007/002691 A2 |00 0 0 O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
4 January 2007 (04.01.2007)

lﬂfb A0 00O

(10) International Publication Number

WO 2007/002691 A2

(51) International Patent Classification:
HO4L 9/00 (2006.01)

(21) International Application Number:
PCT/US2006/025027

(22) International Filing Date: 26 June 2006 (26.06.2006)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/694,270 27 June 2005 (27.06.2005) US

(71) Applicant (for all designated States except US): WA-
CHOVIA CORPORATION; One Wachovia Center, 30th
Floor, 301 South College Street, NC0630, Charlotte, NC
28288-0630 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): SUAREZ, Luis,
Antonio [US/US]; 108 Scalybark Trail, Concord, NC
28027 (US). KAUER, Neil [US/US]; 6012 Dear Drive,
Belmont, NC 28012 (US). GRAY, Tim [US/US]; 5910
Brookstome Drive, Concord, NC 28027 (US). BADIA,
David [US/US]; 8603 Westhope Street, Charlotte, NC

28216 (US). AHUJA, Vijay [US/US]; 421 Kaywoody
Court, Raleigh, NC 27615 (US).

Agent: JACKSON, Susan, S.; KENNEDY COVING-
TON LOBDELL & HICKMAN, LLP, Hearst Tower, 47th
Floor, 214 North Tryon Street, Charlotte, NC 28202 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA,
NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC,
SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, 7ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: AUTOMATED KEY MANAGEMENT SYSTEM

12 12 ‘

20 16 = / \ 16t 14
= APPLICATION APPLICATION

e ———— e | v
Kap 50 Kapi 50
I -
31 T L |22 22 <
T KEYS KEYS T 31
) (e
KEY STORE KEY STORE
41— - — 2 2~ ; Py
KEYS KEYS '
' 40 40
= 22 22 =
KMA W\ /* \ 6./)7 KMA
V\ 4‘5;[, - 6‘{ LY
~ 30 /‘(“ P
~
~_Y KEY CONTROL e
SYSTEM |47
‘\ S
T~a 18
T~ ..l CERTIFICATE
80 AUTHORITY
KEY ADMIN SERVER

(KAdmin)

o (57) Abstract: A system for automated cryptographic key management comprises a key control system, a key management agent
system, and a key system application program interface. A method for automated cryptographic key management is also disclosed.
The method comprises the automatic generation of cryptographic keys by the key control system and distribution of such keys by

WO

the key control system to the key management agent system.



WO 2007/002691 A2 |00 0T 0000 00 0 0 O

Published: For two-letter codes and other abbreviations, refer to the "Guid-
—  without international search report and to be republished  ance Notes on Codes and Abbreviations” appearing at the begin-
upon receipt of that report ning of each regular issue of the PCT Gagzette.



WO 2007/002691 PCT/US2006/025027

AUTOMATED KEY MANAGEMENT SYSTEM

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application is entitled to the benefit of, and claims priority to
provisional U.S. Patent Application Serial No. 60/694,270, filed on June 27, 2005, which is

incorporated herein by reference in its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates generally to cryptographic key

management, and, in particular, to a system for automated cryptographic key management.

BACKGROUND OF THE INVENTION

[0003] Institutions such as banks and retail establishments often conduct
business electronically, for example, through the use of the internet. Thus, such institutions
and their customers require a secure environment that has the capability of managing

cryptographic keys. Cryptographic keys are one form of information technology security.

[0004] Examples of cryptographic keys include symmetric keys and asymmetric
keys. Symmetric keys may be used, for example, for encryption of data. Symmetric
encryption involves using a single shared key among all users communicating with one
another. A message is locked (encrypted) with a key and then the same key is used to
unlock (decrypt) the message. In order to protect a message when using symmetric °

encryption, it is vital to have a secure method to exchange the secret key to all users.

[0005] Asymmetric keys may be used, for éxample, for both encryption and
authentication. Asymmetric encrypﬁon involves using a key pair to secure information. A
key pair is comprised of a private key (decryption key), which is known only to a single user

‘or a limited group of users, and a public key (encryption key), which may be known by
anyone. In order to encrypt and decrypt a message, both the private key and public key of

the key pair must be used. For example, a message will be encrypted by a sender using the



WO 2007/002691 PCT/US2006/025027

public key of the intended recipient of the message. Once the recipient receives the

encrypted message, his or her private key is used to decrypt the message.

[0006] A problem with the use of symmetric keys is that they must be changed
or rotated periodically because they become more vulnerable to attack the more they are
used. However, even the use of asymmetric keys (such as private keys, public keys, and
certificates) requires a change control and in most instances requires an application to be
recycled to pick up a new key. In current systems, all keys whether symmetric or
asymmetric are rotated manually. The manual key delivery process is insecure and error
prone. There is also need for a cryptographic key management system that supports
asymmetric keys used for rotation as well as asymmetfic keys used for authentication such

as with a certificate authority.

[0007] There is also a need for a system that provides a simple and secure way
for both middleware and mainframe applications to automatically store and retrieve keys.
The term “middleware application” refers to a non-mainframe application (web-app, web-
service, and the like), such as a log in application for authenticating users. The term
“mainframe application” refers to an application residing on a mainframe, such as a

credential managers that might be called by the log in application to validate a password.

[0008] Thus, the need exists for a simple and secure system that provides all of
the functionality and security features described above, but also includes automated key
distribution and rotation that is suitable for both symmetric and asymmetric keys without
data, performance, or functionality loss. There is also a need for a computer or software
application to securely obtain and rotate keys for use With secure communication with

partner applications.

SUMMARY OF THE INVENTION

[0009] The present invention relates to a system for automated cryptographic
key management. The system comprises a key control system, a key management agent

system, and a key system application program interface.



WO 2007/002691 PCT/US2006/025027

[0010] The present invention also relates to a method for automated
cryptographic key management. The method comprises the automatic generation of
cryptographic keys by the key control system and the automatic distribution of such keys

by the key control system to the key management agent system.

[0011] The system of the present invention is suitable for use with both
symmetric and asymmetric keys. An advantage of the éystem of the present invention over
existing systems using asymmetric keys, for example, is that the system of the present
invention supports fotatiori of asymmetric keys used for encryption as well as rotatioﬁ of

asymmetric keys used for authentication, such as with a certificate authority.

[0012]  Further areas of applicability of the present invention will become
apparent from the detailed description provided hereinafter. It should be understood that the
detailed description and specific examples, while indiéating the preferred embodiment of the
invention, are intehded for purposes -of illustration only and are not intended to limit the

scope of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013]  Further features, emﬁediments, and advantages of the present in\}ention
will become apparent from the following detailed description with reference to the
drawings, wherein: |

Fig. 1 is a block diagram illustrating the environment in which the system of
the present invention operates;

Fig. 2 is a block diagram of an automated key management system in
accordance with the preferred embodiments of the present inivention;

Fig. 3 is a block diagram of the key control system of Fig. 2;

F1g 4 is a graphical illustration of a ‘ex‘emplary system in which two servers
and a mainframe are all using a first key;

Fig. 5 is a graphical illustration of the exemplary system of Fig. 4 in which a
second key has been distributed to the two servers and the mainframe;

Fig. 6 is a graphical illustration of the exemplary system of Fig. 4 in which a

second key has been made current in the two servers and the mainframe;



WO 2007/002691 PCT/US2006/025027

Fig. 7 is a graphical illustration of the exemplary system of Fig. 4 in which
the second key has not yet been made current in the key management agent of one of
the servers; and . |

Fig. 8 is a graphical illustration of the exemplary system of Fig. 4 in which

the first key has been deleted from the two servers and the mainframe.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0014] The automated key management system of the present invention is a
system that has the capability to manage symmetric and asymmetric (public/private)
encryption keys. This system involves the automatic distribution, rotation, and renewal of

such keys.

[0015] Referring now to the drawings, in which like numerals represent like
components throughout the several views, the preferred embodiments of the present
invention are next described. The following description of the preferred embodiment(s) is
merely exemplary in nature and is in no way intended to limit the invention, its application,

Or uses.

[0016] Fig. 1 is a block diagram illustrating the environment 10 in which the
system 20 (shown in Fig. 2) of the present invention operates. Applications 16 on
distributed servers 13, mainframes 14, or other computing machines 12 often need to store
or send passwords, personal identiﬁcatipn numbers (“PINs”), and the like to applications 16
on other similar machines 12. Due tp the sensitivity of the data,. this transfer must be
secured, typically using keys 22 of various types. The keys 22 must be accessible to the
respective applications 16 and are present in a key store 31. A key store 31, as used herein,
is a secure file where data keys 22 are stored. When an application requires a new key 22, it

merely retrieves it from its designated key store 31.

[0017] Preferably, at least one key store 31 is provided fof each application on a
machine 12. The use of individual key stores 31 allows enhanced security by putting access
controls, such as operating system read rights, on each key store 31. This prevents one
application 16 from seeing the keys 22 belonging to another application 16. The use of

individual key stores 31 also allows secure key management in “hoteled” environments,
"4



WO 2007/002691 PCT/US2006/025027

where many applications may execute on a single physical server 12. However, if desired, a
lower-security system may be provided through the use of a single key store 31 by multiple

applications 16.

[0018]  Generally, the application 16 remains unaware of how the keys 22
reached the key store 31; the functions of loading, tracking and backing up the keys 22 are
all performed without any interaction with the af)plication 16. These tasks have
traditionally been carried out manually, wherein an operator manually ports the keys 22 to
the machine 12 using a portable data storage means, such as a floppy disk or the like. The
present invention, however, utilizes an automated key management system 20, described
and illustrated hereinbelow, that automates the distribution and rotation of all‘ keys 22,

including both symmetric and asymmetric ones.

[0019] Fig. 2 is a block diagram of an automated key management system 20 in
accordance with the preferred embodiments of the present invention. The system 20 allows
applications 16 on any combination of distributed servers 13, mainframes 14, or other
computing machines 12 to obtain keys 22 for both encrypting sensitive data and decrypting
received encrypted data from key stores 31 where the keys 22 are stored. More particularly,
the system 20 is capable of generating and distributing the keys 22, securely storing the keys
22, and rotating or refreshing the keys 22. The systerh 20 primarily comprises: a key control
system 30, a key management agent (“KMA”) system 40, a key system application program
interface (“key system API”) 50, and an administrative interface (“KAdmin”) 60. Each of

these will be described in greater detail below.

A

[0020] The key control system 30 is the core of the system 20. A primary
function of the key control system 30 is to generate and then distribute or “publish” keys 22°
to the key management agent system 40. However, the key control system 30 interacts with
both the key management agent system 40 and the administrative interface 60, receiving
instructions from the administrative interface 60 and instructing the key nianégement agent

system 40 to perform certain functions.

[0021] Fig. 3 is a block diagram of the key control system 30. The key control
system 30 preferably comprises a key management server (“KMS”) 32, a separate,
dedicated, secure hardware device 34, a database system 36, a common library (not shown)

5



WO 2007/002691 PCT/US2006/025027

used for logging and configuration purposes, a cryptographic library (not shown), and a
local property or configuration file (not shown), as well as a collection of key data 38. The
key management server 32, which may be developed in Java version 1.2 or greater, is
communicatively connected to the various servers 12 shown in Fig. 2 and is arranged to
generate and distribute application keys 22 from the database system 36 to the applications
16 running on those machines 12. The application keys 22 may be symmetric or
asymmetric in form. The database system 36 preferably stores 6r escrows at least a portion
of 'the key data 38, including the application keys 22, which are preferably stored in
encrypted form. The hardware device 34 preferably stores another portion of the key data
38 and houses the scrambling and descrambling functionality of the key control system 30.
More particularly, the hardware device 34 preferably stores one or more master keys (not
shown) that are used to scramble and descramble application keys 22 (or to scramble and
descramble intermediate keys, which in turn are used to scramble and descramble

application keys 22).

[0022] The interface between the key control system 30 and the key
management agent system 40 may be based on XML messages sent between the key
management server 32 and the key management agent system 40, where each connection is
preferably secured by Secure Socket Layers (“SSL”). Oracle Corporation, of Redwood
Shores, California, offers database systems 36 suitable for use with the preferred
embodiments of the present invention. The interface to the database system 36 is preferably
through a Java-Oracle driver and is secured using Internal Protocol Security (“IPSec”). A
common library suitable for use with the preferred embodiments of the present invention
may be easily developed by one of ordinary skill in thee art. A cryptographic library
suitable for use with the preferred embodiments of the present invention is RSA Security’s

cryptographic library.

[0023] A key control system 30 including these components and methodology
and suitable for use in the preferred embodiments of the present invention is described in
commonly-assigned U.S. Patent Application No. 11/019,069, the entirety of which is
incorporated herein by reference. | However, it will appear that other types of key control
~ Systems may alternatively be used without departing from the scope of the present

invention.



WO 2007/002691 PCT/US2006/025027

[0024] The key management agent system 40 includes a plurality of key
management agents (“KMAs”) 41, 42. A separate key management agent 41, 42 is
preferably disposed on each machine 12 that is to communicate with the key control system
30. A key management agent 41 referred to as a “distributed” key management agent is
located on each distributed server-type machine 13, while a key management agent 42
referred to as a “mainframe” key management agent is located on each mainframe-type
machine 14. Each key management agent 41, 42 in the key management agent system 40 is
a standalone service which waits for instructions from the key management server 32 of the
key control system 30 and updates its respective key stores 31 as necessary. It may also
performs maintenance on its key stores 31, such as regenerating passwords for protecting '

the key stores 31 or the like, again as instructed by the key management server 32.

[0025] Each distributed key management agent 41 preferably includes, in
addition to one or more software modules, a common library (not shown) used for logging
and configuration purposes, a cryptographic library (not shown) and a local property or
configuration file (not shown). Each kéy management agent 41, which may be developed in
Java version 1.4, communicates locally with its own property file and its obfuscated key
store 31. The functionality between the distributed key management agent 41 and the key
management server 32 involves commands sent to the key management server 32, providing
the key management server 32 with results from key management server-sent instructions.
The interface between each distributed key management agent 41 and the key management
server 32 is based on XML messages sent between the two components, where each
connection is secured by SSL. A common library suitable for use with the preferred
embodiments of the present invention may‘be easily developed by one of ordina.ry skill in
thee art. A cryptographic library suitable for use with the preferred embodiments of the

present invention is RSA Security’s cr)'fptographic library.

[0026] The mainframe key management agents 42 are functionally similar to the
distributed key management agents 41 but typically utilize different code and messages in
order to accommodate the different characteristics of mainframes 14. Each mainframe key
management agent 42 preferably includes, in addition to one or more software modules, a
common library (not shown) used for logging and conﬁgufation purposes, a cryptographic

librafy (not shown) and a local property or configuration or configuration file (not shown).

7



WO 2007/002691 PCT/US2006/025027

Each mainframe key management agent 42, which may be developed in the compﬁter
languages C and Assembler, communicates locally with its own property file and a key
database such as the Integrated Cryptographic Services Facility (“ICSF”) VSAM database.
The functionality between the mainframe .key management agent 42 and the key
management server 30 involves commands sent to the key management server 32, providing
the key management server 32 with results from key management server-sent instructions.
It also performs maintenance on the ICSF database as instructed by the key management
server 32. The interface between each mainframe key management agent 42 and the key
management server 32 is based on XML messages sent between the two componeénts, where
each connection is secured by sockets with an encrypted payload. A common library
suitable for use with the preferred embodiments of the present invention may be easily
developed by one of ordinary skill in thee art. A cryptographic library suitable for use with

the preferred embodiments of the present invention is RSA Security’s cryptographic library.

[00‘27]. " A number of commands may be sent from the key managément server 32
to the key management agent system 40. For example, “ping” is a command that requests -
the key managefnent agent 41, 42 receiving the message to respond regarding its health to
determine whether or not the key management agent system 40 is functioning properly or
not; “data key” is a command that instructs the key management agent system 40 to load the
| provided keys ‘into the appropriate application key stores 31; “full key list” is a command
that sends all the currently assigned keys 22 to the key manégement -agent system 40;
“delete key” is a command that instructs ﬂle key management agents 41, 42 to delete the
specified key 22 from the appropriate application key store 31; “set current key” is a
command that instructs the key management agent system 40 to set the assigned key 22 as

the “current” key for the specified application.

[0028] A more limited number of commands may be sent from the key
management agent system 40 to the key management server 32. For example, “startup” is a
command that a KMA 41, 42 sends to the key control system 30 saying that it was down
and is restarting, thereby triggering the key control system 30 to send back a “full key list”
message; and “reverse ping” is a command that tests the communications channel
originating from the key management agent system 40 going to the key control system 30,

where the key management agent system 40 opens a client socket to the key control system

8



WO 2007/002691 PCT/US2006/025027

30 and tests that a “startup” message would be successful (i.e., that communication would

not be blocked by a firewall or other computer network restriction).

[0029] The foregoing commands are all useful for handling keys 22 of both
symmetric and asymmetric types and for monitoring overall system status. However, unlike
symmetric keys 22, asymmetric keys 22 may not be transmitted from the key control system
30 to distributed key management agents 41 without a valid certificate. This is because the
SSL and other conventional transport standards, which are preferably used for
communications between the key control system 30 and the KMAs 41, 42, currently require
the use of an individualized valid certificate, known for example as an “X509 certificate” in

the SSL standard, that has been verified by a trusted certificate authority (“CA™) 18.

[0030] The operation of certificates is well known in the art, but for exemplary
purposes, the use of an X509 certificate in the system 20 of the present invention is next
explained. As is well known, an X509 certificate can be identified by its distinguished

“name (its “DN”) and other configurable attributes as well as by a digital signature that must
be verified by the trusted CA 18. In addition to the X509 certificate date validation, the key
control system 30 and the distributed KMAs 41 require that the peer certificate of the SSL
connection have a speciﬁé DN. Because of these three requirements (date, DN and
signature validation), a KMA’s certificate may become invalid through date expiration or a
mismatch of the expected DN, actual DN or expected CA. If any of these occur,
intervention is required to generate a new RSA key pair, used just for authentication
purposes; submit the public key to the CA 18, resulting in a new X509 certificate; update
the KMA 41 with the new private key and X509 certificate; and update the key control
system 30 with the new X509 certificate, associating it with the necessary KMA 41. |

[0031]  Although this manual intervention may be carried out if necessary, the
system 20 of. the present invention preferably allows the certificates to be renewed
automatically. This may be accomplished as follows. First, the key control system 30
- determines that a particular KMA certificate is due to expire and sends a “renew system
certificate” message to the corresponding KMA 41. The renew system certificate message
triggers the KMA 41 to attempt to renew its system certificate based upon the information

provided in the message. The KMA 41 begins this process by generating a new asymmetric

9



WO 2007/002691 PCT/US2006/025027

key pair of size dictated by the system certificate message from the key control system 30.
This key pair is not an application key 22 but instead is used to provide security for the
authenticatioﬁ process between the KMA 41 and the key control system 30. The KMA 41
adds this new private key to an authentication key store which is a data structure for
securing keys (not shown) that is preferably separate from the application key stores 31 and
stores the updated key store in a conventional storage device, such as the system hard drive
of the distributed server 13. In addition, the KMA 41 will wrap the new public key and a
certificate-signing request in a “system certificate request” message. The certiﬁcate-signjng
request is preferably in an industry standard form, such as the well-known PKCS10 format.
The KMA 41 also adds attribute insertions into the systerﬁ certificate request message by
querying the distinguished name of its current certificate from the properties file, which is a
configuration file, of the KMA 41. Assuming all steps are completed successfully, the
KMA 41 transmits the system certificate request message to the key control system 30 and, .
because the private key has been stored in the key store on the system hard drive, destroys
the in-memory copy of the private key. On the other hand, if any problems occur, then the

KMA 41 instead responds to the key control system 30 with an appropriate error message.

[0032] Upon receiving a certificate signing request message from a KMA 41, the
key control system 30 will send the certificate-signing request to the CA 18 for signing.
The CA 18 signs and returns a certificate for the requesting KMA 41 to the key control
system 30. When the key control system 30 receives this certificate, it generates a “system
certificate response,” directed to the requesting KMA 41, that forwards the signed public
key (for example, an X509 certificate) received from the CA 18 to the KMA 41 to be
inserted into the KMA’s authentication key store. The system certificate -response also
specifies the certificate chains of the certificate that the KMA 41 should trust. The
certificate chains will be inserted into the new authentication key store under aliases -
provided by the KMS 32. The private key, which corresponds to the new certificate, is
retrieved from the KMA's current key store on the system hard drive. Upon receiving the
new certificate, the KMA 41 cieates a second new authentication key store comprising the
certificate and the private key, and éncrypts the second new authentication'key store under a
new password. The KMA 41 then writes this second new authentication key store to the

system hard drive, or other conventional storage device, overlaying its current key store.

10



WO 2007/002691 PCT/US2006/025027

Finally, the KMA 41 then resets its SSL server port and replies to the key control system 30

with a success or failure message, as appropriate.

[0033] Once a new certificate is activated on a KMA 41 and properly registered
with the key control system 30, the key control system 30 may begin using the certificate
when distributing application keys 22 to that KMA 41. This process is generally similar to
that used to distribute symmetric keys 22, but requires communication between the two

components to be authenticated using the new certificate.

[0034] An advantage of the system of the present invention over existing
systems using asymmetric keys, for example, is that the system of the present invention
supports rotation of asymmetric keys used for encryption as well as asymmetric keys used
for authentication such as with a certificate authority. Thus, there may be two distinct uses
for asymmetric keys within the system of the present invention, namely authentication and
encryption. 'With asymmetric keys used for authentication, if the asymmetric keys are to
become lost or corrupted, a new key set can be generated and used in place of the original
key set. Thus, the asymmetric keys are not required to be escrowed when used for
authentication. In contrast, asymmetric keys used for encryption are used to encrypt data. If
these asymmetric keys are lost, the corresponding encrypted data is lost. Thus, asymmetric

keys used for this encryption purpose must be escrowed.

[0035] The key management processes described above are used to load keys 22
into the key stores 31 for retrieval by the applications 16. However, the key system API 50
provides the only means by which the various applications 16 interface with the system 20.
The key system API 50 functions like a conventional API in that it may be used by any
application 16 to interface with the system 20." The functionality of the key system API 50
includes, but is not limited to, retrieving an application's current symmetric key, retrieving a
specific symmetric key, and retrieving a property value such as a database password stored
in the key store 31. In addition, although not required for embodiments of the automated
system 20 of the present invention that provide only symmetric key functionality, the key
system API 50 preferably also includes the ability to retrieve an ai)plication's current and
specified public/private (asymmetric) key. Preférably, the key system API 50 is developed

in a conventional version of Java or the like, such as Java version 1.2 or greater or

11



WO 2007/002691 PCT/US2006/025027

Microsoft.Net (C#), with the particular language being selected based on its. system
implementation. The key system API 50 utilizes only files stored on the local file system.
The Java versions utilize a cryptographic library such as one available from RSA Security.
The interface to the respective key store 31 is based on language-specific file input/output
(“I/O”). An application 16 of the system 20 utilizes the key system API 50 to use a key
system API-specific command to retrieve a value from the corresponding key store 31 of the
API 50, whether it is to retrieve a symmetric key, an asymmetric key, or a key property from
the key store 31. The key system API 50 is not used to access automated key management

system-provided keys from a mainframe 14.

[0036] The administrative interface (“KAdmin”) 60 provides the administrator
for the system with a user’s interface to the automated key management system 20 (other
means include database queries using a conventional database query language such as SQL).
Among the purposes of the administrative interface 60 are to providé detailed key
management agent system 40 information and other key information including, but not
limited to, detailed key management agent information such as last communication,
assigned keys (applications), version information, and the like; to provide the ability to
maintain a key management ageht system 40 by "pinging", deleting (unregistering),
suspending/unsuspending, managing applications (keys) for the key management agent
system 40, editing values, and the like; to provide the ability to add to or register a new key
management agent system 40 to the automated key management system 20; to provide
detailed key information including which key management agent systems 40 are using
specified keys; to provide the ability to delete, refresh, or extract keys; to provide the ability
to add new key series to the automated key management system 20; to provide the ability to
view key management server 32 -}logs; and the like. The administrative interface 60 is
preferably developed in Java version 1.4 or greater and utilizes WebSphere Application
Server version 5.1, an Oracle database (which stores automated key management system-
related data), a common library (not shown) used for logging and configuration purposes,
and a local property or configuration file. The administrative interface 60 interfaces with
the key management server 32 and is based on XML messages sent between the two
© components, where each connection is secured by SSL. The administrative interface 60 also

interfaces with an Oracle database, where each session is secured IPSec, and a web browser

12



WO 2007/002691 PCT/US2006/025027

where each session is secured by SSL. The functionality of the administrative interface 60
involves establishing an SSL session and authenticating the user via a -browser certificate
communication, communicating with the Oracle database to retrieve requested automated
key management system data, and communicating with the key management server 32 to

update the automated key management system data and/or key management agent systems.

[0037] As indicated above, the automated key management system 20 of the
present invention has the capability of using both symmetric and asymmetric keys 22. For
symmetric keys 22, such as AES, 3DES, or the like, each key 22 is identified by a key label.

One suitable format for such key labels may be described using the following example:
KLAB.CD.AKEY.NULL.CONF.5434

In this exe‘mplary key label format, “KL” is a constant; “AB” is an application ID for the
receiver (decryptor) application 16; “CD” is an application ID for the sender (encryptor)
application 16; AKEY is the key’s level, which in one embodiment may have one value
when the key is being used for test purposes, another value when being used in production,
and is used mainly for, for example, RACF privileges on mainframe-type machines 14;
“NULL” is the device for which this key is valid and, if NULL, indicates that all instances
of the encrypting application will use the same data key; “CONF” is the key type (in one
embodiment, valid key types may be “CONF” and “SIGN,” where “CONF” key type
represents a 3DES key, and the SIGN key type represents a hash-based authentication code
(“HMAC”) key); and “5434” is a key identifier and is used to indicate the version or
iteration of the key.

[0038] A key descriptor is preferably also provided for each key 22. In one
suitable format, the key descriptor is similar to the key label, but without the identifier on
the end. For example, the key descriptor for the exemplary key label described above would
be:

KLAB.CD.AKEY.NULL.CONF

The key descriptor is used by the encrypting application 16 to access the current data kéy
22. '

13



WO 2007/002691 PCT/US2006/025027

[0039] A éartial key label is preferably also provided for each key. In one
suitable format, the partial key label is similar to the key label, but without the “KLxx,”
where “xx” is the decryptor’s application ID. This label should be sent with the encrypted
data to the decryptor. The decryptor will then concatenate “KLxx” and the partial key label
to create the full key label. A routine available through the key system API 50 provides
access to the partial key label.

[0040] The important distinction between the key label, the key descriptor and
the partial key label is that the application 16 that is encrypting the data uses the key
descriptor to access the data key 22. The encrypting application 16 then retrieves the partial
key label for the data key 22 used in the encryption, and passes the encrypted data and
partial key label to the decryptor. The decrypting application 16 then concatenates “KLxx”
to the partial key label as specified above, and then uses the key label to access the
appropriate data key 22.

[0041] The key system API 50 may be used in a Java environment as follows.
Applications 16 needing to encrypt data first retrieve the current key from the Key System
API 50, by passing in the key descriptor described above (ie.,
KLAB.CD.AKEY.NULL.CONF). The data is encrypted using the corresponding key, and
the encryptéd data is sent to the decrypting application 16 together with the partial key label
(CD.AKEY.NULL.CONF.5434). Code for encrypting the data may be easily developed by
one 6f ordinary skill in the art.

- [0042]  Applications 16 needing to decrypt data first receive the encrypted data
and the partial key label (CD.AKEY.NULL.CONF.5434) and theh concatenate “KLxx.” (xx
is the decryptor’s application ID) to the partial key label to get the key label
(KLAB.CD.AKEY.NULL.CONF.5434). The application may then retrieve the appropriate
data key 22 from the key system API 50 by passing the key label (same as previous), and
decrypt the data using the key 22. Code for decrypting the data may likewise be easily
developed by one of ordinary skill in the art.

[0043] For asymmetric keys 22, such as RSA, PKI, or the like, each key 22 is
preferably identified to the key system API 50 by a key label, but this key label is preferably

generally hidden from the user.
14



WO 2007/002691 PCT/US2006/025027

[0044] The following shows the specific actions that take place during a key
refresh, including the steps taken if a key management agent system 41 is down or
unavailable. Key rotation is designed so that failures can occur during the process without
affecting individual applications 16. Fig. 4 is a graphical illustration of a exemplary system
in whiéh two servers 13 and a mainframe 14 are all using a first key 23. In Fig. 4 and
subsequent drawings, the key 23, 24 currently being used by a f)articular machine 13, 14 is
marked by a “(c)”. For example, as shown in Figure 4, an “authentication”-type application,
having an application ID of “AB,” may be installed on two servers 13. For purboses of this
example, the authentication application 16 will be considered to encrypt passwords and send
them on to the corresponding part of the AB application 16 on the mainframe 14. Initially,
~all  passwords  are assumed  to be in  sync and  using the
KLAB.CD.AKEY.NULL.CONF.1234 key 23. It should be noted that in this example the
mainframe key management agent 42 does not have a “current” key marked because the
application 16 there is assumed to be a decrypting application 16. As discussed
hereinabove, decrypting applications 16 expect to receive the key label that was used to
encrypt the data. Then, the decrypting application can use the key system API 50 to retrieve
the appropriate key 23, 24 for decryption. |

[0045] When a decision is made to rotate the authentication (“AB”) key
(KLAB.CD.AKEY.NULL.CONF), the administrator uses the KAdmin 60 to instruct the key
management server 32 to generate a new key 24 and push or distribute it to all applicable
key management agents 41, 42. Fig. 5 is a graphical illustration of the exemplary system of
Fig. 4 in which a second key 24 has been pushed to the two servers 13 and the mainframe
14. It should be noted that both Authentication-installed servers 13 are still encrypting with

the original key 23 (because it is still “current™).

[0046] 'N'ext, the key management server 32 sends a message to the key
management system 40 to set the new key 24 as current, resulting in the situation shown in
Fig. 6. Now, the authentication applications 16 on both servers 13 are encrypting with the
new key 24. Since the key label is sent with the encrypted data, the authentication
application 16 on the mainframe 14 will be able to encrypt data with either key 23, 24

during the transition period.

15



WO 2007/002691 PCT/US2006/025027

[0047] On the other hand, the key management agent system 41 in one of the
servers 13 may be down when the key management server 32 sends the message to set the
new key. Fig. 7 is a graphical illustration of the exemplary system of Fig. 4 in which the
second key has not yet been made current in the key management agent 41 of one of the
servers 13. It should be noted that the “AB” application 16 on the mainframe 14‘ will still be
receiving traffic encrypted with key iterations 1234 and 1235. The mainframe 14 will
handle this correctly because it still has access to both the old key 23 and the new key 24.
In this case, the key rotation operation would halt, and the administrator would be notified
via the KAdmin 60 of the failure of the key management a:gent 41 in the specified server 13.
However, once the key management agent 41 of that server 13 is restarted, the new key 24

would be received and key iteration 1235 could become the current key.

‘ [0048]  The situation illustrated in Fig. 7 represents an important feature of the
present invention. More particularly, as exemplified by this scenario, if during a key
rotation a particular part of the system 20, such as a particular KMA 41, 42, the KMS 32, or
a network connection between the key control system 30 and one or more of the KMAs 41,
42, were to fail, then middleware functions, mainframe applications and the like will
continue to function and be able to encrypt and decrypt data. This is because keys 22 will
only bé triggered (set to “current”) once they have been successfully distributed to all
necessary machines 12. Preferably, the KMS 32 sends a first message witﬁ the keys 22
when the keys 22 are sent to each KMA 41, 42 and sends a second message to each KMA
41, 42 instructing each KMA 41, 42 to set the keys 22 to current when each KMA 41, 42
has successfully received the keys22. |

[0049] Once the new key 24 has been successfully pushed to all necessary key
management agents 41, 42, the administrator can use the KAdmin 60' to instruct the key
management server 32 to send the “delete key” command to the key management agents 41,
42, thus removing the old key 23. Fig. 8 is a graphical illustration of the exemplary system
of Fig. 4 in which the first key 23 has been deleted from the two servers 13 and the

mainframe 14.

[0050] Based on the foregoihg information, it is readily understood by those

persons skilled in the art that the present invention is susceptible of broad utility and

16



WO 2007/002691 PCT/US2006/025027

application. Many embodiments and adaptations of the present invention other than those
speciﬁcally described herein, as well as many variations, modifications, and equivalent
arrangements, will be apparent from or reasonably suggested by the present invention and
the foregoing descriptions thereof, without departing from the substance or scope of the
present invention. Accordingly, while the present invention has been described herein in
detail in relation to its preferred embodiment, it is to be understood that this disclosure is
only illustrative and exemplary of the present invention and is made merely for the purpose
of providing a full and enabling disclosure of the invention. The foregoing disclosure is not ‘
intended to be construed to limit the present invention or otherwise exclude any such other
embodiments, adaptations, variations, modifications or equivalent arrangements; the present
invention being limited only by the claims appended hereto and the equivalents thereof. .
Although specific terms are employed herein, they are used in a generic and descriptive

sense only and not for the purpose of limitation.

17



WO 2007/002691 PCT/US2006/025027

CLAIMS
What is claimed is: ‘
1. A key nianagement agent system in a computer network, the system comprising:

a centralized key control system that automatically generates and distributes
asymmetric cryptographic keys for use by software applications in the computer network,
the key control system including a key management server computer;

an administrative server interface, providing a user interface to the key management
agent system, that is corrnnunjcati.\fely connected to the key control system;

at least one key management agent communicatively connected to the key control
system and arranged to receive at least one of the asymmetric cryptographic keys directly
from the key control system; and

at least one key store communicatively connected to the key manéxgement agent and
automatically loaded with the at least one asymmetric cryptographic keys as directed by the

key control system.

2. The key management agent system as claimed in claim 1, wherein the key store of
the key management agent system is adapted to be read by an application program interface

of at least one of the software applications.

3. A key dontrol system for cryptographic asymmetric application keys for use within
an automated key management system, the key control system comprising:

A ~a collection of key data, the key data including a piurality of asymmetric
cryptographic application keys for use in facilitating secure communication in the
automated key management system,

a c'ryiotographic key database system for storing at least a bortioﬁ of the key datat
including encrypted asymmetric application keys, and

a key management server computer communicatively connected within the
automated key management system and arranged to automatically generate an asymmetric
application key and store the asymmetric application key in the cryptographic key database

system.

18



WO 2007/002691 PCT/US2006/025027

4, The key control system as claimed in claim 3,t the key control system further
comprising:

a secure hardware device communicatively connected into the automated key
management system for stc;ring one or more master keys that are used to scramble or.
descramble asymmetric application keys or intermediate keys to asymmetric application

keys.

5. A method of distributing asymmetric cryptographic keys automatically by a key
control system in an automated key management system, the method comprising:
~ at the key control system, receiving instructions from an administrative interface to

distribute an asymmetric cryptographic key to a key management agent;

automatically distributing without manual intervention the asymmetric cryptographic
key to the key management agent via a secure interface; and

automatically loading, without manual intervention, the asymmetric cryptographic
key into a key store for independent retrieval by an application programming interface of an

unrelated software application.

6. The method as claimed in claim 5, further comprising:
- receiving instructions by the key control system from an administrative interface to

generate asymmetric cryptographic keys

7. A method for securely transmitting a cryptographic application key from a first
computing device to a second compqting device using a certificate having an expiration
date, the method comprising:

assessing the expiration date of the certificate of the second computing device,

based upon the assessment, generating, by the second computing device, an
authentication key pair having a public key and a private key,

‘wrapping the public key in a system certificate request message by the second
computing device,

transmitting the system certificate request message from the secoﬁd computing

device to the first computing device,

=19



WO 2007/002691 PCT/US2006/025027

sending the system' certificate request from the first computing device to a certificate
authority,

at the first computing device, receiving, from the certificate authority, a signed
certificate that comprises the public key signed by the certificate authority,

forwarding the signed public key from the first computing device to the second
computing device, and

distributing a cryptographic application key from the first computing device to the

second computing device using the signed public key to authenticate the distribution.

8. The method as claimed in claim 7, wherein assessing the expiration date. includes

determining that the certificate of the second computing device is due to expire.

9. The method as claimied in claim 7, wherein the first computing device includes a key
control system for distributing cryptographic application keys and the second computing
device includes a key management agent for receiving cryptographic apphcatlon keys from

the key control system and storing them on the second computing device.

10.  The method as claimed in claim 9, further comprising:
sending a renew certificate message from the key control system to the key
management agent, and

receiving the renew certificate message by the key management agent.

11.. The method as claimed in claim 9, further comprising adding the private key of the

authentication key pair to an authentication key store.

12. The method as claimed in claim 8, wherein the assessment is carried out by the first

computing device.
13. - The method as claimed in claim 9, further comprising, upon receiving the certificate:

retrieving the private key corresponding to the certificate from the authentication key

store,

20



WO 2007/002691 PCT/US2006/025027

creating a second authentication key store comprising the certificate and the private
key, and

encrypting the second authentication key store.

14. A method for automatically ro’éating cryptographic keys in an automatic key
management system having a first computing device communicatively connected to-a
second computing device, the method comprising: ‘

storing a first cryptographic key to a first computing device,

storing the first cryptographic key to a second computing device,

using the first cryptographic key to facilitate communication between the first and
second computing devices, A

distributing a second cryptographic key to the first and second computing device,

replacing the first cryptographic key with the second cryptographic key in the first
computing device,

maintaining the first cryptographic key at the second computing device, thereby
facilitating communication between the first and second computing devices using the first
cryptographic key, until it is determined that the replacement has been successfully
completed, and

using the second cryptographic key to facilitate communication between the first and
second computing devices upon detérmining that the first computing device has successfully

replaced the first cryptographic key with the second cryptographic key.

15.  The method according to claim 14, wherein the first computing device is a server,

mainframe or other computing machine.

16.  The method according to claim 14, wherein the second computing device is a server,

mainframe or other computing machine.

17. The method as claimed in claim 14, wherein the communication occurs without

interruption.

21



WO 2007/002691 PCT/US2006/025027

18.  The method as claimed in claim 14, wherein the first and second cryptographic keys

are asymmetric.

19.  The method as claimed in claim 14, wherein the first and second cryptographic keys

are symmetric.

20.  The method as claimed in claim 14, wherein the first and second cryptographic keys

comprise key labels.

21. A method for automatically rotating cryptographic keys in an automatic key
management system, the method comprising: V '

providing first and second computing devices, the first computing device inciuding a
key control system and the second computing device including a software application
installed the;eon and a data file, the software application operating independently from the
key control system,

loading a first cryptographic key into the data file in the second computing device,

using the first cryptographic key in the software application,

after using the first cryptographic key in the software application, automatically
distributing without manual intervention a second cryptographic key to the second
computing device via a secure interface, '

‘ automatically loading, without manual intervention, the second cryptographic key

into the data file for independent retrieval by the software application, and

using the second cryptographic key, as a replacement for the first cryptographic key,

in the software application.

22



PCT/US2006/025027

WO 2007/002691

1/8

APPLICATION

RN

I 31
KEY STORE

NEED TO STORE OR
SEND CIM MESSAGES,
PASSWORDS, PINSs,
ETC.

Fig. 1

>

22 7T~

- APPLICATION

RN

I 31
KEY STORE




PCT/US2006/025027

2/8

WO 2007/002691

13 12 12 . 14
% .”_.Im. alE \\ |/ .Alml -
APPLICATION | | APPLICATION |
] = . . |
- Kapl 0 kAPt 0L | |
LA - .
_ J— —
N T Tt |
. YS KEYS _—
| = o \
_xm< STORE |_: | . KEY STORE
: . l
™ » KEYS . | KEYS pd
. 40 40 |
== —~ 22 22 =
MA R \! |/ A7 KMA
. ~ 30 \ P
~
N Y KEYCONTROL [ ..~
| SYSTEM &
-
_ T~ | 18
i =~ al CERTIFICATE
50 4 AUTHORITY
KEY ADMIN SERVER .
(KAdmin)

Fig. 2



WO 2007/002691

& b1

PCT/US2006/025027
3/8
@
] e}
W
(3)]

(SN ¥3INAY3S
INTFNIOVYNYIN ATH




PCT/US2006/025027

WO 2007/002691

4/8

KMA

OX_LPW.OU.
AKEY.NULL.CONF.1234

KMA

KLAB.CD.
O>_Am<.zc_u_!002_n. 1234

Fig. 4

23

KMA

KLAB.CD.
O>Xm<.zc_._u.002 F.1234

— 23




PCT/US2006/025027

WO 2007/002691

5/8

KLAB.CD®
O AKEY.NULL.CONF.1234

KLAB.CD.

OAKEY.NULL.CONF.1235

— 23

24

KMA

KLAB.CD—,
O AKEY.NULL.CONF 1234

KLAB.CD!.

OAKEY.NULL.CONF.1235

23

Fig. 5

24

KLAB.CD.
O>_Am<.zc_.r.002m.._mmh

KLAB.CD.
OAKEY.NULL.CONF.1235

— 23

24



PCT/US2006/025027

WO 2007/002691

6/8

KLAB.CD®
O AKEY.NULL.CONF.1234

KLAB.CD.
OAKEY.NULL.CONF.1235

23

24

KMA

KLAB.CD\
O AKEY.NULL.CONF.1234

KLAB.CD! .
OAKEY.NULL.CONF.1235

Fig. 6

24

KLAB.CD!
O AKEY.NULL.CONF.1234

KLAB.GD.
OAKEY.NULL.CONF.1235

— 23

.24



PCT/US2006/025027

WO 2007/002691

7/8

13
KMA 41
KLAB.CD!
O AKEY.NULL.CONF. 1234 (c)
LL.CONF.1235
13

KLAB.CD

O AKEY.NULL.CONF.1234

KLAB.CD.

OAKEY.NULL.CONF.1235 -

(c)

— 23

Fig. 7

24

KLAB.CD\
O AKEY.NULL.CONF.1234

KLAB.CD—
OAKEY.NULL.CONF.1235

— 23

| /|§



PCT/US2006/025027

WO 2007/002691

.8/8

13
KMA 4 a4
KLAB.CD!
OAKEY.NULLCONF.1235 ) (c)
13

KMA 411 —

KLAB.CD!
OAKEY.NULL.CONF. 1235

Fig. 8

24

24

KMA . 2] =

KLAB.CD. ,
OAKEY.NULL:CONF.1235

24



	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings

