发明名称
涡轮机中的改进
摘要
本发明涉及用于从振荡工作流体提取能量的涡轮机。该涡轮机包括限定用于工作流体的流动通道的壳体。在该壳体中安置了能量转换单元。流动控制装置是选择性可移动的以便封闭该流动通道的预定部分以至于该工作流体能够被引导以便作用于该能量转换单元的某一段。
1. 一种用于从振荡工作流体提取能量的涡轮机，该涡轮机包括：
 限定用于该工作流体的流动通道的壳体；
 被置于该壳体中的能量转换单元；以及
 流动控制装置，该流动控制装置能够选择性的移动，以便封闭该流动通道的预定部分，
 以至于该工作流体能够被引导而作用于该能量转换单元的某一区段。

2. 根据权利要求 1 所述的涡轮机，其中该流动控制装置能够在第一构形与第二构形之
 间移动以对该流动通道的构形进行改变，其中，在第一构形中该流动控制装置封闭该流
 动通道的第一部分，以至于该工作流体能够作用于该能量转换单元的第一运行区段；并且
 在第二构形中该流动控制装置封闭该流动通道的第二部分以至于该工作流体能够作用
 于该能量转换单元的第二运行区段。

3. 根据权利要求 2 所述的涡轮机，其中该流动控制装置响应于该工作流体流动方向的
 改变来改变该流动通道的构形。

4. 根据以上权利要求中任一项所述的涡轮机，其中该流动控制装置具有在该能量转换
 单元的第一侧上的第一控制机构以及在该能量转换单元的第二侧上的第二控制机构。

5. 根据权利要求 4 所述的涡轮机，其中，当该工作流体正在预定方向流动时，该第
 一控制机构封闭该流动通道的一部分从而该工作流体能够作用于该能量转换单元的第
 一运行区段；而当该工作流体正在第二预定方向流动时，该第二控制机构封闭该流动
 通道的另一部分从而该工作流体能够作用于该能量转换单元的第二运行区段。

6. 根据权利要求 4 或权利要求 5 所述的涡轮机，其中，该第一控制机构和第二控制机
 构在它们各自的封闭位置与打开位置之间是可滑动的。

7. 根据权利要求 4 或权利要求 5 所述的涡轮机，其中，该第一控制机构和第二控制机
 构在它们各自的封闭位置与打开位置之间是可转动的。

8. 根据权利要求 7 所述的涡轮机，其中，该第一控制机构包括可转动元件并且该第二
 控制机构包括可转动元件，这些可转动元件被安排成选择性地封闭该流体通道的对应部
 分。

9. 根据权利要求 8 所述的涡轮机，其中，这些可转动元件的形状至少对应于该流动通
 道的截面的一部分。

10. 根据权利要求 9 所述的涡轮机，其中，这些可转动元件是半圆形的盘以及形的盘中
 的一者。

11. 根据权利要求 8 至 10 中任一项所述的涡轮机，其中，这些可转动元件相对于彼此被
 偏移 180 度以至于它们能够封闭该流动通道的截面的相对的半部。

12. 根据权利要求 11 所述的涡轮机，其中，这两个可转动元件响应于流体从第一流动
 方向到第二流动方向的流动方向的改变而相对于彼此同时转动经过 180 度以至于该工作
 流体能够分别作用于该能量转换单元的第一运行区段和第二运行区段。

13. 根据权利要求 4 或权利要求 5 所述的涡轮机，其中，该第一控制机构包括在打开位
 置与关闭位置之间可移动的用于封闭该流体通道的第一部分的第一闸门式机构，并且该第
 二控制机构包括在打开位置与关闭位置之间可移动的用于封闭该流体通道的第二部分的
 第二闸门式机构。

14. 根据权利要求 13 所述的涡轮机，其中该第一闸门式机构和第二闸门式机构都包括
15. 根据以上权利要求中任一项所述的涡轮机，包括用于对在第一预定方向流动的工作流体朝向该能量转换单元的第一运行区段进行引导的第一喷嘴，当该工作流体正在该第一预定方向流动时该第一喷嘴被安排在该能量转换单元的上游。

16. 根据以上权利要求中任一项所述的涡轮机，包括用于对在第二预定方向流动的工作流体朝向该能量转换单元的第二运行区段进行引导的第二喷嘴，当该工作流体正在该第二预定方向流动时该第二喷嘴被安排在该能量转换单元的上游。

17. 根据权利要求16所述的涡轮机，其中该第一喷嘴和第二喷嘴被安排在该流动通道的截面的几何形状对置的半部上并且在该能量转换单元的相对侧上。

18. 根据权利要求15至17中任一项所述的涡轮机，其中该第一喷嘴包括多个导向叶片，这些导向叶片被安排成以便具有围绕该流动通道的截面的近似180°度的圆周范围。

19. 根据权利要求16或17所述的涡轮机，其中该第二喷嘴包括多个导向叶片，这些导向叶片被安排成以便具有围绕该流动通道的截面的近似180°度的圆周范围。

20. 根据以上权利要求中任一项所述的涡轮机，其中该壳体具有内壳体和外壳体，该内壳体和外壳体被安排为能够使得该流动通道的截面呈环形。

21. 根据以上权利要求中任一项所述的涡轮机，其中该能量转换单元包括转子，该转子被支承以用于在该流动通道中转动。

22. 根据权利要求21所述的涡轮机，其中该转子被适配用于在单一方向转动，该转动方向独立于该工作流体的流动方向。

23. 根据权利要求21或权利要求22所述的涡轮机，其中该转子具有中央轮毂和多个叶片，该多个叶片围绕该转轮周边安排并且从该周边延伸以至于该多个叶片能够被置于该流动通道中。

24. 根据权利要求23所述的涡轮机，其中该转子被安排成基本垂直于该流体流动的方向以至于该转子能够围绕基本平行于该壳体纵向轴线的轴线进行转动。

25. 根据权利要求23或权利要求24所述的涡轮机，其中每个叶片都具有压力侧表面和吸入侧表面。

26. 根据权利要求25所述的涡轮机，其中每个叶片的压力侧表面都是凹形的并且每个吸入侧表面都是凸形的。

27. 根据任何一项权利要求所述的涡轮机，其中该能量转换单元的第一运行区段和第二运行区段是该转子的预定部分。

28. 根据权利要求27所述的涡轮机，其中该第一运行区段和第二运行区段是该转子的预定圆周范围。

29. 根据权利要求28所述的涡轮机，其中该第一运行区段和第二运行区段各自是近似是该转子的运行表面的一半。

30. 根据权利要求27所述的涡轮机，其中该第一运行区段和第二运行区段各自是预定数目的连续转子叶片。
涡轮机中的改进

技术领域
[0001] 本发明总体上涉及能量转换装置并且具体涉及涡轮机。
[0002] 本发明已被主要开发用于使用振动水柱的海浪能量提取系统并且在下文中通过参考本申请进行描述。然而，应该认识到本发明不限于这个具体的使用领域。

背景技术
[0003] 随着传统能量系统已经对环境或者正在对环境造成冲击的担忧与日俱增，目前正在开发新的方法和系统用于减少这类系统对于环境的冲击。
[0004] 为了发电，这些系统中的多数依赖于涡轮机来转动发电机。至今对许多这类系统所提出的问题是需要大量的基建投资来建立新的系统。基建投资的程度经常会成为诸多投资者的障碍，因为投资的回报在某种程度上会受到系统的基建投资与其效率之间关系的限制。
[0005] 目前在这类系统中使用的涡轮机以相对低的效率运行并且该能量提取系统整体受到这些涡轮机效率的限制。
[0006] 本发明的目的是克服或改善现有技术的这些缺陷中的一者或多者，或者至少提供有用的替代物。

发明内容
[0007] 根据本发明的第一方面，在此提供了用于从振荡工作流体提取能量的涡轮机，该涡轮机包括：
[0008] 限定了用于该工作流体的流动通道的壳体；
[0009] 被置于该壳体中的能量转换单元；以及
[0010] 流动控制装置，该流动控制装置是选择性可移动的以便封闭该流动通道的预定部分以至于该工作流体能够被引导作用于该能量转换单元的某一区段。
[0011] 优选的是，该流动控制装置是可移动的以用来在第一构形与第二构形之间对该流动通道的构形进行改变，其中，在该第一构形中该流动控制装置封闭该流动通道的第一部分以至于该工作流体能够作用于该能量转换单元的第一运行区段，并且在该第二构形中该流动控制装置封闭该流动通道的第二部分以至于该工作流体能够作用于该能量转换单元的第二运行区段。
[0012] 本发明的涡轮机特别适合供海浪能量提取系统使用，其中该工作流体是由该海浪能量提取系统的振荡水柱产生的振荡气流，该振荡水柱（并且因此该气流）响应于经过的海浪的上涨和下落而进行振荡。
[0013] 优选的是，能量转换单元包括被支用于在该流动通道中转动的转子。该转子优选地被适配用于独立于流体流动的方向而在单一方向转动。优选的是，转子被安排成基本垂直于流体流动的方向。
[0014] 转子优选具有中央轮毂和围绕该轮毂周边布置并且从该轮毂周边延伸出的多个
叶片以至于该多个叶片能够被置于该流动通道中。每个叶片优选地具有压力侧表面和吸人侧表面。优选的是，每个压力侧表面是凹形的。每个吸人侧表面优选是凸形的。

[0015] 能量转换单元的第一运行区段优选是转子的预定部分。在某些实施例中，第一运行区段是预定数目的连续叶片。在其他实施例中，第一运行区段是转子的预定圆周范围。

[0016] 该流动通道优选具有环形的截面。在第一构形中，该流动控制机构优选地封闭该进气端处的环的一部分以限定进气开口，在第一方向流动的工作流体可穿过该进气开口以作用于该转子的第一运行区段。

[0017] 优选的是，第一定子或喷嘴被安置在转子的第一侧上用于对在第一方向流动的工作流体朝向该转子叶片的压力侧进行引导。在一个优选的实施例中，第一定子或喷嘴包括多个导向叶片，这些导向叶片被安排为以便具有围绕该流动通道的环的近似 180 度的圆周范围。

[0018] 该流动控制机构优选地包括在第一构形与第二构形之间的该流动通道的入口开口的构形进行改变的装置，在该第一构形中限定第一入口开口以至于该工作流体可作用于第一运行区段，并且在该第二构形中限定第二入口开口以至于该工作流体可作用于该第二运行区段。该入口开口和出口开口优选被安排在转子的相反侧。

[0019] 在某些实施例中，该流动控制机构优选包括与该流动通道的未被该第一转子覆盖的圆周范围相关的第一隔板式或隔板式机构，该第一隔板式机构在打开位置与关闭位置之间是可移动的，在该关闭位置中工作流体只有经过这个打开的喷嘴区段才被准许进入转子。

[0020] 优选的是，第二定子或喷嘴被置于该转子的相反的第二侧上用于对在第二方向流动的工作流体朝向该转子叶片的压力侧进行引导。在一个优选的实施例中，第二定子或喷嘴包括多个导向叶片，这些导向叶片被安排成以便具有围绕该流动通道的环的约 180 度的圆周范围。

[0021] 在某些实施例中，该流动控制机构优选地包括在未被第二定子覆盖的第二侧上与该流动通道的圆周范围相关的第二隔板式或隔板式机构，该第二隔板式机构在打开位置与关闭位置之间是可移动的，在该关闭位置中工作流体只有经过这个打开的喷嘴区段才被准许进入转子。

[0022] 在其他优选的实施例中，该流动控制机构包括用于对在该流动通道的入口开口的一部分进行封闭的可转动盘。优选的是，在该能量转换装置的每一侧上提供可转动盘，用于对该流动通道的每个入口开口的一部分进行封闭。这些可转动盘优选是半圆形的。优选的是，这些盘是相对彼此被偏移 180 度。相应于流体从第一流动方向到第二流动方向的流动方向的改变，优选的是盘均相对于彼此被同时转动以 180 度以至于该工作流体可分别作用于第一运行区段和第二运行区段。

[0023] 根据本发明的第二方面，在此提供了用于从振荡工作流体提取能量的涡轮机，该涡轮机包括：

[0024] 限定用于该工作流体的流动通道的壳体；

[0025] 该壳体中具有能量转换单元。该能量转换单元具有第一运行区段和第二运行区段；以及

[0026] 用于对在第一构形与第二构形之间对该流动通道的构形进行改变的流动控制装
置，其中，在该第一构形中当该工作流体正在第一预定方向流动时该工作流体可作用于第一运行区段，并且在该第二构形中当该工作流体正在第二预定方向流动时该工作流体可作用于第二运行区段。

[0027] 根据本发明的第三方面，在此提供了用于从振荡工作流体提取能量的涡轮机。该涡轮机包括：

[0028] 限定用于该工作流体的流动通道的壳体；
[0029] 被置于该壳体中的能量转换单元；以及
[0030] 用于在启用构形与旁通构形之间对该流动通道的构形进行选择性地改变的流动控制装置，在该启用构形中该工作流体作用于该能量转换单元并且在该旁通构形中该工作流体绕过该能量转换单元。

[0031] 在某些优选的实施例中，该能量转换单元包括第一能量转换模块和第二能量转换模块。第一能量转换模块优选地被适配成响应于在预定的第一方向流动的工作流体来进行操作。第二能量转换模块优选地被适配成响应于在预定的第二方向流动的工作流体来进行操作。

[0032] 优选的是，该流动控制装置使该流动通道的启用构形能够在第一启用构形与第二启用构形之间进行选择地改变，在该第一启用构形中该工作流体作用于该第一能量转换模块并且绕过该第二能量转换模块，在该第二启用构形中该工作流体作用于第二能量转换模块并且绕过该第一能量转换模块。

[0033] 该壳体优选是纵向的并且沿纵向轴线延伸。在某些实施例中，该壳体被安排成使得其纵向轴线被安排成基本平行于该振荡工作流体的流动方向。在其他实施例中，该壳体被安排成使得其纵向轴线被安排成基本垂直于该振荡工作流体的流动方向。

[0034] 例如，在某些实施例中，该壳体可被安排为使得该纵向轴线是基本竖直的。在其他优选的形式中，该壳体可被安排为使得该纵向轴线是基本水平的。本领域普通技术人员应该认识到该壳体不限于以上描述的那些取向，而是可相对于工作流体的流动方向、以任何其他适合的取向来安排，以适合具体应用。

[0035] 优选的是，第一能量转换模块和第二能量转换模块是在轴向上彼此间隔开的。第一能量转换模块和第二能量转换模块优选被安排为沿该壳体的纵向轴线基本同轴。

[0036] 在一个优选实施例中，该壳体具有总体上圆柱形的本体。该壳体优选地包括内部框架和外部框架。优选的是，内部框架和外部框架是相对于彼此安排的，使得在其之间的空间或空间形成该流动通道的至少一部分。在内部框架与外部框架之间的空间或空间优选形成该流动通道的中央通道。

[0037] 优选的是，壳体的内部框架和外部框架都是被安排成基本同中心地围绕该纵向轴线以至于该流动通道的截面，更具体的是该中央通道或主要通道的截面是环形的。

[0038] 优选的是，该壳体具有与第一能量转换模块相关联的第一旁通区段，以及与第二能量转换模块相关联的第二旁通区段。该第一旁通区段优选定义该第一能量转换模块以便限定用于该工作流体绕过（或者以其他方式未作用于）该第一能量转换模块进行流动的第一旁路通道。该第二旁通区段优选定义该第二能量转换模块以便限定用于该工作流体绕过（或者以其他方式未作用于）该第二能量转换模块移动的工作流体的第二旁路通道。

[0039] 优选的是，该流动控制装置具有被可移动地置于该壳体内用于打开和关闭该第一
旁路通道的第一闸门式机构。该流动控制装置优选具有被可移动地置于该壳体内用于打开和关闭该第二旁路通道的第二闸门式机构。在一些优选的实施例中，第一闸门式机构和第二闸门式机构包括被铰接地连接到壳体的外部框架的多个闸门构件，每个闸门构件度度可在基本上与外部框架平齐以关闭相关联旁路通道的第一位置、以及延伸越过该环的流动通道以打开该旁路通道的第二位置之间运动。优选的是，该多个闸门构件是以轴列阵排列的。

0040 在某些优选的实施例中，第一闸门式机构包括分别安排在第一能量转换模块的上游侧和下游侧的一组上游阀门构件和一组下游阀门构件。

0041 该第二闸门式机构优选包括被对应地安排在第二能量转换模块的上游侧和下游侧的一组上游阀门构件和一组下游阀门构件。应该认识到，术语“上游”和“下游”是在相对意义上使用的，其取决于转动工作流体的流动方向。

0042 本领域普通技术人员还应该认识到，流动控制机构不限于以上描述的铰接闸门式机构，而可以是用于封闭该流动通道的一个或多个区段的任何适合的封闭装置，例如，使流动通道的构形能够改变的流动控制阀门的安排。

0043 优选的是，每个能量转换模块具有被支撑用于围绕壳体的纵向轴线转动的转子。该第一能量转换模块和第二能量转换模块的转子优选是同轴对齐的。

0044 优选的是，每个转子具有中央轮毂和围绕该轮毂的周边安排的且从该轮毂周边延伸的多个叶片。每个转子优选地被安排为使得该多个叶片被置于该流动通道内，更具体的说，是在该壳体的内部框架与外部框架之间的中央通道内。

0045 每个转子的该多个叶片优选被构形为能够使得每个转子在预定方向转动。优选的是，每个转子被安排成基本垂直于工作流体的流动方向以至于每个转子都能够围绕壳体的纵向轴线转动。在其他优选的形式中，每个转子被安排在基本上平行于流体流动方向的方向上转动。在一个优选的实施例中，第一能量转换模块的转子和第二能量转换模块的转子被安排成在相同的方向转动。

0046 优选的是，每个转子叶片具有总体上新月形的或弓形的截面轮廓。每个新月形叶片优选地具有收敛式凹形－凸形的形式，该形式包括凹形表面和凸形表面。

0047 优选的是，每个新月形叶片的截面轮廓收敛以至于每个叶片能够具有基本上平行的外部未梢边缘。每个叶片的外部未梢边缘优选具有平滑波状外形轮廓或者圆化轮廓，没有锋利的边或者尖锐的边。在某些实施例中，每个外部未梢边缘具有预定的曲率半径。

0048 在某些实施例中，每个能量转换模块包括入口定子，该入口定子被安排为邻近相关联的转子以便引导该工作流体朝向转子。应该认识到该入口定子被适配成使工作流体的路线或流动路径偏离以便于相关联的转子在预定方向转动。

0049 优选的是，每个定子具有多个导向叶片，用于对工作流体朝向这些转子叶片的凹形表面进行引导，并且以便作用于其上，使得在使用时，在相关联的转子转动时，该凹形表面引导该凹形表面。

0050 每个定子优选地被安排成能够使得该多个导向叶片被置于该流动通道内，更具体的说，在壳体的内部框架与外部框架之间的中央通道内。这些导向叶片优选被安排成以便基本上垂直于流体流动方向。优选的是，每个定子的该多个导向叶片是以轴列阵排列的，优选是围绕壳体的纵向轴线。

0051 优选的是，与第一能量转换模块相关联的定子被安排朝向该壳体的入口端，以至
于在工作流体正在第一方向流动时，这个定子是在第一转子的下游。优选的是，与第二能量转换模块相关联的定子被安排朝向该壳体的入口端，以至于在工作流体正在第二方向流动时，这个定子是在第二转子的下游。在一个优选的实施例中，第一能量转换单元和第二能量转换单元是彼此共轴对齐的以至于该第一能量转换单元和第二能量转换单元的转子是在相关联的定子的中间。

[0052] 在一些优选实施例中，每个导向叶片具有拱形的截面轮廓。优选的是，每个导向叶片的拱形截面轮廓是不对称的。每个导向叶片优选具有不对称收敛型凹形-凸形的形式并具有凹形表面积和凸形表面。优选的是，每个导向叶片被安排成使得在使用中当流动通道是处于相关的启用构形时，该凹形表面附带有该工作流体。

[0053] 每个导向叶片优选具有引导边缘、中央部分和后缘。每个叶片的中央部分与后缘相比优选更接近该引导边缘。每个引导边缘优选具有平滑波状外形轮廓或者别样的圆化轮廓。优选的是，每个引导边缘具有平滑波状外形轮廓或者圆化轮廓。每个导向叶片的引导边缘和后缘优选没有锋利的边或者锐锐的边。在某些优选的实施例中，这些导向叶片的每个引导边缘和后缘具有预定的曲率半径。优选的是，该引导边缘的曲率半径大于后缘的曲率半径。

[0054] 当然应该认识到，这些导向叶片不限于以上描述的优选形式，而可以是任何适合的形状，包括平面形状，以便使流体流动方向朝向这些转子叶片的凹形表面偏离。

[0055] 然而，值得注意的是，具有平滑表面和圆化边缘的这些转子叶片和导向叶片的优选形式可提供能量转换模块的，以及作为整体的涡轮机的，效率的增加和可操作性的增加等优点，这是因为被捕获的工作流体的量的增加并且被用于转动这些转子。

[0056] 优选的是，每个转子具有驱动轴，该驱动轴在其近端处被联接到中央轮毂以至于转子的转子能够引起该驱动轴的相应的转动，由此其远端可用于接合发电机并驱动该发电机。在某些优选实施例中，与第一能量转换模块和第二能量转换模块相关联的这些驱动轴驱动同一台发电机。在某些优选的形式中，发电机是双端发电机。发电机优选被置于壳体的内部框架中。

[0057] 振荡工作流体优选是振荡气流。在本发明的某些优选形式中，气流是由海浪能量提取系统的振荡水柱产生的，该振荡水柱并且因此气流)响应于经过的海浪的涨落而发生振荡。

[0058] 然而，本领域技术人员应该认识到，该振荡工作流体不限于振荡气流，并且具体的说，不限于由振荡水柱产生的振荡气流。例如，在其他优选的形式中，该振荡工作流体可以是任何适合的可压缩的流体，如气体，例如蒸汽。在其他实施例中，该振荡工作流体可以是不可压缩的流体，如液体，例如水。

[0059] 根据本发明的第四方面，在此提供了用于从振荡工作流体提取能量的涡轮机。该涡轮机包括：

[0060] 限定用于该工作流体的流动通道的壳体；

[0061] 被置于该壳体中的第一能量转换模块；以及

[0062] 被置于该壳体中的第二能量转换模块；以及

[0063] 用于在第一构形与第二构形之间对该流动通道的构形进行改变的流动控制装置，在该第一构形中该第一能量转换单元是可操作的而该第二能量转换单元是无作用的，并且
在该第二构形中该第二能量转换单元是可操作的而该第一能量转换单元是无作用的。

根据本发明的第五方面，在此提供涡轮机，该涡轮机包括：

具有中央轮毂的转子；以及

围绕该轮毂安置的多个叶片，其中每个叶片具有总体上新月形的或者弓形截面轮廓。

每个新月形叶片优选具有收敛式凹形—凸形的形式并包括凹形表面和凸形表面。优选的是，这些叶片是围绕该轮毂安排以至于凹形表面被构形为这些叶片的压力侧，并且这些凸形表面被构形为这些叶片的吸入口。

优选的是，每个新月形叶片的截面轮廓收敛以至于每个叶片能够具有基本上平行的外部未梢边缘。每个叶片的外部未梢边缘优选具有平滑波状外形轮廓或者别的形状的圆化轮廓，没有锋利的边或者尖锐的边。在某些实施例中，每个外部未梢边缘具有预定的曲率半径。

每个转子叶片优选是对称的。

在某些实施例中，涡轮机包括入口定子，该入口定子具有邻近该转子安排的多个导向叶片用于引导该工作流体朝向这些转子叶片的压力侧。这些入口导向叶片优选以预定或希望的流动角度引导该工作流体朝向这些转子叶片。应该认识到，该入口定子被适配成使该工作流体的路线或流动路径偏离以便于相关联的转子在预定方向转动。

在某些优选的实施例中，该涡轮机包括出口定子，该出口定子被安排为邻近该转子以便引导排气流远离该转子。

应该认识到，入口定子和出口定子被配置成使得它们的作用是可反转的以便于具有双向或振荡二维流动的操作。

在某些优选的实施例中，入口导向叶片和出口导向叶片各自具有拱形截面轮廓。优选的是，每个导向叶片的拱形截面轮廓是不对称的。每个导向叶片优选具有不对称收敛式凹形—凸形的形式并具有凹形表面和凸形表面。优选的是，每个导向叶片被安排成能够使得在使用中在流动通道是处于相关的启用构形时，该凹形表面附带有该工作流体。

每个导向叶片优选具有引导边缘，中央部分和后缘。每个叶片的中央部分与该后缘相比优选更接近该引导边缘。每个引导边缘优选具有光滑波状外形轮廓或者圆化轮廓。优选的是，每个后缘具有光滑波状外形轮廓或者别的形状的圆化轮廓。每个导向叶片的引导边缘和后缘优选没有锋利的边或者尖锐的边。在某些优选的实施例中，这些导向叶片的引导边缘和后缘各自具有预定的曲率半径。优选的是，该引导边缘的曲率半径大于该后缘的曲率半径。

在某些实施例中，这些转子叶片可与不同轮廓的叶片是可交换的以便实现涡轮机的不同运行特性。类似的是，该第一转子和第二转子的这些导向叶片在某些实施例中是可互换的。

在某些优选的形式中，这些转子叶片和/或导向叶片被可移动地安装在对应轮毂上。例如，这些叶片/导向叶片可被铰接地或可转动地安装到对应轮毂上以便改变叶片相对于流体流动方向的间距。

附图说明
现在将仅通过举例的方式、参照附图对本发明的多个优选实施例进行说明，在附图中：

图 1 是根据本发明的涡轮机的一个实施例的透视图；
图 2 是图 1 的涡轮机的切开视图，该图中该流动通道是处于第一启用构形；
图 3 是被联接到双端发电机上的第一定子 - 转子能量转换模块和第二定子 - 转子能量转换模块的透视图；
图 4 是示出了当流动通道处于第一启用构形并且该流体正在第一方向流动时的工作流体的流动路径的示意图；
图 5 是示出了当流动通道处于第二启用构形并且该流体正在第二方向流动时工作流体的流动路径的示意图；
图 6 是根据本发明的涡轮机的第二实施例的侧视图的示意图；
图 7 是图 6 的涡轮机的端视图，在该图中该流动通道的一部分被流动控制机构封闭；
图 8 是根据本发明具有定子 - 转子 - 定子安排的涡轮机的第三实施例的透视图；
图 9 是图 8 的涡轮机的侧视图；
图 10 是示出了图 8 的涡轮机的这些叶片 / 导向叶片的安排的轴向表示的示意图；
图 11 是图 8 的涡轮机的入口定子的透视图；
图 12 是图 8 的涡轮机的转子的透视图；
图 13 是图 8 的涡轮机的排气定子的透视图；
图 14 是图 11 的入口定子的端视图；并且
图 15 是图 13 的排气定子的端视图。

具体实施方式
参见附图，本发明提供了用于从振荡气流形式的振荡工作流体提取能量的涡轮机 1。涡轮机 1 已被特定开发用于此类型的具有振荡水柱的海浪能量提取系统（未示出）。在这些系统中，振荡水柱或 OWC 被构形以响应于经过的海浪的上涨和下跌来产生振荡气流。
涡轮机 1 具有纵向的总体圆柱形的壳体 2，该壳体具有内部框架 3 和外部框架 4。内部框架和外部框架（3, 4）围绕壳体 2 的纵向轴线被同心地排列以能够使得其间的空隙或空间形成了用于该工作流体的中央流动通道 5。内部框架和外部框架（3, 4）的同心安排是这样的，即能够使得中央流动通道 5 的截面是环形的。
具有第一能量转换模块 6 和第二能量转换模块 7 的能量转换单元被安置在用于从工作流体提取能量的壳体 2 中。第一转子 - 定子模块和第二转子 - 定子模块（6, 7）在壳体 2 中是彼此轴向地间隔开的，并且沿该壳体 2 的纵向轴线是基本上同轴的。
第一能量转换模块 6 优选是定子 - 转子模块的形式。第一定子 - 转子模块 6 被适配为响应于预定的第一方向中的气流来操作。例如，第一定子 - 转子模块 6 优选被构形为响应于海浪的上涨所产生的气流来操作。
第二能量转换模块 7 优选是定子 - 转子模块的形式。第二定子 - 转子模块 7 被适配为响应于预定的第二方向中流动的气流来操作。例如，第二定子 - 转子模块 7 优选被构
形为响应于海浪的下落所产生的气流来操作。

【0098】壳体2具有第一旁通区段8,该旁通区段界定该第一定子-转子模块6以限定用于该工作流体绕过（或者不作用于）该第一定子-转子模块6来流动的第一旁路通道9。

【0099】第二旁通区段10界定该第二定子-转子模块7以限定用于该工作流体绕过（或者不作用于）该第二定子-转子模块7来流动的第二旁路通道11。

【0100】闸门式或闸板式机构12形式的流动控制装置被安排在壳体2中用于对该流动通道5的构形在启用构形与旁通构形之间进行选择性地改变，在该启用构形中该工作流体作用于第一定子-转子模块6上或者作用于第二定子-转子模块7上，并且在旁通构形中该工作流体绕过该能量转换单元。

【0101】在上游侧和下游侧的定子-转子模块(6,7)上均安排了闸门式机构12。每个闸门式机构12包括被铰接地连接到壳体2的外部框架4上的极性阵列闸门构件13。每个闸门构件13在与外部框架4基本平齐以关闭相相关联旁路通道（9,11）的第一位置、以及延伸越过该流动通道的环以打开相相关联的旁路通道的第二位置之间运动。

【0102】这些闸门式机构12使该流动通道的启用构形能够在如图2和图4所示的第一启用构形与图5所示的第二启用构形之间选择性地改变。

【0103】在第一启用构形中，与第一定子-转子模块6相联的上游阵列和下游阵列闸门构件13被移动到它们对应的与外部框架4基本平齐以关闭第一旁路通道9的第一位置。在这个第一启用构形中，工作流体可流过第一定子以作用于第一转子并使该第一转子转动。第二定子-转子模块7的上游和下游闸门构件13是处于延伸越过该流动通道以打开第二旁路通道11的第一位置中使得该工作流体绕过第二定子-转子模块7。应该认识到，当气流在图2和图4所示的取向中正从左向右进行流动时，采用该第一启用构形。

【0104】现在参见图5,当气流改变成用于该图所示取向的右至左的气流时,采用该第二启用构形。在这种构形中，与第二定子-转子模块7相联的上游阵列和下游阵列闸门构件13被移动到它们对应的与外部框架4基本平齐以关闭第二旁路通道9的第一位置。在这个第二启用构形中，工作流体可流过第二定子以作用于第二转子并且使该第二转子转动。第一定子-转子模块6的上游和下游闸门构件13是在它们对应的延伸越过该流动通道以打开第一旁路通道9的第二位置使得该工作流体绕过该第一定子-转子模块6。

【0105】从以上说明中，将认识到的是，由于工作流体由其振荡引起方向的改变，因此每个能量转换模块(6,7)的定子将在对应转子的下游用于相相关联流动方向的工作流体。

【0106】这些定子被适配成使该工作流体的路线或流动路径偏离以便于相相关联的转子在预定方向的转动。具体地说，第一定子-转子模块和第二定子-转子模块(6,7)被构形使得这两个转子在相同的方向转动。

【0107】双端发电机14被置于内部框架3中并且经由对应的驱动轴15被连接到第一转子和第二转子。因此，当该流动控制装置使该流动通道构形成第一启用构形并且气流是处于第一方向时该第一转子驱动该发电机。当该流动控制装置使该流动通道构形成第二启用构形并且气流是处于第二方向时该第二转子驱动该发电机。应该认识到的是这些转子的该单一转动方向，并因此该发电机就来自振荡水柱的发电效率而言提供了有利的提升。具体的说，已经发现通过这种涡轮机的某些优选实施例可以实现大约20%至25%范围之内的效率提升。
现在参见图6和图7的实施例，本发明提供了用于从振荡工作流体提取能量的涡轮机20，这种振荡工作流体是例如通过海浪能量提取系统的振荡水柱产生的振荡气流。

涡轮机20包括壳体21，该壳体具有内框架22和外部框架23以便在其间限定用于工作流体的流动通道。内部框架和外部框架总体上是圆柱形的使得该流动通道的截面是环形的。

能量转换单元具有第一注子或喷嘴24，转子25具有多个叶片，并且第二注子或喷嘴26被置于该壳体21中。

第一注子24被安排在转子25的第一侧上并且包括多个导向叶片，这些导向叶片是以半圆弧结构安排的以用于对朝向第一注子24流动的空气进行导向而朝向这些转子叶片的压力侧以转动该转子。

第二注子26被安排在转子25的相反的第二侧上并且包括多个导向叶片，这些导向叶片是以半圆弧结构安排的以用于对朝向这些转子叶片的压力侧流动的空气进行引导以便转动该转子。第二注子的半圆形喷嘴弓形结构优选相对于第一注子24的弓形结构被偏移大概180度。

闸门式机构形式的流动控制装置被提供用于改变该流动通道的构形。该闸门式机构包括安排在转子25的与第一注子24同一侧上的第一组闸门构件27，并且在转子25的相反的第二侧上安排了第二组闸门构件28。

每组闸门构件（27,28）是以半圆弓形结构安排的并且相对于相关联的定子被偏移180度。这些闸门构件被铰接地连接以便当工作流体正朝着涡轮机的一端流动时而可移动到关闭该开口到该流动通道的一部分（在这种情况下，是一半）的关闭位置。通过关闭该流动通道的一部分，该工作流体仅被允许经过该流动通道的打开区段，经由该定子，以便作用在该转子上并且使该转子在预定的方向转动。当气流方向改变时，在转子的第一侧上的该组闸门构件打开，并且该组与转子的相反的第二侧的闸门构件闭合，或者反之亦然。即，根据气流的方向，这些上游这些闸门构件打开而这些下游闸门构件闭合。

该转子被构形为使得它在相同方向转动，与气流的方向无关。

现在参见图8至图15的实施例，展示根据本发明的涡轮机的第三实施例。在此实施例中，涡轮机30配备有入口注子31，转子32和出口注子33。

转子32具有中央轮毂34，该中央轮毂限定该转子的转动轴线。多个对称叶片35围绕该轮毂34的周边安排且从该轮毂的周边延伸。每个叶片35具有总体上新月形的或者弓形的截面轮廓，该截面轮廓具有凹形表面36和凸形表面37。这些叶片35围绕轮毂34被安排为使得凹形表面36被构形为这些叶片的压力侧并且这些凸形表面37被构形为这些叶片的吸入侧。

每个新月形叶片35的截面轮廓收敛使得每个叶片35具有基本上平行的外部端梢边缘38。每个叶片的这些外部端梢边缘38优选具有沿滑的波状外形轮廓或者圆化轮廓、没有锋利的边或者尖锐的边。在某些实施例中，每个外部端梢边缘38具有预定的曲率半径。

该入口注子31具有多个导向叶片39并且该入口注子被安排成邻近该转子32用于引导该工作流体朝向这些转子叶片34的压力侧35。这些入口导向叶片39引导该工作流体以预定的或者希望的流动角度朝向这些转子叶片34。

出口注子33具有多个离开导向叶片40并且该出口注子被安排成邻近该转子32
用于引导排气流离开该转子。

[0121] 应该认识到，入口定子和出口定子被构形为使得它们的作用是可逆的以便于具有双向或振荡流体流动的操作。即，对于来自入口端的气流，这些入口导向叶片将引导气流朝向这些转子叶片的压力侧，而对于来自出口端的气流，这些出口导向叶片将引导气流朝向这些转子叶片的压力侧使得该转子总是在单一方向转动。

[0122] 入口导向叶片和出口导向叶片（39, 40）各自具有不对称的拱形截面轮廓，该拱形截面轮廓具有凹形表面 41 和凸形表面 42。

[0123] 每个导向叶片（39, 40）具有引导边缘 43，中央部分 44 和后缘 45。当叶片作为入口叶片起作用时，每个叶片的中央部分 44 优选与后缘 45 相比更接近于该引导边缘 43。

[0124] 该引导边缘和后缘具有基本上平滑的波状外形轮廓或者其它的圆化轮廓，使得每个叶片没有锋利的边缘或者尖锐的边缘，其中该引导边缘的曲率半径大于该后缘的曲率半径。

[0125] 因此，本发明，至少在其优选的实施例中，提供了效率增加的稳固的涡轮机。该涡轮机有利地使从振荡或双向工作流体提取的能量的数量增加。具体的说，在涡轮机的某些优选形式中，与目前在海浪能量提取系统中使用的涡轮机相比，可有利地实现范围直至约 20% 的效率的增加。在这些及其他方面，本发明在其优选的实施例中，表示了在实用性和商业上优于现有技术的明显改进。

[0126] 尽管本发明已经参见特别实例进行描述，本领域普通技术人员应该认识到本发明也可以其他形式来实施。
图 15