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SENSOR VALIDATION APPARATUS AND METHOD

I. Field of the Invention
5 The present i1nvention pertains, 1in general, to
process controllers and process monitoring systems that make
use of sensors for measuring process variables. In
particular i1t relates to a system that detects and
1dentifies one or more sensor faults, classifies the types
10 of sensor fault, and replaces erroneous sensor values with

estimates of the correct process variable wvalues.

IT. Background of the Invention
Sensor validation 1s an important step for many

15 model based applications 1in the process industries. Typical

1
applications (MPC), and inferential sensing applications in

model based applications i1nclude model predictive contrc

which costly or infrequent measurements, available from
laboratory samples or hardware analyzers, are replaced by
20 regularly available i1nferred values from the model.
Sensor validation systems exist. A system for
determining DC drift and noilse level using parity-space
validation i1s described in United States Patent No.
4,772,445 by Nasrallah et al. The system measures direct
23 current drift and noilise 1n sensor signals from redundant
sensors utilizing a parity-space algorithm. Parity vector

signals produced by the parity-space algorithm are averaged
to provide a direct current (DC) drift signal. An

1nstantaneous noise gignal 1s found by subtracting the

g’

30 direct current drift signal from a parity vector signal for

one of the samples of the sensor signals. The RMS value of
the instantaneous noilise signals are averaged to provide
Sensors nolse signals.
In a typical MPC application, steady state optimization
35 1s performed to find the optimal target values for the

controlled and manipulated variables. If the sensors are
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faulty, the optimized target values are not wvalid.
Therefore, an effective sensor validation approach that
detects and 1dentifies faulty sensors on-line 1s required.

Once a faulty sensor 1s 1dentified, 1t is desirable to

estimate the fault magnitude and replace
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1t with the best reconstruction in order to maintain the control system on-line even

though a sensor has failed.

A typical inferential sensor application is in the area of predictive emissions
monitoring systems (PEMS). Federal and/or state regulations may require air-

5 polluting plants to monitor their emissions such as nitrogen oxides (NO,), oxygen
(O,), and carbon monoxide (CO). Hardware continuous emissions monitoring systems
(CEMS) have both a high initial cost and a high maintenance cost. CEMS can be
replaced by PEMS provided the PEMS is shown to be sufficiently accurate and

reliable. One of the quality assurance requirements for PEMS is that each sensor that
10 1s used in the PEMS model be monitored for failure, and have a strategy for dealing

with sensor failure so as to minimize down-time.

The term sensor validation refers, for this patent application, to multivariate model
based sensor validation. This 1s an approach which makes use of redundancy in the
plant measurements. Typically sensor measurements exhibit a correlation structure

15 which can be established by a training procedure using collected or historian data.
This correlation structure can be monitored online; when the correlation structure is
broken a possible sensor fault has occured. However the breaking of this correlation
structure could also be due to process upset, process transition, or some other reason
unrelated to sensor fault. The main objective is to determine if this really is a sensor

20 fault and, 1f so, to identify the offending sensor. The various phases of sensor

validation can be summanzed as:

e Detection This phase detects a change in the correlation structure; it may

or may not be a sensor fault.

25 e Identification This phase determines if this is a sensor fault and identifies the

particular sensor

e Estimation This phase estimates the size of the fault which allows

reconstruction of the true value and replacement of the faulty value

CA 02340977 2001-02-16
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¢ (lassification This phase classifies the type of sensor fault — complete failure,

bias, drift, or precision loss

Depending on the particular approach, these phases may overlap. There have been
several patents granted that address the topic of multivariate model based sensor

5  validation. The key ones are:

e Qinetal. US patent 5,680,409 “Method and Apparatus for detecting

and 1dentifying faulty sensors in a process”

o Keeleretal. US patent 5,548,528 “Virtual Continuous Emission

Monitoring System”

10 e Hopkins et al. US patent 5,442,562 “Method of contolling a

manufacturing process using multivariate analysis”

Qin et al. address sensor validation within the context of process control. The
preferred embodiment is based on PCA (Principal Components Analysis) and
performs 1dentification through an optimal reconstruction procedure: each sensor

15  wvalue 1s reconstructed on the assumption it is at fault, then identification and

classification i1s done by tracking indices derived from the reconstruction error.

Keeler et al. address sensor validation explicitly within the context of PEMS. The
disclosed system focuses on the inferential sensor technology and the use of neural
networks for PEMS. The sensor validation technology uses a sub-optimal

20 reconstruction procedure for identification, does not address classification, and makes
use of an "encoder" neural network which is a non-linear version of PCA. Encoder
networks are also described in Mark Kramer “Nonlinear principal component analysis

using autoassociative neural networks”, AIChE Journal, 37 (2), pp. 233-243 (1991).

Hopkins et al. address sensor validation within the context of process monitoring
25  (multivanate statistical process control), and make use of PCA or PLS (Partial Least
Squares). Identification is by means of contribution analysis. Detection is achieved by
monitoring principal component "scores"” or score statistics and comparing with

standard confidence intervals. Identfication is by examining the contributions of each

CA 02340977 2001-02-16
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original measurement to the offending score. The method does not attempt to classify

fault types.

I SUMMARY OF THE INVENTION

The present invention provides a new apparatus and method for the detection,
5  1dentification, estimation, reconstruction, and classification of faulty sensors. The
approach makes use of a normal process model that can be built from first principles
or from data using statistical methods such as partial least squares (PLS) or principal
component analysis. In the preferred embodiment, the process model is based on a
PCA model in which the number of principal components is chosen to optimize the
10 reconstruction of faulty sensor values as described in Qin and Dunia “Determining the

number of principal components for best reconstruction”, Proc. of the 5-th IFAC

Symposium on Dynamics and Control of Process Systems, 359-364, Corfu, Greece,
June 8-10, 1998.

The detection phase uses a detection index based on the model equation error. An
5  exponentially weighted moving average (EWMA) filter is applied to the detection
index to reduce false alarms due to temporary transients. The filtered detection index
(FDI) 1s compared to a statistically derived threshold in order to detect possible faults.
Detection of a possible fault condition triggers the identification phase of the

invention.

20 The key component of this invention is the identification phase. To determine
whether a detection alarm 1s due to one or more faulty sensors, and to identify the
offending sensor(s), a series of detectors are constructed which are insensitive to one
subset of faults but most sensitive to the others. These detectors are based on
structured residuals (SRs) constructed by means of a novel approach referred to a

25  Sstructured residual approach with maximized sensitivity (SRAMS). Structured
residuals are generally described 1n Gertler and Singer, “A new structural framework
for parity equation based failure detection and isolation”, Automatica 26:381-388,
1990. An exponentially weighted moving average (EWMA) filter is applied to the
SRs to reduce false alarms due to temporary transients. The SRs are also squared and

30 normalized so as to equitably compare different SRs. Identification is achieved by

comparing these normalized squared filtered structured residuals (NSFSRs) to

CA 02340977 2001-02-16
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statistically inferred confidence limits. In addition to

NSFSRs, i1ndices based on the accumulation of the normalized

structured residuals (NSRs) from the time of detection are

monitored and compared for use in the i1dentification of

5 faulty sensors. Two such 1ndices are the generalized

likelihood ratio (GLR) index, and the normalized cumulative
variance (NCUMVAR) 1ndex. The NCUMVAR index is primarily

useful for i1dentifying sensors with precision degradation.

10 The fault magnitude 1s then optimally estimated based on
the model, faulty data, and the assumption that the faulty

sensors have been correctly identified. This uses public

domain prior art described, for example, Martens and Naes

"Multivariate Calibration", John Wiley and Sons, New York,

15 1989 . Knowledge of the fault direction (known from the
identification of the faulty sensors) and the estimated

fault magnitude 1s then used to reconstruct estimates of the

correct sensor values.

20 The fault classification phase provides diagnostic

information as to the type of sensor fault. Specifically,

four types of fault are considered: Complete Failure, Bias,
Drift, and Precision Loss. Complete failure is determined by

performing a regression analysis on an identified faulty
25 sensor's measured values, and 1s 1ndicated by the
statistical inference that the regression line has zero
slope. The other three types of fault are classified by
performing a regression analysis on the estimated fault

sizes since the time of identification. Bias is indicated by

30 the statistical inference that the estimated fault size
regression line has zero slop and non-zero offset, and has

small residual error. Drift is indicated by the statistical

inference that the estimated fault size regression line has

non-zero slope, and has small residual error. Precision Loss

35
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is indicated by the statistical inference that estimated
fault size regression line has zero slope, zero offset, and

significant residual error. Precision Loss 1s also i1ndicated

if the fault is i1dentifiable only by the NCUMVAR 1index.

According to one aspect of the present invention there
is provided an apparatus for detecting one or more Sensor
faults 1n a measured process, wherein the improvement

comprises: a per-processing unit for receiving a working

vector of signals including measured sensor values, the pre-
processing unit having means for normalizing the measured
sensor values, resulting 1n pre-processed sensor values;

a model unit coupled to the pre-processing unit, which

converts pre-processed sensor values to equation error
values that contain mainly measurement noise; a structured
residual unit coupled to the model unit, which contains a

plurality of transforms, referred to as structured residual

transforms, each such transform converting equation error

values to a structured residual value, and each such

transform is optimally designed to be insensitive to faults
in a subset of sensors; a detection unit coupled to the
model unit, the detection unit monitoring the relationship
among the equation error values, occurrence of a significant
deviation of said relationshilip from expected relationship
resulting in a detection event; an identification unit
coupled to the structured residual unit and the detection

unit, the 1dentification unit beiling activated by a detectic

n
event, and using the structured residual values to determine

1f one or more sensors are faulty, said determination

resulting in an identification event; an estimation unit

coupled to the pre-processing unit, the structured residual

unit and the i1dentification unit, the estimation unit being

activated by an identification event, and estimating fault
sizes for each of the i1dentified faulty sensors; a

replacement unit coupled to the estimation unit, the
Y

e .

eplacement unit calculating replacement values for the

faulty measured sensor values 1n the working signal wvalues
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by subtracting the estimated fault size from the
corresponding measured sensor value for all i1dentified
faults; and a classification unit coupled to the estimation
unit, the classification unit being active when the
estimation unit 1is active, and classifying the identified

sensor faults into a fixed set of fault types.

According to a further aspect of the present invention
there 1s provided a computer method for detecting one or

more sensor faults in a measured process wherein the

1mprovement comprises the steps of: receiving a working

vector of signals i1ncluding measured sensor values, and

preprocessing the measured sensor values, resulting in pre-

processed sensor values; converting the pre-processed sensor

values to equation error values that contain mainly

measurement noise; applying a plurality of transforms to the

equation error values resulting i1n a plurality of structured

residual values, sailid transforms referred to as structured

residual transforms and optimally designed to be 1nsensitive
to faults 1n a subset of sensors; monitoring a relatlionship
among the equation error values, an occurrence of a
significant deviation of said relationship from expected
relationship resulting 1n a detection event; 1n the case

that a detection event occurs, using the structured residual

values to determine 1f one or more sensors are faulty, said

determination resulting in an 1i1dentification event; 1in the

case that an identification event occurs, estimating fault
sizes for each of the i1dentified faulty sensors; in the case
that an identification event occurs, replacing faulty
measured sensor values in the working signal with corrected

values by subtracting the estimated fault size from the

corresponding measured sensor value for all identified

faults; and 1n the case that an identification event occurs,

classifying the i1dentified sensor faults 1nto a fixed set of
fault types.
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IV BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, features, and

5 advantages of the 1nvention will be apparent from the

following more particular description of preferred

embodiments of the invention, as illustrated in the
accompanying drawings 1n which like reference characters
refer to the same parts throughout the different views. The

10 drawings are not
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necessarily to scale, emphasis instead being placed upon illustrating the principles of

the 1nvention.

FIG. 1 shows the eight computational units of the preferred embodiment of the

invention and the relationships between these units.

S  FIG. 2 shows a flow diagram of the identification process in the embodiment of FIG.
I,

FIG. 3 shows a flow diagram of the classification process in the embodiment of FIG.
I.

FIG. 4 shows the detection index of the present invention rapidly increasing and

10 exceeding 1ts threshold on the introduction of a fault to a boiler process.

FIG. 5 shows the output of the Estimation Unit on introduction of a bias fault into

sensor 2 of a boiler process.

FIG. 6 shows the output of the Estimation Unit on introduction of a drift fault into

sensor 5 of a boiler process.

15  FIG. 7 shows the NSFSR 1ndices of the present invention in response to the

introduction of a drift fault into sensor 5 of a boiler process.

V DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The sensor validation apparatus 100 of this invention 1s shown in FIG. / . The
external mput to the sensor validator consists of sensor measurements 108, which may
20  1nclude status information, as might be available, for example, from a Distributed
Control System (DCS) 50 1in a manufacturing plant. The purpose of the invention is to
use redundant information in the sensor measurements to detect when a sensor has
failed, and, optionally, to provide a replacement value for a failed sensor. Other
devices such as a process controller 60 or inferential sensor 70 that make use of the
25  sensor measurements can then use the replacement values if necessary. This allows

these devices to continue operation in the presence of failed sensors.

Referring again to FIG. 1, the sensor validator 100 consists of eight

computational units that implement the various phases of sensor validation. These

CA 02340977 2001-02-16
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-
computational units, which may be implemented using a MICrOprocessor or any other

desired type of computer, are as follows:

* A Pre-processing Unit 110, which maintains scaling and offset information 112 to
convert the vector of sensor values 108 from the DCS 50 to a vector of normalized
5 values 118. These normalized values have standardized units for which, 1n the
preferred embodiment, the values are designed to have a mean of 0 and a standard
deviation of 1. This is necessary for building an effective model matrix 122,
detection index 142, and structured residual transforms 132 for 1dentifying faulty
sensors. The scaling and offset information is, in the preferred embodiment,

10 dertved from a statistical analysis of a historical set of sensor data.

* A Model Unit 120, which maintains a model matrix 122 to convert the vector of
pre-processed sensor values 118 at a given instance to an error vector referred to
as the equation error 128. The equation error is used by the Structured Residual
Unit 130 to calculate structured residuals values 138 and fault sizes 136, and by

15 the Detection Unit 140 to calculate the detection index 142. The Structured
Residual Unit also uses the model matrix to design structured residual transforms
132 and their corresponding fault estimation transforms 134. The model matrix is,

in the preferred embodiment, built from a historical set of sensor data using

Principal Component Analysis.

20 e A Structured Residual Unit 130, which maintains a working set of structured
residual transforms 132 that convert the current equation error 128 to a set of
structured residual values 138. The Identification Unit 150 uses these structured
residual values to determine the identity of any faulty sensors. The Structured
Residual Unit also maintains a set of fault estimation transforms 134 that are used

25 by the Estimation Unit 160 to obtain normalized fault sizes 136 for identified

faults.

* A Detection Unit 140, which calculates a detection index 142 from the equation
error 128, and compares the detection index to detection threshold 144. If the
detection index exceeds the detection threshold, then a detection event 148 is

30 generated. This detection event is used to activate the Identification Unit 150, and

CA 02340977 2001-02-16
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1s also available externally to the sensor validator, for example for operator alarm

generation or event logging to an operator console 90, or to a storage device 92.

e An Identification Unit 150, which uses the structured residual values 138 to

calculate several sets of 1dentification indices 152. If a detection event 148 has

5 occurred, then the Identification Unit attempts to 1dentify the nature of the fault by
comparing the identification indices to a corresponding set of thresholds 154,
according to a certain logic, described 1n detail later. If identification is successful,
an 1dentification event 158 1s generated which 1s used to activate the Estimation
Unit. This identification event includes information as to which sensors failed, and

10 1s also available externally to the sensor validator, for example for operator alarm

generation or event logging to an operator console 90, or to a storage device 92.

e An Estimation Unit 160, which 1s activated by an 1dentification event 158. The
Estimation Unit requests the Structured Residual Unit 130 to apply the appropnate
fault estimation transform 134 (chosen based on identification information) to the

15 equation error 128, resulting in normalized fault size information 136. The
Estimation Unit then applies the appropriate scaling 116 to 136, in order to

produce fault size estimates 168 scaled to the units of the original sensor values.

o A Replacement Unit 170, which subtracts the estimated fault sizes 168 from the
corresponding faulty sensor measurements 108, to obtain a set of replacement
20 values 178. These replacement values are available externally to the sensor
validator; for example they are written to the DCS 50 for use by other devices.
The Replacement Unit is only active when the Estimation Unit 160 1s active. It can
also be deactivated by request of an operator 172; in this case the output 178 of the

Replacement Unit is identical to the original input 108 to the sensor validator.

25 o A Classification Unit 180, which calculates diagnostic information as to the type
of sensor fault. Specifically, four types of fault are considered: Complete Failure,
Bias, Drift, and Precision Loss. The Classification Unit 1s only active when the
Estimation Unit 160 is active, which, in turn, is only active when an identification
event 158 has been generated. The classification is based on an analysis of the

30 sensor data 108 and the fault size estimations 168 since the time of 1dentification.

The classification information 188 produced by the Classification Unit is available

CA 02340977 2001-02-16
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externally to the sensor validator, for example for operator alarm generation or

event logging to an operator console 90, or to a storage device 92.

A detailed description of the preferred embodiment of each of these computational

units now follows.

V.1 PRE-PROCESSING UNIT

The Pre-processing Unit 110 calculates and maintains scaling and offset
information to convert between measured sensor values 108 from the DCS and

normalized values 118 for inputting to the Model Unit and the Structured Residual

Unit. The scale value s; and offset value o, for the i” sensor are, in the preferred

embodiment of this invention, calculated from the mean x; and standard deviation o,

. 1}
of the i” sensor as follows:

1
5, =—
oF (1)

O; = H;

Then a measured value u; of the i sensor is converted to a normalized value x,by:
u; = 5;(x; =0, (2)

#;and o, are estimated from representative sample data in the standard way well

known to those skilled in the art.

V.2 MODEL UNIT

The Model Unit 120 maintains a normal process model, which can be

represented by the following equation:
Bx*(1)=e*(t) (3)

where x* € R” 1s a vector of preprocessed sensor values, B € R™" is the model

matrix 122, and e* € R™ is the equation error 128. The matrix B can be derived from

mass balance or energy balance of the process, or it can be generated from process

2001-02-16
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data using statistical methods such as Principal Component Analysis (PCA) or Partial
Least Squares (PLS). |

V.2.1 MODEL UNIT BASED ON PCA

In the preferred embodiment, the normal process model 1s derived from
5  process data using PCA. PCA is generally described in, for example, J. Edward
Jackson “A User’s Guide to Principal Components™ John Wiley 1991. In PCA the

sensor values x*(¢)e R" are decomposed into:

x*(1)=PP x*(t)+ PP x*(¢) (4)

10  where P e R™"™) are the eigenvectors associated with the principal eigenvalues

A, 2 A, >A A,_ of the correlation matrix of x *{¢). In this case, the model equation

error e*(t) corresponds to the residual components (4,__..,A A ), and, as described

in Gertler , L1, Huang and McAvoy “Isolation enhanced principal component

analysis” Proc. IFAC Workshop on On-line Fault Detection and Supervision in the
15  Chemical Process Industries, 4-5 June, 1998,

e ¥

B = P’ (5)

In the preferred embodiment, the optimal number of principal components 1s
chosen for optimal reconstruction capability as described 1n detail in Qin and Dunia
“Determining the number of principal components for best reconstruction”, Proc. of

20  the 5-th IFAC Symposium on Dynamics and Control of Process Systems, 359-364,
Corfu, Greece, June 8-10, 1998.

V.3 STRUCTURED RESIDUAL UNIT

The Structured Residual Unit 130 maintains transforms that are sensitive or

insensitive to faults 1n certain directions. These transforms are described in the context

25  of the following fault representation.
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V.3.1 FAULT REPRESENTATION

Under normal conditions, the equation error e *(¢) 128 contains mainly

measurement noise, which can be assumed to be zero mean Gaussian noise. When a

sensor fault occurs, the sensor measurement will contain the normal values of the

5  process variables and the fault, i.e.,
x(t)=x*(t)+Ef, () (6)

where f.() € R" is a vector of the fault magnitude, and = € R™ is a matrix of fault

directions. To represent a single sensor fault in the i sensor
=0 0 A 1 A Of (7)

10 which is the /" column of the identity matrix. To represent simultaneous multiple

sensor faults, E, simply contains the corresponding columns of the identity matrix.

Using the measurement relation of equation 6 that contains a sensor fault, the equation

error 128 can be written as follows:
e(t) = Bx(r)=Bx* (¢)+BE f ()-e*(t)+B f() (8)

15  The fault will in general cause the equation error e{t)to increase. The magnitude of

the equation error 1s used to detect sensor faults as described later. Since a distinct

vector or matrix X, represents each sensor fault, fault identification can be

accomplished by using the direction vectors.

V.3.2 STRUCTURED RESIDUAL TRANSFORMATIONS FOR SINGLE FAULTS

20 The Structured Residual Unir 130 maintains a set of transforms referred to as

structured residuals. The Identification Unit 150, described in a later section, uses the

structured residual transforms to 1dentify faulty sensors.

Structured residuals are generally described in Gertler and Singer, “A new
structural framework for parity equation based failure detection and isolation”,
25  Automatica 26:381-388, 1990. In the present invention, a new design method for

structured residuals 1s disclosed, referred to as “Structured Residual Approach with

Maximized Sensitivity” or SRAMS.
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For the case of single sensor fault in the j” sensor,

B= =b. (9)'

J J

where b ;is the j" column of matrix B . Therefore, the model equation error is

e(t)=e*(1)+b,f,(r) (10)

5  With a selected residual structure, a set of structured residuals r(¢) can be generated

by pre-multiplying the equation error vector e(t)by a transtormation matrix W,

r(r) = We(t) (11)
It is desirable to design each element of r(t) to be responsible for one particular

sensor fault but not responsible for other faults. The i” element of r(¢) given that the

10 j"sensor is faulty is represented as
r,(t)=wle(t)=wlex(r)+w/b, 1 (t) i,j =1,2,A ,n (12)

where w; is the i" row of matrix W € R™" . Since e(t) is random noise, one can
only design the residual 7, (¢) to be sensitive or insensitive to b ;» the fault direction

vector. The SRAMS design criterion is stated as follows:

15 Choose w, such that 7, (¢) is insensitive to the i* sensor fault but most

sensitive to the others. Mathematically, this is equivalent to

2
n}VaxZ (wizbj) :
"X b,

subject to:

20 Geometrically, w;1s chosen to be orthogonal to b, while minimizing its

angle to other fault directions b ; j # i. This problem can be equivalently stated as

follows:
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max}};( wb° | (13)
subject to:
w; b =0
Wil =1
where
b° = J i=12,A ,n (14)
.|

To satisfy the constraint w;b? = 0, the vector w, must be chosen as follows:
o T m
W, =(I-~b,.bf )z,.eSw', 2z, €R (15)

where §, 1s the orthogonal complement of b;. Therefore, the solution of w,is

converted to the solution of z, . Using a Lagrange multiplier 4, the solution of z, can

be found by maximizing the following objective:

e Shlownr b} sl )

. (16)
-max( ( (I bb")))z+/l(l z(I bb")z)
= /
The above relation holds because (I — bf.’bfT ))f’ =0 . Denoting
b? A b°|=B° (17)
and
I-beb Jbr A bo]={1-bbe" Jpe =B (18)

which 1s the projection of B® onto §, , the maximization problem can be rearranged

as follows:

T
B’ z

{
Z,

2+,z(1 ~z! (I b’b? )z)j (19)

J = max[

2001-02-16
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Differentiating J with respect to z, leads to
BfoTz,. = /l(l - bfbfT )z,. (20)
Note that
B = 1-bb?” B°
= (1 wb;’bj?r)zB" (21)
- (17 B
5  Equation 20 can be rearranged as
T
(I -b’b’? XB?B?Z‘- - /lzl.)= 0
or
BB z, - Az, =0 (22)

. . w0l .
Therefore z, 1s the eigenvector of BB, that corresponds to the largest eigenvalue.

10 After z,1s known, w,can be easily calculated from equation 15.

V.3.3 STRUCTURED RESIDUAL TRANSFORMATIONS FOR MULTIPLE FAULTS

The SRAMS design method can be extended to the case in which multiple

sensors fail simultaneously. The equation error vector for multiple sensor faults is
e(t)=e*(¢)+b,E1.(¢) (23)

15  where BE, € ™" contains g columns of B corresponding to the failed sensors, and

f.(1) e R7is a vector of the fault magnitudes. Note that the columns of BE .can be

linearly dependent. Performing a singular value decomposition (a matrix

decomposition well known to those skilled in the art) on B=, and keeping only non-

zero singular values yields

er)=e*()+U D, V7t (1) .

20 —e*(1)+ U1 ()

where
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f ()= D VIt () (25)

To design w_ for multiple sensor faults, w_is chosen in the orthogonal complement

of U_, thatis
w,=(I-U, Uk, €S, (26)

5 similar to the single sensor fault case. Furthermore, the following objective is

maximized:
rrl?x[z:(l-—-UqU;)B" 2 = max|z; B, 2 (27)
subject to
(-v,uTk =1 (28)
10 where
B =(1-U,U"B° . (29)

After using a Lagrange multiplier, z_ is found to be the solution to the following

equation:
o OT
B’B’ 2z, = A(I-U U}, (30)

15  From 29 we obtain
o OT
(1-vU,UT)B:B 2, - 4z, )=0
or
opol |
B;B; z, =1z, (31)

Therefore, z_1s simply the eigenvector of B‘;B‘G’T associated with the largest

20  eigenvalue.
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V.3.4 COMPARISON TO CONVENTIONAL STRUCTURED RESIDUAL APPROACH
T'he conventional structured residual approach (Gertler and Singer, “A new
structural framework for parity equation based failure detection and isolation”,
Automatica 26:381-388, 1990, and Gertler and Singer, “Augmented models for

> statistical fault isolation in complex dynamic systems”, Proceedings of the American

Control Conference, pp317-322, 1985) chooses w, to be insensitive to a particular

fault of interest, but it does not maximize the sensitivity to other faults. In a typical

structured residual design, the selecting of w, is not unique and is somewhat arbitrary.

The arbitrariness in this design leads to a sub-optimal solution that does not maximize

10 the potential to isolate faults. The SRAMS approach of the present invention

embodies a unique design of w,that maximizes the sensitivity to other faults while

being insensitive to the fault of interest.

V.3.5 TRANSFORMATIONS MAINTAINED BY THE STRUCTURED RESIDUAL
UNIT

15 In the preferred embodiment of the invention, the Structured Residual Unit
maintains a core set of structured residual transforms corresponding to single sensor
faults as described in section V.3.2. These core structured residual transforms form the

initial working set of structured residual transforms 132 and associated fault

estimation transforms 134.

20 When one or more sensors measurements 108 from the DCS are marked as
bad on input to the sensor validator, a new working set of structured residual
transforms, and associated fault estimation transforms, is created by the Structured
Residual Unit. These are as follows: if b sensors are marked as bad on input, then -
b+1 new structured residual transforms are designed. The first structured residual

25  transform is designed with a E that selects the columns of the identity matrix
corresponding to the b bad sensors; this structured residual transform is insensitive to
these bad sensor values but is sensitive to faults in any of the other sensors. The
remaining n-b structured residual transforms are designed with a & which selects the
columns of the identity matrix correspond to the b bad sensors plus one more column

30  corresponding to each other sensor in turn. This allows the identification of a further

faulty sensor in addition to those marked as bad on input.
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Other structured residual transforms can optionally be designed and added to
the working set. For example, a set of transforms based on a E that selects all pairs of
columns from the 1dentity matrix. This allows 1dentification of pairs of simultaneous
faults. However, a preferred method of detecting multiple faults 1s to use several

5  sensor validators. For example, in FIG. 1, 1f a process controller 60 uses 5 sensor
values as inputs, up to 5 sensor validators 100 can be utilized, one for each mput of
the controller. Each sensor validator uses one of the inputs together with other

redundant sensor measurements that are not input to the process controller.

Another scenario 1s to have several sensor validators, each optimized for
10  detection and 1dentification of faults 1n particular sensors, feeding another sensor

validator that 1s optimized for reconstruction.

V.4 DETECTION UNIT

The Detection Unit 140 monitors the correlation structure of the pre-processed
sensor values by calculating a detection index 142 based on the current equation error.
15  If this detection index exceeds a threshold 144 based on a statistically inferred
confidence limit, a detection event 148 1s generated, and the Identification Unit 1s

activated. In the preferred embodiment a filtered normalized fault detection index

(NFFDI) 1s used as described below.

V.4.1 FAULT DETECTION INDEX
20 The fault detection index (FDI) 1s defined as follows

FDI =e(t) =[e*(t)+BES,(t) (7)

When no fault 1s present, FDI = ||c * (t]\z = ”Bx ¥ (t)"2 . Therefore, the detection alarm

threshold for FDI is actually the confidence limit for He * (t)“2 .

V.4.2 NORMALIZED FAULT DETECTION INDEX

25 In practical industrial processes, the process variables x*(¢) typically are not

normally distributed. However, the equation error e*(¢) 128 contains mainly

measurement noise and therefore can be considered zero mean Gaussian noise. As a
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consequence e*(¢)' R 'e*(t) satisfies a z distribution with m degrees of freedom,

where R, = F {e(t)eT (t)} 1S the equation error covariance matrix. Thus defining the

normalized fault detection index as
NFDI =e(t) R 'e(t)

the detection alarm threshold for d_ for NFDI can be determined, in a manner well

known to those skilled 1n the art, for any significance level & using knowledge of the

v * distribution.

Note that NFDI = ||11(t)l2 where 7(t) = R?e(t) and R? 1s the matrix square

I
root of the inverse equation error covariance matrix. R 2 has the effect of

decorrelating the equation error.

V.4.3 NORMALIZED FILTERED FAULT DETECTION INDEX

In the preferred embodiment, an exponentially weighted moving average (EWMA)

filter 1s applied to the equation errors in order to reduce the effect of transients and

noise in the measured data:

elt)=ye(t-1)+(1-yp)lt) 0<y<i1 (32)

It directly follows that

&)= (1- 7)Y r*elt - k)

k=0

and

“ﬁ(r)=(1—r):§7*n(r-k) (33)

where

nl)=R, () (34)
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The filtered normalized fault detection index 142 is defined as

NFFDI = [q(e) (35)

Without faults, since n(t) is normally distributed, 7j(¢)is also normally distributed
5 with E{f(t)} = E{n(t)} = 0. However, since the EWMA filter significantly reduces the
variance of 'ﬁ(t), the confidence limit d_ can not be applied to d _ directly. The

variance of T{(¢) is given by:

var E{' n(t }
) il 4 Efn" () )[1+2Z7 p(k)] (36)

l+)/

:var(n(t))lw}/[l+227 p \

1+ y k=1 y

where

10 olk)= { ()“( k) (37)

is an autocorrelation function. If 11(t) were independently and identically
distributed, o (k)would be 0 for any £>0. However, for practical data, this condition 1s

hardly satisfied due to dynamic transients. The non-zero p(k) on the right hand side

of equation 36 will contnibute to the determination of the detection alarm threshold for

15 d_ . Since the threshold for ||n(t]|2 1s d_, from equation 36, it 1s straightforward that

the detection alarm threshold 144 for “’ﬁ'(tmz 1S:

_ (’ o0 \11__},
da :da 1+2Z}/kp(k) PR (38)
\ k=] J1+y

Notice that ‘ p(k} <1, and therefore
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\

_ o -y
d <d |1+2) v*lpolk) |—*
’ “[ ;7 2 )!/14-7

Sda(l+22y")-l_—}/-

k=1 1+y (39)

Therefore, the threshold for NFFDI 1s normally smaller than that for NFDI. In

practice, p(k)decays to zero after some time k; hence, the Detection Unit only

maintains a fixed number of terms in order to calculate d_ . The significance « 1s an

5  adjustable parameter of the Detection Unit.

FIG. 4 shows how the NFFDI rapidly increases on the introduction of a fault.

V.5 IDENTIFICATION UNIT

The Identification Unit 150 is activated if the Detection Unit generates a

detection event. The Identification Unit calculates several sets of indices 152 that are
10  used to determine if a detected fault can be identified with the failure of one or more

sensors. Each set of indices is derived from the working set of structured residuals

maintained by the Structured Residual Unit 130. In general, if a single index 1n a set 1s

less than a threshold, whereas all other indices in the set are greater than the threshold,

then a fault of known direction 1s identified. The direction of this fault corresponds to
15  directions that define the structured residual associated with the index. In the most

typical case this corresponds to a fault 1n a single sensor.

In the preferred embodiment of this invention, the Identification Unit
maintains 3 sets of indices 152 and their associated thresholds 154. These sets of
indices are the Normalized Sqﬁared Filtered Structured Residuals (NSFSR), the

20  Generalized Likelihood Ratio (GLR) indices, and the Normalized Cumulative

Variance (NCUMVAR) indices. The associated thresholds are denoted by & grcp

9., o> and Iy - A flow diagram that summarizes the fault identification process

1s shown in FIG. 2.
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V.5.1 NORMALIZED SQUARED FILTERED STRUCTURED RESIDUAL

Ideally, each structured residual 7. (¢) is supposed to be zero or close to zero |

when no sensor fails. However, due to modeling error, measurement noise and other

uncertainties, 7.(¢) is never equal to zero. Therefore, the non-zero confidence limit for

5 each r, (t) i, j =1,2,A ,n 1s determined using statistical techniques.

Without a fault or with the sensor(s) associated with the i structured residual

h

being faulty, the i” structured residual follows a normal distribution,
r (6)=wTe(t)~ %(0,w'R,w, ) i=12,A ,n (40)

where R, = E {e(t)eT (t)} is the equation error covariance matrix.

10  Consequently

r’(t) .
w R, w, ~ (1) 1=12,A ,n (41)

Then, defining the i” normalized structured residual (NSR) as

il

v.(2) %-’-;{%_-_w 8(0,1) (42)

and defining the normalized squared structured residual (NSSR) as v; (), the

15  confidence limit for NSSR is 7>(1) where « is the level of significance.

When an EWMA filter is applied to the NSR, the normalized filtered
structured residual (NFSR) 1s

i’_;‘(t)“": 7_’%;({ "1)+(1“7)Vf(t)

=(1-7)> y*vlt-k) )

Without a fault or with the sensor(s) associated with the i” structured residual being

20  faulty, the NFSR also follows a normal distribution with
E{, (1)} = E{v, ()} =0

and
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Var(V; (t )) = Var(Vf (t ))_ I+ 227 Vi (k ) (44)
1+ \ k=1 ) |
where
Efy (v (¢ - )
Vﬂfok):: l _ I
E{ ()Y |
is an autocorrelation function.
5 Therefore the alarm threshold for the normalized squared filtered structured

residual (NSFSR) defined by ¥ (¢) has an alarm threshold of

i - 1 - - :
g =7()= 7—(1 23 7y, (k)] 220 i=12A,n (45
k=1

If all sensors are normal ¥*(¢) is normally below its threshold as indicated by:

PW(t)> 9 s |= @

10 If the sensor(s) associated with the i” structured residual are faulty, by the SRAMS

design, ¥’(t)is not affected by the fault. However, the other residuals, v (1)j=i,

will increase significantly because their sensitivity to the faults in other sensors is

maximized.

Therefore, with a selected level of significance @ and an instant ¢, among NSFSRs,

15  the existence of exactly one NSFSR that is less than its threshold .., identifies a

faulty sensor, and generates an identification event 158. An example of this is shown
in FIG. 7 in which the top window shows the NSFSRs that do not correspond to

faulty sensor 5 become very large, whereas the bottom window shows the NSFSR for

sensor 5 remains below its threshold.

20 Since there are often many sensors to be validated, the probability for at least
one residual to exceed its threshold 1s significant, even though the probability for each

Index to exceed its threshold 1s small. For example, assuming that there are 20

residuals 7, (t) i =1,2,A 20. The probability for at least one NSFSR to exceed its

threshold 1s (assuming a = 0.05)
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P=1-(1-a)" =1-0.95% =0.642

even though all sensors are normal. Theretore, the NSFSRs are not used for fault
detection. Instead, the Detection Unit uses the NFFDI to tngger a detection event after
which the Identification Unit uses the various sets of indices, starting with the

5  NSFSRs, to identify the faulty sensors.

Optionally, the NSFSR indices can be calculated at each cycle, whether or not
the Detection Unit has generated a detection event. However, the index sets described
in the next two sections accumulate structured residual information since the time of

fault detection, so they only make sense after a detection event has been generated.

10 V.5.2 GENERALIZED LIKELIHOOD RATIO INDEX

If a sensor fault incurs significant changes in the mean, e.g., complete failure,
bias, or drift, the generalized likelihood ratio (GLR) 1s usually an appropnate test for
detecting this (Benveniste, Basseville and Moustakides “The asymptotic local

approach to change detection and model validation™ IEEE Trans. Auto. Cont.

15 32(7):538-592, July 1987.

To clarify the following analysis, each structured residual transform i1s
assumed to correspond to a fault in a single sensor. In general, however, the GLR

indices can be constructed and monitored irrespective of the structured residual

design.

20 As shown by equation 42, when no sensor is faulty v,(¢) is zero-mean and

normally distributed, with unit variance. However, if the j” sensor becomes faulty at

instant ¢ P it 1s clear that

- ' gt _JIIN (46)
R w.

25

v.(£)~ {x(o’l) AN (47)

R{z, 1) ift>1,

where
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()= 2L )

JWIRw,

It should be noted that x, =0 by the SRAMS design.

To detect the mean change of v.(¢), define the following GLR function

NAIIN AL
S:f(,u,y) _._'*‘_f__,______i'_’i__.________ (49)

t-tf+1

5  Differentiating S, (/JU) with respect to ,; produces the optimal estimate of

fry = —— (50)

With 7z, S () is maximized with
S (/:'u ) = fl; 1)
If the ;" sensor is faulty, #, =0, and v, (t) N(0,1). From equation 50,
10 i ()~ %(0,1)
or
S iy )= it ~ 2 (0)
Therefore, with a selected level of significance @ and an instant ¢, among the n GLRs

(/‘u) (/’2;)’/\ S, (/&n,)

15 the existence of exactly one GLR that is less than the threshold 4, = 7. (1) identifies

a faulty sensor, and generates an 1dentification event 158.
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V.5.3 NORMALIZED CUMULATIVE VARIANCE INDEX
If a sensor incurs a precision degradation fault, the GLR index set will have

difficulty identifying it. To identify the location of precision degradation faults, the

mean and variance of the NSR is calculated since the time the fault occurred:

NCUMMEAN (¢ e Zv (k)
_' k =t
5 2
NCUMVAR, (t):t 1t Y (v, (k)- NCUMMEAN (¢))
NS k=

Assuming, for clarity of explanation, each structured residual transform corresponds

- th

to a fault in a single sensor, when either no sensor or the ;™ sensor fails,

NCUMVAR,(t)~ p --lt Ve (t —1, - 1)
f

Therefore, with a selected level of significance @ and an instant £, among the »

10 NCUMVARs, the existence of exactly one NCUMVAR that is less than the threshold

Fcomvar = -y Zi (t —t, - 1) identifies a sensor with precision fault, and generates
f

an identification event 158.

V.6 ESTIMATION UNIT

The Estimation Unit 160 is only active if the Identification Unit 150 has

15  generated an identification event 158. The Estimation Unit then optimally estimates

the fault magnitude based on the model, the faulty data, and the matrix &,

corresponding to the structured residual transform that was instrumental in generating
the identification event. This optimal estimation is based on public domain prior art as

described, for example, Martens and Naes ‘“’Multivariate Calibration”, John Wiley
20  and Sons, New York, 1989.

The optimal estimation is achieved by choosing a time function f_ ()in the
direction U_where, as 1n equation 24, U is the orthogonal left hand side matrix of a

singular value decomposition on BZ, in which only non-singular values are

maintained. In other words, minimize

CA 02340977 2001-02-16



WO 00/10059

J=le* ) =|

PCT/US98/22772

226-

e(t)-— Uqfq (t]l2

(52)

A least square solution to this problem leads to:

f (1)=U"e(r)

(53)

The original fault magnitude f,(¢) can be estimated using equation 25:

o

f.(t)=(D V7

4 4

)+

f, (1)

(34)

where ( )" is the Moore-Penrose pseudo-inverse, well known to those skilled in the

art. The Structured Residual Unit 130 maintains the estimation matrix 134

‘/T

D,v,

pr—
o
S

$

Jv;

(35)

for each structured residual it maintains. The estimation matrix corresponding to the

10

structured residual that identified the fault is used to map the equation error 128 to an

estimate of the fault vector in the pre-processed sensor value space 136. The

Estimation Unit then applies the inverse scaling 116 from the Pre-processing Unit

resulting 1n an estimate of the fault vector in the original sensor space 168:

f’u (¢) = diag
\ 51

15

1

_JE ,. (quq" ) UTe(t)
32

A

P

(56)

FIG. 5 shows the output of the Estimation Unit for a bias fault in Sensor 2. FIG. 6

shows the output of the Estimation Unit for a drift fault in Sensor 5. In both cases the

fault s1ze 1s accurately estimated.

V.7 REPLACEMENT UNIT

The Replacement Unit 170 simply takes the estimate of the fault vector in the

20

subtracts the estimated

original sensor space 168 as estimated by the Estimation Unit (equation 56) and

fault from the measured vector of sensor values 108 to produce

a vector of replacement values 178:

The Replacement Unit
25
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1s only active if Estimation Unit 160 is active, which in turn is

only active if the Identification Unit 150 has generated an identification event 158. In



WO 00/10059 PCT/US98/22772

27-
addition, as a safety feature, an operator of the apparatus can explicitly disable (172)

the Replacement Unit.

V.8 CLASSIFICATION UNIT

The Classification Unit 180 calculates diagnostic information as to the type of

5 sensor fault. Specifically, four types of fault are considered: Complete Failure, Bias,

Drift, and Precision Loss.

The Classification Unit is only active when an 1dentification event 138 has
occurred. From the point when a sensor is first identified as being faulty, a butfer of
measured sensor values is maintained and a buffer of estimated fault sizes for that

10  sensor is also maintained. The information in these two buffers is analyzed and used
to classify the type of fault for that sensor. The analysis primarily makes use of
statistical inference, so a significance level « 1s required which is an adjustable

parameter of the Classification Unit.

For clarity of explanation, assume that a single sensor fault has been 1dentified

15 by the Identification Unit 150. A flow diagram of the classification logic 1s shown in
FIG. 3.

V.8.1 CLASSIFICATION TYPE: COMPLETE FAILURE

Complete failure is determined by performing a regression analysis on the
faulty sensor’s measured values 108, and is indicated by the statistical inference that

20  the regression line fits well, and has zero slope.

Let {k,u,.(k]k =t,,A ,t} be the sequence of points for which the regression

line is calculated, where ¢, is the point at which the sensor was identified as faulty,

and ¢ is the current point in time.

Using standard least squares regression, which minimizes the residual between

25  the points and the best fit line, the slope £ and y-intercept & are estimated as:
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(38)

(59)

To test if the slope is statistically equal to 0, construct the following statistic:

5 |zﬂ|=

a

sl j )

where the standard deviation of ﬁ 1s given by

splj )= = ——

and the standard deviation o of the residual 1s estimated by

10  where

\/k;m(k_;z)z

1s the residual error.

The statistic given in equation 60 satisfies Student’s t distribution with

(60)

(61)

(62)

t —t., —ldegrees of freedom (see, for example Birkes and Dodge “Alternative

15  Methods of Regression”, John Wiley & Sons 1993).
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Goodness of fit of the regression line 1s determined by the linear correlation

coefficient exceeding a specified threshold.

V.8.2 CLASSIFICATION TYPE: BIAS

Bias 1s determined by performing a regression analysis on the faulty sensor’s
5  fault size estimates 168 as calculated by Estimation Unit 160, and is indicated by the
statistical inference that the regression line fits well, has zero slope, and has non-zero

bias.

Let {k, f,.(k)k =1.,A ,t} be the sequence of points for which the regression line is

calculated, where ¢, 1s the point at which the sensor was 1dentified as faulty, and ¢ is

10 the current point in time. Testing for zero slope 1s the same as for classifying

Complete Failure, except that the fault size sequence ﬁ(k) replaces the sensor value

sequence u. (k). Goodness of fit of the regression line is determined by the linear

correlation coefficient exceeding a specified threshold.

To test for non-zero bias, calculate the statistic:

@ (-1, +1)

15 t,| =
O

(63)

which also satisfies Student’s t distribution with ¢ —¢,, —1degrees of freedom.

V.8.3 CLASSIFICATION TYPE: DRIFT

Drift is determined by performing a regression analysis on the faulty sensor’s
fault size estimates 168 as calculated by Estimation Unit 160, and 1s indicated by the

20  statistical inference that the regression line fits well, and has non-zero slope.

V.8.4 CLASSIFICATION TYPE: PRECISION LOSS

Precision Loss 1s determined by performing a regression analysis on the faulty
sensor’s fault size estimates 168 as calculated by Estimation Unit 160, and is
indicated by the statistical inference that the regression line does not fit well, and has

25  zero slope, and has zero bias.

CA 02340977 2001-02-16
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Precision Loss is also indicated if the identification event 158 was generated due

to the NCUMVAR test of section V.5.3.
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CLAIMS:

1. An apparatus for detecting one or more sensor faults
in a measured process, wherein the improvement
comprises:

a per-processing unit for receiving a working

vector of signals 1ncluding measured sensor values,
the pre-processing unit having means for normalizing
the measured sensor values, resulting in pre-processed
sensor values;

a model unit coupled to the pre-processing unit,
which converts pre-processed sensor values to equation
error values that contain mainly measurement noise;

a structured residual unit coupled to the model
unit, which contains a plurality of transforms,
referred to as structured residual transforms, each
such transform converting equation error values to a
structured residual value, and each such transform 1is
optimally designed to be insensitive to faults in a
subset of sensors;

. a detection unit coupled to the model unit, the
detection unit monitoring the relationship among the
equation error values, occurrence of a significant
deviation of said relationship from expected
relationship resulting in a detection event;

an identification unit cbupled to the structured
residual unit and the detection unit, the
identification unit being activated by a detection
event, and using the structured residual values to
determine if one or more sensors are faulty, said
determination resulting in an identification event;

an estimation unit coupled to the pre-processing
unit, the structured residual unit and the
identification unit, the estimation unit beilng
activated by an identification event, and estimating
fault sizes for each of the identified faulty sensors;

a replacement unit coupled to the estimation
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unit, the replacement unit calculating replacement
values for the faulty measured sensor values 1in the
working signal values by subtracting the estimated

fault size from the corresponding measured sSensor

value for all i1dentified faults; and

a classification unit coupled to the estimation
unit, the classification unit being active when the
estimation unit is active, and classifying the

identified sensor faults into a fixed set of fault

types.

The apparatus of claim 1 whereiln:
the normalizing in the pre-processing units 1s
achieved by scaling and offsetting the measured sensor
values, and wherein:
the working vector signals 1ncludes known
status information about the measured sensor
values, and wherein:
the converting of the pre-processed
sensor values in the model unit 1s achieved
by multiplying the pre-processed sensor
values by a matrix to produce the equation

erroxr.

The apparatus of claim 2 wherein the matrix is derived

from one of the following:

(1) the residual part of a principal component
analysis;
(ii) a residual part of a set of partial least

squares models, one for each sensor value; and
(1iii) mass balance or energy balance of the

measured process.

The apparatus of claim 1 wherein:

a subset of sensors defining each transform

includes at least all sensors of known bad status.



CA 02340977 2005-07-20

_33-

The apparatus of claim 1 wherein the detection unit
monitors the relationship among the equation error
values by:

calculating a detection index which 1i1s a function

of the equation errors; and

comparing said detection index to a threshold 1in
order to detect occurrence of a significant deviation
of said relationship from expected relationship,
wherein, further, the detection index 1s obtained by

summing squared values of the equation error values.

The apparatus of claim 5 wherein: _

the equation error is multiplied by a matrix to
decorrelate the equation error values, resulting in
decorrelated equation error values; and

the detection index is obtained by summing the
squared values of the decorrelated equation error
values, whereiln:

the threshold is determined using statistical

techniques.

The apparatus of claim 6 wherein:

the detection index is filtered, at least
according to time, in order to smooth out the effects
of transients and noise, resulting in a filtered
detection index; and

said filtered detection index is used 1n place of
said detection index to monitor a relationship among
the equation error values; and whereiln

said filtered detection index 1s compared to a

threshold in order to detect occurrence of a

significant deviation of said relationship from

expected relationship.

The apparatus of claim 7 wherein:
the detection index is filtered by applying an

exponentially weighted moving average filter, wherein
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a threshold for the filtered detection index 1is
calculated from the detection index threshold using an

auto-correlation function.

The apparatus of claim 5 wherein:
the detection index 1s filtered, at least
according to time, 1n order to smooth out the effects

of transients and noise, resulting in a filtered
detection index; and

salid filtered detection index is used 1in place of
said detection index to monitor a relationship among
the equation error values; and wherein

salid filtered detection index is compared to a
threshold in order to detect occurrence of a
significant deviation of said relationship from

expected relationship.

The apparatus of claim 9 wherein:

the detection index is filtered by applying an
exponentially weighted moving average filter, wherein
a threshold for the filtered detection index 1s
calculated from the detection index threshold using an

auto-correlation function.

The apparatus of c¢laim 1 wherein:
the identification unit compares each structured

residual value to a corresponding threshold;
an identification event occurs 1f the value of

all but one structured residual value, referred to as
the identified structured residual value, exceeds 1ts

corresponding threshold; and
the determined faulty sensors are a subset of

sensors for which, by design, a structured residual
transform corresponding to an identified structured

residual value is insensitive to th presence of faults

in said subset.
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The apparatus of claim 1 wherein:
the identification unit applies conversion
operations to the structured residual values resulting

in converted structured residual indices;

the i1dentification unit compares each converted
structured residual index to a corresponding
threshold;

an identification event occurs 1f the converted
structured residual index of all but one structured
residual index, referred to as the identified
converted structured residual index, exceeds 1ts
corresponding threshold; and

the determined faulty sensors are a subset of
sensors for which, by design, a structured residual
transform corresponding the converted structured
residual index is insensitive to the presence of
faults in said subset, wherein:

the conversion operation includes the operations

of squaring and scaling.

The apparatus of claim 12 wherein:

the conversion operation includes applying an
exponentially weighted moving average filter in time,
wherein the threshold for each converted structured
regidual index is calculated from the corresponding
structured residual threshold using an auto-

correlation function.

The apparatus of claim 1 wherein:

the identification unit applies accumulating
operations to the structured residual values resulting
in accumulated structured residual indices, said
operations accumulating since the time of the fault
detection event;

the identification unit compares each accumulated

structured residual index to a corresponding
threshold;
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an identification event occurs 1f the accumulated

structured residual index of all but one structured

residual, referred to as the identified accumulated

structured residual index, exceeds 1ts corresponding
threshold; and

the determined faulty sensors are the subset of
sensors for which, by design, the structured residual

transform corresponding to the identified accumulated

structured residual index is insensitive to the
presence of faults in said subset, wherein the
accumulating operation calculates a generalized
likelihood ratio index that is designed to detect
significant changes in the statistical mean of the
structured residuals since the time of the fault

detection event.

The apparatus of claim 1 wherein:

the classification unit calculates a plurality of
regression lines, one for each identified faulty
sensor, each such regression line being calculated
using the measured sensor values for the corresponding
faulty sensor since the time of identification,
resulting in a plurality of sensor value regression
lines;

the classification unit calculates a plurality of
regression lines, one for each identified faulty

sensor, each such regression line being calculated

using estimated fault sizes for the corresponding

faulty sensor since the time of identification,
resulting in a plurality of fault size regression
lines; and

the classification unit uses slope, bias, and
residual information from sensor value regression
lines and fault size regression lines to classify the

identified sensor faults into a fixed set of fault

types.
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The apparatus of claim 1 wherein:

each transform of the structured residual unit 1is
designed to be 1insensitive to faults 1n a subset of
sensors, but maximally sensitive to faults 1in all

other sensors.

The apparatus of claim 1 wherein:

each transform of the structured residual unit 1is
designed to be insensitive to a fault a single sensor,
but maximally sensitive to faults in all other

Sensors.

A computer method for detecting one or more sensor
faults 1in a measured process wherein the i1mprovement
comprises the steps of:

receiving a working vector of signals 1ncluding
measured sensor values, and preprocessing the measured
sensor values, resulting i1n pre-processed Ssensor
values;

converting the pre-processed sensor values to
equation error values that contailin mainly measurement
nolise; |

applying a plurality of transforms to the
equation error values resulting in a plurality of
structured residual values, said transforms referred
to as structured residual transforms and optimally
designed to be insensitive to faults in a subset of

Sensors;

monitoring a relationship among the equation

error values, an occurrence of a significant deviation
of said relationship from expected relationship
resulting in a detection event;

in the case that a detection event occurs, using
the structured residual values to determine 1f one oOr

more sensors are faulty, said determination resulting

in an identification event;
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in the case that an identification event occurs,
estimating fault sizes for each of the identified
faulty sensors;

in the case that an i1dentification event occurs,
replacing faulty measured sensor values in the working
signal with corrected values by subtracting the
estimated fault size from the corresponding measured
sensor value for all i1dentified faults; and

in the case that an identification event occurs,
classifying the identified sensor faults into a fixed

set of fault types.

The method of claim 18 wherein:
the step of pre-processing the measured sensor

values is achieved by scaling and offsetting.

The method of claim 18 wherein:
the working signal includes known status

information about the measured sensor values.

The method of claim 18 wherein:

the step of converting the pre-processed sensor
values to equation error values 1is achieved by
multiplying the pre-processed sensor values by a

matrix, wherein the matrix 1s derived from one of the

following:
(1) the residual part of a principal component
analysis;

(1ii1) the residual part of a set of partial lease

squares models, one for reach sensor value; and
(iii) mass balance or energy balance of the

measured process.

The method of claim 18 wherein:

each structured residual transform consists of a

vector of coefficients that are applied as a dot

product to the equation error, wherein:
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each structure residual transform 1s
designed to be insensitive to faults 1n a subset
of sensors, but maximally sensitive to faults in

all other sensors not in the subset.

The method of claim 18 wherein the step of monitoring
the relationship among the equation error values
consists of:

calculating a detection index which is a function
of the equation errors; and

comparing said detection index to a threshold 1in
order to detect occurrence of a significant deviation

of said relationship from expected relationship.

The method of claim 23 wherein:

each of said equation error values 1s multiplied
by a matrix to decorrelate the equation error values,
resulting in decorrelated equation error values; and

the detection index is obtained by summing the

X

g

squared values of the decorrelated equation errc
values, wherein:
the threshold is determined using

statistical techniques.

The method of claim 24 wherein:

the detection index 1s filtered, at least

according to time, in order to smooth out the effects
of transients and noise, resulting in a filtered

detection index;

said filtered detection index is used 1n place of
the detection index to monitor the relationship among
the equation error values; and

said filtered detection index is compared to a
threshold in order to detect occurrence of a

significant deviation of said relationship from
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expected relationship, wherein further, the detection
index 1s filtered by applying an exponentially
welghted moving average filter.

The method of claim 18 wherein the step of determining
1f one or more sensors are faulty consist of:

comparing each structured residual value to a
corresponding threshold; and

generating an identification event 1f the value
of all but one structured residual value, referred to
as the identified structured residual value, exceeds
its corresponding threshold; and

determining that the faulty sensors are the

subset of sensors for which, by design, the structured
residual transform corresponding to the i1dentified
structured residual value 1s 1insensitive to the

presence of faults 1n said subset.

The method of claim 18 wherein conversion operations
are applied to the structured residual values
resulting in converted structured residual indices and
the step of determining 1f one or more sensors are
faulty consists of:

comparing each converted structured residual
index to a corresponding threshold;

generating an identification event 1f the
converted structured residual index of all but one
structured residual, referred to as the identified
converted structured residual index, exceeds 1ts
corresponding threshold; and

determining that the faulty sensors are the
subset of sensors for which, by design, the structured
residual transform corresponding the converted
structured residual index is insensitive to the
presence of faults 1in said subset, wherein, the
conversion operation includes the operations of

squaring and scaling.
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The method of claim 18 wherein accumulating operations
are applied to the structured residual values
resulting in accumulated structured residual 1ndices,
said operations accumulating since the time of the
fault detection event, and the step of determining 1if
one or more sensors are faulty consists of:

comparing each accumulated structured residual
index to a corresponding threshold;

generating an identification event 1f the
accumulated structured residual index of all but one
structured residual, referred to as the identified
accumulated structured residual index, exceeds 1ts
corresponding threshold; and

determining that the faulty sensors are the
subset of sensors for which, by design, the structured
residual transform corresponding to the identified
accumulated structured residual index is insensitive
to the presence of faults in said subset, wherein, the
accumulating operation calculates a generalized
likelihood ratio index that 1s designed to detect
significant changes in the statistical mean of the
structured residuals since the time of the fault
detection event.

The method of claim 18 wherein the step classifying
the identified sensor faults into a fixed set of fault
types 1s achieved Dby:

calculating a plurality of regression lines, one
for each identified faulty sensor, each such
regression line calculated using the measured sensor
values for the corresponding faulty sensor from the
time of identification, resulting in a plurality of
sensor value regression lines;

calculating a plurality of regression lines, one
for each identified faulty sensor, each such
regression line calculated using estimated fault sizes

for the corresponding faulty sensor from the time of



30.

31.

CA 02340977 2005-07-20

-4)-

identification, result in a plurality of fault size

regression lines; and
using slope, bias, and residual information from

sensor value regression lines and fault size
regression lines to classify the i1dentified sensor

faults into a fixed set of fault types.

The method of claim 18 wherein:
each structured residual transform 1s designed to

be insensitive to faults in a subset of sensors, but

maximally sensitive to faults 1in all other sensors.

The method of claim 18 wherein:

each structured residual transform i1s designed to
be insensitive to a fault in a single sensor, but
maximally sensitive to faults in all other sensors.
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