TICKET SCARCITY MANAGEMENT FOR INTERACTIVE EVENTS

Inventors: Jeffrey David Henshaw, Redmond, WA (US); Alexander Irvin Hopmann, Seattle, WA (US); Christopher Andrew Evans, Sammamish, WA (US); Daniel Evan Socolof, Las Vegas, NV (US)

Correspondence Address:
Flindt Intellectual Property Law Group, PLLC
P.O. Box 1390
Issaquah, WA 98027-0057 (US)

Assignee: Deep Rock Drive Partners Inc., Las Vegas, NV (US)

Filed: Sep. 28, 2009

Related U.S. Application Data
Provisional application No. 61/100,701, filed on Sep. 26, 2008, provisional application No. 61/100,703, filed on Sep. 26, 2008, provisional application No. 61/100,704, filed on Sep. 26, 2008, provisional application No. 61/100,706, filed on Sep. 26, 2008.

Publication Classification
Int. Cl. G06Q 50/00 (2006.01)
G06Q 30/00 (2006.01)
G06Q 10/00 (2006.01)

U.S. Cl. 705/10; 705/14.5; 705/9; 705/14.45

ABSTRACT
Ticket scarcity management system adjusts event promotion and ticketed sales methodologies to maintain optimal sales conditions for an interactive event.

Event Established 410

Tickets / Codes Issued 420

Monitor Ticket Sales / Admission Code Issuance 430

Time/Ticket Threshold? 440

YES

NO

Extra Event Promotion 460

YES

NO

Revise Marketing Strategy? 470

YES

NO

Revise Event Size? 450

YES

NO

Event Redirection (Sold Out or Starts) 460

Time Ticket
Fig. 3
Event Established

Tickets / Codes Issued

Monitor Ticket Sales / Admission Code Issuance

Time/Ticket Threshold?

Extra Event Promotion

Revise Marketing Strategy?

Revise Event Size?

Event Redirection (Sold Out or Starts)

Fig. 4
Establish Event and Corresponding Ticketing Schema

Fig. 6A

Create Promo Codes—Branford Marsalis—Almost sold out—Free

<table>
<thead>
<tr>
<th>Number of codes:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate</td>
</tr>
</tbody>
</table>

Fig. 6B

Ticketing Promo Codes

- D4J6-YRJW-WVCB
- 6BVQ-MHVS-FKRQ
- 2CSN-8RYS-ZUWD
Doors open in

Days Hrs Min Sec
18 : 12 : 38 : 31

Support FreezePop!
Claim Your Free Seat

730
Doors Open Countdown

Fig. 7A

Only 497 tickets still available!
Doors open in

Days Hrs Min Sec
16 : 13 : 14 : 06

Support Branford Marsalis!
Claim Your Free Seat

760
Limited Seating Warning

This show is sold out.

Visit DeepRockDrive often for information on upcoming DOOMRIDERS shows.

In the mean time, check out some other great shows.

See Shows

790
Sold Out Redirection

Fig. 7C
Extra Event Promotion

Enter Event Promo Codes - Branford Marsalis - Alm

Enter Promo codes:

Submit

D4J6-YRJW-WVCB
6BVQ-MHVS-FKRUQ
2CSN-8RY5-ZUWD

Ticketing Promo Codes

Fig. 8A

Support Indio Saravanja!

Get a Ticket for $1.00

and bring 3 friends for free!

Ticket Bonus

Fig. 8B
Fig. 9
TICKET SCARCITY MANAGEMENT FOR INTERACTIVE EVENTS

CROSS REFERENCE TO RELATED APPLICATIONS

TECHNICAL FIELD

[0002] Embodiments of the present disclosure generally relate to data evaluation, categorization, and presentation. More particularly, the embodiments of the present disclosure relate to systems which manage ticket scarcity for interactive events.

BACKGROUND

[0003] Kenneth Haigh once indicated that “You need three things in the theater—the play, the actors and the audience,—and each must give something.” In many ways an interactive event is similar to live theater as every interactive event includes an event, a performer, and the audience. In an online community that now includes billions of terminals and even more users, determining who will be part of the audience is often a difficult challenge.

SUMMARY

[0004] In view of the problems in the state of the art, embodiments of the invention are based on the technical problem of optimizing ticketing data evaluation, categorization, and presentation in an online environment to improve online event promotion and/or corresponding ticket sales and/or attendance, and methods for providing ticket scarcity management for interactive online events. In one embodiment, a ticket scarcity management system helps to drive online interest and/or attention of the event and encourage the rapid uptake of tickets to the event. For example, the ticket scarcity management system may generate ads or other online solicitation which emphasizes the need to obtain a ticket quickly before the available tickets run out. In one embodiment, the ticket scarcity management system regulates the exposure of tickets available for an event. A configuration of the ticket scarcity management system, suitable to solve the problems which at least one embodiment of the invention is based on, generates an event ticketing user interface component, such as a widget that may be used to solicit potential event audience members. In one embodiment, the ticket scarcity management system selects potential event audience members satisfying categorical criteria outlined for desired event attendees. The event ticketing user interface is dynamically generated in accordance to ticket sales thresholds previously provided by an event promoter to adjust sales strategies in accordance with a variety of factors including available seats to the event, time until event, and relative cost. In one embodiment, the relative size of the event and associated ticket availability may be adjusted according to performer requests, preliminary sales, and other event related data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Non-limiting and non-exhaustive exemplary embodiments of the present disclosure are described with reference to the following drawings in which:

[0006] FIG. 1 illustrates a block diagram view of a portion of an interactive client interface of a ticketed online interactive event environment during presentation of the event in accordance with various embodiments of the present disclosure;

[0007] FIG. 2 illustrates a block diagram view of computer systems in a managed ticketing environment for multi-client online interactive events in accordance with at least one embodiment;

[0008] FIG. 3 illustrates a block diagram view of components contained in a ticketed interactive client system configured in accordance with at least one embodiment;

[0009] FIG. 4 illustrates a flow diagram view of a method of a portion of operation for ticketing data evaluation, categorization, and promotion for an interactive online event in accordance with at least one embodiment;

[0010] FIG. 5 illustrates a flow diagram view of a method of a portion of operation for ticket scarcity data evaluation, categorization, and promotion in accordance with various embodiments;

[0011] FIGS. 6A and 6B illustrate block diagram views of portions of interactive event promoter interfaces of a ticketing management environment during establishment of an event in accordance with various embodiments of the present disclosure;

[0012] FIG. 7A-7C illustrate block diagram views of portions of user interfaces, each generated by a ticketing management system in accordance with various embodiments;

[0013] FIGS. 8A and 8B illustrate block diagram views of portions of user interfaces, each generated by a ticketing management system configured for promoting event ticket sales in accordance with various embodiments; and

[0014] FIG. 9 illustrates a block diagram view of a portion of an interactive client interface of an online interactive event environment for various after party presentations associated with an online interactive event including promoting future event ticket sales in accordance with various embodiments of the present disclosure.

DETAILED DESCRIPTION

[0015] In the following detailed description, reference is made to the accompanying drawings which form a part hereof wherein like numerals designate like parts throughout, and in which are shown, by way of illustration, specific embodiments in which the disclosure may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope of the present disclosure. Therefore, the following detailed description is not to be taken in a limiting sense, and the scope of a portion of the present disclosure is defined by the appended claims and their equivalents.

[0016] Throughout the specification and claims, the following terms take at least the meanings explicitly associated herein, unless the context clearly dictates otherwise. The meanings identified below are not intended to limit the terms, but merely provide illustrative examples for use of the terms.
The meaning of “a,” “an,” and “the” may include reference to both the singular and the plural. Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The meaning of “in” may include “in” and “on.” The appearances of the phrases “in one embodiment” or “in an embodiment” in various places in the specification do not necessarily all refer to the same embodiment, but it may. The term “connected” may mean a direct electrical, electro-magnetic, mechanical, logical, or other connection between the items connected, without any electrical, mechanical, logical or other intermediary there between. The term “coupled” can mean a direct connection between items, an indirect connection through one or more intermediaries, or communication between items in a manner that may not constitute a connection. The term “circuit” or “circuitry” as used in any embodiment described herein, can mean a single component or a plurality of components, active and/or passive, discrete or integrated, that are coupled together to provide a desired function and may include, for example, singly or in any combination, hardwired circuitry, programmable circuitry, state machine circuitry, and/or firmware that stores instructions executed by programmable circuitry. The term “signal” can mean at least one current, voltage, charge, data, or other such identifiable quantity.

In an effort to clarify comparative phrases used in the specification and the claims of this disclosure, please note that the following phrases take at least the meanings indicated and associated herein, unless the context clearly dictates otherwise. The phrase “A/B” means “A or B”. The phrase “A and/or B” means “(A), (B), or (A and B)”. The phrase “at least one of A, B and C” means “(A), (B), (C), (A and B), (A and C), (B and C) or (A, B and C)”. The phrase “(A) B” means “(A B or B)”, that is “A” is optional.

In addition, the various embodiments depicted in FIG. 1 through FIG. 9 are block diagrams and flow diagrams that illustrate in more detail the present invention. The block diagrams often illustrate certain embodiments of modules for performing various functions of the present invention. In general, the represented modules include therein executable and operational data for operation within a system as depicted in FIG. 2 in accordance with the present invention. Various operations of the system may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments of the present invention; however, the order of description should not be construed to imply that these operations are order dependent.

As used herein, the term executable code, or merely “executable,” is intended to include any type of computer instruction and computer executable code that may be located within a memory device and/or transmitted as electronic signals over a system bus or network. An identified module of executable code may, for instance, comprise one or more physical or logical blocks of computer instructions which may, for instance, be organized as an object, procedure, or function. Nevertheless, the executables of an identified module need not be located together, but may comprise disparate instructions stored in different locations which together comprise the module and achieve the purpose stated for the module. Indeed, an executable may be a single instruction, or many instructions, and may even be distributed over several different code segments, among different programs, or across several memory devices. Similarly, operational data may be identified and illustrated herein within modules, and may be embodied in any suitable form and organized within any suitable type of data structure. The operational data may be collected as a single data set, or may be distributed over different locations including over different storage devices, and may at least partially exist merely as electronic signals on a system bus or network.

Referring now to FIG. 1, a block diagram view of a portion of an interactive client interface 100 of a ticketed online interactive event environment is illustrated showing portions of the presentation during a ticketed interactive event in accordance with various embodiments of the present disclosure. The interactive client interface 100, in one embodiment, may include a video screen for visual presentation of the event, and audio output for audio presentation of the event, or some combination thereof. The illustrated interactive client interface 100 may incorporate a wide variety of different user interfaces including the illustrated emotaprase interface, playlist voting interface, shout out interface, and view/camera interface into the event presentation. In addition, the illustrated embodiment also shows event sponsorships of the event. Accordingly, this sponsorship may be sold in accordance with a variety of advertising mechanisms, including but not limited to per event, per song, per minute, per impression, or some combination thereof. In one embodiment, an event sponsor may present customized logos and marketing material targeted for the audience of the event. On embodiment provides promotional links on the presentation page of event. When clicked, another window may open without interrupting the stream. Alternatively, a sponsorship link may change the look of the event interface. Other more subtle methods of promotion also considered within the scope of the disclosure include use of a watermark and/or background images and/or desktop/window wallpaper of promotional material.

In one embodiment, tickets to future performances by the performer or tickets to events by similar artists may also be advertised on the interactive client interface 100. This allows members of the audience to pre-purchase their next concert while they are still enjoying the current performance.

Referring now to FIG. 2 a block diagram of a portion of a ticket scarcity management system 200 for data evaluation, categorization, and presentation of events is shown in accordance with various embodiments of the present disclosure. The system 200 includes both a variety of operating environments and a variety of network devices. Operating environments within a given system 200 may include, but are not limited to, multiple clients (Event server 257, Client A 213, Client B 215, and Client C 217) that may attach via communication network 240 to a interactive event platform 230 using a variety of consumer devices including, but not limited to, general purpose computer systems, personal digital assistants, digital media players, mobile telephones, video equipment, application specific devices, and other digital communication devices. A more detailed description of the various operating environments (e.g., 213, 215, 217, and 257) typically used in ticket scarcity management system 200 are described in greater detail in FIG. 3. A performance studio 255 provides event content, such as executable code and operational data 220 to the production center 253, the servers 257, and/or the persistent storage 259, directly and indirectly.

In one embodiment, the interactive event platform 230 includes a ticketing management system 260 to promote 269, sell 263, and admit 266 clients to the event. In one
embodiment, the ticketing management system 260 evaluates the value of an event and artificially establishes ticket sales thresholds including size of event and various event promotion thresholds to help determine the type of promotion used for an event.

[0024] Events are configured with two parameters, ticket limit and scarcity limit. As used herein, the term ticket limit is intended to indicate when a predetermined quantity of tickets is granted the event/show becomes “sold out.” and new tickets are not available. In one embodiment the ticket limit may include a stage variable limit, which would allow for a show to expand, but only after certain sales thresholds have been satisfied. As used herein, the term scarcity limit is intended to indicate the relative count of remaining tickets to the ticket limit after a quantity tickets are granted. In one embodiment, promotion messages with the relative event scarcity limit are displayed to encourage additional sales.

[0025] FIG. 2 also illustrates at least one computer system 257 in which executable and operational data 220, operating in accordance with various embodiments of the present invention, may be hosted and transmitted to one or more stations in a communication network 240. The communication network 240 may comprise a local area network (LAN) and/or a wide area network (WAN). Each network may be wired, wireless, or some combination thereof. The communication network 240 may also comprise an interconnected system of networks, one particular example of which is the Internet and the World Wide Web supported on the Internet.

[0026] Referring now to FIG. 3, a computer system is shown for implementing at least one embodiment of the invention, the system including a computing device 300 in which executable and operational data may be hosted and transmitted to one or more interactive stations via a communication network of the previously described online interactive event environment 200. Computing device 300 may be configured as a client, a server, a mobile device, or any other computing device that interacts with data in a network based collaboration system.

[0027] In a very basic configuration, computing device 300 typically includes at least one processing unit 320. In one embodiment, the processing unit 320 includes at least one processor. As such, the term “processor,” as used herein, should be interpreted to mean an individual processor, firmware logic, reconfigurable logic, a hardware description language logic configuration, a state machine, an application-specific integrated circuit, a processing core co-disposed in an integrated circuit package with at least one other processing core and/or component, or combinations thereof.

[0028] The processing unit 320 may be operably connected to system memory 310. Depending on the exact configuration and type of computing device, system memory 310 may be non-volatile memory 311 (such as ROM, flash memory, etc.), volatile memory 314 (such as RAM), or some combination of the two. System memory 310 typically includes Basic Input/Output System (BIOS) firmware code 312, an operating system 315, one or more applications 316, and may include program modules and data 317. A configuration library 318 (e.g., registries), which contain code and data to be shared and changed in a modular or database fashion to provide services to applications 316 and programs 317 is also often included in system memory 310.

[0029] Computing device 300 may have additional features or functionality. For example, computing device 300 may also have a dedicated graphics rendering device, such as video adapter 330 coupled with at least one display monitor 335. Computing device 300 may also have a variety of human input device(s) (HID) 359 such as keyboard, mouse, pen, voice input device, touch input device, and the like. In a broader sense, human input device (HID) 359 may also include various output devices such as a display monitor 335, speakers, printer, and the like. Computing device 300 may also utilize a variety of ports via port interface 350 to share data including wireless ports 353, parallel ports 355, and serial ports 357. Each of these port types may include further varieties, for example serial ports may include a Universal Serial Bus (USB) port and/or a FireWire/IEEE 1394 port.

[0030] In various embodiments, computing device 300 may also include a storage drive interface 340 for communication with additional storage data devices (removable and/or non-removable) such as, for example, magnetic disk drives 342, optical disk drives 343, hard disk drives 344, tape drives, and other storage devices. Such additional storage is illustrated in FIG. 3 by removable magnetic storage 341 and removable optical storage 349 and non-removable storage (hard disk drive 344).

[0031] Computer storage media may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. System memory 310, removable storage and non-removable storage are all examples of computer storage media. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can be accessed by computing device 300. Any such computer storage media may be used to store desired information, such as operating system 345, one or more applications 346, programs 347, and/or registries and configuration libraries 348 accessible to computing device 300.

[0032] Computing device 300 may also contain a communication connection via port interface 350 and/or network interface card 360 that allows the device 300 to communicate with other remote computing devices 380, such as a remote server, over a communication network. The communication network may comprise a local area network (LAN) and/or a wide area network (WAN). Each network may be wired or wireless or combination thereof. The communication network may also comprise other large scale networks including, but not limited to, intranets and extranets, or combinations thereof. In one embodiment the communication network is an interconnected system of networks, one particular example of which is the Internet and the World Wide Web supported on the Internet.

[0033] A variety of configurations may be used to connect the computing device 300 to the remote computing devices 380. For example, although modem 365 is illustrated as connecting to the remote computing device 380, a remote server, via a WAN and network interface 360 is illustrated as connecting via a LAN, both the network interface 360 and/or the modem 365 may just as well be coupled to other large scale networks including, but not limited to, a global system of interconnected computer networks (Internet), various intranets and extranets, or combinations thereof.
The information transmitted as data across the previously discussed communication connections are examples of communication media. Communication media may typically be embodied by computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. The term computer readable media as used herein includes both storage media and communication media.

Although many of the examples refer to computing devices with a single operating system, file system and configuration library, the concepts, principles, and examples disclosed below may be extended to provide interactive event functionality across several or many operating systems, file systems, and/or configurations libraries (e.g., registries). Accordingly, it is contemplated that the principles described herein may be applied to these and other computing systems and devices, both existing and yet to be developed, using the methods and principles disclosed herein.

Turning now to FIGS. 4 and 5, methods and various operations of the interactive event system, in accordance with at least one embodiment, are described in terms of firmware, software, and/or hardware with reference to flowcharts and/or flow diagrams. More specifically, FIG. 4 is a flow diagram schematically showing a portion of various computer systems configured to evaluate and categorize ticketing data to promote an event in accordance with at least one embodiment. FIG. 5 is a flow diagram showing a portion of a method of operation for ticket scarcity data evaluation, categorization, and promotion in accordance with at least one embodiment. Describing a method and/or various operations by reference to a flowchart enables one skilled in the art to develop programs, including instructions to carry out the methods on suitably configured computer systems and electronic devices. In various embodiments, portions of the operations to be performed by an electronic device or computer system may constitute circuits, general purpose processors (e.g., micro-processors, micro-controllers, an ASIC, or digital signal processors (DSPs)), special purpose processors (e.g., application specific integrated circuits or ASICs), firmware (e.g., firmware that is used by a processor such as a micro-processor, a micro-controller, and/or a digital signal processor), state machines, hardware arrays, reconfigurable hardware, and/or software made up of executable instructions. The executable instructions may be embodied in firmware logic, reconfigurable logic, a hardware description language, a state machine, an application-specific integrated circuit (ASIC), or combinations thereof.

With respect to various embodiments using a software implementation (e.g., a hardware simulator), at least one of the processors of a suitably configured electronic communication device, such as a computer, executes the instructions from a storage medium. The computer-executable instructions may be written in a computer programming language or executable code. If written in a programming language conforming to a recognized standard, such instructions may be executed on a variety of hardware platforms and may interface with a variety of operating systems. Although the various embodiments are not described with reference to any particular programming language, it will be appreciated that a variety of programming languages may be used to implement the teachings of the embodiments as described herein. Furthermore, it is common in the art to speak of software in one form or another (e.g., program, procedure, process, application, etc.) as taking an action or causing a result. Such expressions are merely a shorthand way of saying that execution of the software by a device causes the processor of the computer to perform an action or a produce a result.

Referring now to FIG. 4, a flow diagram view of a portion of a ticket scarcity management system 400 configured to create, evaluate, and categorize ticketing data and to promote an event in accordance with at least one embodiment. Initially the event is established in block 410. The established event may include information about the performers at the event, size (number of available tickets), ticket sales thresholds, anticipated playlists, online location of the event, and other particulars about the event. In block 420, tickets or admission codes for the event are issued based on event information. These initial setup activities for an event are generally not visible to the public. Portions of interactive event promoter user interfaces are illustrated in FIGS. 6A and 6B and are described in greater detail below.

Ticket sales and/or admission code issuance are monitored in block 430 by the ticket scarcity management system 400 once the event is available to the public for tickets. Portions of an interactive event audience user interface where tickets for an event are initially available for sale to the public is illustrated in FIG. 7A and described in greater detail below. Once a given scarcity threshold has been reached and detected by the ticket scarcity management system 400 in query block 440, a corrective action may be taken by either the event organizer, promoter, or automatically by the ticket scarcity management system 400. For example, if tickets have sold too fast or too slow the event size may need to be modified in query block 450. If the size of the event is increased additional admission codes and/or tickets are issued by the ticket scarcity management system 400 in block 420. In one embodiment, if the size of the event needs to be decreased then previously issued but unsold tickets may be invalidated and/or deleted to desired levels. Alternatively, if the ticket limit has been reached and the event has sold out, then sales are redirected in block 460 by the ticket scarcity management system 400. An example of this type of redirection is illustrated in FIG. 7C and is described in greater detail below.

When a time threshold is reached in query block 440 the ticket scarcity management system 400 determines whether corrective action is necessary. In one embodiment this corrective action may include modification of the event marketing strategy in query block 470. In one embodiment, the modified marketing may include adding extra event promotion in block 480. Extra event promotion may include a variety of additional electronic marketing approaches, such as adding a message counter to the user interface, where the counter displays the number of remaining tickets available before the ticket limit is reached, as illustrated in FIG. 7B and described in greater detail below. In various embodiments, this message counter may be included in a popup/widget on the ticketing interface associated with the event and/or within electronic correspondence sent to potential and/or existing audience members. In one embodiment, the public does not
know what the relative scarcity level is, as they can’t tell the total size of the available ticket pool.

[0041] In one embodiment, adding the extra event promotion in block 480 may include a variety of different marketing systems including offering purchasers a “Buy One Get N Free” system. One configuration parameter on an event is the number of promotion tickets that are associated with each real ticket. When this parameter is configured to zero, promotion tickets are disabled. When this parameter is set to a non-zero value, N, if a user buys a ticket (e.g., not redeeming an admission code for free admittance) they are granted N free tickets to give to their friends, as illustrated in FIG. 83 and described in greater detail below.

[0042] In one embodiment, the user can invite as many friends as they want via a social network, such as Facebook, com, or via other form of electronic correspondence, to join them at the show, as illustrated in FIGS. 7A and 7B described in greater detail below. The first N users that respond to the invitations are granted free tickets. The remaining responding users are told they missed out on the free ticket, but are then given an offer to purchase a ticket. This mechanism is designed to encourage people to invite a bunch of their friends to help spread the word of an event virally.

[0043] Referring now to FIG. 5, a flow diagram view of a portion of a method 500 of operation for ticket scarcity data evaluation, categorization, and event promotion is shown in accordance with at least one embodiment. In block 510, a new event is created including configuration of a ticket limit and a scarcity limit. As previously described, a ticket limit represents the number of tickets available for the event and a scarcity limit indicates the relative count of remaining tickets to the ticket limit. Once the parameters of the event are established, the event ticketing status is set to selling. The event is then listed for public review and each potential attendee is invited to “Claim Your Ticket” in block 520. So long as the ticket count remains larger than the scarcity limit, promotion of the event is limited to indicating the number of publicly available tickets as illustrated in block 530. Once it is determined that the ticket count is greater than or equal to the ticket limit, the method 500 indicates that the event is sold out in block 540. At this point the administrator may update the initial settings of the event, such as increasing the ticket limit and the scarcity limit associated with the event in block 550. In one embodiment, adjusting the settings of the event represents an allocation of additional resources by the method 500. Once these values have been increased, the event may be opened again to the public in block 520 as previously described.

[0044] Referring now to FIGS. 6A and 6B, block diagram views of portions of interactive event promoter user interfaces (600 and 610) are illustrated. Each user interface may be generated by a ticket scarcity management system configured for establishing event ticketing and corresponding ticketing schema in accordance with various embodiments.

[0045] In FIG. 6A, portions of user interface 600 are shown illustrating creation of an event. In one embodiment, user interface 600 includes a variety of query fields requesting event information from the promoter/producer. The query fields are often event specific, but may in various embodiments include an event name query, an event status request, an event start date, an event door opening date, a ticket price, a ticket limit, bonus tickets, remaining ticket promotion threshold, event genre, event type, link for survey of show, and front page priority sales and promotion.

[0046] In FIG. 6B, portions of user interface 610 are shown illustrating generation of promotion codes for an event. In one embodiment, a scarcity system interacts with a promotion code system that generates promotion codes for an event. The codes may be created based on criteria established during the creation of the event or upon modification by the event promoter or other authorized user after creation of the event. In the illustrated embodiment, the promotion codes are 12-digit alphanumeric codes that can be distributed to admit people into an event.

[0047] In various embodiments, a promotion code can be granted in at least one of three forms. A first type of promotion code may work for any user and any event. In one embodiment, this type of promotion code allows a user to log into an online interactive event service, select a desired event and enter the promotion code to be granted a free ticket.

[0048] A second type of promotion code may work for a specific user and any event. In one embodiment, the designated user is registered and obtains a promotion code of the second type which represents free ticket credit that the designated user can apply to events of their own choosing.

[0049] A third type of promotion code may work for a specific event and any user. In one embodiment, a user enters the promotion code of the third type and is granted a ticket for that specific event. Promotion codes of the third type are treated differently than the other two types of promotion code for the scarcity system. More specifically, when type three promotion codes are generated, the ticket scarcity management system must count them against the allocated tickets for the given event. This is due to the character of the credit being extended by the promotion code. Specifically, as the third type of promotion code have already been allocated in the overall ticket count, tickets can still be redeemed using a type three code even for a show that is already sold out. This allows promoters to distribute the promotion codes without worrying about potential negative customer experiences as the virtual seats are held. Alternatively, in one embodiment, the promotion code may indicate that the code is valid only so long as the event is not yet sold out. This configuration may encourage individuals to obtain tickets as soon as possible.

[0050] Referring now to FIGS. 7A-7C, block diagram views of portions of interactive event promoter user interfaces (730, 760, and 790) are illustrated. Each user interface may be generated by a ticket scarcity management system configured for establishing event ticketing and corresponding ticketing schema in accordance with various embodiments.

[0051] In FIG. 7A, portions of user interface 730 are shown illustrating a countdown solicitation for an event. The countdown solicitation shows the numbers of days, hours, minutes, and seconds until admission to the event is allowed. In one embodiment, electronic reminders may be sent to individuals desiring reminders for the concert. It is to be understood that other embodiments may be utilized and structural or logical changes may be made to the user interface without departing from the scope of the present disclosure.

[0052] In FIG. 7B, portions of user interface 760 are shown illustrating a limited seating solicitation for an event. In one embodiment, an event with a relatively scarce (e.g., 497 tickets available) seating availability is illustrated in FIG. 7B. As illustrated, the message counter in the user interface displays the number of remaining seats at the event and encourages the viewer to claim their seat for the event. In the illustrated embodiment, the available seat being offered to the user is free, however it is to be understood that other embodiments
may be utilized without departing from the scope of the present disclosure including the solicitation, sale, and distribution of tickets for fixed or relative prices.

[0053] In FIG. 7C, portions of user interface 790 are shown illustrating a sold out event redirection. When an event is sold out tickets for admission to the event is no longer available, all tickets or admission codes have been distributed. The user interface 790 includes a reminder to look for other events by the performer. The user interface 790 also solicits the latecomer to check out other open events. In an alternative embodiment a redirection user interface similar to 790 may be used for non-ticketed individuals trying to join the event once the event is actively playing. If the event is sold out, the user might be redirected to other concerts. However, if space at the event is still available the user might be redirected to a purchasing user interface that explains the concert has already started, but they can purchase admission for the remaining time of the event. In one embodiment, the price of admission to the event after the start may be prorated based on the anticipated remaining time of the event. Alternatively, certain time thresholds might be established to allow individuals to join the event later.

[0054] Referring now to FIGS. 8A and 8B, block diagram views of portions of interactive event promoter user interfaces (800 and 850) are illustrated. Each user interface may be generated by a ticket scarcity management system configured for establishing event ticketing and corresponding ticketing schema in accordance with various embodiments.

[0055] In FIG. 8A, portions of user interface 800 are shown illustrating submission of event promotion codes. Once a user has obtained a promotion code for the event, the user interface 800 accepts and verifies the codes. These codes may be assigned for a specific concert, artist, presentation, event, and/or series of events. Moreover, the codes may have a coupon value or monetary value, which may be applied to reduce the purchaser’s obligations to the event. Alternatively, the promotion codes may also set the ticket price. As previously discussed, in the illustrated embodiment, the sample promo codes are 12-digit alphanumeric codes that can be distributed to admit people into an event for free and/or when the event is sold out to the public. In one embodiment, these promotion codes may represent reserved or held tickets for VIP attendees, radio promotion, front row, friends, family, and/or corporate sponsors.

[0056] In FIG. 8B, portions of user interface 850 are shown illustrating a marketing ticket bonus. In the illustrated ticket bonus a potential ticket purchaser is offered free admission for additional friends once they purchase their ticket. This and other similar marketing strategies are useful characteristics when the promoter desires to employ non-traditional ticket distribution for the event.

[0057] Referring now to FIG. 9, a block diagram view of a portion of an interactive client interface 900 of after event presentations associated with an online interactive event environment is illustrated in accordance with various embodiments of the present disclosure. The interface 900 shows various after event presentations including links to websites associated with the presenter, sponsors, upcoming events, topical news, photo and video archives, discussion boards, and other information associated with the online interactive event. In one embodiment, a ticket scarcity management system of the event redirects clients to upcoming events via the after event interactive client interface 900. In one embodiment, clients may be redirected to events related to performing artists or event presenters via the after event interactive client interface 900. Accordingly in various embodiments, a playback of the prior event, such as a highlight reel, may also be available at the after party interactive client interface 900. The after event interactive client interface 900 may include a replay of the event retrieved from the “vault” or persistent storage 259 as previously shown and described above in FIG. 2.

[0058] The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Although specific embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art and others, that a wide variety of alternate and/or equivalent implementations may be substituted for the specific embodiment shown in the described without departing from the spirit and scope of the present disclosure. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifested and intended that the disclosure be limited only by the claims and the equivalent thereof.

What is claimed is:

1. A method for regulating participation in interactive online events, comprising:
 establishing event parameters including ticketing limits and scarcity limits;
 promoting a ticketed online interactive event;
 monitoring ticket sales for the event; and
 upon obtaining a dynamic ticket scarcity threshold, adjusting event parameters to maintain optimal sales conditions.

2. The method for regulating participation in interactive online events as recited in claim 1, wherein promoting includes online banner ads, pop-ups, sidebar ads, and electronic solicitation.

3. The method for regulating participation in interactive online events as recited in claim 1, wherein the dynamic ticket scarcity threshold includes both an upper and lower threshold.

4. The method as recited in claim 3, wherein the lower threshold indicates that ticket sales lag a desired ticket sales result relative to remaining time before start of the interactive online event requiring a ticketing manager to instigate additional promotion.

5. The method as recited in claim 1, wherein adjusting event parameters includes modifying electronic solicitation rates.

6. The method as recited in claim 1, wherein optimal sales conditions are determined by production costs.

7. The method as recited in claim 1, wherein adjusting event parameters includes increasing available tickets.

8. The method as recited in claim 1, wherein monitoring includes monitoring purchase rates and/or electronic solicitation through rates.

9. A interactive event system comprising:
 a ticketing manager configured to monitor sales, admission, and promotion of the interactive event;
 a performance studio having at least one interactive display;
 a production center for producing an interactive event based on event material received from the performance studio; and
 at least two interactive clients, each having at least one interactive display and configured to generate and transmit event feedback to at least one of the production...
10. The interactive event system as recited in claim 9, wherein the ticketing manager includes third party online retailers.

11. The interactive event system as recited in claim 9, wherein the performance studio includes a live event.

12. The interactive event system as recited in claim 9, wherein the production center includes the performance center.

13. The interactive event system as recited in claim 9, wherein the interactive client includes wireless personal device.

14. A method of managing ticket scarcity for an interactive event, comprising:
monitoring sales to an event to detect whether various ticketing thresholds have been obtained;
promoting event based on established event parameters;
admitting ticketed users to the event in accordance with established event parameters; and
upon determining that a monitored ticketing threshold has been obtained, adjusting event parameters.