

DOMANDA DI INVENZIONE NUMERO	102021000020618
Data Deposito	30/07/2021
Data Pubblicazione	30/01/2023

Classifiche IPC

Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo
В	28	D	1	04
Sezione	Classe	Sottoclasse	Gruppo	Sottogruppo

Titolo

DISPOSITIVO DI INCISIONE PER LASTRE IN MATERIALE RELATIVAMENTE FRAGILE E RELATIVO METODO DI INCISIONE 10

15

20

25

DESCRIZIONE

Campo di applicazione

[0001] La presente invenzione è generalmente applicabile al settore tecnico della lavorazione di lastre in materiale relativamente fragile ed ha particolarmente per oggetto un dispositivo per incidere lastre in ceramica o vetro adatto all'uso in combinazione con una macchina utensile multiassiale avente una testa di lavoro.

[0002] L'invenzione ha altresì per oggetto un metodo per l'incisione di lastre in materiale relativamente fragile mediante il suddetto dispositivo.

Stato della tecnica

[0003] E' noto da tempo nel settore della lavorazione di lastre in materiale relativamente fragile, come la ceramica o il vetro, l'utilizzo di dispositivi per l'incisione o il pre-taglio della superficie superiore della lastra.

[0004] Generalmente, tali dispositivi presentano un manico atto ad essere impugnato da un operatore ed alla cui estremità è montato un utensile di elevata durezza atto ad essere premuto contro la lastra e movimentato lungo la superficie della stessa per inciderla.

[0005] Quindi, la lavorazione della lastra mediante tale dispositivo ed ogni ulteriore manipolazione, carico, scarico e/o il trasferimento dei prodotti in lavorazione da un'area all'altra della zona di lavoro viene effettuato manualmente.

[0006] E' altresì nota nel settore della lavorazione di lastre in materiale lapideo l'utilizzo di macchine utensili comprendenti una struttura a portale atta a delimitare una zona di lavoro ed almeno una trave orizzontale sulla quale è montata scorrevolmente una testa di lavorazione delle lastre.

[0007] Generalmente, nelle lavorazioni di taglio delle lastre in materiale lapideo, la macchina utensile comprende un carro scorrevole sulla trave principale ed una testa di taglio mobile superiormente alla lastra con un elettromandrino al quale è girevolmente associato un utensile discoidale per

5 il taglio della lastra.

15

20

25

[0008] La macchina utensile può essere dotata di dispositivi automatici per la manipolazione delle lastre, il carico/scarico e/o il trasferimento dei prodotti in lavorazione da un'area all'altra della zona di lavorazione in modo da consentire lavorazioni in modo automatico.

10 **[0009]** Inoltre, la testa di taglio può essere accoppiata ad altri tipi di utensile, ad esempio un utensile di bisellatura delle lastre con una mola di forma appropriata.

[0010] Tuttavia, un inconveniente di tale soluzione è rappresentato dal fatto che la macchina utensile può essere utilizzata per lavorazioni di lastre in materiale lapideo, quale marmo o granito, ma non per lastre in materiale relativamente fragile quale la ceramica o il vetro.

[0011] Quindi, per la lavorazione di lastre realizzate in materiali differenti è necessario dotarsi di due macchine utensili differenti, una per i materiali lapidei ed una per i materiali relativamente fragili, con conseguente aumento dei costi di gestione.

[0012] Per ovviare almeno parzialmente a tale inconveniente sono state sviluppate macchine atte all'incisione automatica di lastre in materiale relativamente fragile da utilizzare in combinazione a macchine utensili per lastre in materiale lapideo in modo da consentire la lavorazione di lastre sia in vetro che in pietra.

[0013] Tale combinazione viene effettuata mediante macchine utensili a portale comprendenti una coppia di carri affiancati scorrevoli sulla trave principale e provvisti rispettivamente di una testa di taglio per lastre in materiale lapideo ed un dispositivo di incisione di lastre in materiale relativamente fragile.

[0014] Tuttavia, tale soluzione presenta una maggiore complessità costruttiva che incrementa sensibilmente i costi di realizzazione e gestione della macchina.

[0015] Pertanto, è sentita l'esigenza di concepire e mettere a disposizione un dispositivo per incidere o pre-tagliare lastre in materiale relativamente fragile, quale ceramica o vetro, adatto all'uso in combinazione con una macchina utensile multiassiale avente una testa di lavoro provvista di un utensile di tipo discoidale per il taglio di materiali lapidei.

10

15

20

Problema tecnico

[0016] Alla luce dello stato della tecnica noto il problema tecnico che la presente invenzione si propone di risolvere è quello di incidere lastre in materiale relativamente fragile con una macchina normalmente usata per il taglio di materiali lapidei contenendo i costi di costruzione e di gestione della macchina nel suo insieme.

Presentazione dell'invenzione

[0017] Scopo del presente trovato è quello di risolvere il problema sopra citato mettendo a disposizione un dispositivo di incisione ed il relativo metodo di incisione che presentino caratteristiche di elevata efficienza e relativa economicità.

25 **[0018]** Uno scopo particolare del presente trovato è quello di mettere a

Jumes

disposizione un dispositivo del tipo sopra descritto che sia adatto all'uso in combinazione con una macchina utensile multiassiale per il taglio di materiali lapidei, quali marmo e granito.

[0019] Un ulteriore scopo particolare del presente trovato è quello di mettere a disposizione un dispositivo del tipo sopra descritto che renda particolarmente rapide e semplici le operazioni di incisione delle lastre.

[0020] Un altro scopo del presente trovato è quello di mettere a disposizione un dispositivo del tipo sopra descritto che consenta di incidere in modo automatico e mediante puro rotolamento una lastra lungo un percorso predeterminato.

10

15

20

25

[0021] Un ulteriore scopo del presente trovato è quello di mettere a disposizione un dispositivo del tipo sopra descritto che consenta di regolare la pressione di incisione della lastra ed inciderla in modo uniforme lungo tutto il percorso di incisione.

[0022] Un altro scopo del presente trovato è quello di mettere a disposizione un dispositivo ed un metodo del tipo sopra descritti che non richiedano particolare abilità da parte di un operatore addetto alla sua gestione.

[0023] Un ulteriore scopo del presente trovato è quello di mettere a disposizione un dispositivo del tipo sopra descritto che consenta di regolare lo spessore di incisione della lastra.

[0024] Un altro scopo del presente trovato è quello di mettere a disposizione un dispositivo ed un metodo del tipo sopra descritti che consentano di lavorare lastre in materiale relativamente fragile con una elevata velocità.

[0025] Un ulteriore scopo del presente trovato è quello di mettere a disposizione un dispositivo del tipo sopra descritto che consenta di incidere a secco lastre in materiale relativamente fragile.

[0026] Gli scopi sopra accennati, nonché altri che appariranno più chiaramente nel seguito, sono raggiunti da un dispositivo per incidere lastre in materiale relativamente fragile, quale ceramica o vetro, adatto all'uso in combinazione con una macchina utensile multiassiale avente una testa di lavoro posta superiormente ad un piano di supporto sostanzialmente orizzontale, in accordo con la rivendicazione 1.

10

15

20

[0027] La testa comprende una forcella mobile lungo tre assi cartesiani e girevole attorno ad un asse verticale ed è atta a supportare almeno un'unità di lavoro ed il dispositivo comprende un elemento mobile operativamente associabile alla forcella della macchina utensile e che presenta alla sua estremità inferiore un utensile volvente con asse di rotazione sostanzialmente orizzontale, configurato per incidere mediante puro rotolamento una lastra appoggiata al piano di lavoro lungo un percorso di incisione predeterminato.

[0028] Grazie a tale combinazione di caratteristiche, è possibile effettuare l'incisione di una lastra in materiale relativamente fragile semplificando le lavorazioni e rendendo particolarmente rapide le operazioni di incisione.

[0029] Inoltre, l'utensile volvente comprende un adattatore ancorabile all'estremità inferiore dell'elemento mobile ed una rotellina imperniata folle sull' adattatore e girevole attorno all'asse di rotazione sostanzialmente orizzontale.

25 **[0030]** Vantaggiosamente, il dispositivo comprende mezzi attuatori agenti

6

sull'adattatore per spingere la rotellina verso il basso lungo una direzione sostanzialmente verticale e variare la pressione di incisione della rotellina.

[0031] L'invenzione ha altresì per oggetto un metodo di incisione mediante il suddetto dispositivo, in accordo con la rivendicazione 15.

[0032] Forme vantaggiose di realizzazione del trovato sono ottenute in accordo alle rivendicazioni dipendenti.

Breve descrizione dei disegni

[0033] Ulteriori caratteristiche e vantaggi del trovato risulteranno maggiormente evidenti alla luce della descrizione dettagliata di una forma di realizzazione preferita ma non esclusiva di un dispositivo per incidere lastre in materiale relativamente fragile illustrato a titolo di esempio non limitativo con l'aiuto delle seguenti tavole di disegno in cui:

10

15

20

le **FIGG. 1** e **2** sono viste prospettiche di una testa di lavoro di una macchina utensile multiassiale provvista del dispositivo secondo il trovato, rispettivamente in una prima e seconda posizione operativa;

le **FIGG. 3** e **4** sono viste laterali rispettivamente della testa di lavoro di Fig. 1 e di Fig. 2;

la **FIG. 5** è una vista prospettica del dispositivo di Fig. 1 in una prima forma di realizzazione;

le **FIGG.** 6 e **7** sono rispettivamente una vista ingrandita frontale ed una vista ingrandita laterale del dispositivo di Fig. 5;

la **FIG. 8** è una vista prospettica del dispositivo di Fig. 1 in una seconda forma di realizzazione;

le **FIGG. 9** e **10** sono rispettivamente una vista ingrandita frontale ed 25 una vista ingrandita laterale del dispositivo di Fig. 8.

Descrizione dettagliata di un esempio di realizzazione preferito

[0034] Con particolare riferimento alle figure, è illustrato un dispositivo, indicato globalmente con il numero di riferimento **1**, per incidere lastre **L** in materiale relativamente fragile, quale ceramica o vetro.

[0035] Il dispositivo 1 è adatto all'uso in combinazione con una macchina utensile multiassiale, non illustrata nelle figure, ad esempio del tipo a portale e comprendente una trave principale sostanzialmente orizzontale mobile lungo primi mezzi di guida longitudinali ancorati al suolo.

[0036] La macchina comprende una testa di lavoro 2 montata scorrevolmente sulla trave principale e posta superiormente ad un piano di supporto P sostanzialmente orizzontale.

10

15

20

25

[0037] La macchina utensile con la sua testa di lavoro 2 potrà essere utilizzata per tagliare o sagomare lastre in materiali lapidei, quali marmo, granito, pietra, conglomerati lapidei, cementizi o ceramici, seguendo percorsi di taglio opportunamente sagomati controllati dalla unità PLC della macchina. [0038] In maggior dettaglio, la testa 2 comprende una forcella 3 mobile lungo tre assi cartesiani X, Y, Z solidali al piano di supporto P e girevole attorno al primo asse verticale Z, ed atta a supportare almeno un'unità di lavoro 4 per il taglio di lastre in materiale lapideo.

[0039] A tal fine, la forcella 3 potrà comprende una flangia 5 accoppiabile a mezzi di rotazione, non illustrati nelle figure, atti ad impartire all'unità di lavoro 4 una rotazione attorno all'asse Z per variare la sua direzione di taglio.

[0040] L'unità di lavoro 4 comprende almeno un elettromandrino 6 provvisto di un utensile discoidale V per il taglio delle lastre in materiale lapideo e vincolato alla forcella 3 in modo da ruotare intorno ad un primo asse di

rotazione R₁ sostanzialmente orizzontale e perpendicolare all'asse verticale Z, come meglio illustrato nelle FIGG. 1 e 2.

[0041] Opportunamente, l'elettromandrino 6 potrà essere montato girevolmente sulla forcella 3 in modo da poter essere inclinato attorno ad un asse d'inclinazione H anch'esso orizzontale e perpendicolare al primo R₁.

[0042] Così, l'elettromandrino 6, e quindi l'utensile V dell'unità di lavoro 4, potrà essere inclinato rispetto al piano di supporto P per consentire la realizzazione di tagli inclinati o lavorazioni per asportazione di materiale, come la contornatura e/o smussatura.

[0043] In alcune forme di realizzazione, non illustrate nei disegni, l'unità di lavoro 4 può includere ulteriori mezzi di taglio diversi da quello ad utensile discoidale, ad esempio con getti d'acqua ad alta pressione o con punte di perforazione, anch'esse inclinabili solidalmente all'elettromandrino attorno all'asse di inclinazione H.

[0044] Eventualmente, ma non necessariamente, alla forcella 3 potrà anche essere affiancato un dispositivo manipolatore del tipo a ventosa per la movimentazione delle lastre sul piano di supporto P.

[0045] Inoltre, il piano di supporto **P** della macchina utensile per le lastre in lavorazione potrà avere una superficie di supporto fissa o mobile.

[0046] In una forma di realizzazione della macchina utensile, non illustrata nelle figure, la testa 2 potrà essere montata sulla trave principale ed il piano di supporto P delle lastre potrà comprendere una superficie girevole lungo un asse verticale per favorire l'orientamento del prodotto in lavorazione rispetto alla testa di lavoro 2 ed al dispositivo di incisione 1.

25 **[0047]** Secondo l'invenzione, la lastra L in materiale relativamente fragile è

disposta sul piano di supporto **P** in modo da avere una superficie superiore **L**_A sostanzialmente piana rivolta verso l'alto ed affacciata alla testa di lavoro **2**, una superficie inferiore **L**_B appoggiata al piano di supporto **P** ed uno spessore **s** di dimensioni predeterminate e sostanzialmente costante.

[0048] Vantaggiosamente, il dispositivo 1 comprende un elemento mobile 8 operativamente associabile alla forcella 3 ed avente alla sua estremità inferiore un utensile 9 volvente con un secondo asse di rotazione R₂ sostanzialmente orizzontale, configurato per incidere mediante puro rotolamento una lastra L appoggiata al piano di supporto P lungo un percorso di incisione predeterminato.

10

15

20

25

[0049] In questo modo, durante il movimento della testa 2 lungo un percorso predeterminato l'utensile volvente 9 è libero di ruotare per effetto del contatto con la superficie superiore L_A della lastra L per tracciare una linea di incisione.

[0050] Così, mediante un'unica testa di lavoro 2 provvista del dispositivo 1 sarà possibile lavorare sia le normali lastre in materiale lapideo sia lastre L in materiale relativamente fragile senza sostituire la testa 2 o spostare la lavorazione su un'altra macchina utensile.

[0051] Analogamente, mediante la testa di lavoro 2 in combinazione con il dispositivo 1 sarà possibile effettuare un maggior numero di lavorazioni sulla stessa lastra L in materiale relativamente fragile, come, ad esempio, una prima lavorazione per abrasione di una lastra L in ceramica mediante l'utensile V ed una seconda lavorazione per incisione mediante l'utensile volvente 9, nonché la successiva rottura mediante tensionamento lungo il percorso di incisione.

[0052] Appare evidente, che la combinazione del dispositivo **1** e la testa di taglio **2** rende la macchina utensile estremamente versatile.

[0053] Opportunamente, l'elemento mobile 8 sporge lateralmente dalla forcella 3 in modo da estendersi selettivamente verso il basso, lungo una direzione verticale o un secondo asse verticale W, e senza interferire con l'unità di lavoro 4.

[0054] Quindi, l'elemento mobile 8 potrà muoversi tra una posizione inoperativa in cui l'utensile volvente 9 non interferisce con la lastra L, come illustrato nelle FIGG. 2 e 4 ed una posizione operativa in cui l'utensile 9 è a contatto con la lastra L, come illustrato nelle FIGG. 1 e 3.

10

15

20

[0055] Opportunamente, l'elemento mobile 8 è accoppiato a mezzi attuatori 10 atti a promuoverne il movimento verso la lastra L e/o lungo la direzione verticale W e scelti nel gruppo comprendente sistemi pneumatici o idraulici, a vite senza fine, a pignone e cremagliera, motori lineari o sistemi similari.

[0056] Tali mezzi attuatori 10 comprendono una parte fissa posizionata ad una piastra laterale 12 della forcella 3 ed una parte mobile costituita dall'elemento 8.

[0057] Nella forma di realizzazione illustrata nelle figure, i mezzi attuatori 10 sono costituiti da un cilindro pneumatico avente una parte fissa o camicia 11 ancorata alla piastra laterale 12 ed una parte mobile costituita da uno stelo, in cui nella parte fissa 11 è ricavata una camera di pressione, non visibile nelle figure, nella quale scorre un pistone solidale all'elemento 8, anch'esso non visibile nelle figure.

[0058] Preferibilmente, ai mezzi attuatori 10 sono associati mezzi di guida
 13 per guidare in modo preciso l'elemento mobile 8 nel suo movimento

diania_

verticale.

15

20

[0059] In una forma di realizzazione, i mezzi di guida 13 comprendono una coppia di guide cilindriche o prismatiche 13', 13" atte a mantenere l'elemento mobile 8 perpendicolare al piano di supporto P durante il suo movimento verticale e durante la rotazione dell'utensile volvente 9.

[0060] In una forma di realizzazione, l'utensile volvente 9 comprende un adattatore 14 ancorabile all'estremità inferiore dell'elemento mobile 8 ed una rotellina 15 imperniata folle sull'adattatore 14 e girevole attorno al secondo asse di rotazione R₂.

[0061] In uso, l'elemento 8 agisce sull'adattatore 14 per spingere la rotellina 15 verso il basso lungo la direzione sostanzialmente verticale W in modo da variare e regolare la pressione di incisione della rotellina 15, nonché lo spessore di incisione della lastra L per incidere quest'ultima uniformemente e lungo un percorso predeterminato.

[0062] Preferibilmente, l'adattatore 14 potrà essere provvisto di un raccordo 16 collegato ad un tubo di adduzione 17 di un fluido lubrificante o refrigerante allo scopo di ridurne le forze d'attrito e la resistenza al rotolamento della rotellina 15.

[0063] Nella forma di realizzazione illustrata nelle FIGG. 1-7, l'adattatore 14 è solidale all'estremità inferiore dell'elemento mobile 8 in modo da incidere il materiale relativamente fragile in lavorazione lungo il percorso predeterminato mentre la forcella 3 è movimentata lungo gli assi cartesiani X, Y e ruotata attorno al primo asse verticale Z.

[0064] In una forma di utilizzazione del dispositivo, per tracciare percorsi di incisione predeterminati non rettilinei sarà sufficiente ruotare solidalmente la

Danie

forcella 3 della macchina utensile.

10

20

25

[0065] In una seconda forma di utilizzazione del dispositivo, illustrata nelle FIGG. 8-10, l'adattatore 14 è ancorato all'estremità inferiore dell'elemento mobile 8 in modo flottante, ovvero con libertà di rotazione attorno all'asse sostanzialmente verticale W durante il trascinamento rispetto al materiale in lavorazione lungo il percorso predeterminato mentre la forcella 3 è movimentata solamente lungo gli assi cartesiani X, Y.

[0066] In questa forma di realizzazione, l'asse sostanzialmente orizzontale R₂ della rotellina 15 non interseca il secondo asse verticale W ed è sfalsato rispetto a quest'ultimo di una distanza predeterminata d, come meglio illustrato in FIG. 10.

[0067] Come meglio illustrato nelle figure, la rotellina 15 è imperniata sull'adattatore 14 con minimo attrito e presenta un tagliente periferico sostanzialmente circolare.

[0068] Il tagliente periferico potrà essere realizzato con un materiale scelto nel gruppo che include il carburo di tungsteno, carburo di titanio, carburo di tantalio, diamante industriale o combinazione degli stessi.

[0069] Sono inoltre previsti primi mezzi sensori, non illustrati nelle figure, per il rilevamento ed il controllo della pressione esercitata dall'elemento mobile 8 sulla rotellina 15 e quindi la forza di incisione sul materiale relativamente fragile in lavorazione.

[0070] I primi mezzi sensori potranno comprendere un pressostato regolabile associato ai mezzi attuatori **10**.

[0071] Nella forma di realizzazione illustrata nelle figure, il pressostato potrà essere interposto tra la camera di pressione del cilindro pneumatico ed una

sorgente di fluido in pressione.

15

25

[0072] Opportunamente, il dispositivo 1 potrà essere provvisto di secondi mezzi sensori, non illustrati nelle figure, per il rilevamento della posizione dell'elemento mobile 8 rispetto alla superficie superiore L_A della lastra L.

[0073] Vantaggiosamente, il pressostato regolabile ed i secondi mezzi sensori sono associati ad una centralina elettronica atta a variare la pressione di incisione della rotellina 15 in funzione del materiale relativamente fragile in lavorazione e dello spessore s della lastra L da incidere o pre-tagliare.

10 **[0074]** Successivamente, basterà esercitare manualmente o in modo automatico il tensionamente del materiale in lavorazione lungo il percorso predeterminato di incisione in modo da effettuare il taglio finale.

[0075] Secondo un ulteriore aspetto del trovato è previsto un metodo di incisione di lastre L in materiale relativamente fragile, quale ceramica e vetro, mediante un dispositivo 1 del tipo descritto precedentemente.

[0076] Il metodo secondo l'invenzione prevede le seguenti fasi:

- posizionamento di una lastra **L** di materiale relativamente fragile da lavorare sul piano di supporto **P**;
- collegamento dell'elemento mobile **8** a mezzi di regolazione della 20 pressione;
 - movimentazione dell'elemento mobile 8 verso il basso in modo da portare l'utensile volvente 9 a contatto con il materiale da tagliare;
 - attivazione dei mezzi di regolazione della pressione in modo da esercitare sulla rotellina **15** una forza di incisione predeterminata in funzione del materiale e spessore **s** del materiale da incidere;

Orania_

- movimentazione bidimensionale della testa 2 e della forcella 3 in

modo da realizzare una incisione lungo il percorso predeterminato mediante

puro rotolamento della rotellina 15;

- tensionamento del materiale lungo il percorso di incisione in modo da

effettuare il taglio finale del materiale in lavorazione.

[0077] Da quanto precede, appare evidente che il dispositivo 1 per incidere

ed il relativo metodo di incisione raggiungono gli scopi prefissati ed in

particolare consentono di semplificare le lavorazioni e rendono

particolarmente rapide le operazioni di incisione.

[0078] Il dispositivo ed il metodo secondo il trovato sono suscettibili di

numerose modifiche e varianti tutte rientranti nel concetto inventivo espresso

nelle rivendicazioni allegate.

[0079] Anche se il dispositivo ed il metodo sono stati descritti con

particolare riferimento alle figure allegate, i numeri di riferimento usati nella

descrizione e nelle rivendicazioni sono utilizzati per migliorare l'intelligenza

del trovato e non costituiscono alcuna limitazione all'ambito di tutela

rivendicato.

[0080] Il riferimento in tutta la descrizione a "una forma di realizzazione" o

"la forma di realizzazione" o "alcune forme di realizzazione" indicano che una

particolare caratteristica, struttura od elemento descritto è compresa in

almeno una forma di realizzazione dell'oggetto del presente trovato.

[0081] Inoltre, le particolari caratteristiche, strutture o elementi possono

essere combinati in qualunque modo idoneo in una o più forme di

realizzazione.

Applicabilita' Industriale

25

10

15

[0082] La presente invenzione è industrialmente applicabile in quanto può essere realizzata su scala industriale da parte di industrie appartenenti al settore della lavorazione di materiali relativamente fragili.

10

15

20

RIVENDICAZIONI

1. Un dispositivo (1) per incidere lastre (L) in materiale relativamente fragile, quale ceramica o vetro, adatto all'uso in combinazione con una macchina utensile multiassiale avente una testa di lavoro (2) posta superiormente ad un piano di supporto (P) sostanzialmente orizzontale;

in cui detta testa (2) comprende una forcella (3) mobile lungo tre assi cartesiani (X, Y, Z) e girevole attorno ad un primo asse verticale (Z) ed atta a supportare almeno un'unità di lavoro (4);

in cui detto dispositivo (1) comprende un elemento mobile (8) operativamente associabile a detta forcella (3) ed avente alla sua estremità inferiore un utensile (9) volvente con asse di rotazione (R2) sostanzialmente orizzontale, configurato per incidere mediante puro rotolamento una lastra (L) appoggiata a detto piano di supporto (P) lungo un percorso di incisione predeterminato.

- 2. Dispositivo secondo la rivendicazione 1, in cui detto elemento mobile (8) sporge lateralmente da detta forcella (3) in modo da estendersi verso il basso senza interferire con detta unità di lavoro (4).
- 3. Dispositivo secondo la rivendicazione 1, in cui detto utensile volvente (9) comprende un adattatore (14) ancorabile all'estremità inferiore di detto elemento mobile (8) ed una rotellina (15) imperniata folle su detto adattatore (14).
- 4. Dispositivo secondo la rivendicazione 3, in cui detta rotellina (**15**) è imperniata su detto adattatore (**14**) con minimo attrito e presenta un tagliente periferico sostanzialmente circolare.
- 5. Dispositivo secondo la rivendicazione 4, in cui almeno detto

17

m222

tagliente periferico è realizzato con un materiale scelto nel gruppo che include il carburo di tungsteno, carburo di titanio, carburo di tantalio, diamante industriale o una combinazione degli stessi.

- 6. Dispositivo secondo la rivendicazione 3, in cui detto adattatore (14) è solidale all'estremità inferiore di detto elemento mobile (8) in modo da incidere il materiale in lavorazione lungo il percorso predeterminato mentre detta forcella (3) è movimentata lungo i due assi cartesiani orizzontali (X, Y) e ruotata attorno al terzo asse cartesiano verticale (Z).
- 7. Dispositivo secondo la rivendicazione 3, in cui detto adattatore (14) è ancorato all'estremità inferiore di detto elemento mobile (8) in modo flottante, con libertà di rotazione attorno ad un secondo asse sostanzialmente verticale (W) di detto elemento mobile (8) in modo da incidere il materiale in lavorazione lungo il percorso predeterminato mentre detta forcella (3) è movimentata bidimensionalmente lungo detti assi cartesiani orizzontali (X, Y).

10

15

20

- 8. Dispositivo secondo la rivendicazione 7, in cui l'asse sostanzialmente orizzontale (\mathbf{R}_2) di detta rotellina ($\mathbf{15}$) è sfalsato rispetto a detto secondo asse verticale (\mathbf{W}) di detto elemento mobile ($\mathbf{8}$) di una distanza predeterminata (\mathbf{d}).
- 9. Dispositivo secondo la rivendicazione 7, in cui sono previsti primi mezzi sensori per il rilevamento ed il controllo della pressione esercitata da detto elemento mobile (8) su detta rotellina (15) e quindi della forza di incisione sul materiale in lavorazione.
- 10. Dispositivo secondo la rivendicazione 3, in cui detto elemento 25 mobile (8) è accoppiato a mezzi attuatori (10) atti a promuoverne il

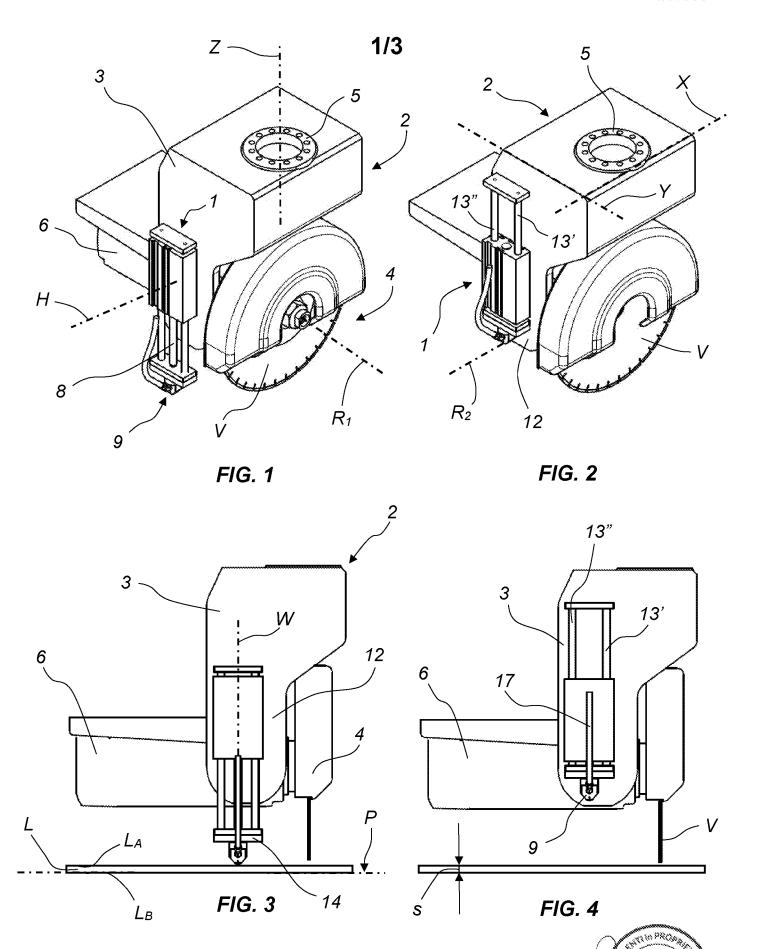
Juan ...

movimento verso la lastra (L) e scelti nel gruppo comprendente sistemi pneumatici o idraulici, a vite senza fine, a pignone e cremagliera, motori lineari o sistemi similari, detti mezzi attuatori (10) avendo una parte fissa posizionata ad una piastra laterale (12) di detta forcella (3).

11. Dispositivo secondo la rivendicazione 10, caratterizzato dal fatto di comprendere mezzi di guida (13) associati a detti mezzi attuatori (10) per guidare in modo preciso detto elemento mobile (8) lungo detta direzione verticale.

5

10


15

20

- 12. Dispositivo secondo una o più delle rivendicazioni precedenti, in cui detti primi mezzi sensori comprendono un pressostato regolabile associato a detti mezzi attuatori (**10**).
- 13. Dispositivo secondo la rivendicazione 12, in cui detto pressostato regolabile è associato ad una centralina elettronica atta a variare la pressione di incisione di detta rotellina (15) in funzione del materiale e dello spessore (s) del materiale da incidere.
- 14. Dispositivo secondo la rivendicazione 1, in cui detta unità di lavoro (4) comprende almeno un elettromandrino (6) provvisto di un utensile discoidale (V) per il taglio di materiali lapidei.
- 15. Un metodo per l'incisione di lastre (**L**) in materiale relativamente fragile, quale ceramica e vetro, mediante il dispositivo (**1**) secondo una o più delle rivendicazioni precedenti, comprendente le seguenti fasi:
 - posizionamento di una lastra (L) di materiale da lavorare su detto piano di supporto (P);
- collegamento di detto elemento mobile (8) a mezzi di regolazione 25 della pressione;

- movimentazione di detto elemento mobile (8) verso il basso in modo da portare detto utensile volvente (9) a contatto con il materiale da incidere;
- attivazione dei mezzi di regolazione della pressione in modo da esercitare su detta rotellina (15) una forza di incisione predeterminata in funzione del materiale e spessore del materiale da incidere;
- movimentazione bidimensionale di detta testa (2) e di detta forcella (3) in modo da realizzare una incisione lungo il percorso predeterminato mediante rotolamento puro di detta rotellina (15);
- tensionamento del materiale lungo detto percorso di incisione in modo da effettuare il taglio finale del materiale in lavorazione.

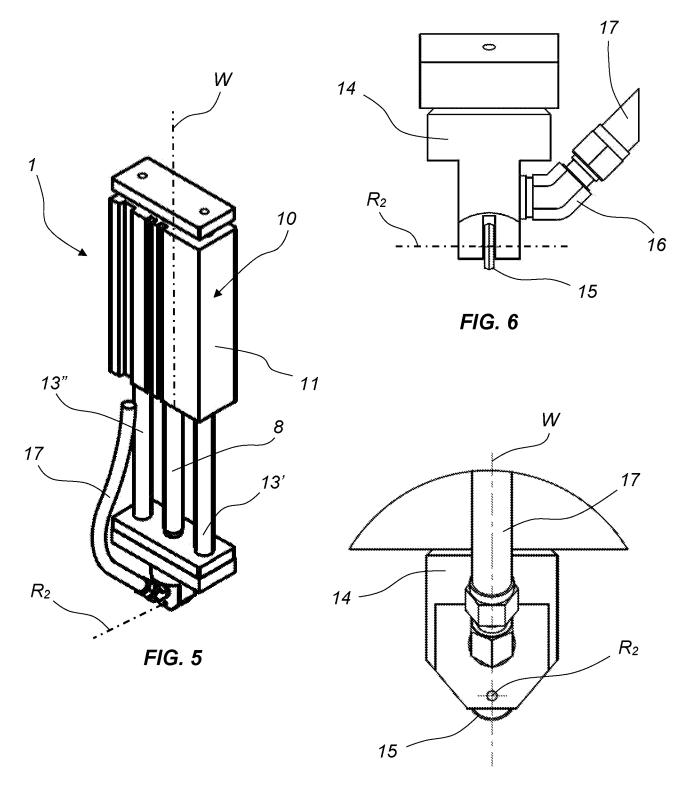
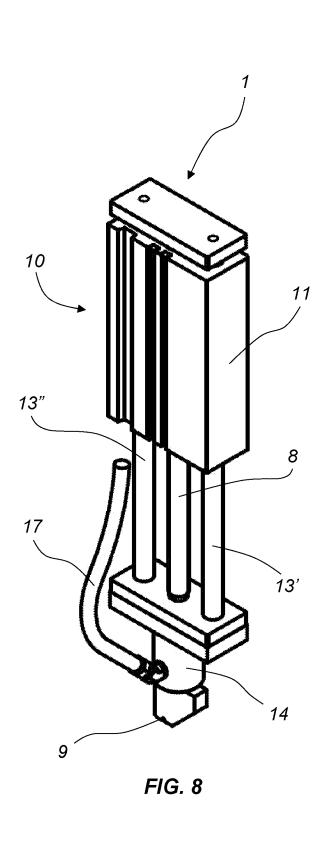
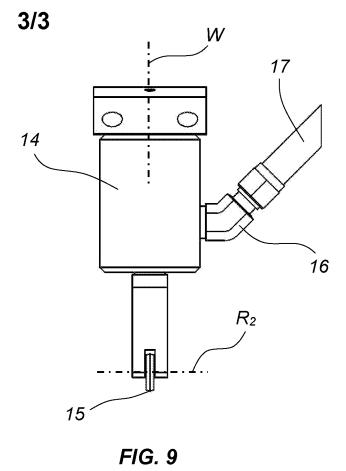
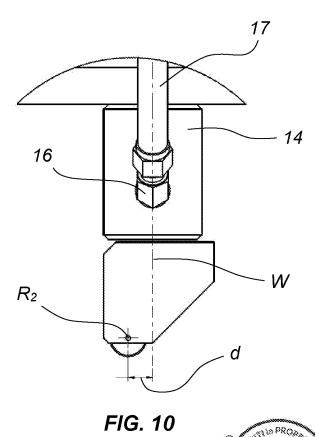





FIG. 7

