(12) 发明专利申请

(21) 申请号 201410593869.1
(22) 申请日 2014.10.29
(71) 申请人 刘忠军
 地址 100191 北京市海淀区花园北路 49 号
(72) 发明人 刘忠军
(74) 专利代理机构 隆天国际知识产权代理有限公司
 代理人 聂慧莲 郑特强

(51) Int. Cl.
 A61B 17/80(2006.01)
 A61B 17/70(2006.01)
 A61F 2/44(2006.01)

(54) 发明名称
 一种长度可调的椎板

(57) 摘要
 本发明公开了一种长度可调的椎板，包括第一分板和第二分板，所述第一分板包括第一支撑部和第一连接部，所述第二分板包括第二支撑部和第二连接部，所述第一连接部与所述第二连接部之间卡接或通过连接件连接固定，且所述第一连接部与所述第二连接部之间的连接固定位置为两个以上。本发明方便地实现了椎板的长度可调，备货量大大减少，患者负担下降的同时也降低了资源的浪费。
1. 一种长度可调的椎板，其特征在于，包括第一分板和第二分板，所述第一分板包括第一支撑部和第一连接部，所述第二分板包括第二支撑部和第二连接部，所述第一连接部与所述第二连接部间的相互卡接或通过连接件连接固定，且所述第一连接部与所述第二连接部间的连接定位位置为两个以上。

2. 如权利要求1所述的长度可调的椎板，其特征在于，所述第一连接部包括有弹性卡槽，所述弹性卡槽一壁面设置有一向所述弹性卡槽内凹的两个以上内凸块，所述第二连接部包括有弹性卡臂，所述弹性卡臂与所述弹性卡槽相配，且所述弹性卡臂对应所述内凸块的壁面设置有两个以上外凹槽，所述外凹槽与所述内凸块相配。

3. 如权利要求2所述的长度可调的椎板，其特征在于，任一所述外凹槽与任一所述内凹块之间的两侧配合面中，其中一面为导引所述内凹块与所述外凹槽之间相对运动的导引面，另一面为限制所述内凹块与所述外凹槽之间相对运动的止推面。

4. 如权利要求3所述的长度可调的椎板，其特征在于，所述外凹槽与所述内凹块的截面均为直角梯形。

5. 如权利要求2所述的长度可调的椎板，其特征在于，所述弹性卡槽设置所述内凸块的壁面为悬臂。

6. 如权利要求5所述的长度可调的椎板，其特征在于，所述弹性卡臂中部设置有沿纵向延伸的通槽，从而将所述弹性卡臂分为左右两侧两个端相连的部分。

7. 如权利要求1所述的长度可调的椎板，其特征在于，所述第一连接部上设置有螺纹孔，所述第二连接部上设置有第一长条孔，以使一连接件能够头部压靠所述第一长条孔两侧平面，杆部穿过所述第一长条孔配连所述螺纹孔。

8. 如权利要求7所述的长度可调的椎板，其特征在于，所述第一连接部上还设置有第二长条孔，所述第二长条孔的宽度小于所述第一长条孔。

9. 如权利要求8任一所述的长度可调的椎板，其特征在于，所述第一支撑部和所述第二支撑部上均设置有一个以上螺钉孔，且所述螺钉孔为球窝形孔。

10. 如权利要求8任一所述的长度可调的椎板，其特征在于，所述第一分板与所述第二分板的材料为医用钛、钛合金、不锈钢或生物可吸收材料，所述生物可吸收材料选自聚乳酸、聚ε-己内酯、聚乳酸-羟基乙酸共聚物、聚羟基烷酸酯等生物可吸收高聚物中的一种。
一种长度可调的椎板

技术领域
[0001] 本发明涉及颈椎后路枕颈融合所用辅助器具，尤其涉及一种长度可调的椎板。

背景技术
[0002] 目前，颈椎后路单开门椎板成形术是治疗颈椎病的一种较为常用的手术方式，在该方式中需使用颈椎椎板。由于患者的个体差异，每次手术所需的颈椎椎板长度不同，现有颈椎椎板包括有多个规格，以便以每两厘米度长差为一个规格差，通常在手术时需备有三种规格的颈椎椎板。这种形式造成生产厂商及物流备货较多，医院库存和流通量也增大，这就增加了生产及管理成本，客观上提升了医疗成本，加重患者负担的同时也造成了极大的浪费，因此业界急需解决该问题。

发明内容
[0003] 针对现有技术中存在的问题，本发明的目的为提供一种结构简单、操作方便且固定可靠的长度可调的椎板。
[0004] 为实现上述目的，本发明的技术方案如下:
[0005] 一种长度可调的椎板，包括第一分板和第二分板，所述第一分板包括第一支撑部和第一连接部，所述第二分板包括第二支撑部和第二连接部，所述第一连接部与所述第二连接部之间卡接或通过连接件连接固定，且所述第一连接部与所述第二连接部之间的连接固定位置为两个以上。
[0006] 进一步，所述第一连接部包括有弹性卡槽，所述弹性卡槽一面一端设置有向所述弹性卡槽内凹陷的两个以上内凹块，所述第二连接部包括有弹性卡臂，所述弹性卡臂与所述弹性卡槽相配，且所述弹性卡臂对应所述内凹块的壁面上设置有两个以上外凹槽，所述外凹槽与所述内凹块相配。
[0007] 进一步，任一一所述外凹槽与任一所述内凹块之间的两前后配合面中，其中一面前为导引所述内凹块与所述外凹槽之间相对运动的导引面，另一面为限制所述内凹块与所述外凹槽之间相对运动的止推面。
[0008] 进一步，所述外凹槽与所述内凹块的截面均为直角梯形。
[0009] 进一步，所述弹性卡槽设置所述内凹块的壁面为悬壁。
[0010] 进一步，所述弹性卡臂中部设置有沿纵向延伸的通槽，从而将所述弹性卡臂分为左右两个仅末端相连的部分。
[0011] 进一步，所述第一连接部上设置有螺纹孔，所述第二连接部上设置有第一长条孔，以使第一连接件能够头部压紧所述第一长条孔两侧平面，杆部穿过所述第一长条孔配备所述螺纹孔。
[0012] 进一步，所述第一连接部上还设置有第二长条孔，所述第二长条孔的宽度小于所述第一长条孔。
[0013] 进一步，所述第一支撑部和所述第二支撑部上均设置有一个以上螺钉孔，且所述
螺钉孔为球窝形孔。
[0014] 进一步，所述第一分板与所述第二分板的材料为医用钛、钛合金、不锈钢或生物可
吸收材料，所述生物可吸收材料选自聚乳酸、聚 e-己内酯、聚乳酸-羟基乙酸共聚物、聚羟
基烷酸酯等生物可吸收高聚物中的一种。
[0015] 本发明具有如下优点：
[0016] 本发明的椎板采用分体结构，采用第一分板和第二分板，其中第一连接部和第二
连接部的连接固定位置两个以上，从而在第一分板与第二分板连接时使得整体椎板长度发
生变化，而且采用卡接或通过连接件固定的方式结构简单、操作方便且固定可靠，因此本发
明方便地实现了椎板的长度可调，备货量大大减少，患者负担下降的同时也降低了资源的
浪费。

附图说明
[0017] 下面结合附图对本发明作进一步详细说明：
[0018] 图 1 为本发明一种长度可调的椎板第一实施例立体结构示意图；
[0019] 图 2 为本发明一种长度可调的椎板第一实施例剖视结构示意图；
[0020] 图 3 为本发明一种长度可调的椎板第一实施例中第一分板立体结构示意图；
[0021] 图 4 为本发明一种长度可调的椎板第一实施例中第一分板剖视结构示意图；
[0022] 图 5 为本发明一种长度可调的椎板第一实施例中第二分板立体结构示意图；
[0023] 图 6 为本发明一种长度可调的椎板第一实施例长度调节状态一立体结构示意图；
[0024] 图 7 为本发明一种长度可调的椎板第一实施例长度调节状态—主视结构示意图；
[0025] 图 8 为本发明一种长度可调的椎板第一实施例长度调节状态二立体结构示意图；
[0026] 图 9 为本发明一种长度可调的椎板第一实施例长度调节状态二主视结构示意图；
[0027] 图 10 为本发明一种长度可调的椎板第二实施例中第一分板立体结构示意图；
[0028] 图 11 为本发明一种长度可调的椎板第二实施例中第二分板立体结构示意图；
[0029] 图 12 为本发明一种长度可调的椎板第二实施例长度调节状态一立体结构示意图；
[0030] 图 13 为本发明一种长度可调的椎板第二实施例长度调节状态二立体结构示意图；
[0031] 图 14 为本发明一种长度可调的椎板第二实施例中使用的连接件结构示意图。

具体实施方式
[0032] 体现本发明特征与优点的典型实施例将在以下的说明中详细叙述。应理解的是本
发明能够在不同的实施例上具有各种的变化，其皆不脱离本发明的范围，且其中的说明及
附图在本质上是当作说明之用，而非用以限制本发明。
[0033] 本发明的长度可调的椎板，包括第一分板和第二分板，第一分板包括第一支撑部
和第一连接部，第二分板包括第二支撑部和第二连接部，第一连接部与第二连接部之间卡
接或通过连接件固定，且第一连接部与第二连接部之间的连接固定位置为两个以上。该种
分体结构可以通过调节第一连接部与第二连接部之间的连接位置，调整第一分板与第二分
板的连接位置，从而改变整体椎板的长度。下面，为方便对本发明的结构深入剖析，特结合
两具体实施例作展开说明。

【0034】 本实施例的椎板结构如图 1 和图 2 所示，包括第一分板 1 和第二分板 2。其中，第一分板 1 包括第一支撑部 11 和第一连接部 12，为方便加工通常该第一支撑部 11 与第一连接部 12 之间为一体形成。第二分板 2 包括第二支撑部 21 和第二连接部 22，为方便加工通常该第二支撑部 21 与第二连接部 22 之间为一体形成。第一支撑部 11 与第二支撑部 21 上均加工有螺钉孔 10，根据需要第一支撑部 11 与第二支撑部 21 上的螺钉孔 10 的数量可以是一个、两个和三个。本实施例中为图中所示的两个。为方便与螺钉头配合，该螺钉孔 10 为球窝形孔。通常第一支撑部 11 与第二支撑部 21 的支撑面平行或其面，因此本发明的椎板的整体结构是折线型或一字型，本实施例中为如图所示的折线型。本实施例中，第一分板 1 和第二分板 2 的制作材料可以是医用钛、钛合金、不锈钢和生物可吸收材料中的任一种，该生物可吸收材料选自聚乳酸（PLA）、聚 ε-己内酯（PCL）、聚乳酸-羟基乙酸共聚物（PLGA）、聚羟基烷酸酯（PHA）等生物可吸收高聚物材料。

【0036】 本实施例中第一分板 1 的结构如图 3 和图 4 所示，第一连接部 12 包括有弹性卡槽 120。该弹性卡槽 120 为一矩形槽，开口方向与第一支撑部 11 相背。在弹性卡槽 120 的图中所示的上壁面上设置有内凸块 124，该内凸块 124 的数量为 3 个，且延伸方向为向弹性卡槽 120 内内，延伸方向为向弹性卡槽 120 内凹。在图中，任两内凸块 124 之间形成有内凹槽 125。在弹性卡槽 120 的该上壁面 121 的左右两侧沿纵向开设两通槽 122、123，该两通槽 122、123 均从外侧向槽内凹槽 120 中，且两通槽 122、123 长度相同，以此使该上壁面 121 成一悬壁，因此该上壁面 121 具有一定弹性。

【0037】 本实施例中第二分板 2 的结构如图 5 所示，第二连接部 22 包括有弹性卡臂 220，弹性卡臂 220 为长条形结构，与弹性卡槽 120 相配以伸入弹性卡槽 120 中。弹性卡臂 220 的截面积小于第二连接部 22 的截面，弹性卡臂 220 中部设置有沿纵向延伸的通槽 223，从而将弹性卡臂 220 分为左右两个相等的部分，从而使得两部分均具有较高的弹性，并形成两卡夹结构，提高第一连接部 12 与第二连接部 22 卡接的可靠性。在弹性卡臂 220 上对应内凸块 124 的壁面上也设置有 3 个外凸块 222（此处外凸块 222 的数量确定是为了配合内凹槽 125 而设，在任两内凸块 122 之间形成外凹槽 221，该外凹槽 221 与内凸块 124 相配，以形成相互卡接的结构。

【0038】 本实施例中，任一外凹槽 221 与任一内凸块 124 之间的两前后配合面中，其中一面为导引面，另一面为导引面。具体为方便加工成型，该外凹槽 221 与内凸块 124 的截面均为直角梯形。该结构可以实现第一连接部 12 与第二连接部 22 卡接，固定两连接部 12 与第二连接部 22 卡接于固定相动，改变配合状态，从而改变椎板整体长度。实际上，也可以是两面均为导引面的结构，即两配合面均为斜面，而且该形状根据实际需要可以改变，并非限定为斜面，比如弧面也是可以的。

【0039】 本实施例中长度变化如图 6-图 9 所示，图 6 和图 7 所示为第一种长度变化状态，图 8 和图 9 所示为第二种长度变化状态。通常为了与现有规格统一，外凹槽 221 与内凸块 124 配合长度为 2mm，即每调整一次长度变化两毫米，本实施例中可以实现三种不同长度调整，调整范围为 0-6mm。当然规格并非完全限定，在实际操作中并不限于 2mm 一个规格，也可以 1mm 一个规格，根据具体需要设计产品结构，而且调整范围不限于 6mm。

【0040】 此结构为不可植骨结构，但也可以设计为可植骨结构，第一连接部可以采用中间开槽，
植骨螺钉即可穿过，固定植骨块。

[0044] 本实施例中，如图12和图13所示，本发明的椎板也同样包括第一分板1和第二分板2。制作材料可以是医用钛、钛合金、不锈钢和生物可吸收材料中任一种，该生物可吸收材料选自聚乳酸（PLA）、聚ε-己内酯（PCL）、聚乳酸-羟基乙酸共聚物（PLGA）、聚羟基烷酸酯（PHA）等生物可吸收高聚物材料。第一支撑部11和第二支撑部21上的螺钉孔10的数量可以是一个、两个和三个。本实施例中为图中所示的两个。为方便与螺钉头部配合，该螺钉孔10为球窝形孔。通常第一支撑部11与第二支撑部21的支撑面平行或共面，因此本发明的椎板的整体结构是折线型或一字型，本实施例中为图示所示的折线型。

[0045] 参考图12和图13，该连接件13的结构如图14所示，该连接件13可以是螺钉或螺母。参考图10和图11，该连接件13的杆部穿过第一长条孔226并连螺纹孔126，按紧后连接件13的头部压靠第一长条孔226的两侧平面，使得第一连接部12与第二连接部22连接在一起。在需要调整长度时，拧松该连接件13，并沿第一长条孔226移动到合适位置，然后再拧紧连接件13，从而完成一次长度调整。其调整状态，参考图12和图13所示，该两图中示出了不同位置状态时的第一连接部12与第二连接部22的连接结构。

[0046] 另外，本实施例中，为方便本发明的椎板与固定植骨板相连，在第一连接部12上还设置有第二长条孔127，第二长条孔127的宽度小于第一长条孔226，以方便固定时将螺钉通过第一长条孔226，并使螺钉头压靠第二长条孔127的两侧平面。

[0047] 综上所述，本发明的椎板采用分体结构，采用第一分板1和第二分板2，其中第一连接部12和第二连接部22的连接固定位置两个以上，从而在第一分板1与第二分板2连接时使得整体椎板长度发生变化，而且采用卡接或通过连接件13固定的方式结构简单、操作方便且固定可靠，因此本发明方便地实现了椎板的长度可调，备货量大大减少，患者负担下降的同时也降低了资源的浪费。

[0048] 本发明的技术方案已由优选实施例揭示如上。本领域技术人员应当意识到在不脱离本发明所附的权利要求所揭示的本发明的范围和精神的情况下所作的更动与润饰，均属本发明的权利要求的保护范围之内。
图 14