
<td>比較例</td>
</tr>
<tr>
<td>24</td>
<td>1－7</td>
<td>H</td>
<td>29</td>
<td>比較例</td>
</tr>
<tr>
<td>25</td>
<td>1－10</td>
<td>A</td>
<td>102</td>
<td>比較例</td>
</tr>
<tr>
<td>26</td>
<td>1－10</td>
<td>B</td>
<td>80</td>
<td>比較例</td>
</tr>
<tr>
<td>27</td>
<td>1－10</td>
<td>C</td>
<td>53</td>
<td>比較例</td>
</tr>
<tr>
<td>28</td>
<td>1－10</td>
<td>D</td>
<td>5</td>
<td>比較例</td>
</tr>
<tr>
<td>29</td>
<td>1－10</td>
<td>E</td>
<td>90</td>
<td>比較例</td>
</tr>
<tr>
<td>30</td>
<td>1－10</td>
<td>F</td>
<td>86</td>
<td>比較例</td>
</tr>
<tr>
<td>31</td>
<td>1－10</td>
<td>G</td>
<td>22</td>
<td>比較例</td>
</tr>
<tr>
<td>32</td>
<td>1－10</td>
<td>H</td>
<td>34</td>
<td>比較例</td>
</tr>
</tbody>
</table>

[0319] 表3 から、多孔質シリカ内に内包した発光ドーパントを用いた有機EL素子1－7と通常の発光ドーパントを用いた有機EL素子1－4を比較すると、封止環境に関わらず、ほぼ同じ挙動を示すことがわかった。これは、単にシリカ等の細孔内に発光ドーパントを担持するだけでは、酸素や水等の外的要因の影響を排除できないことを意味する結果である。また、製膜後にゾル・ゲル反応を行った有機EL素子1－10においても、酸素や水等の外的要
因の影響を排除できないことを意味し、製膜時にナノ粒子を形成していることが重要であることが明らかである。

一方、本発明に係る発光ドーパントを用いた有機EL素子1—1では、封止環境CあるいはHにおいて顕著な効果が認められていることから、水分に対する耐性が著しく向上していることが明らかである。

<table>
<thead>
<tr>
<th>評価No.</th>
<th>有機EL素子</th>
<th>封止時のグローブボックス環境</th>
<th>発光寿命</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>1—2</td>
<td>A</td>
<td>100</td>
<td>本発明</td>
</tr>
<tr>
<td>34</td>
<td>1—2</td>
<td>B</td>
<td>71</td>
<td>本発明</td>
</tr>
<tr>
<td>35</td>
<td>1—2</td>
<td>C</td>
<td>43</td>
<td>本発明</td>
</tr>
<tr>
<td>36</td>
<td>1—2</td>
<td>D</td>
<td>5</td>
<td>本発明</td>
</tr>
<tr>
<td>37</td>
<td>1—2</td>
<td>E</td>
<td>95</td>
<td>本発明</td>
</tr>
<tr>
<td>38</td>
<td>1—2</td>
<td>F</td>
<td>89</td>
<td>本発明</td>
</tr>
<tr>
<td>39</td>
<td>1—2</td>
<td>G</td>
<td>23</td>
<td>本発明</td>
</tr>
<tr>
<td>40</td>
<td>1—2</td>
<td>H</td>
<td>35</td>
<td>本発明</td>
</tr>
<tr>
<td>41</td>
<td>1—5</td>
<td>A</td>
<td>100</td>
<td>比較例</td>
</tr>
<tr>
<td>42</td>
<td>1—5</td>
<td>B</td>
<td>34</td>
<td>比較例</td>
</tr>
<tr>
<td>43</td>
<td>1—5</td>
<td>C</td>
<td>26</td>
<td>比較例</td>
</tr>
<tr>
<td>44</td>
<td>1—5</td>
<td>D</td>
<td>2</td>
<td>比較例</td>
</tr>
<tr>
<td>45</td>
<td>1—5</td>
<td>E</td>
<td>91</td>
<td>比較例</td>
</tr>
<tr>
<td>46</td>
<td>1—5</td>
<td>F</td>
<td>86</td>
<td>比較例</td>
</tr>
<tr>
<td>47</td>
<td>1—5</td>
<td>G</td>
<td>12</td>
<td>比較例</td>
</tr>
<tr>
<td>48</td>
<td>1—5</td>
<td>H</td>
<td>21</td>
<td>比較例</td>
</tr>
</tbody>
</table>

表4から、先程の結果と同様に、本発明に係る発光ドーパントを用いた場合（有機EL素子1—2）、比較のドーパントを用いた場合（有機EL素子1—5）に比べて、外的要因に対する耐性に向上が認められた。特に封止環境B、CあるいはG、Hにおいて顕著な効果が認められている。このことは、外的要因に対して非常にセンシティブな青色のリン光発光を示す系においても、非常に高い抑制性の付与が可能であることを示す結果であり、本発明の効果が最も効果的に発現できている。
表 5 から、前述の結果と同様に、本発明に係る発光ドーパントを用いた場合（有機EL素子 1—3）、比較のドーパントを用いた場合（有機EL素子1—6）に比べて、外的要因に対する耐性に向上が認められた。特に封止環境BあるいはCにおいて顕著な効果が認められている。

[0324]

[0325]
表6から、前述の結果と同様に、本発明に係る発光ドーパントを用いた場合（有機EL素子1—8）、比較のドーパントを用いた場合（有機EL素子1—9）との比較において、外的要因に対する変化が認められなかった。

このことは、蛍光発光を利用する有機EL素子がリン光発光を利用するものに比べ、外的要因に対するロバストが高く、本発明の効果を十分に発現することができなかったためと推定している。

実施例2

有機EL素子2の作製

陽極として100 mm×100 mm×1.1 mmのガラス基板上にITO（インジウムチノキシド）を100 nm膜厚の基板（NHテクノグラス社製NAー45）にてパターニングを行った後、このITO透明電極を設けた透明支持基板をインプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。

この透明支持基板上に、ポリ（3,4-エチレンジオキシチオフェン）-ポリスチレンスルホネート（PEDOT/PSS、Bayer社製、Bayer社製）

<table>
<thead>
<tr>
<th>評価No.</th>
<th>有機EL素子</th>
<th>封止時の グローブボックス環境</th>
<th>発光寿命</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>1—8</td>
<td>A</td>
<td>98</td>
<td>比較例</td>
</tr>
<tr>
<td>66</td>
<td>1—8</td>
<td>B</td>
<td>80</td>
<td>比較例</td>
</tr>
<tr>
<td>67</td>
<td>1—8</td>
<td>C</td>
<td>69</td>
<td>比較例</td>
</tr>
<tr>
<td>68</td>
<td>1—8</td>
<td>D</td>
<td>5</td>
<td>比較例</td>
</tr>
<tr>
<td>69</td>
<td>1—8</td>
<td>E</td>
<td>90</td>
<td>比較例</td>
</tr>
<tr>
<td>70</td>
<td>1—8</td>
<td>F</td>
<td>87</td>
<td>比較例</td>
</tr>
<tr>
<td>71</td>
<td>1—8</td>
<td>G</td>
<td>22</td>
<td>比較例</td>
</tr>
<tr>
<td>72</td>
<td>1—8</td>
<td>H</td>
<td>48</td>
<td>比較例</td>
</tr>
<tr>
<td>73</td>
<td>1—9</td>
<td>A</td>
<td>100</td>
<td>比較例</td>
</tr>
<tr>
<td>74</td>
<td>1—9</td>
<td>B</td>
<td>78</td>
<td>比較例</td>
</tr>
<tr>
<td>75</td>
<td>1—9</td>
<td>C</td>
<td>69</td>
<td>比較例</td>
</tr>
<tr>
<td>76</td>
<td>1—9</td>
<td>D</td>
<td>5</td>
<td>比較例</td>
</tr>
<tr>
<td>77</td>
<td>1—9</td>
<td>E</td>
<td>91</td>
<td>比較例</td>
</tr>
<tr>
<td>78</td>
<td>1—9</td>
<td>F</td>
<td>86</td>
<td>比較例</td>
</tr>
<tr>
<td>79</td>
<td>1—9</td>
<td>G</td>
<td>20</td>
<td>比較例</td>
</tr>
<tr>
<td>80</td>
<td>1—9</td>
<td>H</td>
<td>48</td>
<td>比較例</td>
</tr>
</tbody>
</table>
tron P A I 4 0 8 3）を純水で10%に希釈した溶液を3000 rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。

この正孔輸送層上に、30mgのOC—25と6mgのCD—6とをジクロロエタン3mlに溶解した溶液を、2000rpm、30秒の条件下、スピンコート法により製膜し、翌素下、120℃で1時間乾燥し、膜厚50nmの発光層とした。

この発光層上に、10mgのOC—103をヘキサフルオロオキソプロパノール3mlに溶解した溶液を、1000rpm、30秒の条件下、スピンコート法により製膜した。

120℃で1時間加熱乾燥し、膜厚20nmの電子輸送層を設け、これを真空蒸着装置に取付け、真空槽を4 X 10^-4 Paまで減圧した。

陰極バッファー層としてフッ化カリウム1nm及び陰極としてアルミニウム110nmを蒸着して陰極を形成し、有機EL素子2_1を作製した。

有機EL素子2—2_8の作製

有機EL素子2—1の作製において、発光ドーパントCD—6を表7に記載の発光ドーパントに変更した以外は同様にして有機EL素子2—2_8を作製した。

[表7]

<table>
<thead>
<tr>
<th>有機EL素子</th>
<th>発光層</th>
<th>封止時のグローブボックス環境</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>発光ホスト</td>
<td>発光ドーパント</td>
<td></td>
</tr>
<tr>
<td>2—1</td>
<td>OC—25</td>
<td>CD—6</td>
<td>G</td>
</tr>
<tr>
<td>2—2</td>
<td>OC—25</td>
<td>CD—7</td>
<td>G</td>
</tr>
<tr>
<td>2—3</td>
<td>OC—25</td>
<td>CD—8</td>
<td>G</td>
</tr>
<tr>
<td>2—4</td>
<td>OC—25</td>
<td>CD—9</td>
<td>G</td>
</tr>
<tr>
<td>2—5</td>
<td>OC—25</td>
<td>CD—10</td>
<td>G</td>
</tr>
<tr>
<td>2—6</td>
<td>OC—25</td>
<td>CD—11</td>
<td>G</td>
</tr>
<tr>
<td>2—7</td>
<td>OC—25</td>
<td>CD—12</td>
<td>G</td>
</tr>
<tr>
<td>2—8</td>
<td>OC—25</td>
<td>CD—12</td>
<td>G</td>
</tr>
</tbody>
</table>

得られた有機EL素子2_1—2_8の各々について、酸素や水等の外的要因の影響を明らかにするために、封止環境と素子の耐久性（発光寿命）に
ついて詳細な検討を行った。

具体的には、実施例1と同様に、有機EL素子2－1～2－8の各々を図5、図6に示すように、非発光面をガラスケースで覆い、エポキシ系光硬化型接着剤（東亞合成社製ラックストラックLC0629B）で封止を行った。

この封止を行う際に使用したグローブボックスの環境（水分濃度及び酸素濃度）は表2の条件G（水分濃度1ppm、酸素濃度10ppm）を用いて行った。

素子の各測定・評価は以下のようにして行った。

（外部取り出し量子効率）
各素子について、23℃、2.5mA/cm²定電流を印加した時の外部取り出し量子効率（％）を測定した。尚、測定には分光放射輝度計CS－1000（コニカミノルタセンシング製）を用いた。

（発光寿命）
23℃、2.5mA/cm²の一定電流で駆動したときに、輝度が発光開始直後の輝度（初期輝度）の半分に低下するのに要した時間を測定し、これを半減寿命時間（τ0.5）として寿命の指標とした。なお、測定には同様に分光放射輝度計CS－1000（コニカミノルタセンシング製）を用いた。

得られた結果を表8に示す。尚、外部取り出し量子効率、発光寿命の測定結果は、有機EL素子2－8を100とした時の相対評価で行った。

[表8]

<table>
<thead>
<tr>
<th>有機EL素子</th>
<th>外部取り出し量子効率</th>
<th>発光寿命</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>2－1</td>
<td>102</td>
<td>450</td>
<td>本発明</td>
</tr>
<tr>
<td>2－2</td>
<td>103</td>
<td>625</td>
<td>本発明</td>
</tr>
<tr>
<td>2－3</td>
<td>104</td>
<td>500</td>
<td>本発明</td>
</tr>
<tr>
<td>2－4</td>
<td>102</td>
<td>600</td>
<td>本発明</td>
</tr>
<tr>
<td>2－5</td>
<td>101</td>
<td>250</td>
<td>本発明</td>
</tr>
<tr>
<td>2－6</td>
<td>103</td>
<td>390</td>
<td>本発明</td>
</tr>
<tr>
<td>2－7</td>
<td>102</td>
<td>400</td>
<td>本発明</td>
</tr>
<tr>
<td>2－8</td>
<td>100</td>
<td>100</td>
<td>比較例</td>
</tr>
</tbody>
</table>

表8から、本発明に係る発光ドーパントは、比較的簡便な封止環境において
ても、外部取り出し量子効率を維持し、かつ非常に良好な発光寿命を示した。

[0345] これにより、これまで大きな懸念点であった外的要因（酸素や水）からの影響に対して強い有機ＥＬ素子を製造することが可能となり、製造プロセスの簡便化に繋がることが明らかである。

[0346] 実施例3

《フルカラー表示装置の作製》
（青色発光有機ＥＬ素子）
実施例2で作製した有機ＥＬ素子1_2を用いた。

[0347] （緑色発光有機ＥＬ素子）
緑色発光有機ＥＬ素子として、実施例2で作製した有機ＥＬ素子1_1を用いた。

[0348] （赤色発光有機ＥＬ素子）
赤色発光有機ＥＬ素子として、実施例2で作製した有機ＥＬ素子1_3を用いた。

[0349] 上記の赤色、緑色及び青色発光有機ＥＬ素子を、同一基板上に並置し、図1に記載の形態を有するアクティブマトリクス方式フルカラー表示装置を作製し、図2には、作製した前記表示装置の表示部Aの模式図のみを示した。

[0350] 即ち、同一基板上に、複数の走査線5及びデータ線6を含む配線部と、並置した複数の画素3（発光の色が赤領域の画素、緑領域の画素、青領域の画素等）を有し、配線部の走査線5及び複数のデータ線6はそれぞれ導電材料からなり、走査線5とデータ線6は格子状に直交して、直交する位置で画素3に接続している（詳細は図示せず）。

[0351] 前記複数の画素3は、それぞれの発光色に対応した有機ＥＬ素子、アクティブ素子であるスイッチングトランジスタと駆動トランジスタそれぞれが設けられたアクティブマトリクス方式で駆動されており、走査線5から走査信号が印加されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
この様に各赤、緑、青の画素を適宜、並置することによって、フルカラー表示装置を作製した。

該フルカラー表示装置を駆動することにより、発光効率が高い発光寿命の長いフルカラー動画表示が得られることを確認することができた。

実施例4

《白色発光照装装置の作製》
実施例2で作製した有機EL素子1_2の作製において、CD—9をCD_1、D_9、CD—13の混和物に変更した以外は同様にして、白色発光有機EL素子1—2Wを作製した。

得られた有機EL素子1_1Wを、前述のように非発光面をガラスケースで覆い、照明装置とした。照明装置は、発光効率が高く発光寿命の長い白色光を発する薄型の照明装置として使用することができた。

符号の説明

1 ディスプレイ
3 画素
5 走査線
6 データ線
7 電源ライン
10 有機EL素子
11 スイッチングトランジスタ
12 駆動トランジスタ
13 コンデンサ
L 光
A 表示部
B 制御部
101 有機EL素子
102 ガラスカバー
105 陰極
有機 E L 層
透明電極付きガラス基板
窒素ガス
捕水剤
請求の範囲

[請求項1] 陽極と陰極の間に挟持された少なくとも一層の有機化合物層を有する有機エレクトロルミネッセンス素子において、

該有機化合物層の少なくとも一層が発光ドーパント材料を含有し、

該発光ドーパント材料が、下記一般式（1）で表される化合物をジル・ゲル反応させて得られたリン光発光性粒子であることを特徴とする有機エレクトロルミネッセンス素子。

一般式（1）

\[\text{D - (L) } a _ M _ (X) _ b \]

式中、D はリン光発光性基を表し、L は2 個の連続基を表し、M は金属元素を表し、X はジル・ゲル反応可能な官能基を表し、a は1 以上の整数、b は1 以上の整数を表す。

[請求項2] 前記一般式（1）のD が下記一般式（10）で表される化合物から導出される1 個の基であることを特徴とする請求項1 に記載の有機エレクトロルミネッセンス素子。

[化1]

一般式（10）

\[
\begin{align*}
\text{A1} & \quad \text{P} \quad \text{C} \\
\text{Q} & \quad \text{M} \quad \text{N} \\
\text{A2} & \quad \text{P1} \quad \text{L1} \\
\end{align*}
\]

式中、P, Q は、各々炭素原子又は窒素原子を表し、A 1 は、P - C (C は炭素原子を表す) 共に芳香族炭素化水素環又は芳香族複素環を形成するのに必要な原子群を表す。A 2 は、Q - N (N は窒素原子を表す) 共に芳香族複素環を形成するのに必要な原子群を表す。

\[\text{P1 - L1 - P2} \]

は2 座の配位子を表し、P 1 及びP 2 は各々独立に炭素原子、窒素原子又は酸素原子を表す。し 1 は、\(\text{?1} \) 及び \(\text{?2} \) 共に
2座の配位子を形成するのに必要な原子群を表す。rは1～3の整数を表し、sは0～2の整数を表すが、r+sは2又は3である。M1は元素周期表における8族～10族の遷移金属元素を表す。]
[請求項1] 前記一般式 (10) のsが0であることを特徴とする請求項2に記載の有機エレクトロルミネッセンス素子。
[請求項2] 前記有機化合物層の少なくとも一層が発光層であり、該発光層が前記発光ドーパント材料を含有することを特徴とする請求項1～3のいずれか一項に記載の有機エレクトロルミネッセンス素子。
[請求項3] 前記発光層が、リン光の0～460nm以下の発光ホスト化合物を含有することを特徴とする請求項1～4のいずれか一項に記載の有機エレクトロルミネッセンス素子。
[請求項4] 前記発光ホスト化合物が下記一般式 (2) で表される化合物であることを特徴とする請求項5に記載の有機エレクトロルミネッセンス素子。
[化2]

一般式(2)

\[
\begin{array}{c}
A \\
B_1 \sim B_7 \\
B_8 \\
\end{array}
\]

式中、Aは、N (R₁)、酸素原子、硫黄原子又はSi (R₂)(R₃)を表し、B₁～B₇は、各々C/R₄又はN原子を表す。R₁～R₄は、各々水素原子又は置換基を表し、R₂とR₃、及び隣接するR₄同士が結合して環を形成しても良い。B₁～B₇のうち複数の箇所がC/R₄である場合、各々のR₄は、同一でなく、異なっていても良い。
]
[請求項7] 請求項1～6のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする照明装置。
[請求項8] 請求項1～6のいずれか一項に記載の有機エレクトロルミネッセンス素子を備えたことを特徴とする表示装置。
請求項9のいずれか一項に記載の有機エレクトロミネッセンス素子を製造するにあたり、前記発光ドーパント材料を含有する有機化合物層の少なくとも一層を湿式法（ウエットプロセス）により製膜、形成する工程を有することを特徴とする有機エレクトロミネッセンス素子の製造方法。

請求項1に記載の一般式（1）で表される化合物をソル・ゲル反応させて得られたことを特徴とするリン光発光性粒子。
FIG.3
FIG. 4
FIG. 6
INTERNATIONAL SEARCH REPORT

International application No.
PCT / JP2 01/075247

A. CLASSIFICATION OF SUBJECT MATTER

H01 L51/50 (2006.01) i, C07F7/16(2006.01) i, C07F7/28(2006.01) i, C07F1 50 0 (2006.01) i, C09K1 1/06(2006.01) i, G09F9/30, G09F9/3.0, H01L27/32, F21 Y7/80(2006.01) i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H01L51/50, C07F7/18, C07F7/28, C07F15/00, C09K1 1/06, G09F9/30, H01L27/32, F21 Y7/105/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2011

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
CAplus (STN), REGISTRY (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Ok-Hee Kim et al., Exce lent Photo s tability of Phospho re scent Nanopart id e S and The i r Appl i cat i on a s a Color Conv rter i n Li gh t Emitting Diode s, ACS Nano, 2010 05 20, VOL 4 NO 6, PP 3397-3405</td>
<td>1,2,4,7-10</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2007 266243 A (Canon Inc.), 11 Octobe r 2007 (11.10.2007), claims : paragraph s [0162], [0163] (Family: none)</td>
<td>3</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
*"A" document defining the general state of the art which is not considered to be of particular relevance
*"B" earlier application or patent but published on or after the international filing date
*"C" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
*"D" documents referring to an oral disclosure, use, exhibition or other means
*"E" document published prior to the international filing data but later than the priority data claimed

**"F" later document published after the international filing data or priority data and not in conflict with the application but cited to understand the principle or theory underlying the invention
**"G" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
**"H" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
**"I" document member of the same patent family

Date of the actual completion of the international search
19 December 2011 (19.12.11)

Date of mailing of the international search report
31 January 2012 (31.01.12)

Name and mailing address of the ISA/ Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2005-314689 A (Sumitomo Chemical Co., Ltd.1), 10 November 2005 (10.11.2005), claims ; paragraph s [0159]f [0198]f [0248] to [0250] (Family: none)</td>
<td>1-10</td>
</tr>
<tr>
<td>A</td>
<td>wo 2006/129471 Al (Konica Minolta Holdings Inc.), 07 December 2006 (07.12.2006), paragraph s [0048] to [0062]: claims (Family: none)</td>
<td>1-10</td>
</tr>
</tbody>
</table>
国際調査報告
国際出願番号 PCT／JP2001/075247

A. 発明の属する分野の分類（国際特許分類（IPC））

IntCl. H01L51/50 (2006.01) i, C07F7/18 (2006.01) i, C07F7/28 (2006.01) i, C07F7/28 (2006.01) i, C09K1/06 (2006.01) i, G09F9/30 (2006.01) i, H01L27/32 (2006.01) i, F21Y105/00 (2006.01) n

B. 調査を行った分野

調査を行った最小限資料（国際特許分類（IPC））

IntCl. H01L51/50, C07F7/18, C07F7/28, C07F15/00, C09K11/06, G09F9/30, H01L27/32, F21Y105/00

最小限資料以外の資料で調査を行った分野に含まれるもの

ヨ本国実用新案公報 1922－1996年
日本国公開実用新案公報 1971－2011年
日本国実用新案登録公報 1996－2011年
日本国登録実用新案公報 1994－2011年

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

Cplus (STN), REGISTRY (STN)

C. 関連すると認められる文献

引用文献のカテゴリーナ
引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 関連する請求項の番号

X Ok-Hee Kim et al., Exc lent Photostabi lity of Phosphorescent Nanoparticles and Their Applic ation as a Color Converter in Light Emitting Diodes, ACS Nano, 2010. 05. 20, VOL. 4 NO. 6, PP 3397-3405

Y JP 2007-266243 A（キャノン株式会社）2007. 10. 11, 【特許請求の範囲】段落 162], [0163]（ファミリーなし）

☑ C欄の続きにも文献が列挙されている。

patentファミリーに関する別紙を参照。

* 引用文献のカテゴリーナ
IA 特に関連のある文献ではなく、一般的技術水準を示すもの
IE 国際出願 日前の出願 または特許 であるが、国際出願日 以後に公表されたもの
IE」特に関連のある文献 であって、当該文献のみで発明の理解に欠かせないもの
IB 口頭による開示、使用、展示等に言及する文献
IP 国際出願 日前の出願 は、かつ優先権の主張の基礎となる出願

国際調査を完了した日 19. 12. 2011
国際調査報告の発送日 31. 01. 2012

国際調査機関の名称及びあて先
日本国特許庁 ISA／JP
郵便番号 100ー8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官 権限のある職員
川村 大輔
電話番号 03-3581-1101 内線 3271

様式 PCT/ISA/210（第2ページ）（2009年7月）
国際調査報告
国際出願番号 PCT Z JP 2011/075247

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. 6 Y</td>
<td>JP 2007-288035 A (コニカミノルタホールディングス株式会社) 2007. 11. 01, 請求の範囲</td>
<td>1-10</td>
</tr>
<tr>
<td></td>
<td>& US 2009/0302745 AI & WO 2007/119816 AI</td>
<td></td>
</tr>
<tr>
<td>1-10 A</td>
<td>WO 2008/053935 AI (昭和電工株式会社) 2008. 05. 08, 段落[0001], [0116]-[0122], 請求の範囲</td>
<td></td>
</tr>
<tr>
<td>1-10 A</td>
<td>JP 2005-314689 A (住友化学株式会社) 2005. 11. 10, 請求の範囲, 段落 [0159], [0196], [0248]-[0250], (ファミリーなし)</td>
<td></td>
</tr>
<tr>
<td>1-10 A</td>
<td>WO 2008/073440 A1 (ユニバーサルディスプレイコーポレーション) 2008. 06. 19, 明細書第34頁第16行-第36頁第4行, 請求の範囲</td>
<td></td>
</tr>
<tr>
<td>1-10 A</td>
<td>WO 2006/129471 AI (コユカミノルタホールディングス株式会社) 2006. 12. 07, 段落[0048]-[0062], 請求の範囲</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(ファミリーなし)</td>
<td></td>
</tr>
<tr>
<td>1-10 A</td>
<td>JP 2010-532423 A (日東電工株式会社) 2010. 10. 07, 請求の範囲, 段落 [0104]-[0112]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>& US 2009/0066234 AI & WO 2009/006550 AI</td>
<td></td>
</tr>
<tr>
<td>1-10 A</td>
<td>WO 2009/064661 AI (日東電工株式会社) 2009. 05. 22, 段落[0125]-[0142], 請求の範囲</td>
<td></td>
</tr>
</tbody>
</table>

様式PCT/ISA/210 (第2ページの続き) (2009年7月)