A gravel pack apparatus has a valve and port system for controlling fluid flow therethrough. The apparatus has a tool defining ports for fluidly communicating with a screen assembly and an outlet, valves for controlling fluid flow through the tool, a signal receiver and an actuator for operating the valves in response to the signal receiver. In an embodiment, an apparatus and method allows a bore valve in a washpipe of a crossover tool and in certain instances a port valve or sliding sleeve to open or close upon command from the surface so that gravel slurry may be placed in a wellbore around a wellscreen.
ABSTRACT

A gravel pack apparatus has a valve and port system for controlling fluid flow therethrough. The apparatus has a tool defining ports for fluidly communicating with a screen assembly and an outlet, valves for controlling fluid flow through the tool, a signal receiver and an actuator for operating the valves in response to the signal receiver. In an embodiment, an apparatus and method allows a bore valve in a washpipe of a crossover tool and in certain instances a port valve or sliding sleeve to open or close upon command from the surface so that gravel slurry may be placed in a wellbore around a wellscreen.
GRAVEL PACK APPARATUS HAVING ACTUATED VALVES

FIELD

Embodiments disclosed herein relate to gravel packs for use in hydrocarbon wells, and more particularly relate to gravel packs having a valve and port system for controlling fluid flow therethrough.

BACKGROUND

Hydrocarbon wells, horizontal wells in particular, typically have sections of wellscreens with a perforated inner tube and an overlying screen portion. The purpose of the screen is to block the flow of particulate matter into the interior of the perforated inner tube, which connects to production tubing. Even with the wellscreen, some contaminants and other particulate matter can still enter the production tubing. The particulate matter usually occurs naturally or is part of the drilling and production process. As the production fluids are recovered, the particulate matter is also recovered at the surface. The particulate matter causes a number of problems in that the material is usually abrasive reducing the life of any associated production equipment. By controlling and reducing the amount of particulate matter that is pumped to the surface, overall production costs are reduced.

Even though the particulate matter may be too large to be produced, the particulate matter may cause problems downhole at the wellscreens. As the well fluids are produced, the larger particulate matter is trapped in the filter element of the wellscreens. Over the life of the well as more
and more particulate matter is trapped, the filter elements will become clogged and restrict flow of the well fluids to the surface.

A method of reducing the inflow of particulate matter before it reaches the wellscreens is to pack gravel or sand in the annular area between the wellscreens and the wellbore. Packing gravel or sand in the annulus provides the producing formation with a stabilizing force to prevent any material around the annulus from collapsing and producing undesired particulate matter. The packed gravel also provides a pre-filter to stop the flow of particulate matter before it reaches the wellscreens.

In typical gravel packing operations, a screen and a packer are run into the wellbore together. Once the screen and packer are properly located, the packer is set so that it forms a seal between wellbore and the screen and isolates the region above the packer from the region below the packer. The screen is also attached to the packer so that it hangs down in the wellbore, which forms an annular region around the exterior portion of the screen. The bottom of the screen is sealed so that any fluid that enters the screen must pass through the screening or filtering material. The upper end of the screen is usually referred to as the heel and the lower end of the screen is usually referred to as the toe of the well.

Once the screen and packer are run into the wellbore but before they are run to their intended final location, a washpipe subassembly is put together at the surface and is then run downhole through the packer and into the screen. The run-in continues until a crossover tool on the washpipe subassembly lands in the packer. The entire assembly is then ready to be run into the wellbore to its intended depth.
Once the assembly of the screen, packer, washpipe, and crossover tool reaches its intended depth in the wellbore, a ball is pumped downhole to the crossover tool. The ball lands on one of two seats in the crossover tool. Once the ball lands on the first seat, pressure is applied from the surface across the ball and seat to set the packer and to shift a sleeve in the crossover tool. With the sleeve opens, fluid (typically gravel slurry) may be pumped down the well through the washpipe. Physical manipulation of the crossover tool by raising the washpipe is required to position it properly relative to the screen and packer assembly so that fluid circulation can take place. When the slurry reaches the crossover tool, the gravel slurry is blocked by the ball and seat that was previously landed in the crossover tool. Instead, the ball and seat causes the gravel slurry to exit the crossover tool through a port that directs all fluid flow from inside of the washpipe above the packer to the outside of the washpipe and screen below the packer and into the annular space outside of the screen.

As the slurry travels from the heel of the well toward the toe along the outside of the screen, an alpha wave begins that deposits gravel from the heel towards the toe. All the while, the transport fluid that carries the gravel in the slurry drains inside through the screen. As the fluid drains into the interior of the screen, it becomes increasingly difficult to pump the slurry down the wellbore. Once a certain portion of the screen is covered, the gravel starts building back from the toe towards the heel in a beta wave to completely pack off the screen from approximately its furthest point of deposit towards the heel. As the gravel fills back towards the heel, the pressure in the formation increases.

The crossover tool has a second port that allows fluid to flow from the interior area of the screen below the packer to an annular area around the
exterior of the washpipe but above the packer.

After the annular area around the screen has been packed with gravel, the crossover tool is again moved relative the screen and packer assembly to allow for fluid circulation to remove any slurry remaining in the washpipe above the packer. The flushed slurry is then disposed of at the surface. Then, a second ball may be pumped down the well to land in a second ball seat in the crossover tool. After the second ball has seated, pressure is applied from the surface to shift the sleeve in the crossover tool a second time as well as to seal off the internal bore of the crossover tool and to open a sleeve in a second location. Once the sleeve is shifted and is sealed in a second location, wellbore fluid from the surface flowing through the washpipe may be directed into an internal flowpath within the crossover tool and then back into the interior of the washpipe, thereby bypassing both the first and the second balls and seats. Once the fluid has been redirected to stay in the washpipe, the operator may reposition the washpipe and begin to acidize or otherwise treat the wellbore.

In the current systems, fluid flow through the interior is limited by forcing the fluid to travel through a micro-annulus, which is the only path available in crossover tool. The only alternative is to reverse the washpipe and crossover tool completely out of the hole and run-in with an unobstructed washpipe. The additional trip out of the hole and then back in leads to additional time and expense in completing the well.

When typical seats and seals are used, care must be taken so that each lower seal and seat has a diameter that is smaller than the seal and seat above it. Such an inverted wedding cake arrangement helps to insure that the
operator does not attempt to force a device through a seal that is too small, thereby damaging the seal.

Such an arrangement may limit the diameter of the bore through the tubular. Also, once a device seals on a particular seat, the seat typically cannot be reused. When several seal and seats are needed in close proximity, the utility of the tool or tools may be limited.

SUMMARY

In a system according to the present disclosure, neither dropping various balls to land on seats nor making a second trip into and out of the well is necessary to treat the well. The system reduces the time to accomplish well operations and improves fluid flow through the interior of the washpipe.

In the system, controlling the fluid flow is achieved by replacing the balls and seats that were previously necessary to alter the flow paths with a valve and port system. This valve and port system uses a valve and ports that may be operated on demand using pressure pulses or a radio frequency identification device. In such an embodiment, any type of valve that can open and close off flow through a tubular may be used, such as a butterfly or ball valve.

By operating the valve and port system on demand, the operator can close off the interior of a washpipe tool, while opening flow through a port for gravel packing the wellbore. When the gravel packing is complete, the operator may then open the interior of the washpipe tool to flow from the casing and into the washpipe. This flow removes excess sand slurry from the washpipe in a reverse circulating process. Once sufficient reverse circulation has been performed, the port allowing the reverse circulation as well as the flow through
port can be closed by operating valves. At this point, a port system can be
opened to realize improved flow through the interior of the washpipe without
having to run out of and then back into the wellbore.

In the new system, neither a second trip into and out of the well is
necessary to treat the well while greatly improved fluid flow through the interior of
the casing thereby potentially allowing a larger diameter screen and
consequently a larger washpipe may be used with the same technique allowing
greater flow through the washpipe, even when no increase in washpipe diameter
is achieved.

The fluid flow may be improved by replacing the seal in the packer
and the balls and seats in the washpipe with variable diameter seats that may be
operated on demand such as by pressure pulses or a radio frequency
identification device.

A variable diameter seat has utility in any device where a seat
diameter is a limiting factor when compared to the bore diameter and when the
seat and seal are only required on demand.

One embodiment of the variable diameter seal has a seat that is a
combination of several portions. When the seat is not necessary, the portions
may be held radially outward so that an increased diameter of the bore may be
accessed, such as when a large diameter tool, dart, or ball is required to pass
through. However, when the seat is required for a ball or dart to seal upon it,
then, on command from the surface, the seat may move radially inward so that
the various pieces combine to form at least a seat and possibly even a seal
against fluid flow through the bore and past the seat.

When the operator determines that the seat is no longer
necessary, then the operator may send a second signal to unlock the seat and move it radially outward once again. The command from the surface may be radio, low frequency radio, pressure pulse, a fiber optic line, an electric line, or a radio frequency identification device.

Another embodiment of this invention is to utilize a collet and sleeve. The sleeve could be removed from the collet fingers so that any tool, dart, or ball, when reaching the collet fingers could pass by without interacting with the collets finger. In the potential instance where the tool, ball, or dart does interact with the collet fingers the tool would merely push the collet fingers radially outward, with a minimal resistance, and continue downhole.

Once the operator determines that the seat is required, a signal may be sent for the surface to move the sleeve into position over the collet so that the fingers are moved radially inward or are at least held in a radially inward position so that the collet fingers will no longer allow an appropriately sized tool, ball, or dart to pass. Further once the appropriately sized tool, ball, or dart lands on the seat a seal across the bore may be formed.

In a further embodiment, at least the seals mentioned may be constructed so that they have an open condition as described above, however, when the signal is sent from the surface to move radially inward the seats are constructed so that once they have moved radially inward they completely obstruct the bore without the need of a ball, tool, or dart landing upon the seat. Each seal forms a complete seal by itself upon a command from the surface.

Such seals may be used in many different areas. They may be used to open and close gravel pack paths or to provide seats in sliding sleeves to open and close the sliding sleeve.
BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 depicts a wellbore having a screen assembly in a well and having a washpipe tool run into the screen assembly;

Figure 2 depicts the crossover of the washpipe tool with a bore valve closed and with a port valve opened;

Figure 3 depicts the crossover of the washpipe tool with the bore valve opened and with the port valve closed;

Figure 4 depicts the washpipe tool relocated in the screen assembly to treat the well;

Figure 5A depicts a collet-type radial movable seat operable from the surface in its catching condition;

Figure 5B depicts a collet-type radial movable seat operable from the surface in its released condition;

Figure 6A depicts a collet-type segmented seat in its radially unlocked condition;

Figure 6B depicts the collet-type segmented seat in its radially locked condition;

Figure 7A is a top view of a segmented seal in the open position;

and

Figure 7B is a top view of the segmented seal in the closed position.
DETAILED DESCRIPTION

Fig. 1 depicts a screen assembly 100 located in a wellbore 10. The bottom or toe of the assembly 100 is designated at 102, and the upper end or heel of the assembly 100 is designated at 104. The sealing element 106 engages inside the wellbore 10 to restrict flow through an annular area 12. In particular, the sealing element 106 is set so that the sealing element 106 seals the screen assembly 100 in the wellbore 10 and forms the annular area 12 between the wellbore 10 and the screen’s exterior. The sealing element 106, while typically a packer, may or may not have slips depending upon the wellbore 10 and the operator’s requirements.

An inner workstring or washpipe tool 120 has been run into the downhole screen assembly 100. The washpipe tool 120 includes a crossover tool 125 and stings through the bore of the sealing element 106 and seals on the interior bore of the element 106 with at one or more seals or seats 112. The crossover tool 125 may be configured to allow fluid to flow down through the washpipe’s main bore 121. Alternatively, the crossover tool 125 may be configured to divert flow out through one or more outlet ports 126 on the tool 125 with the return fluid being able to pass through an interior passageway 128. A bore valve 130 is disposed in the crossover tool 125. As shown in Fig. 1, the bore valve 130 is in an open condition to allow fluid to flow through the main bore 121 of the washpipe 120. The bore valve 130 can be a butterfly valve or a ball valve, although any other type of valve mechanism can be used.

The outlet port 126 is located downhole from sealing element 106. In general, the outlet port 126 may or may not have a port valve 140 for opening and closing the outlet port 126. For example, the port valve 140 can be a sliding
sleeve movable to expose or isolate the outlet port 126 for fluid flow. In Fig. 1, the crossover tool 125 does include an internal port valve 140, shown here as a sliding sleeve 140 having a bypass port 146. When the sliding sleeve 140 is in a closed condition with its bypass port 146 closed relative to the outlet port 126, fluid is prevented from flowing out of the crossover tool 125, through the bypass port 146, out the outlet port 126 in the screen assembly 100, and into the annular area 12 between the screen assembly 100 and the wellbore 10. The port valve 140 can use any other type of valve mechanism available in the art to control fluid flow through the outlet port 126.

The crossover tool 125 further includes a signal receiver 150 and an actuator 160 disposed thereon. Depending on the type of electronics used, the signal receiver 150 can detect pressure pulses, radio frequency identification devices, or other signals communicated from the surface. In response to a received signal by the receiver 150, the actuator 160 performs an appropriate action to configure the crossover tool 125 for different operations, as described below. The actuator 160 can use any of a number of suitable components, such as a linear or rotary actuating mechanism, and can have a power source, electronics, and other components, which are not detailed herein but would be appreciated by one skilled in the art having the benefit of the present disclosure.

Prior to commencing a gravel packing operation, the crossover tool 125 is changed from its run-in configuration of Fig. 1 to a gravel packing configuration as depicted in Fig. 2. A signal is sent from the surface (not shown) downhole to the crossover tool 125 by a pressure pulse, a radio frequency identification device (not shown), or any other known means. Once the signal receiver 150 obtains the proper signal to reconfigure the crossover tool 125,
power is supplied, typically by the actuator 160, so that the bore valve 130 is
moved from an open condition to a closed condition so that fluid flow through the
interior bore 121 of the washpipe 120 is prevented. Based upon the same or a
different signal the signal receiver 150 receives, power is supplied by the
actuator 160 to move the second valve or sliding sleeve 140, thereby opening
the bypass ports 146 to allow fluid to flow from the interior bore 121 of the
washpipe 120 through the outlet ports 126 in the screen assembly 100 and into
the annular area 12.

The actuator 160 can supply power to both the sliding sleeve 140
and the bore valve 130 to either open or close the sliding sleeve 140 and the
bore valve 130. In certain embodiments, two or more actuators 160 can be
utilized to power the bore valve 130 and sliding sleeve 140 independently. As
noted above, the actuator 160 can be any type known in the industry including
rotary or linear actuators.

Once the crossover tool 125 is configured, gravel slurry (not
shown) is pumped down the washpipe tool 120. The slurry exits the ports 146
and 126 and takes the path of least resistance (as indicated by directional arrow
A) and flows towards the toe 102 in the annulus 12 (as indicated by directional
arrow B). As the gravel slurry moves towards the toe 102 in the annulus 12, the
fluid portion of the gravel slurry flows through screens 108 into the interior 101 of
the screen assembly 100 (as indicated by directional arrow C). As the fluid flows
into the interior 101 of the screen assembly 100, the gravel is deposited or
"packed" around the exterior of the screen assembly 100.

The fluid returns passing into the assembly 100 then flow in to the
interior 121 of the washpipe 120 through port(s) 122 (as indicated by directional
arrow D). The fluid continues upward through the washpipe 120 to the crossover
tool 125 where the fluid enters the interior passageway 128 (as indicated by
directional arrow E). The fluid bypasses the closed bore valve 130 and exits the
crossover tool 125 into an annular area 14 uphole of the assembly’s sealing
element 106.

After the gravel packing operation is complete, it may be desirable
to circulate out excess slurry from the washpipe tool 120. To do this, the
washpipe tool 120 can be reconfigured for reverse circulation. In general, the
crossover tool 125 and washpipe tool 120 can be lifted from the sealing element
106 to allow fluid flow in the casing annulus 14 to flow into the washpipe’s bore
121 through the ports 126 and back up the washpipe tool 120.

Alternatively, the washpipe tool 120 is not lifted and is instead
reconfigured by sending a second signal to the signal receiver 150. Once the
signal receiver 150 receives the proper signal to reconfigure the crossover tool
125, power is supplied by the one or more actuators 160 so that another valve
(e.g., 135) is moved from a closed condition to an open condition so fluid is
allowed to flow from the casing annulus 14 above the sealing element 106 into
the crossover tool 125 and through the interior bore 121 of the washpipe 120 (as
indicated by directional arrow F). This fluid path permits circulation, known as
reverse circulation, to remove excess sand slurry left in the washpipe 120 after
the gravel pack operation. As opposed to the valve 135 in the position indicated,
a valve in another position can be used for similar purposes.

After the reverse circulating operation is complete, the washpipe
tool 120 is reconfigured by sending a third signal to the signal receiver 150 as
depicted in Fig. 3. Once the signal receiver 150 receives the proper signal to
reconfigure the crossover tool 125, power is supplied by actuator 160 so that the bore valve 130 is moved from the closed condition to an open condition where fluid flow through the interior bore 121 of the washpipe 120 is allowed. Based upon the same or different signal that the signal receiver 150 receives to open the bore valve 130, power is supplied to move the sliding sleeve 140 from its open condition to its closed condition, closing bypass ports 146 to prevent fluid to flow from the interior bore 121 of the washpipe tool 120 into the annular area 12. Moreover, if a recirculation valve (e.g., 135) is used, it too may be closed at this point.

As now depicted in Fig. 4, once the bore valve 130 is opened and the ports 146 and 126 are closed by the port valve 140, the operator may pump any desired wellbore treatment through the essentially full inner bore 121 of the washpipe 120. As further shown, the operator may reposition the washpipe tool 120 to position the ports 122 near the portion of the screens 108 that the operator desires to treat. Directional arrows G indicate the general direction of the fluid flow for such a treatment operation.

Additional gravel pack valves and seals actuated by RFID or other methods are discussed below with reference to Figs. 5A through 7B. These other gravel pack valves and seal can be used for any of the various valves (e.g., 130 and 140) and seals disclosed herein. For example, as noted above, the bore valve 130 can be a butterfly valve or a ball valve, although any other type of valve mechanism can be used including a ball and seat mechanism as discussed below and operable via a pressure pulse, RFID device, or other signal.

Fig. 5A depicts a collet-type valve 200 in its radially locked
condition in a housing 202 so that a ball, dart, or other tool, of the appropriate
size, will be caught by a collet 210. To operate the collet-type valve 200, a
receiver 220 will receive a signal communicated from the surface by a radio
frequency identification device, a pressure pulse, or by other means known in
the industry. When the receiver 220 receives the appropriate signal, the receiver
220 causes an actuator 230 to move a lock 215 upwards or downwards, in this
case the lock 215 is shown in its downward position, in a channel 205. In the
radially locked condition, the collet 210, at the collet fingers 212, has a diameter
D_2 that is less than the main bore diameter D_1 such that a ball, dart, or tool that
could pass through the main bore 204 will be caught by the collet fingers 212.
The collet-type valve 200 could be attached to a sliding sleeve or other device
where force needs to be applied across a ball and seat.

Fig. 5B depicts the collet-type valve 200 in its radially unlocked
condition. In the radially unlocked condition, the collet fingers 212 are not able to
catch a ball, dart, or other tool. To change the condition of the collet fingers 212
from the locked condition to the unlocked condition, the receiver 220 receives a
signal communicated from the surface by a radio frequency identification device,
a pressure pulse, or by other means known in the industry. When the receiver
220 receives the appropriate signal, the receiver 220 causes the actuator 230 to
move the lock 215 upwards in the channel 205. By moving the lock 215
upwards, the collet fingers 212 are allowed to move radially outwards into the
channel 205. In the radially unlocked condition, the collet 210, at the collet
fingers 212, has a diameter D_3 that is sufficient to allow a ball, dart, or tool that
could pass through the main bore 204 to pass through collet 210.

Fig. 6A depicts a segmented seat-type valve 200 in its radially
unlocked condition. In the radially unlocked condition, a segmented seat 240 is not able to catch a ball, dart, or other tool. To change the condition of the segmented seat 240 from a locked condition to the unlocked condition, a receiver 220 receives a signal communicated from the surface by a radio frequency identification device, a pressure pulse, or by other means known in the industry. When the receiver 220 receives the appropriate signal, the receiver 220 causes an actuator 230 to move a lock 215 upwards in a channel 205. By moving the lock 215 upwards the segmented seat pieces 245 are allowed to move radially outwards into channel 205. In the radially unlocked condition, the segmented seat 240 has a diameter D_2 that is sufficient so that a ball, dart, or tool that could pass through the main bore 204 is able to pass through segmented seat 240.

Fig. 6B depicts the segmented seat-type valve 200 in its radially locked condition. In the radially locked condition, a ball, dart, or other tool, of the appropriate size, will be caught by the segments 245 of the segmented seat 240. To operate the segmented seat 240, the receiver 220 will receive a signal communicated from the surface by a radio frequency identification device, a pressure pulse, or by other means known in the industry. When the receiver 220 receives the appropriate signal, the receiver 220 causes the actuator 230 to move the lock 215 upwards or downwards. In the view depicted, the lock 215 is shown in its downward position in the channel 205. As the lock 215 moves downward, a first surface 217 on the lock 215 interacts with a second surface 247 on the segmented seat pieces 245 such that each of the plurality of segmented seat pieces 245 is forced radially inwards. In the radially locked condition, the segmented seat 240 has a diameter D_3 that is less than the main
bore diameter D_1 such that a ball, dart, or tool that could pass through the main
bore 205 will be caught by the segmented seat 240. The segmented seat 240
could be attached to a sliding sleeve (not shown) or other device where force
needs to be applied across a ball and seat.

Fig. 7A is a top view of a segmented seal 300 that is similar in
operation to the seat 200 depicted in Figs. 6A-6B. As shown in radially unlocked
position, a flowpath may allow fluid or slurries to pass through a main bore 304.
In some instances, as shown, the main bore's diameter may be restricted. Upon
the receiver (e.g., 220: Fig. 6A) receiving a signal from the surface, an actuator
(e.g., 230: Fig. 6A) may move a locking ring 315 longitudinally with respect to the
tubular housing 302 to force each segment 314 of the segmented seal 300
radially inward.

Fig. 7B is again a top view of the segmented seal 300 that is
similar to the seat 200 depicted in Figs. 6A-6B. However, in the view shown
here, the segments 314 of the segmented seal 300 have been moved radially
inward to block all flow through the main bore 304. The lock 315 will generally fill
the annular area between the interior of the tubular housing 302 and a radially
outward surface of the segments 314. With the lock 315 in position between the
tubular housing 302 and the segments 314, the segments 314 are prevented
from unlocking and allowing fluid or slurry to pass through the main bore 304.
The sealing surfaces between each of the segments 314 may be a metal to
metal seal, an elastomeric seal, or any other seal known in the industry. In
certain instances, a less than perfect seal may be acceptable.

While the embodiments are described with reference to various
implementations and exploitations, it will be understood that these embodiments
are illustrative and that the scope of the inventive subject matter is not limited to
them. Many variations, modifications, additions and improvements are possible.

Plural instances may be provided for components, operations or
structures described herein as a single instance. In general, structures and
functionality presented as separate components in the exemplary configurations
may be implemented as a combined structure or component. Similarly,
structures and functionality presented as a single component may be
implemented as separate components. These and other variations,
modifications, additions, and improvements may fall within the scope of the
inventive subject matter.
What is claimed is:

1. A gravel packing apparatus for a well having a screen assembly disposed in the well, the screen assembly having an interior, an outlet, and a screen, the apparatus comprising:
 a tool having an internal passage and defining first and second ports communicating the internal passage outside the tool, the tool positioning in the interior of the screen assembly, the first port placed in communication with the screen, the second port placed in communication with the outlet;
 a first valve disposed on the tool and controlling fluid communication through the internal passage;
 a second valve disposed on the tool and controlling fluid communication through the second port;
 a signal receiver disposed on the tool; and
 at least one actuator disposed on the tool and operating the first and second valves in response to the signal receiver.

2. The apparatus of claim 1, wherein the at least one actuator comprises a linear or rotary actuator.

3. The apparatus of claim 1 or 2, wherein the first valve comprises:
 a first condition allowing fluid flow through the internal passage of the tool; and
 a second condition preventing flow through the internal passage of the tool.
4. The apparatus of claim 1, 2, or 3, wherein the first valve comprises a butterfly valve or a ball valve.

5. The apparatus of any one of claims 1 to 4, wherein the first valve comprises a releasable valve seat located in the internal passage, the valve seat having at least two segments, the segments having a first position and a second position, the signal receiver receiving a signal and the at least one actuator moving the segments, upon receipt of the signal, between the first position and the second position.

6. The seat of claim 5, wherein the segments in the first position allow a plug to pass through the interior; and wherein the segments in the second position catch the plug, the segments in the second position forming a seal with the caught plug.

7. The apparatus of any one of claims 1 to 4, wherein the first valve comprises a releasable valve seat located in the internal passage, the valve seat including a collet having at least two fingers, the fingers having a first position and a second position, the receiver receiving a signal and the at least one actuator moving, upon receipt of the signal, the fingers between the first position and the second position.
8. The seat of claim 7, wherein the fingers in the first position allow a plug to pass through the interior; and wherein the fingers in the second position catch the plug, the fingers in the second position forming a seal with the caught plug.

9. The apparatus of any one of claims 1 to 4, wherein the first valve comprises at least two sealing segments located in the internal passage of the tool, the at least two segments having a first position and a second position, the receiver receiving a signal, the at least one actuator moving, upon receipt of the signal, the segments between the first position and the second position.

10. The valve of claim 9, wherein the segments in the first position allow fluid to pass through the interior; and wherein the segments in the second position block fluid flow through the interior, the segments in the second position forming a seal.

11. The apparatus of any one of claims 1 to 10, wherein the signal receiver comprises a radio frequency identification device receiver or a pressure pulse receiver.
12. The apparatus of any one of claims 1 to 11, wherein the second valve comprises:

 a first condition preventing fluid flow through the second port in the tool; and

 a second condition allowing fluid flow through the second port in the tool.

13. The apparatus of claim 12, wherein the second valve comprises a sliding sleeve disposed in the internal passage of the tool and movable between first and second positions, the sliding sleeve in the first position closing the second port, the sliding sleeve in the second position opening the second port.

14. The apparatus of any one of claims 1 to 13, wherein the tool comprises a crossover passage communicating the internal passage of the tool downhole of the second port with outside the tool uphole of the second port.

15. The apparatus of any one of claims 1 to 14, wherein the tool comprises a first configuration having the first valve opened and having the second valve closed.

16. The apparatus of claim 15, wherein the tool comprises a second configuration having the first valve closed and having the second valve opened.
17. A method of gravel packing a well having a screen assembly disposed in the well, the screen assembly having an interior, an outlet, and a screen, the method comprising:

positioning a tool into the interior of the screen assembly, the tool having an internal passage, a first port in communication with the screen, and a second port in communication with the outlet;

communicating one or more signals downhole to the tool; and

configuring the tool with the one or more signals by—

actuating a first valve on the tool to control fluid communication through the internal passage of the tool, and

actuating a second valve on the tool to control fluid communication through the second port in the tool.

18. The method of claim 17, wherein positioning the tool into the interior of the screen assembly further comprises sealing the second port on the tool in fluid communication with the outlet on the screen assembly.

19. The method of claim 17 or 18, wherein communicating the one or more signals downhole to the tool further comprises communicating the one or more signals with one or more radio frequency identification devices or pressure pulses.
20. The method of claim 17, 18, or 19, wherein actuating the first valve on the tool to control fluid communication through the internal passage of the tool further comprises preventing fluid flow from the first port through the internal passage by closing the first valve.

21. The method of claim 17, 18, or 19, wherein actuating the first valve on the tool to control fluid communication through the internal passage of the tool further comprises allowing fluid flow from the first port through the internal passage by opening the first valve.

22. The method of any one of claims 17 to 21, wherein actuating the second valve on the tool to control fluid communication through the second port of the tool further comprises preventing fluid flow between the internal passage and the second port by closing the second valve.

23. The method of any one of claims 17 to 21, wherein actuating the second valve on the tool to control fluid communication through the second port of the tool further comprises allowing fluid flow from the internal passage through the second port by opening the second valve.

24. The method of any one of claims 17 to 23, further comprising permitting fluid communication of the internal passage downhole of the second port with outside the tool uphole of the second port.
25. The method of any one of claims 17 to 24, wherein configuring the tool with the one or more signals further comprises configuring the tool for run-in into the screen assembly by actuating the first valve opened, and actuating the second valve closed.

26. The method of any one of claims 17 to 24, wherein configuring the tool with the one or more signals further comprises configuring the tool for gravel pack in the screen assembly by actuating the first valve closed, and actuating the second valve opened.

27. An apparatus for gravel packing a well, comprising:

a screen having an interior, an upper end, and a lower end;

a seal having an interior and located at the upper end of the screen;

a tubular having an interior bore, wherein the tubular is located in the interior of the screen and the seal;

a valve located in the interior bore of the tubular; and

a signal receiver having one or more actuators coupled to the valve.
28. The apparatus of claim 27, wherein the tubular has an exterior and at least one port from the interior bore to the exterior; wherein the apparatus further comprises a sliding sleeve located in the interior of the tubular, the sliding sleeve having a first position wherein the port is closed and having a second position wherein the port is open; and wherein the one or more actuators are coupled to both the valve and the sliding sleeve.

29. A method of gravel packing a well, comprising: running a packer and screen into a well; locating a tubular into the packer and screen, wherein the tubular has an interior bore, an exterior, and at least one port from the interior bore to the exterior and a valve in the interior bore, wherein a signal receiver having an actuator is coupled to the valve; sending a signal to the signal receiver; and actuating the valve in response to the signal.