N 0 0 O

WO 02/089105 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

(10) International Publication Number

7 November 2002 (07.11.2002) PCT WO 02/089105 A2

(51) International Patent Classification”: G09G 60/296,283 5 June 2001 (05.06.2001) US
60/296,281 5 June 2001 (05.06.2001) US

(21) International Application Number: PCT/US02/14217 60/322,922 17 September 2001 (17.09.2001) US

(22) International Filing Date: 2 May 2002 (02.05.2002) (71) Applicant (for all designated States except US): BIT-
STREAM, INC. [US/US]; 215 First Street, Cambridge,

(25) Filing Language: English MA 02142 (US).

(26) Publication Language: English (72) Inventors; and

(30) Priority Data:

60/288,287 2 May 2001 (02.05.2001) US
60/296,275 5 June 2001 (05.06.2001) US
60/296,327 5 June 2001 (05.06.2001) US
60/296,237 5 June 2001 (05.06.2001) US
60/296,274 5 June 2001 (05.06.2001) US
60/296,284 5 June 2001 (05.06.2001) US
60/296,231 5 June 2001 (05.06.2001) US
60/296,224 5 June 2001 (05.06.2001) US
60/296,426 5 June 2001 (05.06.2001) US
60/296,273 5 June 2001 (05.06.2001) US

(75) Inventors/Applicants (for US only): KAASILA, Sampo,
J. [SE/US]; 6 Squirrel Run Road, Plaistow, NH 03865
(US). COLLINS, John, S. [GB/US]; Apartment 9E, 9
Hawthorne Place, Boston, MA 02114 (US). PORTER,
Edward, W. [US/US]; One Longfellow Place, Apt. 3018,
Boston, MA 02114 (US).

(74) Agent: PORTER, Edward, W.; Porter & Associates, One
Broadway, Suite 600, Cambridge, MA 02142 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

[Continued on next page]

(54) Title: METHODS, SYSTEMS, AND PROGRAMMING FOR PRODUCING AND DISPLAYING SUBPIXEL-OPTIMIZED
IMAGES AND DIGITAL CONTENT INCLUDING SUCH IMAGES

_iAidine Tickets
ioave up to 40% or

REPLACE FONTS SPECIFIED
BY WEB PAGE WITH FONTS
OPTIMIZED FOR SMALL RESO-

USE SUBPIXEL LUTION SUBPIXEL OPTIMIZED

OPTIMIZATION
ROUTINE OPTI- DISPLAY
MIZED FOR
COLOR BITMAPS
TO PRODUCE 110 v

SCALED DOWN
BITMAP FOR

USE FONT BITMAPS PRODUCED
BY SUBPIXEL OPTIMIZATION
ROUTINE OPTIMIZED FOR
HIGH RESOLUTION IMAGES
OF SHAPE OF UNIFORM
COLOR SUCH AS FONTS

SMALL SCREEN
BROWSER

| Sape up by 0 or
5
!

(57) Abstract: The invention relates to methods, systems,
and programming for producing and displaying subpixel-op-
timized images and digital content including such images.
Some embodiments access digital content represented by
a mark-up language and display it with its images scaled
down in a subpixel-optimized manner in a format dictated
by the mark-up language. Some embodiments produce
subpixel-optimized images by calculating the luminosity
of a subpixel in such an image as a function of the length
of a plurality of coverage lines within a window in a source
image corresponding to the subpixel that is covered by
source image pixels having the subpixel’s color. Some
embodiments calculate the luminosity of a subpixel in a
subpixel-optimized image as a function both of the average
luminosity of pixels in the subpixel’s source image window
and as a function of any color balancing distribution between
resulting subpixel luminosities necessary to reduce color
imbalance.

w0 02/089105 A2 NN 00000 Y O

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, (BE, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, NE, SN, TD, TG).

MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, Published:
VN, YU, ZA, ZM, ZW. — without international search report and to be republished
upon receipt of that report

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), For two-letter codes and other abbreviations, refer to the "Guid-
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ance Notes on Codes and Abbreviations" appearing at the begin-
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, ning of each regular issue of the PCT Gazette.

WO 02/089105 PCT/US02/14217

-1-

METHODS, SYSTEMS, AND PROGRAMMING
FOR PRODUCING AND DISPLAYING
SUBPIXEL-OPTIMIZED IMAGES
AND
DIGITAL CONTENT INCLUDING SUCH IMAGES

FIELD OF THE INVENTION

The present invention relates to methods, systems, and programming for producing and

displaying subpixel-optimized images and digital content including such images.

BACKGROUND OF THE INVENTION

This patent application has many aspects which relate to the optimization of using
computing devices with small or low resolution screens, such as handheld computers, cellphone
computersm, or computers with wrist or head mounted displays. A good portion of this optimizing
has been done to improve the use of such small screen devices for browsing the World Wide Web
or similar media, although many of its features can be used when viewing other types of screen

content,

Another portion of this optimization has been focused on improving the ability to browse
such media through a relatively low bandwidth links, such as those that would be found on current
wireless links. It should be appreciated, however, that many aspects of the inventions disclosed in

this application are not limited to use for these purpose.

For example, some of the features which are designed to make it easier for users to view
portions of Web pages at a larger size could be used to make reading the Web on traditional

computers easier on the eye or easier to read at greater distances.

-At the time this application is being filed there are multiple handheld computers which
have approximately 240 by 320 pixel screens which measure approximately four inches diagonally.
These include the Compagq iPaq H3650 Pocket PC, the Casio Cassiopeia, and the Hewlett-

WO 02/089105 PCT/US02/14217

2-
Packard Jornado 525. Unfortunately such a resolution would be too low to display most current

Web pages on. Currently most Web pages can be viewed with 640 x 480 resolution screen
(although a few web sites cannot even be properly viewed at this resolution). It would be desirable

to be able to view most web pages with such hand held devices.

-The manufacturers of liquid crystal displays are now capable of making screens having
substantially higher resolutions than those which are currently on the market. Makers of organic
LED displays claim they can achieve even higher resolutions. This means that a four inch diagonal
screen of the size currently in the handheld computers listed above could have a resolution of 480
by 640 or higher. Although such screens would provide an acceptable resolution for many web

sites, even a higher effective resolution would be desirable to view many web pages.

In addition, in order for such screens to be seen at a relatively high resolution, they would
have to be held close to a user's eyes. Although this might be satisfactory for many applications,
users might often find it tiring or inconvenient to constantly hold a handheld computer close one

eyes.

-Such advances in display resolution would also mean that a 320 by 240 pixel screens
could be made with a diagonal length of two inches or less. Such a display would be about the
size of the display commonly contained in many present-day cellphones, and could also fit onto a
wristwatch. Such displays would make many forms of applications currently used on hand held
computers available on cellphones, wristwatches or other similaﬂy small format computers.
Unfortunately they would have the problem of both having a relatively low resolution which would
tend to make it difficult for them to view most web pages, and of being so physically small that for a
user to be able to see their resolution they would have to be held very close to the user’s eyes.
Again, holding such a device close to a user's eyes might be very satisfactory at periods of time,

but over long periods of time, or in certain situations it might be inconvenient.

-Currently there are several companies which provide head mounted displays which
enable a person to see an image of a computer screen, either as a result of light reflected into the
user's eyes through a device that appears somewhat like a pair of glasses, or from a mirror placed
above, below, or off to the side of the user's eyes. To make it easy for user to interact with their

surroundings while using such a head mounted display, it is often desirable to have such projected

WO 02/089105 PCT/US02/14217

3-
computer screens take up a relatively small portion of the user's optic field. Thus, users of such

displays might face many of the same problems as would users of small handheld screens.

-Some aspects of the invention relates to methods for optimizing the browsing of the Web
or application screen output on a computer with relatively limited computational power, memory, or
bandwidth to the Internet. For example, currently a standard Web browser of the type used in
most desktop and laptop computers requires many megabytes of memory and a relatively large
amount of computational power. They also require a connection to the Internet having at least the
speed of a high-speed modem to work effectively with a type of Web content contained in many of
the World Wide Web's more frequently used Web pages. Unfortunately, many handheld
computers either do not have the storage or computational capacity to be able to effectively view
many such web pages. Also most commonly available wireless systems have a bandwidth which
is substantially below that which would be desirable for viewing many Web pages. As a result of
these factors, one of the focus is of some of the innovations contained in this application relate to
methods for enabling computers with limited storage, commutation, or bandwidth to better browser
the World Wide Web or similar media.

SUMMARY OF THE INVENTION

The invention is most accurately described by the claims below and where the claims differ
from this summary, the wording of the claims should be considered the true description of the

invention.

Ant aspect of the present invention method of displaying digital content including text
and/or images is provided. The digital content is represented by a mark-up language including
tags which identify images contained in the content. The display is performed on a subpixel
addressable screen having pixels comprised of separately addressable differently colored sub
pixels. The method comprises the following steps. The digital content is accessed, including its
images, from a device in which it is stored or from programming which generates it dynamically;
and displaying on the screen one or more of such accessed images at a first pixel scale in which
the luminosity of each differently colored sub-pixel of a given pixel is derived from a different area

of the same image at a second, higher resolution, pixel scale.

WO 02/089105 PCT/US02/14217
4-

According to another aspect of the present invention a method of producing a sub-pixel
resolution representation of an image suitable for display on a sub-pixel addressed screen having
pixels comprised of separately addressable differently colored sub-pixels is provided. The method
determines the luminosity of each subpixel in a given pixel of the subpixel resolution representation
by defining for the sub-pixel a plurality of coverage lines which fit within a window in a higher
resolution representation of the image, which window is different for each sub-pixel of a given pixel.
It calculates the length of each coverage line which corresponds to given pixel in the higher
resolution image, and it determines the luminosity of the sub-pixel as a function of the length of
each coverage line which corresponds to each higher resolution pixel and the respective luminosity

in the sub-pixel's color of that higher resolution image pixel.

According to yet another aspect of the present invention a method of producing a sub-pixel
resolution representation of a source image suitable for display on a sub-pixel addressed screen
having pixels comprised of separately addressable differently colored sub-pixels is provided. This
method produces a scaled sub-pixel optimized image of a bitmap image by associating a
luminosity value with each subpixel of the scaled image. The luminosity values are calculated as a
function of the whole pixel luminosity of the one or more pixels in the source image which cover a
source image window corresponding to the area of the subpixel, the percent of that window
covered by each such source image pixels, and a color balancing function that distributes subpixel

luminosity values to reduce color imbalance.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects of the present invention will become more evident upon reading
the following description of the preferred embodiment in conjunction with the accompanying

drawings, in which:

FIG. 1 illustrates a process used according to some aspects of the present invention to
improve Web browsing and/or display of other types of computer generated content, particularly on

systems with relatively low-resolution screens.

WO 02/089105 PCT/US02/14217
-5

FIG. 2 illustrates a networked computing environment in which the invention can operate

that includes a portable browser, a proxy server, a Web server, and a font server.

FIG. 3 illustrates an alternative networked computing environment in which the invention

can operate that includes a browser and a Web server.

FIG. 4 illustrates a second altemative networked computing environment in which the

invention can operate that includes a browser and a Web server.

FIG. 5 illustrates a third alternative networked computing environment in which the

invention can operate that includes a browser and a Web server.

FIG. 6 illustrates a computer system in which the invention can operate that contains the
standard Web content to be displayed and browser functionality containing a process for scaling

and/or subpixel optimizing the content.

FIG. 7 illustrates an alternative computer system in which the invention can operate that
contains the content to be displayed, a proxy process for scaling and/or subpixel optimizing the

content, and browser functionality.

FIG. 8 illustrates a second alternative computer system in which the invention can operate

that contains previously scaled and/or subpixel-optimized content.
FIG. 9 illustrates a known vertically striped RGB LCD display device.

FIG. 10 illustrates some of the aspects of the invention involved in performing the subpixel
optimization of both images and text referred to with regards to steps 108 and 112 of FIG. 1,

respectively.

FIG. 11 illustrates the level of readability provided by a current embodiment of the

invention when displaying standard Web content on a 320 by 240 color display.

WO 02/089105 PCT/US02/14217

-6-
FIG. 12 illustrates the mapping of a pixel and subpixel grid over a portion of source image

102.

FIG. 13 is an expansion of a section of the mapping grid of FIG. 12.

FIG. 14 illustrates the positioning of a window over the source image used to calculate the

luminosity of a red (R) subpixel of the lower resolution display device.

FIG. 15 illustrates the positioning of such a window used to calculate the luminosity of a

green (G) subpixel of the lower resolution display device.

FIG. 16 illustrates the positioning of such a window used to calculate the luminosity of a

blue (B) subpixel of the lower resolution display device.
FIG. 17 illustrates scan lines used in a scan line coverage method to calculate the subpixel
luminosity of a red subpixel by estimating the portion of the red subpixel's associated source image

window that is covered by one or more pixel of different colors.

FIG. 18 illustrates similar scan lines used to calculate the luminosity of a green (G)

subpixel of a lower resolution display device.

FIG. 19 illustrates similar scan lines used to calculate the luminosity of a blue (B) subpixel

of a lower resolution display device.

FIG. 20 is a repeat of FIG. 17.

FIG. 21 illustrates the portions of the horizontal scan line shown in FIG. 20 that are

covered by different source image pixels within the red pixel's source image window.

FIG. 22 illustrates the portions of the vertical scan line shown in FIG. 20 that are covered

by different source image pixels within the red pixel's source image window.

FIG. 23 is identical to FIG. 18.

WO 02/089105 PCT/US02/14217
-7-

FIG. 24 illustrates the portions of the horizontal scan line shown in FIG. 23 that are

covered by different source image pixels within the green pixel's source image window.

FIG. 25 illustrates the portions of the vertical scan line shown in FIG. 23 that are covered

by different source image pixels within the green pixel's source image window.
FIG. 26 is identical to FIG. 19.

FIG. 27 illustrates the portions of the horizontal scan line shown in FIG. 26 that are

covered by different source image pixels within the blue pixel's source image window.

FIG. 28 illustrates the portions of the vertical scan line shown in FIG. 26 that are covered

by different source image pixels within the blue pixel's source image window.

FIG. 29 is a highly simplified pseudocode description of a subpixe! optimization method
which calculates subpixel luminance values based on line coverage values, such as the line

coverage values illustrated with regard to FIGS.17 through 28.

FIG. 30 illustrates how two horizontal and two vertical scan lines can be used on altemate
embodiments of “line coverage” methods for calculating the colors of pixels in subpixel-optimized

scaled images.

FIG. 31 illustrates how two diagonal scan lines can be used on alternate embodiments of

“line coverage” methods for calculating the colors of pixels in subpixel-optimized scaled images.

FIG. 32 illustrates how a combination of two diagonal, two horizontal, and two vertical scan
lines can be used on altemate embodiments of ‘line coverage” methods for calculating the colors

of pixels in subpixel-optimized scaled images.

FIG. 33 illustrates line coverage for two horizontal coverage lines at a 1/2 horizontal and

vertical scaling.

WO 02/089105 PCT/US02/14217
-8-
FIG. 34 illustrates line coverage for two vertical coverage lines at a 1/2 horizontal and

vertical scaling.

FIG. 35 illustrates line coverage for two horizontal coverage lines at approximately a 2/5

horizontal and vertical scaling.

FIG. 36 illustrates line coverage for two vertical coverage lines at approximately a 2/5

horizontal and vertical scaling.

FIG. 37 illustrates line coverage for two horizontal coverage lines at approximately a 2/3

horizontal and vertical scaling.

FIG. 38 illustrates line coverage for two vertical coverage lines at approximately a 2/3

horizontal and vertical scaling.

FIG. 39 illustrates the source image pixel areas used in an “area coverage” method of

calculating the color values of a subpixel-optimized scaled image.

FIG. 40 is similar to FIG. 39 except that it uses different hatching to illustrate the areas of
different source image pixels within a source image window used to calculate a subpixel's

luminosity value according to one such “area coverage” method.

FIG. 41 is a highly simplified pseudocode description of a subpixel optimization method
which calculates subpixel luminance values based on aread coverage values, such as those
discussed with regard to FIGS 39 and 40.

FIG. 42 illustrates a method of producing a scaled subpixel-optimized image of a bitmap

image by associating a luminosity value with a red subpixel.

FIG. 43 illustrates a method of producing a scaled subpixel-optimized image of a bitmap

image by associating a luminosity value with a green subpixel.

WO 02/089105 PCT/US02/14217

-9
FIG. 44 illustrates a method of producing a scaled subpixel-optimized image of a bitmap

image by associating a luminosity value with a blue subpixel.

FIG.FIG. 45 illustrates a set of gray scale pixels under an RGB grid.

FIG. 46 illustrates how the luminosity associated with an individual pixel is distribution

under a traditional linear filtering method.

FIG. 47 illustrates the resulting subpixel luminosity values as a result of the traditional

linear filtering method.

FIG. 48 illustrates the distribution of the minimum source image luminosity values under a

non-linear filtering.

FIG. 49 illustrates the distribution of the excess luminosity values under a non-linear

filtering method.

FIGS. 50 through 52 compare the results of the linear and non-linear filtering methods with

the original source pixel luminosities.

FIG. 53 is a highly simplified pseudocode representaton of a software method for creating

a subpixel-optimized representation of a bicolor bitmap.

FIG. 54 is a flow diagram of a process to allow a user to dynamically tradeoff color and

positional resolution.

FIG. 55 illustrates the mapping between a character-font shape defined by an outline font
description and an array of pixels having subpixels used to represent that shape on a subpixel

addressable display;

FIG. 56 is a screen shot of a 320 x 240 screen of a web page produced by one

embodiment of the present invention;

WO 02/089105 PCT/US02/14217

-10-
FIG. 57 is a 2x blowup of the screen shot shown in FIG. 56;

FIG. 58 illustrates how a computer can access font bitmaps or font outlines from a font

server,

FIG. 59 illustrates how a computer can access font bitmaps or font outlines which it has

stored within it;

FIG. 60 is a highly simplified pseudocode representation of an algorithm for calculating a
subpixel-optimized bitmap of a character-font shape using non-linear color balancing of the type
illustrated in FIGS. 48 through 52;

FIG. 61 through 63 illustrate the size of the window in a character-font shape image, such
as that shown in FIG. 55, used to determine a coverage value for each of the three subpixel's of an

individual pixel of a pixel array such as that shown in FIG. 55;

FIG. 64 through 67 illustrates some prior art techniques which have been used to calculate

coverage values for non-square rasterization units (usually whole pixels in the prior art);

FIG. 68 through 87 illustrate a computationally efficient method of calculating the coverage
value of rasterization units, using weighted line coverage values, which method is used in some

embodiments of the present invention to calculate a coverage value for subpixels;

FIGS. 88 through 90 illustrates some of the other arrangements of coverage lines which
can be used with a weighted line coverage algorithm of the general type described above with
regard FIG. 68 through 87,

FIG. 91 illustrates a mapping of an array of pixels, and their respective subpixels, into an

image of a portion of a font outline;

FIG. 92 illustrates corresponding coverage values which have been calculated for the

subpixel's of the array shown in FIG. 91;

WO 02/089105 PCT/US02/14217

-11-
FIG. 93 corresponds to FIG. 46, and like FIG. 46 illustrates how a prior art linear color

balancing method distributes all of an individual subpixel's coverage value over a series of adjacent

subpixel's within a given pixel row,

FIGS. 94 and 95 illustrates color balance filters which can be used with the non-linear color

balancing method described with regard FIG. 60;

FIG. 96 is a highly simplified pseudo code description of an algorithm which can be used to
represent the whole pixel alpha values calculated for font bitmaps by a method such as that

described with regard FIG. 60 into a more limited Color Space of such whole pixel alpha values;

FIG. 97 is a highly simplified pseudo code description of an algorithm for displaying text
strings on a subpixel addressable display using font bitmaps created by a combination of the
methods illustrated in FIG. 60 and 96;

FIGS. 98 through 101 illustrate how well the present invention can display web pages on a
320 x 240 screen, with FIGS. 98 and 100 each being a screen shot of a 640 x 480 layout of a
different web page, and FIGS. 99 and 101 showing how the present invention is capable of

displaying each of these two web page is on a 320 x 240 screen,

"FIG. 102 is a schematic block diagram of some of the data structures and programming
used by a proxy server and thin client computer to enable a user of the thin client computer to

access web content on a scaled-down, subpixel-optimized screen;
FIG. 103 is a portion of the HTML code of the web page illustrated in FIGS. 98 and 99,
FIG. 104 illustrates the layout of a web page produced by the proxy server and the portion
of that layout which falls within the proxy server's virtual screen, which in this example corresponds

to the portion of the web page shown in FIG. 99;

FIGS. 105A and 105B are highly simplified pseudo code descriptions of programming on

the proxy server shown in FIG. 102;

WO 02/089105 PCT/US02/14217

-12-
FIGS. 106A through 106C are highly simplified pseudo code descriptions of programming

for capturing and downloading a scaled-down and subpixel-optimized representation of a portion of

a web page to a thin client computer;

FIG. 107 is a highly simplified pseudocode description of programming for the actual
downloading of the web page representation captured by the programming of FIGS. 106A through
106C;

FIG. 108 is a highly simplified representation of the data downloaded to a thin client

computer by the programming illustrated in FIG. 107;

FIGS. 109A through 109C are highly simplified pseudocode representations of

programming on the thin client shown in FIG. 102;

FIGS. 110 through 112 illustrate how, if a user clicks on a text entry field on a web page’s
display on the thin client shown in FIG. 102, a pop-up menu is shown that allows the user to enter
text into that field;

FIG. 113 illustrates how the user can use the same pop-up keyboard to enter URLs which

allow him or her to access desired websites;

FIG. 114 is virtually identical to FIG. 13 except that it illustrates an embodiment of the
invention having a toolbar at the top of the thin client computer screen which includes graphical

user interface buttons and a URL text entry field;

FIGS. 115 and 116 are highly simplified pseudocode representations of programming on a
proxy browser and thin client computer, respectively, which is used in an alternate embodiment of
the invention in which the thin client computer stores the layout of an entire web page to allow it to

scroll and zoom relative to that web page at a higher speed;

FIG. 117 is a schematic illustration used to help explain the operation of the pseudocode
illustrated in FIGS. 115 and 116;

WO 02/089105 PCT/US02/14217

13-
FIGS. 118 through 120 illustrate how the present invention can allow a user to rapidly

select a portion of a web page's or a screen’s contents and then zoom to that selected portion;

FIGS. 121 through 128 illustrate a zoom-click aspect of the invention which allows a user

to view and select portions of a web page or a screen with greater accuracy,

FIG. 129 is a highly simplified pseudocode description of programming for allowing a user

to have selected text reflown across a given screen width at a larger scale;

FIGS. 130 through 137 are used to illustrate how the text reflow capability shown in FIG.

129 can operate;

FIG. 138 is used to illustrates how multiple client computers can be programmed to access

a common font server and/or a common proxy server,

FIG. 139 is a highly simplified pseudocode description of programming which can be used

on one or more font servers;

FIG. 140 illustrates how certain aspects of the present invention can be used to allow a
client computer to view screens which are drawn by applications (which can include, but are not
limited to, one or more web browsers) running on a remote computer in a scaled-down, subpixel-
optimized manner by intercepting calls made by such applications to the remote computer’s

operating system;

FIG. 141 illustrates how subpixel-optimized, scaled-down views can be had of screen
output generated by application programs (which can include but are not limited to one or more
web browsers) running on a given computer, even if those applications have not been programmed
to generate such views, on the screen of that given computer, by intercepting calls to the

computer's operating system made by such applications;

FIG. 142 illustrates how certain aspects of the present invention can be used allow
portable small-screen, thin-client computers to access web content and the screen output of

various application programs through both local and/or Internet wireless communication;

WO 02/089105 PCT/US02/14217
-14-

FIGS. 143 and 144 are used to illustrate how in some embodiments of the present
invention subpixel-optimized output is displayed with a landscape orientation by rotating a

computing device that has an operating system programmed to work in a portrait orientation;

FIG. 145 is a highly simplified pseudocode description of programming use to draw a

simple shape with a subpixel-optimized resolution;

FIG. 146 is a highly simplified pseudocode description of how web applets can be used to

draw subpixel-optimized elements on the screen of acomputer;

FIG. 147 is a highly simplified block diagram illustrating how rollover images can be

subpixel-optimized;

FIG. 148 is a highly simplified block diagram illustrating how GIFF animations can be

subpixel-optimized;

FIG. 149 is a highly simplified pseudocode description of how 3-D animation can be

subpixel-optimized;

FIGS. 150 and 151 are highly simplified pseudo code descriptions of how a client/server

gaming system can be used to provide subpixel-optimized game images on a client computer;

FIG. 152 is a highly simplified pseudocode description of how subpixel-optimized displays

can be made of images having corresponding transparency maps;

Figure 153 is a highly simplified pseudocode description of how video using interpolation

between keyframes can be subpixel-optimized;

FIG. 154 is a highly simplified pseudocode description of how video whose representation

includes the drawing of screen changes to less than a whole frames can be subpixel-optimized;

WO 02/089105 PCT/US02/14217

-15-
FIGS. 155 and 156 are highly simplified pseudocode description of different methods of

displaying images which move relative to a display window;

FIGS. 157 through 159 are highly simplified pseudocode description of how subpixel
optimization can be applied to video which is been represented by various compression

techniques;

FIG. 160 is a highly simplified pseudocode representation of programming for enabling a

server computer to download subpixel-optimized, scaled-down video to a client computer;

FIG. 161 is a highly simplified pseudocode description of programming on both a client énd
proxy computer to enable the client computer to access scaled-down, subpixel-optimized video

from other servers through a proxy computer;

FIG. 162 is a highly simplified pseudocode representation of programming which allows

electronic ink to be viewed more clearly;

FIGS. 163 through 166 are used to help illustrate the benefits of the programming describe
with regard FIG. 162,

FIG. 167 is used to illustrate that the present invention relates not only to methods, but
also to programming and data related to such methods stored in a machine readable form or
embodied in a propagated signal, and to programmed and/or hardwired computer systems for

performing such methods and/or use such programming and/or data.

FIGS. 168 through 184 are used to describe additional improvements to the invention for
improving the clarity of subpixel-optimized color-balanced font bitmaps produced by the present

invention.

FIG. 185 is a higher level description of the selected-text reflow method described with
regard to FIGS. 129 through 134;

WO 02/089105 PCT/US02/14217
-16-
FIG. 186 is a high-level pseudocode description of a zoom-to-fit method;, of the general
type described with regard to FIGS. 118 through 120;

FIG. 187 is a high-level pseudocode description of a drag scroll method; that allows a user

to easily navigate within the display of a web page’s layout

FIG. 188 is a high-level pseudocode description of a click-zoom method that enables the

user to rapidly selected to zoom in on a desired portion of the display of a layout of a web page;

FIG. 189 is a highly simplified pseudocode description of the zoomclick method described
in some detail with regard to FIGS. 121 through 128;

FIG. 190 is a highly simplified pseudocode description of a method that allows a user to

see a zoom-out view of a web page using greeking;

DETAILED DESCRIPTION OF SOME PREFERRED EMBODIMENTS

FIG. 1 s a high level diagram that represents basic processes and data representations
that may be used according to some aspects of the present invention to improve Web browsing
and/or display of other types of computer generated content, particularly on systems with low

resolution displays.

Digital content 100, including one or more bitmap images 102 and text 104 is displayed in
a subpixel-optimized downscaled format 106. In one embodiment of the invention a difference
process, comprised of step 108 is used to subpixel-optimize the display of the bitmap images 102,
than is used to subpixel optimize the display of the text content. Step 108 uses a subpixel
optimization routine that is particularly suited for producing subpixel-optimized images from color
bitmaps. The process 108 also scales down the bitmaps for display on screens having a lower

resolution than that at which most Web content is currently displayed.

WO 02/089105 PCT/US02/14217

-17-
The text 104 contained in the digital content 100 is processed for display on a small

resolution subpixel addressable screen by using steps 110 and 112. Step 110 replaces the fonts
normally used to display text with fonts that are optimized for display at small resolutions on
subpixel-optimized screens. Then step 112 uses font bitmaps from the substituted fonts that have
been produced by a subpixel optimization routine particularly suited for the representation of high
resolution images of shapes of a uniform color, such as the mathematically defined outlines

commonly used to define font shapes.

One use of the present invention is in the context of a portable, low resolution Web
browser that displays images and/or text, represented by a markup language, that have been

downloaded from the Internet.

To date there have been multiple so-called mark-up languages. One of the earliest and
most successful was SGML (Standard General Markup Language). SGML is a text-based
language that can be used to ‘markup’ data with descriptive ‘metadata’ that provides information
about the data. As an example, markup metadata can be used to indicate the purpose for which
the data is intended or the location on a Web page at which the data should be positioned. It can
also be used to indicate links to data of other types, such as images, which are to be inserted at a
given location in a text, or in a document described by the mark-up language. Several markup

languages that are commonly used today, such as HTML and XML, are derived from SGML.

In a preferred embodiment of the present invention the digital content 100 referred to in
FIG. 1 above may be standard Web content that includes text and/or images represented by a
markup language such as HTML. This standard Web content 100, representing perhaps a Web
site home page, can be downloaded through various apparatus and methods described below for
display on a portable low resolution browser device 200, shown in FIGS. 2 through 4. Before
display on the browser device 200 the digital content 100 may be scaled and/or subpixel-optimized

for enhanced readability through various methods and processes, such as those described below.

FIG. 2 illustrates a networked computer environment implemented in accordance with one
embodiment of the present invention. The thin client browser 200 program runs in a handheld or

other small computing device capable of retrieving and displaying text and/or graphics on a small

WO 02/089105 PCT/US02/14217

-18-
liquid crystal display (LCD) screen. The browser allows a user to request digital information from a

remote source, e.g., from the Internet, and to display it on a screen.

In the embodiment of the present invention illustrated in FIG. 2, a user would request the
retrieval and display of digital content, containing images and/or text, by way of manipulation of the
controls of the thin client browser 200. The requested digital content may be a specific Web page
accessible over the Internet. The thin client browser 200 then makes its request 202 for content
through a physically remote proxy server 210 over a network 138, which can be, for example, a
LAN, a WAN, or the Internet.

The proxy server 210 runs a proxy process 216 that responds to the request for digital
content by generating a corresponding request 214 to a physically remote Web server 220 that
contains the digital content 100 requested by the user. Server 220 responds to the proxy server
request 214 by a download 222 of the digital content 100 over the network 138 to the proxy server
210.

The proxy process 216 within the proxy server 210 then uses its computational resources
to scale and subpixel optimize the digital content 100 according to steps 108, 110, and 112
illustrated in FIG. 1. Scaling and subpixel optimizing are aspects of the present invention that
result in the enhanced readability of images, such as text and/or graphics, on liquid crystal display

devices. They will be discussed in greater detail in a subsequent section.

The proxy server 210 completes a download 212 of the now scaled and subpixel-optimized
content to the browser 200. At this point, the user is able to view the content on the screen of the

browser 200.

In the embodiment of the invention shown in FIG. 2, the text portion of the digital content is
downloaded to the browser in the form of one or more strings of characters and designation of the
font family, font size, and other font attribute. If the thin browser does not have bitmaps for any
character in such a string in the font size and family specified for it, it requests one or more such
bitmaps from a font server 230. In various embodiments of the inventions shown in FIGS. 2
through 8, the proxy server could provide such font bitmaps or the thin client could have them as a

standard part of its software (although that would increase the size of the browser software). In still

WO 02/089105 PCT/US02/14217

-19-
other embodiments the fonts could be outline fonts. The advantage of font bitmaps is that some

font vendors are more willing to allow bitmaps of their fonts to be distributed more freely than

outlines of such fonts.

An alternate embodiment of the present invention is illustrated in FIG. 3. In this
embodiment the proxy server 210 and the Web server 220 of FIG. 2 are replaced with a single
remote server 220A. The thin client browser 200 makes its request 202A for digital content 100 to
the remote server 220A over a network 138. For example, network 138 may bethe Intemet ora
LAN and the digital content 100 may be a specific Web page. The remote server 220A contains
the requestéd digital content 100 and runs a proxy process 216A that responds to the request
202A. This process proxy process 216A can be any process running on the server which
dynamically scales and/or subpixel optimizes web content for display on the thin client browsers.
The proxy process 216A operates upon the stored digital content 100 and dynamically converts it
to the form 106 shown in FIG. 1 by performing the steps 108, 110, and 112. The remote server
220A completes a download 212 of the scaled and/or subpixel-optimized content to the thin client

browser 200.

Another alternate embodiment of the invention is illustrated in FIG. 4. As in FIG. 3 the thin
client's request is made directly to a remote server, in this case server 220B, over a network 138.
In this implementation the remote server 220B contains the requested digital content in both a
standard form 100, which is for use by standard browsers computers, and the scaled and/or
subpixel-optimized content 100A. The conversion from standard digital content 100 to the scaled
and/or subpixel-optimized form has occurred in advance thereby eliminating the need for a proxy
process to dynamically convert it. The thin client provides information to the server indicating that
it should receive the scaled and/or subpixel-optimized version of the requested content. The
remote server 220B completes a download 212 of the scaled and/or subpixel-optimized content
100 to the thin client browser 200.

A further alternate embodiment is illustrated in FIG. 5. Browser 200A is a full scale
browser which also contains a scaling and/or subpixel optimization process 510. The browser
200A makes a request 202B to a remote server 220C over the network 138 for the digital content
100. Server 220C completes a download 212A of the requested digital content 100 to the browser

WO 02/089105 PCT/US02/14217

-20-
200A. The conversion of the digital content 100 to a scaled and/or subpixel-optimized form is

handled by a process 510 running in the browser 200A.

FIG. 6 illustrates a single computer system 600 capable of scaling and/or subpixel
optimizing digital content 100. In this preferred embodiment the digital content has been created
on or loaded into computer system 600 in advance. Computer system 600 contains a browser
process 620 that includes a scaling and/or subpixel optimizing sub-process 640. Here the user
makes a request to the computer system 600 by way of an attached input device, e.g., a keyboard
or mouse, for the display of the digital content 100. The browser process 620 retrieves the
requested digital content 100 from one of the computer system's storage elements, e.g., electronic
memory or disk storage. Once retrieved the browser process 620 then passes the digital content
to the scaling and/or subpixel optimizing sub-process 640. Once the conversion is complete, the
converted content is displayed on the display screen of the computer system 600. This

embodiment of the present invention operates without the need for a network or remote servers.

FIG. 7 illustrates an alternate single computer system implementation. In this
embodiment, computer system 700 contains the digital content 100 (e.g., the contents of a specific
Web page) that has been created or loaded in advance, a proxy process 740, and a browser
process 720. The proxy process 740 executes scaling and/or subpixel optimization programming
760. The browser process passes a user request for display of the digital content 100 to the proxy
process 740. Proxy process 740 then retrieves the digital content 100 from the storage element of
computer system 700. Once retrieved, the programming 760 converts the digital content 100 to a
scaled and/or subpixel-optimized form which is then passed to the browser process 740 for display

by the display device of computer system 700.

FIG. 8 illustrates a second alternate single computer system implementation. Here
computer system 800 contains scaled and/or subpixel-optimized Web content 810. A browser
process 820 handles user requests for display of the content 810, retrieves it from the storage

elements of computer system 800, and displays it on the screen of computer system 800.

In the embodiments of the present invention presented above, the scaling of the image

from the resolution of the source image to the resolution of the subpixel addressed screen has

WO 02/089105 PCT/US02/14217

21-
been determined, in part, by the respective resolutions of the source image and the subpixel

addressed display screen.

In some embodiments of the invention, the determination of the scaling factor between the
source image resolution and the resolution to be displayed on the subpixel addressable display
screen can be specified by the user of the browser device. In this embodiment the user of the
browser selects from a plurality of scale factors by communicating the scale factor to the process
that scales down an image read from storage. The process that scales down the image read from
storage then scales down and subpixel optimizes the image by a horizontal and vertical scale

factor that varies as a function of the selected scale factor.

As with most other user inputs to the browser device, such scale selections can be made
by use of physical or GUI buttons, menu items, dialog boxes, or any other known user interface

device on the browser device.

In some such embodiments the user of the browser device may choose a second scaling
factor from a plurality of scaling factors, according to which the digital content will be re-scaled and
re-subpixel optimized and redisplayed, after the image has been previously retrieved from storage

and displayed in subpixel-optimized form at a first scaling factor.

In such embodiments, the scaling factor used in the first scaled and subpixel-optimized
display may have been as a result of a default or preferred scaling factor or it may have been as a
result of a scaling factor previously chosen by the user of the browser device. The user of the
browser device may choose from a plurality of scaling factors for the redisplay of the digital content
by the method of manipulating the control apparatus of the browser device. Such manipulation of
the control apparatus of the browser device will cause the image to be scaled according to the

second chosen scaling factor.

Such a second scaling may occur as a result of a process running either within the
browser device or within a physically remote server. The user of the browser device may continue

to select from a plurality of scaling factors for subsequent redisplays.

WO 02/089105 PCT/US02/14217

22-
It is easiest to downscale digital images by integer multiples, which cause an integer

number of pixels in a source image to fit into a given pixel in the resulting downscaled image. For
example, the scaling from a 640 by 480 resolution to a 320 by 240 resolution is a downscaling by a
factor of two. Some embodiments of the present invention allow the user to select from a plurality
of downscale factors, including non-integer downscaling factors. An example of a non-integer
downscaling factor is that of a 3/2 downscaling factor that would cause a 480 by 360 pixel portion
of a 640 by 480 resolution source image to be scaled and/or subpixel optimized for display on a

320 by 240 resolution display screen.

Computer graphic displays such as cathode ray tubes (CRT) or liquid crystal display (LCD)
screens almost exclusively use the RGB model of color space, although the invention can be used
with other color models, such as the CMYK color model. In the RGB model, the three primary
additive colors, red, green, and blue, are blended to form a desired color as perceived by the

human eye.

Most portable computing or imaging devices have LCD screens that use the RGB model.
Such LCD screens are comprised of a rectangular array of thousands of grid elements, referred to
as pixels, each capable of displaying any one from a large number of color values from an RGB
color space, that when perceived as a whole, form an image. LCD screens are characterized by

the number of horizontal and vertical pixels they contain.

Each pixel in turn is composed of three individually addressable sub-components, referred
to here as subpixels. Most commonly, the three subpixels are rectangular red, green, and blue
elements. In the most common implementation, the three red, green, and blue subpixels are each
assigned a luminous intensity value such that they blend together to give the entire pixel the
appearance of the desired color. All of the pixels on an LCD screen blend together, in turn, to give

the appearance of the desired image.

The subpixels are considered individually addressable because tpe color value assigned to
an individual pixel has a separate red, green, and blue color component, or luminosity value, which
will be displayed, respectively, by the red, green, and blue subpixels of that pixel. Thus, the
luminosity of each subpixel can be separately controlled by controlling the value of its associated

color component luminosity value in the color value assigned to the pixel.

WO 02/089105 PCT/US02/14217
23

In an LCD device and other “subpixel addressed” displays, such as color LED (including
screens using organic light-emitting diodes (OLEDs)) or gas plasma displays, each individual
subpixel has a fixed, known position on the display. Many display devices, such as aimost all
cathode ray tube (CRT) displays are not subpixel addressable. For example, although each pixel
of a CRT has an individual luminosity value for each of its red, green, and blue component colors,
the exact physical location within each such pixel of the elements which generate the light
associated with those different color values is normally not known because it varies as a function of
the individual phosphor pattern of the screen, the resolution of the horizontal and vertical scan, and
the current exact state of the voltages which control the exact locations at which individual pixels

are drawn on the screen.

FIG. 9illustrates a 12x12 portion of an LCD screen 900 that is comprised of a plurality of
pixel rows (R1-R12) and pixel columns (C1-C12). Each intersection of a row and a column
constitutes a pixel element. Actual implementations of LCD screens can have an arbitrary number
of rows and columns, though grids of 320 by 240, 640 by 480, 800 by 600, 1024 by 768, and 1280
by 1024 are frequently seen.

Pixel R1-C1 is contained within circle 910. Pixel R1-C1 is itself made up of three pixel sub-
components herein referred to as subpixel elements. An expanded view of pixel C1-R1 is shown
as expanded pixel 920. Subpixel element 902 displays as red, subpixel element 904 displays as
green, and subpixel element 906 displays as blue. The individual subpixel elements 902, 904, and
906 are approximately 1/3 of the width of a full pixel and are equal in height to a full pixel.

As illustrated in LCD screen 900, when arrayed in a grid this causes the appearance of
vertical color stripes down the LCD screen 900. This known arrangement of pixels is sometimes
referred to as vertical RGB striping. Other known arrangements lay the pixel elements out in the
orthogonal direction such that horizontal striping results (in which case rotating the screen by 90

degrees will convert is into a vertically striped screen).

In common usage, the luminous intensity of the three subpixel elements of a pixel are set

such that the pixel is perceived by the human eye as being of the desired hue, saturation, and

WO 02/089105 PCT/US02/14217

24-
intensity. The RGB subpixel elements are used together to form a single colored pixel to represent

a single sample of an image to be displayed.

One aspect of the present invention relates to the improvement of the readability of
downloaded Web content, and other digital content including text and images, on low-resolution
screens, such as, for example, displays having column by row pixel ratios of 320 by 240 or 240 by
320 (in which case they can be rotated 90 degrees to have a resolution of 320 by 240). Many of
the embodiments of the present invention discussed and shown in some detail map image and text
from a virtual layout resolution of 640 by 480 pixels onto a screen with a 320 by 240 pixel
resolution. But the present invention can be used with (":ther resolution screens. To give just a few
examples, it could be used to display content laid out roughly as it would look at a 1024x768
resolution on a 512x384 resolution screen, or display content laid out roughly as it would look at a
800x600 pixels on a 400x300 screen. In other embodiments, the invention can be used with
relatively low-resolution displays which have pixel dimensions which are other than even fractions

of the horizontal and/or vertical pixel dimensions common on personal computer screens.

In general when we refer to a small resolution screen we mean a screen having a smaller
resolution that given digital content or a given layout of digital content would normally be intended
to be displayed upon. By such smaller screens we also mean to include portions of larger screens,

such as windows on larger screens, that have such lower resolution.

In FIG. 10, image content 105 and text content 107 represent a portion of the subpixel-
optimized display 106 of FIG. 1. The image shown in FIG. 1 is a grayscale blowup of the actual
color values associated with the subpixel-optimized display of both text and images. The portion of
the image content 105 contained within the rectangle 1000 is shown expanded at 1020 to make its
individual pixels easier to see. Correspondingly, a portion of the text content 107 contained within

rectangle 1040 is shown expanded at 1060.

It is important to note that the pixels shown at 1020 and 1060 represent whole pixels
because the software used to generate the images 1020 and 1060 merely represents the
grayscale corresponding to the RGB color values associated with individual whole pixels. The
subpixel blowups 1020A and 1060A are attempts to represent the intensity of each of the three

subpixels associated with each pixel in the blowups 1020 and 1040, respectively. 1020B is a

WO 02/089105 PCT/US02/14217

-25-
blowup corresponding in scale and location to blowups 1020A and 1020. In it the pixel grid of the

image is displayed in relatively bold lines, and the three subpixel divisions within each such pixel
are shown in somewhat finer lines. This composite grid is superimposed on top of the original
higher resolution color bitmap image 102 of FIG. 1 from which the pixelation patterns shown in the
blowups 1020 and 1020A have been derived. In the particular images shown, the resolution of the
color bitmap 102 is twice as high in both the vertical and horizontal direction as the whole pixel

resolution in the image 105 shown at the bottom of FIG. 10.

The blowup 10608 illustrates how a subpixel-optimized image of a font is produced by
determining the portion of the area of each subpixel that is covered by a high-resolution font outline

of the one or more characters involved.

As can be seen by comparing the subpixel resolution blowups 1020A and 1060A to the
corresponding whole pixel blowups 1020 and 1060, respectively, the display of subpixel-optimized

representations of images and text at subpixel resolution provides better resolution.

FIG. 11 provides a representation of the quality of the readability provided by an
embodiment of the invention when displaying standard Web content on a 320 by 240 color display.
Bitmap 1100 at the top of the figure is a grayscale, whole-pixel blowup of an actual bitmap
produced from a standard 640 by 480 layout of a portion of a priceline.com web page. This image
corresponds to the portion of the web page contained within the rectangle 1130 shown in the
whole screen 320 by 240 image of the web page shown at the bottom of FIG. 11. Bitmap 1120 in
the middle of the figure is a grayscale, whole-pixel blowup of the color bitmap of the same portion
of of that 320 by 240 image. 200B at the bottom of FIG. 11 represents a hand-held computing
device that is functioning as a thin client browser of the type described with regard to FIG. 2. On
the screen of this browser is shown a representation of a 320 by 240 subpixel-optimized bitmap
representing a 640 by 480 layout of the web page. Like the blowup 1020 of FIG. 10, the bitmap
1130 shown at the bottom of FIG. 11 illustrates individual pixels with grayscale levels
corresponding to the average luminosity of whole pixels. When this image is seen on a 320x240
screen having vertical subpixel striping, as shown in FIG. 9, the actual image appears to have an

even higher resolution, as indicated by the blowup 1020A in FIG. 10.

WO 02/089105 PCT/US02/14217

26-
Any known algorithm for deriving subpixel-optimized images of color bitmaps can be used

for the purposes of many aspects of the present invention. In one embodiment of the present
invention, the luminosity assigned to each given subpixel of a given color is determined by the
average intensity of that given color’s value in each total or partial pixel of the source image inside
a rectangular window in the source image. This source image window corresponds to the area of
a whole pixel in the scaled down image centered around the given subpixel. The average intensity
assigned to the subpixel is calculated by multiplying the intensity of each source image pixel that
totally or partially covers the source image window by the percent of that window’s area covered by

each such source image pixel.

FIG. 12 illustrates the mapping of a reduced resolution display’s subpixel grid onto a
portion of a higher resolution source image 102. This figure illustrates the subpixel grid 1210 being
superimposed on a portion of the original higher resolution color bitmap 102 shown in FIG. 1.
Circle 1220 encloses an area of that grid that corresponds to one pixel in the intended lower
resolution display device. The position and scale of the grid pattemns is determined by the
relationship between the higher resolution source bitmap image and the pixel grid of the resulting
subpixel-optimized images. The particular grid pattern 1210 shown in FIG. 12 represents a scaling
from the pixel resolution of the color bitmap image 102 to a display screen resolution that has one-
half as many pixels in both the horizontal and vertical direction as the source image. An example
of this scaling is that of an image having pixelation appropriate for display on a 640 by 480 display
being scaled down for proportional display on a 320 by 240 display screen. Thus, each bold line
division of grid pattern 1210 covers four pixels of color bitmap image 102. The dashed circle 1220

encloses one such bold line division that contains four higher resolution source pixels.

FIG. 13 is an expansion of the nine bold line divisions (i.e., nine whole pixels) centered on
circle 1220 of FIG. 12. The pixel inside circle 1300 represents a single pixel of the intended display
device. As FIG. 13 makes clear, each bold line division of grid pattern 1210 encloses four pixels of
the higher resolution source image. The detail of FIG. 13 also illustrates that each pixel of the
intended display device is made up of three color subpixels, including a red, a green, and a blue

subpixel, labeled ‘R’, “G”, and “B", respectively.

FIGS. 14, 15, and 16, respectively, illustrate the positioning of the rectangular window area

in the source image from which the luminosity of red, green, and blue colored subpixels in the

WO 02/089105 PCT/US02/14217

27-
intended display device is determined. The area of each such source image window corresponds

to the area of a whole pixel in the scaled down image centered around the portion of the source

image corresponding to the subpixel whose luminosity it is being used to calculate.

Rectangle 1400 of FIG. 14 encloses the area of the source image window used to
calculate the luminosity of the red subpixel of the lower resolution display device. Similarly, FIGS.
15 and 16 enclose the source image windows that correspond to the green and blue subpixels of

the intended display device, respectively.

As stated above, the luminosity assigned to a subpixel of a given color is determined by the
following function, or an approximation thereof. The luminoisity is set equal to the intensity of the
supixel's color in each pixel of the source image totally or partially within the subpixel's
corresponding source image window, times the percent of that window's area covered by each such

source image pixel.

In FIGS. 17, 18, and 19, the luminosity of the red, green, and blue, subpixels is a function
of the respective color luminosities of whole or partial source image pixels contained within a
source image window centered around the portion of the source image corresponding to a given
subpixel. This is shown in FIG. 17 for the red (R) subpixel, in which window area 1700 is centered
on the portion of the source image corresponding to that subpixel. Window area 1800 of FIG. 18
illustrates the same for the green (G) subpixel, and window area 1900 of FIG. 19 illustrates the

same for the blue (B) subpixel.

As a result of the shift between the source image windows for each subpixel, the color
value derived for each subpixel represents the subpixel's corresponding color in a portion of the
source image corresponding to the location of each subpixel, itself, rather corresponding to the
location of its pixel as a whole. As a result, this use of different source image windows for different

subpixels of a given pixel increases the spatial resolution of the resulting image.

In the embodiment of the invention shown in FIGS. 17, 18, and 19, the determination of
which pixels fall within a subpixel's source image window and the percent of that window each
such pixel covers is made by an approximation based on the percentage of horizontal and vertical

scan lines covered by such source image pixels. In FIG. 17, the color value of the red subpixel is

WO 02/089105 PCT/US02/14217

28-
determined as a result of the percentage of a horizontal coverage line 1720 and a vertical

coverage line 1740 covered by individual source image pixels, times the red color value of each
such pixel. The same is true, for respective color values, for the scaled image’s green (G) subpixel
of FIG. 18 and its horizontal and vertical coverage lines 1820 and 1840 respectively, and the
scaled image’s blue (B) subpixel of FIG. 19 and its horizontal and vertical coverage lines 1920 and
1940, respectively. It should be noted that horizontal coverage lines 1720, 1820, and 1920 are
intended to represent vertical positions just above or below the vertical midpoint of their
corresponding rectangular area. This is so the coverage line will not exactly equal that location in
the source image that represents the border between vertical pixels. In the same manner, the
vertical coverage line 1740 is intended to represent its horizontal position just to the left or the right

of the horizontal midpoint of the rectangular area 1700.

The above defined coverage lines represent an embodiment of an aspect of the invention
that relates to the use of a continuous function, or a reasonably high resolution (such as 5 or more
bit resolution) equivalent thereof, to determine the extent to which the area of an original image
associated with a given color subpixel is covered by a given color or shape. In continuous
coverage functions, this coverage is determined, not by sampling, but rather by a mathematical
function that determines boundary locations at which the given coverage starts and stops in one or
more dimensions, and calculates coverage as a function of lengths or areas between one or more
such boundaries or between such boundaries and the boundary of the source image window

associated with a given subpixel.

In the embodiment of the invention shown in FIGS. 17, 18, and 19 and in FIGS. 30, 31,
and 32 the calculation of this continuous coverage function is sped up by estimating the area of
each source image pixel that is in a given subpixel's corresponding source image window area by
determining the portion of one or more scan lines within the rectangular area that is covered by
each of one or more of the source image’s pixels within the window. The percent of the total length
of the window’s scanning lines that is covered by a given pixel is multiplied by the value of the
subpixel's color in that pixel. Such products are summed over all pixels that cover any of the
window's scan lines to produce the subpixel's color value. This is how a “line coverage” type of
continuous coverage function can be used to determine the luminosity of a subpixel when creating

scaled images of color bitmaps.

WO 02/089105 PCT/US02/14217
-20-
FIGS. 20, 21, and 22 illustrate the use of single horizontal and single vertical coverage
lines within the source image window 2000 associated with the red (R) subpixel in the lower
resolution display screen. In FIG. 21, the coverage value associated with horizontal scan line 2020

is the summation of:

-the red value of the pixel covered by bracket 2120, times the portion (1/3) of horizontal
scan line 2020 covered by bracket 2120, plus

-the red value of the pixel covered by bracket 2140, times the portion (1/2) of horizontal

scan line 2020 covered by bracket 2140, plus

-the red value of the pixel covered by bracket 2160, times the portion (1/6) of horizontal

scan line 2020 covered by bracket 2160.

In similar fashion the coverage value associated with vertical scan line 2040 is the

summation of:

-the red value of the pixel covered by bracket 2220, times the portion (1/2) of vertical scan
line 2040 covered by bracket 2220, plus

-the red value of the pixel covered by bracket 2240, times the portion (1/2) of vertical scan
line 2040 covered by bracket 2240.

The total coverage value for the red subpixel is one half of the coverage value calculated

for the horizontal scan line plus one half of the coverage value calculated for the vertical scan line.

Similarly, FIGS. 23, 24, and 25 illustrate the use of single horizontal and single vertical
coverage lines within the source image window 2300 associated with the green (G) subpixel in the
lower resolution display screen, and FIGS. 26, 27, and 28 illustrate the use of single horizontal and
single vertical coverage lines within the source image window 2600 associated with the blue (B)

subpixel in the lower resolution display screen.

WO 02/089105 PCT/US02/14217

-30-
FIG. 29 is highly simplified pseudo-code representation of an algorithm 2900 for deriving

scaled subpixel-optimized images from a source bitmap image using line coverage of the type
described above with regard to FIGS. 17 through 28.

This algorithm performs a loop 2901 for each pixel row of the output, image (i.e, the

scaled, subpixel-optimized image).

This loop performs an inner loop 2902 for each pixel in its current row. For each such pixel
the loop 2902 performs a loop 2904 and a function 2914.

The loop 2904 is comprised of an interior loop 2906 that is performed for each of the

subpixel's scan lines, such as the scan lines shown in FIGS. 17 through 28.

The loop 2906 includes a function 2908 and a loop 2910. The function 2908 calculate
each intersection between that scan line and a pixel boundary. Normally, such intersection
calculations and the other calculations in this algorithm are performed with limited accuracy, such
as for example 6 to 8 bits of accuracy, to reduce the storage and computational requirements of

such computation.

Then a loop 2910 performs a function 2912 for each portion of a scan line that occurs
between two scan line ends, a scan line end and a pixel boundary, or two pixel boundaries.
Function 2912 adds to a coverage value associated with the current subpixel of the loop 2904 a
multiple of the percent of that scan line covered by current portion of loop 2910 times the
component color value of the pixel covering that portion corresponding to the color of the current

subpixel, all divided by the number of the subpixel's scan lines.

Once the loop 2904 has calculated the subpixel luminosity value for each subpixel of the
current pixel, function 2914 sets the current pixel's color value equal to a color having a compound

RGB value with red, green, and blue values equal to those calculated subpixel luminosity values.

In different embodiments of the invention different length color values can be used, such
as 24 bit, 16 bit, or 12 bit color values. Although the system can be used with a limited color

palette, it works best with true-color colors, which have at least 4 bits of variability for each of the

WO 02/089105 PCT/US02/14217

31-
red, green, and blue subpixels. 16 bit color, which commonly allocates 5 bits for red and blue and

6 bits for green (because of the eyes’ greater sensitivity to green), provides even better visual

results.

Although the embodiment of the invention described above with regard to FIGS. 17
through 28 makes use of a single horizontal and a single vertical coverage scan fine, other
embodiments of this aspect of the invention may have more scan lines and/or have scan lines in

orientations other than horizontal and vertical.

FIG. 30 illustrates the use of two horizontal coverage lines and two vertical coverage lines
within a source image window 3020 that can be used to estimate the color coverage associated

with a red (R) subpixel of a subpixel-optimized image.

FIG. 31 illustrates the use of two diagonal coverage lines within a source image window

3120 associated with a green (G) subpixel of a subpixel-optimized image.

FIG. 32 illustrates the use of two diagonal coverage lines, a horizontal coverage line, and a
vertical coverage line within a source image window 3220 associated with a blue (B) subpixel of a

subpixel-optimized image.

Of course each of the arrangements of coverage lines shown in each of FIGS. 30 through

31 can be used on either red, green, or blue pixels.

FIGS. 33 through 38 illustrate that the line coverage method of calculating subpixel
luminosity values can be applied to a broad range of different scalings between the size of a
source image and the resulting subpixel-optimized image. This is true because the line coverage
method measures line coverage at a fairly high resolution, compared, for example, to many
sampling techniques. This means that it does a relatively good job of measuring the coverage of
pixels which are only partially in a subpixel's source image window, as will often result when using

scaling factors that are non-integer ratios.

In one embodiment of this aspect of the invention a seven bit resolution is used in

calculating line coverage, which produces satisfactory results. Higher or lower resolutions can be

WO 02/089105 PCT/US02/14217

-32-
used, but it is preferred that the line coverage resolutions be higher than the two to four bit per

dimension resolution commonly used in techniques that measure coverage by sampling coverage

within a subpixel's source image window at an array of sixteen (4x4) to two-fifty-six (16x16) points.

FIG. 33 illustrates the coverage of two horizontal coverage lines by various source image
pixels within a source image window associated with the blue (B) subpixel for a mapping from a
source image resolution to a destination pixel-optimized image having half as many horizontal
pixels and vertical pixels. FIG. 34 does the same for the two vertical coverage lines used with such
subpixel luminosity calculation scheme. Thus, FIGS. 33 and 34 illustrate an integral ratio between

the number of pixels in the source and the reduced images.

FIGS. 35 and 36 illustrate the coverage of horizontal and vertical scan line, respectively, by
pixels of the same source image for a scaling factor in which the reduced subpixel-optimized image

has only about 40% as many horizontal and vertical pixels as the source image.

FIGS. 37 and 38 illustrate the same for a scaling factor in which the subpixel-optimized

image has about 66.66% as many horizontal and vertical pixels as the source image.

It can be seen that the scan line coverage technique shown in FIGS. 33 through 38
provide an accurate estimate of the percent of each source image window covered by each source

image at each of different scaling, with relatively little computation.

FIGS. 39 and 40 illustrate the geometries associated with an “area” type of continuous
coverage function. In some embodiments of the invention, the percent of a given subpixel's source
image window covered by each of its associated source image pixels is calculated, not by the line
coverage approximation described above, but rather by an actual calculation of the area of that
part of each such source image pixel that lies within the subpixel's source image window. For
each such source pixel, the component color value of the pixel corresponding to the color of the
current subpixel is determined. The luminosity value for each subpixel is then calculated by
summing the multiples of the percentage coverage value and the value of the subpixel's color for

each source image pixel that appears in its source image window.

WO 02/089105 PCT/US02/14217

-33-
FIG. 39 illustrates the source image window area 3900 associated with a blue (B) subpixel.

Source pixel 3920 is contained within source image window 3900, as are portions of eight other
source pixels. The percent of the source image window 3900 covered by a source pixel 3920 is
calculated by taking the ratio of the area of the hatched portion 4020 of FIG. 40 over the area of
the whole source image window 4000. Similarly, the percent of the source image window 4000
covered by the other source pixels contained within it are calculated by taking the ratios of their
area within the source image window, as indicated by differently hatched areas of the window

4000, over the total area of that source image window.

FIG. 41 provides a highly simplified pseudocode representation of an algorithm 4100 that
can be used to implement an area coverage function of the type which is been discussed with
regard to FIGS. 39 and 40.

The algorithm comprises a loop 4102 which is performed for each pixel row in the sub
pixel-optimized image to be produced. For each such row the loop 4102 performs an inner loop

4104 for each pixel in that row.

This inner loop 4104 is comprised of a loop 4106 and a function 4116. The loop 4106 is
performed for each subpixel in the current pixel of the loop 4104. This inner loop 4106 is
comprised of a function 4108 and a loop 4110. The function 4108 determines which pixels of the
source image are in the source image window associated with the subpixel, as described above.

Once this is done the loop 4110 is performed for each such source image pixel.

The loop 4110 is comprised of a function 4112 and a function 4114. The function 4112
calculates the percentage of the subpixel's source image window area covered by the current
source image pixel of the loop 4110. Then step 4114 adds to the luminosity value being calculated
for the current subpixel of the loop 4106, the multiple of the percentage of the subpixel's source
image window area covered by the current source image pixel, times the source image pixel's color

component value corresponding to the color of the current subpixel.

Once the loop 4106 has been performed for each subpixel in the current pixel, function
4116 sets the current pixel's color value equal to a color having RGB color component values

corresponding to the red, green, and blue subpixel luminosity values calculated by the loop 4106.

WO 02/089105 PCT/US02/14217

-34-

FIGS. 42 through 53 relate to aspects of the invention relating to bicolor subpixel-

optimized images.

A "bicolor" image is one in which individual pixel colors range between two different color
values. Commonly these two different color values will be black and white, and the pixels of the
source and subpixel image will have values limited to black, white, or a grayscale value in between.
In some embodiments, however, the two different color values can represent any uniform
foreground and background colors, and colors intermediary between them. Bicolor images are
often used to represent text, because the display of text is often bicolored, involving a foreground
color and a background color. But bicolored images can also also be used to represent other
bicolored shapes, bicolored bitmaps, portions of multicolored bitmaps which are bicolored, or
multicolored bitmaps which are to be represented with bicolored output, such as a grayscale
image. For example, a multicolor source image can be treated as a corresponding grayscale
image, merely by treating each of its pixels as having a grayscale value corresponding to the

average luminosity of each of its three color components.

The advantage of using such bicolored subpixel-optimized output images is that they often
can provide a higher spatial resolution than multicolor subpixel-optimized output images. Such
higher resolution is allowed where the bicolors are black and white, greyscale values, or opacity
and transparency, because each subpixel can represent both the foreground and background of
such bicolor pairs equally as well as any othersince each color of each such bicolor pair has equal
components of red, green, and blue. Except for the need to perform color balancing, as is
described below, each subpixel's luminosity can be determined as a function of the extend to
which the portion of the source image corresponding to its own area in the output image is covered
by a foreground or a background color. This use of a smaller source window, i.e, one
corresponding to a subpixel's size rather than to a pixel's size, allows a more accurate spatial

representation of the source image.

Where the foreground and background colors are not black and white, the resolution
produced by bicolor subpixel-optimized images will be best if the foreground and background color

each have red, green, and blue values that are relatively equal in luminosity, but with the average

WO 02/089105 PCT/US02/14217

-35-
luminosity of the foreground and background color as different as possible. In fact, in some

embodiments of aspects of the invention relating to bicolored subpixel optimized images one or
both of the output bicolors are changed from the corresponding input bicolors by being shifted

toward a corresponding grayscale color to improve the spatial resolution of the output image.

The extent to which a subpixel of a bicolor subpixel-optimized output image is to
display the foreground color is sometimes represented by an alpha, or opacity, value. Such an
alpha values indicates the extent to which the subpixel's luminosity should correspond to the its
color component in the foreground color or in the background color. An alpha value of one means
the subpixel's color component value should equal the corresponding color component in the
forground color. An alpha value of zero means it should equal the corresponding color component
in the background color. An intermediary alpha values means the subpixel's color component
value should be a weighted blend of the corresponding color components in both the foreground
and backgound colors. Once a subpixel-optimized bitmap is represented in terms of alpha values
it can be used to represent bicolor images of a given pattern using different forground and
background colors. This is commonly used to represent font shapes, since in the presentation of
fonts the bitmap pattern of a given character-font shape at a given size is often displayed with

different foreground and background colors.

In some embodiments of aspects of the invention relating to bicolor subpixel optimizations
of bitmap images a scaled subpixel-optimized image of a bitmap image is produced by associating
a foreground or background bicolor coverage value with each subpixel of the scaled image as a
function of: (a) the ratio of the foreground or background color for each source image pixel in a
source image window corresponding to the area of the subpixel; (b) the percent of that window
covered by each such source image pixels; and (c) a color balancing function that distributes
subpixel coverage values to reduce color imbalance. In cases in which a bicolor output image is
being produced for either a grayscale or a multicolor input image, the coverage values calculated
for individual subpixel's can be derived as a function of the whole pixel luminosity of source image
pixels which cover its source image window. In some embodiments, the extent to which a given
luminosity value associated with a given subpixel's source image window is distributed to other

subpixels is a function of extent to which the luminosity value causes a color imbalance.

WO 02/089105 PCT/US02/14217

-36-
FIGS. 42 through 44 illustrate a method of determining the luminosity of each subpixel of a

grayscale bicolored image. In FIG. 42, rectangle 4200 encloses a window of the source image that
is associated with the red (R) subpixel of the scaled image. The luminosity to be associated with
such red (R) subpixel is a function of the whole pixel luminosity of the one or more source image
pixels that cover the source image window 4200, multiplied, respectively, by the percent of the
source image window covered by each such source image pixel. Any known method for calculating

or estimating such coverage percentages can be used.

In the embodiment illustrated in FIG. 42 source image window 4200 has associated with it
two horizontal scan lines 4210 and 4220 and two vertical scan lines. FIGS. 43 and 44 illustrate the
coverage lines for the source image windows 4300 and 4400 for green and blue subpixels,
respectively. As before, to estimate the extent to which the source image window areas are
covered by a source pixel, a mathematical function that determines boundary locations at which
the given coverage starts and stops along each scan line is run. Coverage is calculated as a
function of the lengths between one or more such boundaries or between such boundaries and the
boundary of the source image window associated with the given subpixel. This can be done in a

manner similar to that described above in FIG. 29.

When calculating bicolor subpixel-optimized images, color imbalances may occur. This is
because the bicolor methods is attempting to produce an output image in which each whole pixel
has a color value in the spectrum between the two bicolors (usually black or white), but the
coverage values of a pixel's individual red, green, and blue subpixels is determined by the percent
of foreground color in each such subpixel, meaning that the color of individual output pixels would
often have no relation to the desired bicolor spectrum (usually grayscale), in the absence of such

color balancing.

For example, in a grayscale image, if the source image makes a transition from totally
white to totally black at a location corresponding to the boundary between a red and green
subpixel in a subpixel optimized output image, the corresponding pixel in the output image will
have a red subpixel coverage value that would tend to cause that subpixel to be turned totally on,
and green and blue subpixels coverage values that would tend to cause those subpixels to be
tumed totally off. This would result in a visible red color for the pixel, even though, in this example,

the output image is supposed to be a grayscale image.

WO 02/089105 PCT/US02/14217
-37-

FIGS. 45 through 47 illustrate how a traditional linear color balancing method of a type
used in the prior art to color balance subpixel coverage values calculated from the rasterization of

font outlines can be used to color balance coverage values produced from bicolored bitmaps.

FIG. 45 illustrates a set of grayscale source image pixels under an RGB grid 4600. Grid
4600 has four pixel areas enclosed in bold line divisions. Each such pixel area is associated with a
whole pixel in a subpixel addressable screen on which the output image is to be displayed. Each
pixel area is further divided into three areas associated with the subpixels of associated pixel on
the subpixel addressable screen. Subpixel-associated area 4610 is associated with the red (R)
subpixel, subpixel-associated area 4612 is associated with the green (G) subpixel, and subpixel-
associated area 4614 is associated with the blue (B) subpixel. Subpixel-associated areas 4616

through 4632 are associated with their respective display screen pixels.

Subpixel-associated areas 4614 through 4630 are covered in whole or in part by source
image pixels having nonwhite luminosity values corresponding to various degrees of the
foreground color, which in this case is black. The total nonwhite luminosity value of the source
image pixels in each of the subpixel-associated areas 4614 through 4630 is mapped into
corresponding sub-pixel areas in the RGB grid 4700 of FIG. 46. The height of the hatched area
within each of the subpixel areas 4744 through 4760 is determined by the total nonwhite luminosity

values of the corresponding sub-pixel areas 4614 through 4630.

The bottom half of FIG. 46 illustrates the use of a center-weighted, symmetrical color filter,
which can be used to distribute the coverage value associated with the subpixel 4750 over five
subpixels centered around the subpixel 4750. Three ninths (3/9%s) of the coverage value of
subpixel 4750 is distributed into sub-pixeli4750, itself. Two ninths (2/9ts) of the coverage value of
the subpixel 4750 is distributed into the subpixels 4748 and 4752 which are immediately to its left
and to its right, respectively. To complete the color distribution of subpixel 4750, one ninth (1/9%)
of its coverage value is distributed into subpixels 4746 and 4754, which are two sub pixels to the

left and two sub pixels to the right, respectively of the subpixel 4750.

In general, color balancing distributed color values within a neighborhood of nearby pixels

in which the nearby pixels are normally within a distance of no more than one pixel from the

WO 02/089105 PCT/US02/14217

-38-
subpixel's whose color is being distributed, although in some embodiments that distance might be

as large as two pixels.

FIG. 47 illustrates the result of the symmetrical center-weighted color balancing filter of
FIG. 46 when it is applied linearly to the coverage value calculated for each of the subpixels 4740
through 4762 shown in the top half of FIG. 46.

In FIG. 47 the coverage value associated with each subpixel 4744 through 4760, shown at
the top of FIG 47, is distributed using a color balance filter which distributes its coverage value in
the same proportion to its own subpixel and to the two subpixels to the left and right as is shown in
FIG. 46. The central grid 4802 of FIG. 47 graphically illustrates the size of the contribution that
such a distribution makes to each of the subpixels 4740 through 4762. The distribution associated
with each of the given subpixels 4744 through 4760 is centered in a vertical column located directly

below its respective subpixel.

RGB subpixel grid pattern 4804 shown at the bottom of FIG. 47 illustrates the luminosity
value that is calculated for each subpixel 4740 through 4762 by summing ail the contributions which
have been made to it by all of the coverage value distributions illustrated in the center panel 4802.
To complete the method, the luminosity values of the red, green, and blue subpixels of each pixel in

grid 4804 are used as the three component color values that specified the color of each such pixel.

While this linear method does reduce the color imbalance of the scaled image, it does so at
the expense a substantial reduction in spatial resolution. This can be understood by comparing the
values in RGB grid pattern 4804 at the bottom of FIG. 47, which represents the subpixel luminosity
values in the subpixel-optimized output image, to the values in RGB grid pattern 4800 at the top of
FIG. 47, which represents the luminosity, or foreground color coverage, of the source image pixels
corresponding to the subpixels of that output image. As can be seen by FIG. 47, the spatial

resolution of the output image is smeared relative to the spatial resolution of the source image.

The present invention includes an innovation that provides similar color balancing of
subpixel optimized output images, but often with much less smearing of the output image. It does so
by using a non-linear color balancing filtering method. A method of applying this non-linear filtering
is illustrated in FIGS. 48 and 49.

WO 02/089105 PCT/US02/14217

-39-
FIG. 48's RGB grid pattern 4900 is a duplication of the RGB grid pattern 4700 of FIG. 46.

Once again, the total luminosity, or foreground color coverage, values of the source image pixels

that correspond to an associated subpixel are represented by hatched areas.

The first phase in this non-linear color balancing method is illustrated in FIG. 48. As before,
RGB grid pattern 4900 is divided into fourths by the bold line divisions and each fourth, bracketed
portions 4902, 4904, 4906, and 4908, is associated with a whole bixel of the scaled, or output,
image. Each of the pixel areas 4902, 4904, 4906, and 4908, is further divided into subpixel areas
corresponding to subpixels in the output image to be produced. For each pixel, a determination is
made of which of its sub pixels has the lowest subpixel luminosity, or foreground coverage value
and a luminosity (or alpha) value equal to this minimum luminosity/coverage value is added to a
luminosity/alpha value which is being calculated for each subpixel of the pixels 4912, 4914, 4916,
and 4918 of RGB grid pattern 4910, shown in the bottom half of FIG. 48.

In the top half of FIG. 48 the hatched line 4920 indicates the minimum luminosity/coverage
value of the pixel area 4902 is zero, since the first two subpixel-associated areas have luminosity
values of zero. Thus, the step shown in FIG. 48 sets the luminosity/alpha value for the red, green,
and blue subpixel areas of pixel 4912 to zero. In like fashion, the minimum luminosity value of pixel
area 4904 is determined by the value of the red subpixel area 4922 of the pixel 4904. This
minimum luminosity value is mapped into the corresponding pixel area 4914 in the bottom half of
the figure. Similarly, the minimum luminosity values of pixel areas 4906 and 4908 are mapped into
pixel areas 4916 and 4918 in the bottom half of FIG. 48. The resulting partially calculated
luminosity/alpha values after the completion of this step are represented by RGB grid pattern 4910
at the bottom of FIG. 48.

The second phase of the non-linear color balancing method is illustrated in FIG. 50. In this
example of the second phase, the portion of the luminosity/coverage value of each subpixel that is
in excess of the pixel's minimum [uminosity/coverage value is mapped into the RGB grid pattem
4910 by utilizing a color balance distribution filter of the type shown above with regard FIGS. 46 and
47.

The pixel grid 5000 at the top of FIG. 49 corresponds to the pixel grid 4900 at the top of
FIG. 48 (and has the same sub pixels 4740 through 4762) except that it represents the portion of

WO 02/089105 PCT/US02/14217

-40-
each subpixel's luminosity/coverage values(shown in high frequency hatching)FIG. that remains

after the value of the minimum subpixel luminosity/coverage value for the corresponding pixel

(shown in low-frequency hatching) has been subtracted from it. FIG.

The subpixel grid 5002 in the middle of FIG. 49 corresponds to the similarly shaped pixel
grid 4802 in the middle of FIG. 47, except that in it only the excess portion subpixel
luminosity/coverage values shown in the top of FIG. 49 are distributed using color balance filters of
the type shown in FIG. 46. As can be seen in this portion of the FIG figure, the excess
luminosity/coverage value for each subpixel is distributed to its own subpixel, to two pixels to the

left, and to two pixels to the right using the same proportional filter shown in FIG. 46.

The portion of FIG. 49 near its bottom labeled by the numeral 5004 shows the total of such
excess luminosity/coverage value which is distributed to each subpixel 4740 through 4762 in this
example of the non-linear method. The total excess luminosity/coverage value calculated for each
subpixel is added to FIG.the minimum luminosity/coverage value that been previously added to that
subpixel by the step illustrated in FIG. 48, as illustrated at the bottom of FIG. 49 to produce the total

luminosity/alpha value to be used for each subpixel in the output image.

) To complete the non-linear color balancing process, the luminosity/alpha values summed
for each subpixel of RGB grid pattern 4910 are used to determine the corresponding red, green,
and blue, color component values of its associated pixel. The red, green, and blue color values of
each individual pixel in such a display may not be equal, but the total of the red, green, and blue
color values in any neighborhood of five or so adjacent subpixels of a pixel row should be

substantially equal, or balanced.

A comparison of the results achieved by use of the linear method and the non-linear color
balance filtering method is illustrated by FIGS. 50, 51, and 53.

FIG. 50 illustrates the original unfiltered source pixel luminosity/coverage values as first
mapped into RGB grid patterns 4700 of FIG. 46 and 4900 or FIG. 48.

FIG. 51 illustrates the result of the non-linear filtering method, as shown at the bottom of
FIG. 49FIG.FIG.

WO 02/089105 PCT/US02/14217
-41-

FIG. 52 illustrates the result of the linear filtering method, as shown in RGB grid pattern
4804 of FIG. 47.

As FIG. 51 shows, the output of the non-linear color balancing method more closely
resembles the original spatial distribution of luminosity/coverage values of FIG. 50 than does the
result of the linear method, as shown in FIG. 52. The luminosity values produced by the non-linear
method of FIG. 51 are significantly less blurred, and, thus, provide a higher visible spatial resolution
than the output produced by the linear method. This is because the non-linear method seeks to
perform color balance distribution, which has the detrimental effect of blurring spatial resolution, only
on those portions of subpixel luminosity/coverage values which need such distribution in order to
prevent color imbalance. This can be seen by comparing the total of subpixel luminosity/coverage
values distributed to each subpixel using the non-linear methodFIG., as indicated by the numeral
5004 of FIG. 49, with the corresponding total which is distributed to each subpixel using the linear
method, as indicated by the entire crosshatched area shown for each subpixel at the bottom of FIG.
47.

FIG. 53 provides a highly simplified pseudo code description of one implementation of a
method of producing a subpixel-optimized bicolor output bitmap using the non-linear color balancing

method.

The algorithm 5300 in this figure is comprised of a loop 5301 which is performed for each
pixel row in the image. This loop performs two subloops 5302 and 5322 for each pixel row.

The loop 5302 performs a loop 5304, a function 5314 and a loop 5316.

The loop 5304 is performed for each subpixel in the current pixel of loop 5302. For each

such subpixel it performs a function 5306 and a loop 5308.

The function 5306 determines which pixels of the source image are in a window portion of
the source image corresponding to the subpixel's area in the scaled image. This can be performed
by any known coverage calculation or estimation function, including the ones described above with
regard to FIG. 17 through 44.

WO 02/089105 PCT/US02/14217
-42-

The loop 5308, comprised of functions 5310 and 5312, is performed for each source image
pixel that is totally or partially contained within the current subpixel's source image window.
Function 5310 calculates the percent of the source image Window's area covered by the source
image pixel's area. Function 5312 adds to a luminosity/coverage value calculated for the current
subpixel, the multiple of the percentage of the window area covered by the source image pixel time

the source image pixel's average foreground color intensity.

In cases in which the bicolor image is a grayscale image, the foreground color intensity can
correspond to either the luminosity, or the inverse of the luminosity, of each whole source image
pixel. If the source image is a multi-color image, the average luminosity value of each source image
pixel's color components can be used to determine a luminosity value that can be used for the

source image pixel in calculating its foreground color intensity for the purposes of function 5312.

Loop of 5304 can be used to determine the luminosity/coverage values of the type shown at
the top of FIGS. 46.

Once the loop 5304 is been performed for each subpixel in the current pixel, function 5314
finds the minimum subpixel luminosity/coverage value which has been so calculated for the current

pixel, as is illustrated in the top half of FIG. 48.

Once this has been done the loop 5316, comprised of functions 5318 and 5320, is

performed for each subpixel in the current pixel.

Function 5318 sets a luminosity/alpha value being calculated for the subpixel to the
minimum subpixel luminosity/coverage value determined for the pixel by the function 5314,

somewhat as is indicated in the bottom half of FIG. 48.

Function 5320 distributes the portion of the subpixel luminosity coverage value that exceeds
the pixel's minimum subpixel luminosity/coverage value to the luminosity/alpha values being
calculated for the subpixel and adjacent subpixel's in the current pixel row using a color balance

distribution filter, as is indicated in FIG. 49.

WO 02/089105 PCT/US02/14217

43-
In one embodiment of the invention, if the total of such distributions made to a given

subpixel exceeds the maximum allowed luminosity/output value, the subpixel's luminosity/alpha
value is limited to that maximum value. Although this clipping causes some color imbalance, the

inventors have found the resulting imbalances to be hardly noticeable.

Once luminosity/alpha values have been calculated for each subpixel in the row and the
loop 5302 has been completed, the loop 5322 causes a function 5324 to be performed for each
pixel in the row. This function sets the pixel color value equal to a color having a compound RGB
value with red, green, and blue component values corresponding to the luminosity/alpha values

calculated for the pixel's red, green, and blue sub pixels, respectively.

FIG. 54 illustrates an aspect of the present invention in which the user of a display device
can dynamically make tradeoffs between the extent to which a subpixel-optimized images produced
from a source images is produced by a multi-color subpixel optimization process or a bicolor
subpixel optimization process. An output image produced by the multi-color subpixel optimization
can represent scaled down color images with reasonable color accuracy, whereas the bicolor
subpixel optimization in this example can produce only grayscale output images. Butin some
cases, such grayscale output images will have a more accurate spatial resolution and, particularly
where the source image has black and white portions with sharp edges, less perceptible color

imbalance than an output image produced by the multi-color subpixel optimization.

A Color bitmap image 5400 may be scaled and subpixel optimized by utilization of functions
5410 and 5430, which use a bicolor subpixel-optimization method, such as one of those described
above with regard to FIGS. 42 through 53, to produce a scaled and subpixel-optimized grayscale
bitmap 5440. Color bitmap image 5400 may also be scaled and subpixel optimized by a process
5420 that uses a multicolor subpixel-optimization method, such as one of those described above
with regard to FIGS. 17 through 40, to produce a scaled and subpixel-optimized color bitmap 5450.

According to an embodiment of the present invention shown in FIG. 54, the user of the
display device can manipulate a control apparatus of the display device, such as a pointing device,
keyboard, or other input device, according to process step 5460 in order to achieve a blend of the

color bitmap 5450 and the grayscale bitmap 5440. The can be done, for example, by manipulation

WO 02/089105 PCT/US02/14217

-44-
of a slide bar. Process step 5480 receives the grayscale bitmap 5440 and the color bitmap 5450

and the user selected color/grayscale tradeoff information and blends the color values of the
corresponding pixels from the grayscale and color bitmaps 5440 and 5450, weighing color values

from each as a function of the user selected color/grayscale tradeoff 5460.

In some embodiments of the type shown in FIG. 54, if the user selects a tradeoff value at
either extreme of the color/grayscale spectrum, the process can reduce computation by only

calculating the bitmap 5440 or 5450 which corresponds to that selected extreme.

A benefit of this aspect of the present invention is that the user of a display device can favor
color balance and/or positional accuracy when that is most important or color accuracy when that is

most important or simply vary the tradeoff selection to find a more easily readable display.

Not all aspects of the present invention require subpixel-optimized text, and many of those
that do can use prior art methods of creating subpixel-optimized bitmap's of font shapes. However,

some aspects of the invention relate to innovations in methods of making font bitmaps.

FIGS. 55 through 97 relate to aspects of the invention relating to the forming and using

subpixel-optimized font bitmaps

FIG. 55 illustrates a font outline 5500, in this case an outline of a capital letter “B" in a
Times Roman font. The outline is shown superimposed over a subpixel grid 5502, which is
composed of a plurality of individual whole pixels 5504, each of which includes a red, blue, and

green subpixel, 5506, 5508, and 5510, respectively.

The font outline shown in FIG. 55 is one that could be used for display at relatively normal
text sizes, indicating that the invention's method of subpixel optimizing character-font shapes is
applicable across a broad range of applications and is not limited to small screen displays of the
type shown at the bottom of FIG. 11. However, when this aspect of the invention is applied to
small screen displays and/or the display of font at very small pixel sizes, it is preferred that the
fonts used be optimized for display at small sizes, such as in some embodiments ten pixels per em

or less, or eight pixels per em or less.

WO 02/089105 PCT/US02/14217

-45-
FIG. 56 illustrates a font which has been optimized for such small display on subpixel

addressable screens. FIG. 57 shows the same bitmap at twice the size. Unfortunately the
printouts of the bitmap shown in FIGS. 56 and 57 display the average luminosities of whole pixels
and fail to capture the higher resolution made possible when such a bitmap is shown on a subpixel

addressable display.

The font shown in FIGS. 56 and 57 have been produced by a hinting process which shifts
selected boundaries of individual font outlines to pixel boundaries, subpixel boundaries, and
horizontal and vertical dimension's intermediary between subpixel boundaries. Such high
resolution hinting is used in order to achieve optimum readability on subpixel displays. It is done
by having a font designer view subpixel-optimized bitmaps of individual characters with various
hinting values until he or she feels relatively satisfied that the character is as clear as possible
when display at such a small font size. As those knowledgeable of font hinting will understand, a
font can have hints which dictate the alignment of individual portions of a font outline across all size
renderings of that font, and special hints which are applied for the character-font shape at certain
pixel sizes. The font shown in FIGS. 56 and 57 have been hinted to optimize their display at eight
pixels per em, and some of them have specific hints which are to be applied only at such small

sizes.

In fact, most of the fonts in the 320 by 240 pixel resolution screen shots shown in the
figures of this application are of 8 pixel per em fonts that have been specifically hinted for display at
that size. These fonts allow a relatively large amount of web text to fit on a small screen, while
allowing a relatively high level of readability. These fonts allow the large majority of lower case
characters to be represented in four pixel columns or less, including space that separates adjacent
characters, if any. These fonts allow a majority of capital characters to be represented in 5 pixel

columns or less.

The readability of such small fonts is greatly increased by the use of either subpixel
optimization or anti-aliasing, because they allows information about the extent to which a character
shape covers a given pixel to be represented at more than just a binary representation at the whole
pixel level. In fact, subpixel optimization can be considered a type of anti-aliasing because it, like
traditional anti-aliasing causes pixels that are partially covered by a font shape to have color values

that vary as a function of the extent of such coverage.

WO 02/089105 PCT/US02/14217
-46-

FIG. 58 and 59 illustrate that subpixel-optimized bitmaps produced by the present
invention can be represented as font outlines and/or font bitmaps. The font outline descriptions
5802 contain a mathematical geometric description of the shapes of one or more characters in a
given font, preferably with hinting information designed to optimally place the boundaries of
character outlines at one or more different font sizes. These font outlines can be ones, such as
those just discussed, that have been designed to be rendered optimally on a subpixel addressable

display and/or have hinting which is been optimized for display on a subpixel addressable display.

A font renderer 5806 can be used to create a subpixel-optimized bitmap 5804 from such

outlines, as is be described below.

In some embodiments of the invention, illustrated in FIG. 58, a computer 5808 and/or an
application which is running on that computer display text using font bitmaps or font outlines
accessed over a computer network 5814 from a font server 5812. In other embodiments,
illustrated in FIG. 59, a computer 5900 and/or an application 5902 running on it have font bitmaps
5804 necessary to render text stored within them. Such computers and/or applications can store
only font bitmaps, or they can store scalable font outlines 5802 and render font bitmaps 5804 as

needed at different sizes.

The advantage of storing only font bitmaps is that it prevents the need to store font
outlines and a font renderer on the computer 5900. It also prevents the need for the computation
involved in font rendering. Furthermore, many font vendors are much more willing to allow font

bitmaps to be relatively freely available over the Internet then they are font outlines.

The advantage of storing font outlines is that if one is interested in rendering fonts at a
large variety of sizes, it is actually more efficient to store the code necessary for the font renderer
and to store scalable font outline descriptions than it is to store font bitmaps for all the different size

characters.

The advantage of receiving fonts from a font server as shown in FIG. 58 is that it allows a
client computer 5808, such as that represented in FIG. 58, to represent text in any one of a large

number of different font, size, and character combinations by downloading such fonts as needed,

WO 02/089105 PCT/US02/14217

47-
without the need to store a large library of fonts. Preferably the client computer 5808 will cache a

reasonable number of character-font bitmaps so that there is no need to communicate over the

network 5814 every time it seeks to display a string.

FIG. 60 is a highly simplified pseudocode description of an algorithm 6000 used by some
embodiments of the aspect of the invention relating to producing a subpixel-optimized font bitmaps.
This algorithm uses nonlinear color balancing of the type described above with regard to FIGS. 48
and 49. Such a subpixel optimization algorithm is particularly optimal for use in the display a text
characters, because the alignment of text outline boundaries with hole pixel boundaries is quite

common in rasterized font shapes because of the use of hinting.

The algorithm 6000 of FIG. 60 includes a loop 6002 which is performed for each pixel row
in the rasterization of an individual character-font shape at a given pixel resolution. This loop 6002
is comprised of three subloop's 6004, 6008, and 6020, which are sequentially performed for each

pixel row .

The loop 6004 is performed for each subpixel in the pixel row for which the current iteration
of the loop 6002 is being performed. For each such subpixel, the loop 6004 performs a function
6006, which determines the coverage value for each such subpixel as a function of the percent of

the subpixel's area covered by the character-font shape of which an image is being made.

FIGS. 61 through 90 are used to discuss methods which can be used to determine the

coverage value of each subpixel in step 6006 of FIG. 60.

As is indicated in FIG. 61, 62, and 63 the area in the image of the character-font shape for
which such a coverage value is calculated for a given pixel 5504 corresponds to the area of that
image which will be displayed by each red, green, and blue subpixel 5506, 5508, and 5510,
respectively. This is different than in the case of subpixel-optimized multicolor images, in which the
source image window corresponding to each subpixel is larger, as is indicated in FIGS. 14 through
16 above. The source image window used by the method of FIG. 60 has the same sizes as the
area of the source image window used for bicolor bitmaps described above regard to FIGS. 42
through 44.

WO 02/089105 PCT/US02/14217

48-
Such a higher resolution source image window can be used because the character-font

shapes described by most font outline descriptions are bicolor images, with the area covered by
the font outline considered as being associated with a foreground color (in most cases,
represented by an alpha value of one) and all other portions of the image being associated with a

background color (in most cases, represented by an alpha value of zero).

The calculation of the coverage values in function 6006 of FIG. 60 can be performed using
any prior art technique capable of rasterizing a character font outline relative to an array of pixels

having the same spatial resolution as the subpixel's of the grid 5502 shown in FIG. 55.

FIG. 64 through 67 illustrate some of the traditional methods which a been used to
calculate the percentage of a unit in a rasterization grid which is covered by a font outine 6402. In
the prior art, the unit of rasterization 6400 has typically been an aread corresponding to a whole
pixel in the output image. In the method of FIG. 60 it is an area corresponding to a subpixel in the

output image.

FIG. 64 illustrates one method of determining the coverage of a rasterization unit 6400
which uses mathematical techniques to exactly calculate the area of the unit that is covered by the

outline 6402. This is relatively computationally expensive, and thus is hardly ever used.

A substantially more computationally efficient method is shown in FIG. 65, which
calculates the percentage of the rasterization unit 6400 that is covered by the outline 6402 by

using piecewise linear approximations 6504 of the boundary of the character-font shape.

FIG. 66 illustrates an even more computationally efficient manner, although it produces a
substantially less accurate results. This method determines the percent of coverage of the
rasterization unit 6400 by determining what percent of a set of sample points 6600 fall inside the

shape of the outline 6402.

FIG. 67 illustrates a method of determining coverage values which provides more accurate
results for the same, relatively low degree of computation as the method of FIG. 66. It determines
the coverage of the rasterization unit as a function of the average percentage of a number of scan
lines 6700 and 6702 which are covered by the outline 6402.

WO 02/089105 PCT/US02/14217
-49-

FIG. 68 through 87 illustrate an extremely computationally efficient method of calculating
the coverage of a rasterization unit, which yields results that are typically better than a sampling

method such as that shown in FIG. 66 for the same amount of computation.

An embodiment of this method is described in much more detail in a U.S. patent
application filed in the name of one of the inventors of the present application, Sampo J. Kaasila.
This U.S. Patent application has the serial number 09/363,513. It was filed on July 29, 1999, and
is entitled "Systems For Rapidly Performing Scan Conversion With Anti-Aliasing Upon Outline
Fonts And Other Graphic Elements". This application has had its disclosure published in PCT
application PCT/US00/21559. This application is incorporated herein by reference in its entirety.

In the method of FIG. 68 through 87, the coverage value for a rasterization unit is
determined by that percentage of one of its two scan lines, a horizontal scan line 6804 or a vertical
scan line 6802, that is covered by a font outline’s shape 6402. The scan line whose coverage
value is used as the coverage value for the rasterization unit is that which has the more
intermediate coverage value. For example, in an embodiment where the coverage for the
horizontal and vertical scan lines is calculated in a range of values from O to 126, the scan line

chosen is that whose value is closest to 63, which represents a 50 percent coverage.

In FIG. 68 through 71 it is the percentage of coverage of the vertical scan line 6802 that is
used to represent the percentage of coverage of the rasterization unit 6400. In FIGS. 72 through
75 it is the horizontal scan line 6804 that has the most intermediate values, and, thus, which has its
percentage of coverage used to represent the percentage of coverage of the entire rasterization

unit.

In all the rest of the FIGS. 76 through 87 it can be seen that the coverage value of the
scan line with the more intermediaries coverage value normally is very close to the coverage value
for the entire rasterization unit, and that it normally never varies from the coverage value of the

entire rasterization unit by more than 25 percent.

FIGS. 88 through 90 represents other combinations of scan lines which can be used

according to a method which weighs the contribution of the coverage values of individual scan

WO 02/089105 PCT/US02/14217

-50-
lines to the coverage value of their associated rasterization unit as a function of which of those

coverage values have more intermediate coverage values. In such methods the coverage value
calculated for entire rasterization unit can be set equal to the sum of the coverage value of each
scan line times its mediality, all divided by the sum of each scans line's mediality. In this

calculation, a scan line's mediality equals the scan line’s middlemost percentage coverage value
minus the absolute value of the difference between that middlemost percentage coverage value

and the scan line's actual percentage coverage value.

FIG. 91 illustrates a hypothetical font outline 9102 mapped over the red, green, and blue
subpixel's 5506, 5508, and 5510, respectively, of a row 9100 of pixels 5504.

FIG. 92 illustrates the corresponding coverage values 9202 which have been calculated

for each of the subpixel's all the row 9100.

FIG. 93 illustrates how the coverage values determined for an individual subpixel can be
distributed using a linear color balance method. This linear color balancing is identical to that
described above with regard FIG. 46.

Returning briefly now to FIG. 60, once step 6006 of that figure has calculated or estimated
the coverage value for each subpixel of a row, as indicated in FIG. 92, a loop 6008 is performed for
each pixel in the row. This loop color balances the coverage values calculated for the subpixels of
arow. It does not use a linear color balancing routine of the type illustrated in FIG. 93 and
described above with regard to FIGS. 46 and 47. Instead it achieves higher perceivable spatial
resolution by using a non-linear color balancing technique similar to that described above with
regard to FIGS. 48 through 53.

The loop 6008 performs two functions, 6010 and 6012, and a loop 6014 for each such

pixel.

The function 6010 finds which subpixel of the current pixel has had the minimum coverage
value calculated for its subpixel. Then step 6012 adds this minimum coverage value to the

temporary alpha, or opacity, value being calculated for each subpixel of the current pixel.

WO 02/089105 PCT/US02/14217

-51-
Then a loop 6014 performs function 6016 and 6018 for each subpixel of the current pixel.

The function 6016 determines, for the current subpixel of the loop 6014, the excess of the
coverage value which has been calculated for it over the minimum coverage value which has been
found for the pixel of which the subpixel is part. Then function 6018 distributes this excess value
across the subpixel alpha values being calculated for the current subpixel and the two subpixels to
its left, and the two subpixels to its right in the current pixel row. This function corresponds to that

described above with regard to FIG. 49.

FIGS. 94 and 95 illustrate two different color balance distribution filters which are used in
one embodiment of the present invention. In this embodiment an asymmetrical center weighted
color balance filter shown in FIG. 94 is used to distribute the coverage values associated with the
red and green subpixels. The asymmetrical color balance filter shown in figure 95 is used to
distribute coverage values associated with blue subpixels. Thus, this embodiment of the invention
differs from the process described above with regard to FIG. 49 in that it used differently shaped

distribution filters for some colors than for others.

One of the inventors of the present application has found that because the eye perceives
green much more strongly that it does blue, that color balancing coverage values associated with
differently colored subpixels should use such different distribution filters. In other embodiments of
the invention relating to non-linear color balancing (including the non-linear color balancing of bi-
color images) a different color balancing filter could be used for each different color, the same color
balance filter could be used for all colors, and either symmetrical or asymmetrical color balancing

filters can be used.

The particular color-balancing filters shown in FIGS. 94 and 95 are designed for use with
coverage values that are calculated on a scale from 0 to 126. A given coverage value having a
value from 0 to 126 is associated with the set of five distribution values on the right hand side of
the tables of FIGS. 94 and 95 whose associated color value on the left side of that table is closest
to its own color value. For example, if the coverage value of the current subpixel was 126 for the
colors red or blue, an addition of 1 would be made to the alpha value being calculated for subpixels
two to the left and two to the right of the current subpixel, an addition of 3 would be made to the

alpha values being calculated for the subpixels one to the left and one to the right of the current

WO 02/089105 PCT/US02/14217

-52-
subpixel, and a value of 4 would be added to the alpha value being calculated for the current

subpixel. In this particular embodiment the alpha values are calculated on a scale from 0 to 12.

The relative size of the color balance distribution shown in the last row of FIGS. 94 and 95
reflect more accurately the desired distribution ratios. This is because the larger value distributed
in each of these last rows allows greater numerical resolution than is found in the rows above each

of them.

It should be appreciated that in other embodiments that use higher numerical accuracy to
describe the coverage or luminance values being balanced, the balancing distributions would have
ratios between the contributions to different subpixels more like those reflected in these last rows
of FIG. 94 and/or like those shown in the last row of FIG. 95. This is particularly true when filters of
the general type shown in FIG. 94 and/or FIG. 95 are in the color balancing of bicolor subpixel
optimizations of images, such as is described above with regard to FIGS. 48 through 52. This is
because, in such bicolor subpixel optimizations of bitmap images, there is little benefit in computing
the luminance to be color balanced at a resolution lower than that used the bitmap being subixel

optimized.

Once loop 6008 of FIG. 60 has caused step 6018 to be performed for each subpixel of
each pixel in a row, each pixel will have a separate alpha value calculated for each of its three
subpixels, with each such alpha value having one of thirteen opacity levels. This means it is
possible for each pixel to have 1 of 2,197 (i.e., 13%) different possible combined alpha values. In

other embodiments of the invention alpha values with higher or lower resolution can be used.

In many embodiments of the invention, particularly those designed to run on computers
with limited computational capacity or in systems in which it is desirable to reduce the bandwidth or
storage capacity required to store or download font bitmaps, it is desirable to map from the
relatively large color space of the 2,197 combination of different subpixel alpha values possible

after such color balancing into a smaller color space.

The embodiment of the invention in FIG. 60 performs such a mapping. Once the loop 6008
has been performed for each pixel in the current row, a loop 6020 performs an additional function

6022 for each such pixel. The function 6022 takes the three alpha values which have been

WO 02/089105 PCT/US02/14217

-53-
calculated for each of a pixel's subpixels and uses them as an input value of a lookup table that

maps from each of the 2,197 possible color value defined by the possible combination of a pixel's
three alpha values into 1 of 122 values. In this embodiment the color space has been reduced
down to such a small number of colors so that a machine that has a 256 value color space will be
able to display each of the 122 values selected for use in the display of subpixel optimize fonts
while still having over half of such a limited color space for other uses. The uses of such a small
color palette to represent font bitmaps reduces the number of bits required to store such font
bitmaps and makes them more efficient to download. In other embodiments of this aspect of the
invention the source and the destination color spaces used in such a mapping could have different

sizes.

FIG. 96 illustrates the method 9600 which has been used to create such a color mapping
in one embodiment of the preferred invention. It is to be understood that in other embodiments,
other types of mapping could be used, and as indicated above. In some embodiments no such

mapping into a smaller color space need be used at all.

The method of FIG. 96 starts with a step 9602 which runs multiple characters from multiple
fonts through the non-linear color balance subpixel optimize algorithm described above with regard
to FIGS. 60 through 95. When this is done a histogram is kept of the number of times each of the
possible 2,196 different pixel alpha values is calculated for any of the pixels. This histogram is
useful because most of the three-colored alpha values calculated for pixels in subpixel-optimized
font bitmaps tend to be concentrated into a various small regions of the total possible color space
of 2,196 such three-color alpha values. This concentration is probably even more pronounced with
non-linear color balancing, because it substantially reduces the amount luminosity distributions due

to color balancing.

Next a function 9604 creates a limited color palette, in this case having 122 colors, by
performing the functions 9606 and 9608. The function 9606 selects the thirteen grayscale values
which are possible for whole pixel alpha values, given that each subpixel can have one of thirteen
alpha levels. Then the function 9608 selects the 109 other most frequently occurring colors in the

histogram previously calculated by step 9602.

WO 02/089105 PCT/US02/14217

-54-
Once the limited color palette has been selected, a loop 9610 is performed for each of the

2,196 possible whole pixel alpha values. For each such possible alpha value a conditional 9612
tests to see if that input color exactly matches one of the 122 colors. If so, the function 9614
associates the input color with its identical output color in the lookup table being constructed. If the
condition 9612 is not met, a loop 9618 and a function 9628 will be performed for the current input

color of loop 9610.

The loop 9618 is performed for each of the 122 output colors in the palette. Ithas a
conditional 9620, which tests to see if the difference between the red alpha value of the input color
to be mapped and the current output color of the loop 9618 is of the same sign as the difference
between the green alpha value of the current input color and the green output alpha value for the
current output color. The conditional 9620 also tests to see if the difference between the red alpha
value and the green alpha value of the current output color is less than the difference between the
red alpha value and the green alpha value of the input color (plus a possible value X to allow some
leeway). If these two conditions, which are designed to prevent relatively noticeable differences
between an input color and the output color to which it is to be mapped, are met, functions 9622
through 9626 will be performed.

Function 9622 calculates the distance from the input color to the output color. Function
9624 tests to see if that distance is the closest distance so far to the input color in the current loop
9618. If the test of function 9624 is meet, step 9626 saves the current output color of the loop
9618 as the closest allowed palette color. After the loop 9618 has been performed for each of the
122 output colors of the limited palette, step 9628 associates the current input color of the loop

9610 with the closest allowed palette color calculated in the loop 9618.

Once the loop 9610 has been performed for each of the possible input colors, each of

those input colors will have been mapped to one of the 122 output colors.

In the particular color mapping scheme shown in FIG. 96 non-grey scale pixel color values
produced by color balancing get mapped in to greyscale color values if they do not get mapped
into one of the one hundred and nine most frequently occurring non-greyscale color values
selected by step 9608. This generally yields results at least as good as traditional anti-aliasing,

which represents all bitmaps with a greyscale alpha value.

WO 02/089105 PCT/US02/14217

-55-
FIG. 97 illustrates an algorithm 9700 used to display font bitmaps of a type generated by

the methods of FIG. 60 and 96 on a subpixel addressable screen.

The loop 9702, comprised of the function 9704 any loops 9706 and 9714, is performed for

each string to be displayed.

Function 9704 samples a set of points in the rectangle of the bitmap at which the string is
to be drawn, to determine the average background color value for the string. In other
embodiments the background color is separately determined for each character or for each pixel of
each character, but in the embodiment shown, the background color is determined only once for

each string to save computation.

Once the background color for the string has been determined, loop 9706 performs a
subloop 9708 and a function 9712 for each of the 122 whole pixel alpha values, described above
with regard to FIG. 96.

The loop 9708 performs a function 9710 for each of the three subpixel colors. The
function 9710 calculates the luminosity value for the current subpixel color as a function of the
components of the current whole pixel alpha value corresponding to that current subpixel color. It
sets the luminosity value it is calculating equal to this subpixel alpha value multiplied by the
luminosity of the current subpixel's corresponding color in the foreground color of the string to be
drawn, plus a quantity of one minus the current subpixel's alpha value multiplied by the luminosity

of the current subpixel's corresponding color in the background color determined by function 9704.

Once this loop has been performed for each of the three subpixel colors, function 9712
maps the current whole pixel alpha value of the loop 9706 into the whole pixel color value

comprised of the three subpixel luminosities which have just been calculated in the loop 9708.

Then the loop 9714 performs the function 9716 and the loop 9718 for each of the

characters of the current string to be displayed on a subpixel addressable display.

Function 9716 accesses the font bitmaps for the current character. Then the loop 9718
performs functions 9720 and 9722 for each pixel of that bitmap. Function 8720 finds the color

WO 02/089105 PCT/US02/14217

-56-
value which has been mapped by the loop 9706 into the current whole pixel alpha value indicated

for the current pixel in the character’s font bitmap. Once this color value has been found, function
9722 sets the comesponding pixel in the subpixel addressable display to the that whole pixel color

value.

Once the loop 9718 has been performed for each pixel of each character of the string, the

string will have been completely displayed in a subpixel optimize manner.

FIGS. 98 through 101 are used to illustrate how well the techniques for image and font
scaling and subpixel optimization work. FIGS. 98 and 100 illustrate views of two different web
pages laid out and displayed at 640 by 480 pixels using a common browser program. FIGS. 99
and 101 illustrate the same web pages after their images and text have been scaled by the method
described above so as to fit on a 320 by 240 display. Unfortunately, the 320 by 240 pixel images
are printed with grayscale values determined by the average luminosity of its whole pixels, and

thus the actual clarity added by subpixel resolution is not shown in these images.

FIGS. 102 through 113 illustrate in more detail the interaction between a proxy server and

a thin client computer in one embodiment of the present invention.

FIG. 102 is a highly schematic box diagram of a system including a proxy server 210 and a
thin client 200 of the type described above in regard to FIG. 2.

The proxy server 210 includes a browser 10200 which includes programming 10202 to
perform the standard functions of a full Web browser. This programming has been modified
because the browser operates as a proxy for the thin client. When the browser receives over the
network an HTML description 10204 of a requested web page, it creates a two dimensional layout
10206 of that web page.

FIG. 103 illustrates a portion of HTML description of the web page whose display is shown
in FIGS. 98 and 99. The numerals 10300 shown in FIG. 103 illustrates portions of text in the
HTML which are shown in the left-hand column of the web page shown in FIGS. 98 and 99. The
numeral 10302 points to an image tag that identifies the bitmap used to represent the word

"Sections” shown in the same column.

WO 02/089105 PCT/US02/14217
-57-

When the browser code receives the download of the web page, it attempts to create a
layout 10206 of that web page at a virtual screen resolution, which corresponds to the size of the
window into which it thinks it is displaying all or a portion of the web page. We call this window into

which the browser thinks it is displaying the web page the virtual screen 10208.

FIG. 104 illustrates the layout 10206 of the web page shown in FIGS. 98 and 99, and it
shows in heavy black rectangle 10208 the mapping of the virtual screen into that layout. 10220
shows the actual screen image which is displayed on the thin client given the location of the virtual

screen shown in FIG. 104.

Many web pages today include elements larger than the 640 by 480 virtual screen
resolution used in the example system being described. The layout will have the minimum width
required to layout the objects of the web page, or the width of the virtual screen, which ever is
larger. For example, it is common today for many web pages to be laid out with a minimum
possible resolution of 800 pixels. In this case the virtual screen will have a smaller width than the
layout. This is the case in the example shown in FIG. 104. The view window 10210 shown in FIG.
102 represents that portion of the virtual screen which is to be actually displayed upon the screen
of the thin client. In views shown in FIGS. 99 and 101 the view window equals the virtual screen.
But as the user zooms in on a portion of the virtual screen, the zoom's scale factor control 10216

will change and the view window will be mapped into a subset of the virtual screen.

Scroll control 10218 causes the view window to move relative to the layout. If the view
window is moved so that it includes a portion of the layout which is not on the virtual screen, a
command will be sent to the browser software to scroll the virtual screen. The event queue 10220
stores events, that is, user input, which have been received on the thin client and which have been
uploaded to the proxy server for corresponding action by the browser. Events which occur on the
screen of the thin client are mapped through the view window to the corresponding locations on the
virtual screen and then placed in the event queue of the browser, so that the browser will respond
to such input as if it had been received at the appropriate location on the screen (aka the virtual

screen) which it thinks it is drawing directly onto a video output device.

WO 02/089105 PCT/US02/14217

-58-
The browser programming 10202 of FIG. 102 has been modified so that each time it thinks

itis drawing an object on the virtual screen it creates a corresponding scaled-down object at a

correspondingly scaled location in a download display list 10212.

This diéplay list is downloaded over the network 10222 to the client computer, which stores
it as is indicated by the numeral 10212A. The scaled down images referred to by this display list
10214 are also downloaded. Programming 10218 located on the thin client displays the strings,
images, and other elements contained in the display list on the thin client screen 10221. If the user
clicks on the thin client screen, the operating system 10222 of the thin client places such a click
and its location on the thin client's screen in an event queue 10224. Each such event which does
not relate to programming handled locally on the thin client is uploaded to the event queue 10220

of the proxy server, as described above.

FIGS. 105A through 110 are highly simplified pseudo code descriptions of programming
and data structures on the browser and thin client computers designed to control their interaction

for the purpose of allowing the thin client to browse web pages through the proxy.

FIGS. 105A and 105B are highly simplified pseudocode representation 105000s of
portions the browser's code 10202 shown in FIG. 102 used to help it function as a proxy for the

thin client.

In the particular embodiment illustrated in these figures, a large Web browser designed for
normal use has been patched so as to make it perform as a proxy. Itis to be understood that in
other embodiments of this aspect of the invention the functionality necessary to make the browser
operate as a proxy could be more intimately and elegantly integrated into the browser's code. In
yet other embodiments, code in the operating system, or in functions which intercept operating
system calls can be used to make a standard Web browsing program operate as a proxy for a thin

client.

WO 02/089105 PCT/US02/14217

-59-
In the embodiment shown in FIG. 105A, if the browser receives a request from the thin

client for a web page, steps 10502 and 10504 relay that request to the server computer indicated
in the URL of the request.

If the browser receives an indication from its own code that the browser has completed a
draw or redraw of the virtual screen 10208 described above with regard FIG. 102, functions 10506

and 10510 will call the screen capture and download routine shown in FIGS. 106A and 106C.

FIGS. 106A through 106C are highly simplified pseudo code descriptions of the screen

capture and download routine 10600.

When this routine is called by function 10510, just described, its step 10602 asks the
browser for a screen redraw, which causes the browser to call routines to draw each of the
elements in the web pages layout which all or partially fit within the virtual screen. The routine of
FIGS. 106A through 106B records information contained in each of these draw calls and uses it to

create the download display list 10212 shown in FIG. 102.

If the browser calls a measure string routine 10606 of FIG. 106A, this routine causes
functions 10608 through 10618 to be performed. Such calls are made by the browser to determine
the size of text itis seeking to layout into the virtual screen. Although not shown in the figures,
these same functions 10608 and 10610 are performed anytime the browser makes a call to
measure string size, even if it is not d‘uring the operation of the screen capture and download
routine shown in FIGS. 106A through 106B.

Function 10608 maps the font specified in the measure string call into a font having a
different font family and a different font size. This font substitution is controlled by three
considerations indicated by numerals 10608 through 10616.

Consideration 10608 seeks to select a size for the substitute font as a function of the

requested font size in the call to the measure string routine and the display scale factor.

The display scale factor is a ratio of the resolution along a given dimension of the portion

of the virtual screen 1028 corresponding to the view window and the resolution, along the same

WO 02/089105 PCT/US02/14217

-60-
dimension, at which the view window will be displayed on the thin client. In some cases the display

scale factor will have different components to represent different scaling ratios to be used along the
horizontal and vertical directions, but in many cases the display scale factor will be comprised of a

single scaling ration to be used for both horizontal and vertical resolution.

In the embodiment shown in FIG. 102, this scale factor is stored in the Zoom/Scale Factor
Control 10216.. In cases where the virtual screen has a resolution of 640 by 480, the view window
equals the size of the virtual screen, and the view window is displayed on all of a 320 by 240
display, the display scale factor will be two, meaning that elements are to be drawn on the screen
of the thin client at 1/2 the pixel resolution at which the browser thinks it is drawing them upon its

virtual screen.

Consideration 10612 replaces all font sizes which will be small when displayed on the thin
client screen with font families which are narrower and taller than the average pixel size of the font
which would be selected by the consideration 10610 alone. When reducing from a 640 x 480
virtual screen to a 320 x 240 display screen this can include most or all web page text represented
in character, as opposed to bitmap, form. This substitution is done because the subpixel
addressable displays used with this embodiment of the invention have three times the subpixel
resolution in the horizontal direction as they do in the vertical direction. Because of this,
decreasing the width of characters has a less negative impact on readability than decreasing the
their height. Thus, to display the maximum amount of relatively easily readable text on such a
subpixel addressable display screen, this substitution caused thewidth of characters to effectively
be scaled down by more than the display scale factor and the height of such characters to
effectively be scaled down by less than the display scale factor. For example, the fonts of the
small screen displays shown in FIGS. 56, 57, and 99, 101, 168, 169, 172, 173, and 174 have all

been substituted by fonts which have been scaled in such a manner.

The fonts in these figures have a pixel size of eight pixel per em. A majority of the lower
case letters in this font fit within an advance width of four pixel columns of less. This width of four
pixel columns or less includes the spacing, if any, that occurs between the shapes of characters
having such widths. In these particular fonts, over eighty-percent the lower case characters of the
roman alphabet fit within such an advance width These characters have an x-height of more than

four pixel rows, which makes them generally considerably taller than they are wide. As a generally

WO 02/089105 PCT/US02/14217

61-
rule, such a relatively narrow font can represent a larger amount of text within a given area at a

given level of readability than a wider font.

The consideration represented by the numerals 10614 and 10616 tests to see if a flag has
been set to limit minimum font size, indicating that no fonts should be shown on the thin client's
display below a certain pixel size. Commonly this flag will be set to prevent the display of text that
is too small to read. It can be unset when the user desires to see a more accurate scaled-down
representation of how the web page text would normally be laid out if actually shown on a display
having the virtual screen size. Such a desire is particularly likely when the display scale factor is
large, meaning that placing such a minimum limit on text size would drastically alter the

appearance of the web page’s layout.

If, as is often the case, the system is limiting minimum font size, then steps 10614 and
10616 prevent the substitute font size from being below a minimum pixel size. In a current
embodiment of the invention, this minimum pixel size is eight pixels per em. The developers of this
embodiment developed hinted fonts for subpixel display at seven pixel per em, and although they
found such fonts relatively easy to read, they received feedback from other users that such small

fonts were too difficult to read.

The limitation on minimum font size often substantially changes the relative size of fonts at

which a web page’s variously sized fonts are actually displayed.

In some embodiments of the invention, all Web text is displayed at one font size. This
actually works quite well for most web pages, because in most web pages the truly large fonts are

represented by bitmaps.

Once the function 10608 has determined which font family and font size should be
substituted for the font with which the measure string routine has been called, function 10618
returns the string measurement of the string with which the routine was called, given the size of the
string’s characters in the substituted font and font size, after that measurement has been scaled up

by the display scale factor.

The return of this value causes the browser's layout engine to lay out the web page using

font metrics for characters that are scaled, relative to the pixel size at which those characters will

WO 02/089105 PCT/US02/14217

-62-
actually be displays by the display scale factor, which is the ratio of the resolution of the portion of

the virtual screen corresponding to the view window and the actual resolution at which the view
window will be displayed on the thin client screen. This means that the virtual screen is being laid
out using font metrics that are different than the actual font metrics that will be displayed as a result

of that layout.

If the screen capture and download routine receives a call to a string draw routine 10620,

this routine causes functions 10621 and 10624 to be performed.

Function 10621 transforms the screen position at which the string is to start being drawn
into the corresponding position on the thin client screen at which the string will ultimately be
displayed. This transformation takes into account the mapping between the view window 10210
and the virtual screen 10208 illustrated in FIG. 102. This mapping reflects both the current zoom
setting stored by the control 10216 and a current scroll setting stored by the scroll control 10218
also shown in FIG. 102.

Function 10622 tests to see if the substituted font family and size associated with the
string by the prior call to the measure string routine, described above with regard to numerals
10606 through 10618, and any other font attributes requested for the display of the current string,
are different than the current values for such font attributes. The curent value for each such font
attribute is defined by the last value for each such attribute defined by a font commands already
recorded in the download display list. If such differences are found, function 10623 stores a font
commands at the current end of the display list changing any such font attributes to

thoseappropriate for the display of the current string.

Function 10624 stores the string with which the string draw routine has been called and
the transformed screen position just calculated by step 10622 at the end of the download display
list 10212, illustrated in FIG. 102. As described below with regard FIG. 108, this is done by placing
a string command in the display list containing the string’s transformed start position and its

characters

If the screen capture and download routine receives a call to a rectangle draw routine
10626, this routine causes functions 10628 through 10634 to be performed. Rectangle draw

WO 02/089105 PCT/US02/14217

-63-
commands are commonly called by browsers to create areas of a web page with different

background color, as well as to draw horizontal and vertical lines which can be used as underlining

for text or demarcations between different portions of the web page’s layout.

Function 10628 transforms the geometric values contained in the call to the
corresponding geometric values with which a corresponding rectangle will be drawn on the thin
client's display. This includes transforming the rectangle’s start screen position, and its width and
its height.

Function 10630 tests to see if the rectangle’s color is different than the current (i.e., last)
rectangle color in the display list. If so, function 10632 adds a background color command to the
end of the display list changing the current background color to the color specified in the current

call to the rectangle draw routine.

Next function 10634 stores the rectangle and its transformed screen position, width, and

height at the end of the download display list with a rectangle command.

If the screen capture and download routine receives a call to a bitmap draw routine 10636
shown in FIG. 106B, this routine causes functions 10638 through 10670 to be performed. Bitmap
draw routines are called by browsers to display pictures, pictures of fonts, banner ads, and images

associated with hot zones and other graphical user interface bitmaps of a page.

In some embodiments, only the first screen of given animations are captured and
recorded to the download display list to reduce the amount of bandwidth required to display web
pages. In other embodiments, particularly those with higher bandwidth links such a restriction

need not apply

In the embodiment of the invention which is described with regard to FIGS. 106A through
160C, bitmap draws associated with certain graphical user interface’s are ignored because the thin

client's programming stores subpixel-optimized, scaled-down bitmaps for such controls.

Step 10638 tests to see if the URL of the image for which the bitmap draw routine has

been called is already in a download image list, not shown in the figures, which contains each of

WO 02/089105 PCT/US02/14217

-64-
the images referred to in the download display list. If not, the requested bitmap has not yet been

processed for the current download and functions 10642 through 10662 need to be performed for
it.

Function 10642 tests to see if the bitmap is a color bitmap. If so it causes functions 10644
through 10654 to be performed. Function 10644 scans the color images for one or more individual
areas of sufficient size to justify separate treatment which each contain only colors from a single
bicolor spectrum. A bicolor spectrum corresponds to a set of colors which lie in a line in an RGB
color cube (i.e. a color cube defined by red, green, and blue value ranges in each of its three major

- dimensions).

For each bicolor portion of the image found which is large enough to justify individual
processing, function 10646 causes functions 10648 and 10650 to be performed. Function 10648
performs a bicolor subpixel optimization, of the type described above with regard to FIGS. 42
through 53, on the current portion of the image using the most extreme ends of its bicolor spectrum
as its foreground and background colors, and using the current display scale factor to determine
the extent to which it scales down that portion of the image. This subpixel optimization, like that
performed in steps 10654 and 10658 described in the next few paragraphs, scales down the image
by the display scale factor, which is the ratio between the resolution of the image in the virtual
layout of the proxy browser and the resolution at which it will be displayed on the thin client's

screen.

After this subpixel optimization has been performed, function 10650 determines if the
foreground color is too chromatically unbalanced. That is, it is to close to a pure red, green, or blue
color. If this is the case, such color purity would decrease the accuracy with which it can display
the spatial resolution of the color image. If this is the case, the foreground color can be replaced
by a corresponding color which is closer to a grayscale value, and thus which will allow more

accurate spatial representation.

In some embodiments of the invention such foreground color substitution will not be used
because it might upset the color amounts of the color image. In general it is best not to use such
foreground color substitution unless the foreground color appears throughout a substantial portion

of the entire color image. In other embodiments of the invention the background color associated

WO 02/089105 PCT/US02/14217

-65-
with a bicolor image could be changed. But the Changing o the background colors of images on

web pages is often unadvisable.

For each non- bicolored portion of the current image, function 10652 causes step 10654 to
perform a multicolored subpixel optimization, of the type described above with regard to FIGS. 14
through 41, on that portion of the bitmap at the current display factor.

If the bitmap for which the bitmap draw routine has been called is a grayscale bitmap,
function 10656 causes step 10658 to perform a bicolor subpixel optimization on the bitmap using

black and white as the foreground and background colors at the current display scale factor.

Then function 10662 stores the scaled-down, subpixel-optimized bitmap at the end of the
image list with a unique image ID, its URL, and its scaled width and height.

Whether or not the image with which the bitmap draw routine has been called was
previously in the image list, by the time the program advances to function 10664 it will be in that
list, and will have been assigned an ID number and a transformed width and height. At this time
function 10664 transforms the screen position with which the bitmap draw routine has been called
for the image to one applicable to the thin client's screen, and then stores an image location
command of the type shown in FIG. 108 having the image's image ID, its transformed screen

position, and its transformed width and height at the end of the download display list.

In some embodiments of the invention all bitmap images are subpixel-optimized using the
multicolor subpixel optimization routine. In other embodiments only grayscale bitmaps undergo

any bicolor subpixel optimization.

In some embodiments of the invention vector images can be handled by performing
subpixel optimization upon the shapes defined by such vector descriptions. In some such
embodiments such subpixel optimization is performed on the proxy, but in others it is performed on
the thin client. One of the advantages of vector, or geometrically defined, drawings it is the
compactness with which their descriptions can represent an image. Thus when bandwidth to the
thin client is a primary restriction, it might well make sense to download vector descriptions of

images and have the thin client then render them using subpixel optimization.

WO 02/089105 PCT/US02/14217
-66-

It is possible in some embodiments, to have image recognition performed upon images,
and then have the recognized images downloaded to the thin client in a symbolic representation.
For example, it is common in many web pages to represent large text with bitmaps. Optical
character recognition could be performed on such bitmaps, and corresponding characters and their
font, or an approximation of their font could be downloaded symbolically, so as to reduce the

bandwidth required in order to describe the page to the thin client.

If the screen capture and download routine receives a call to the routine to create a control
object, such as a radio button, check box, text field, or button from the browser, the controlCreate
routine 10666 shown in FIG. 106C causes functions 10667 through 10670 to be performed.
Function 10667 transforms the screen position at which the browser has requested a control to be
drawn to the location at which it is to be drawn in the thin client's screen. A function 6668 places a
corresponding control create command as indicated in FIG. 108 in the download display list,
including its corresponding text label, and function 10670 creates a corresponding browserside

portion of the control object.

In this embodiment of the invention the functionality of a control object shown in the thin
client's screen is shared between the proxy and the thin client. State information, such as whether
not a check boxe is checked, or which set of radio buttons has been pushed, is stored on the thin
client. This prevents the need for communication from the thin client to the proxy every time the
user enters information into such a control object. Usually it is only when the user clicks some sort
of a button which indicates that the information stored for such controls is to be transmitted to the
remote server computer which originally generated the web page, that the client needs to send

such information to the proxy, for relay to such a server.

In other embodiments of the invention having a higher bandwidth link to the thin client, it
might be desirable to simplify the code of the thin client, by having more or substantially all of the

functionality associated with individual control objects run on the proxy.

When the screen capture and download routine determines that the screen redraw
requested by function 10602 of FIG. 106A is complete, function 10672 of FIG. 106C causes
function 10764 to call the download display list routine 10700 shown in FIG. 107.

WO 02/089105 PCT/US02/14217
-67-

As shown in FIG. 107, the download display list routine has a function 10702 that places
all elements in the download display list which are to be totally or partially newly displayed on the
new thin client's screen in a download stream. Normally this includes any elements in the
browser's virtual screen which occur within the current view window. As is explained below,
however, in the case of a scroll in which a significant portion of the prior bitmap on the thin client's
screen can be reused, only elements which occur at least partially in the portion of the view
window that is not in the reusable portion of the thin client screen's current bitmap are placed in the

download stream.

In many embodiments of the invention the functions of FIGS. 106A through 106C which
creates the download display list do not enter an element on the download display list if it does not

fit within the view window. In other embodiments this filtering takes place in function 107002.

In some embodiments of the invention elements which are downloaded are clipped, so
that only those portions of such elements which are to actually fit within the thin client screen are
downloaded. This would have the benefit of decreasing the number of bits required for download,

but it would add computational complexity.

Once all the elements on the download display list to be shown on the thin client screen
have been placed in the download stream, function 10704 places the bitmaps of all images with a
corresponding image location command in the download stream at the end of the download
stream, as indicated by the numeral entries 10818 in FIG. 108. Some embodiments of the
invention, before they places such bitmaps at the end of the download stream perform a lossy
compression on them. In some embodiments, the algorithm used is one that clusters the color
values in the image into clusters of colors having visually imperceptible differences in RGB color
values, using a metric which takes into account the fact that green color values differences are
more perceptible than red color value differences, and that red color value differences are more

perceptible than blue color value differences.

WO 02/089105 PCT/US02/14217

-68-
Then function 10705 compresses the download stream, including the images previously

compressed by the lossy algorithm, using a lossless compression algorithm. Standard prior art

lossless compression algorithms can be used for this purpose.

FIG. 108 is a schematic illustration of such a download display stream. In some

embodiments such a stream is actually represented using a markup language.

The font commands 10812 shown in FIG. 108 represent font commands recorded in the
display list by function 10623 of FIG. 106A.

The string commands 10814 of FIG. 108 represent commands recorded in the download
display list by the step 10624 of FIG. 106A.

The background color commands 10806 of FIG. 108 represent the background color

commands entered by the function 10632 shown in FIG. 106A.

The rectangle commands 10808 of FIG. 108 represent rectangle information stored by
function 10634 of FIG. 106A.

The image location commands 10810 shown in FIG. 108 represent image location
commands recorded by the function 10664 of FIG. 106B.

The control commands 10816 ofn FIG. 108 represent control commands placed in the
download display list by the function 10668 of FIG. 106C.

Returning now to FIG. 107, once all the elements for the download stream have been
selected and the stream is ready to be sent, function 10706 opens a socket connection between
the browser computer and the thin client, and then function 10708 sends the download stream's
display list information down to the thin client. The thin client then displays information, as is
described below in greater detail with regard to FIGS. 109A through 109C.

WO 02/089105 PCT/US02/14217

-69-
Returning now to FIG. 106C, once the call in the function 10674 to the download display

list routine is complete the function 10676 clears the display list, so the new display list can be

created for the next screen which is to be downloaded to the thin client.

Returning now to FIG. 105A, we have just described the completion of the screen capture

and download routine called by function 10510 shown in that figure.

As shown in FIG. 105A, if the browser's proxy code receives a query from another portion
of the browser code for the state of one or more control objects displayed on the thin clients
screen, function 10516 sends a query to thin client for the state of that one or more control objects.
When such state information is received from the thin client, it is retumed to the programming

which made the request for such state information.

As was described above with regard to functions 10666 through 10670 of FIG. 106C, this
embodiment of the invention actually has the thin client draw and store state information about
individual control objects, such as radio buttons, check boxes, and text entry fields, to reduce
communication bandwidth as the user changes information prior to selecting to have it submitted to
the web site on whose web page such controls are shown. Commonly when the user clicks on a
submit button the associated click event is transmitted up to the proxy computer, it has its screen
coordinates transformed the corresponding coordinates on the virtual layout screen, and then itis
placed in the browser's event que for the browser code to respond to that click event as if it had
been generated on the screen, having the virtual screens resolution, which the browser thinks it is
displaying. Once this is done, the browser code traditionally asks for the state of all of the current
web page’s control objects, so it can post that information back to the web server from which the
current web page came. It is such requests that cause the operation of functions 10514 through
10518.

If the browser's proxy code receives a scroll or move command from the thin client
functions 10522 through 10534 of FIG. 105A are performed.

Function 10522 moves the view window 10210 shown in FIG. 102 relative to the browser’s
layout 10206 in response to the scroll or move. Then function 10526 tests to see if any significant

portion of the view window which was in the view window before the move is still in the view

WO 02/089105 PCT/US02/14217

-70-
window after the move. If this is the case, it means a substantial portion of the bitmap currently

being displayed on the thin browser screen can be reused in the display after the requested scroll
or move is accomplished. In this case function 10528 places a scroll commands 10804, illustrated
near the top of the download stream in FIG. 108, at the start of the new display list which is to be
created for the scrolled screen. Such a scroll commands includes an XY shift value which

indicates which portion of the thin client's prior screen bitmap is to be reused.

In FIG. 108 both a clear command 10802 and a scroll command 10804 are shown at the
start of the download stream, so that both can be illustrated. In the current embodiment only one
of these two commands, the clear command or the scroll command will start a download screen,
with the first being used if the screen of the thin client is to be totally redrawn, and the second
being used if a portion of the thin client screen's prior bitmap is to be shifted for reuse in the new

screen.

The reuse of a substantial portion of a screen display that has been previously
downloaded and drawn, made possible by the use of the scroll command, can substantially reduce
the amount of data that has to be downloaded to the thin client in scrolls which involved relatively
small changes in position. This can substantially speedup the rate at which scrolled screens can
be displayed on the thin client, particular in situations in which there is a limited bandwidth between
the browser and the thin client, such as if they're communicating over the relatively slow digital

cellular link common at the time this application is being filed.

If the moved view window that results from a scroll or move command includes a portion of
the web page’s layout not currently in the virtual screen 10206, shown schematically in FIG. 102,
function 10530 of FIG. 105A causes functions 10532 and 10534 to be performed. Function 10532
scrolls the browser's virtual screen so that all of the view window will be contained within it, and
then function 10534 requests a redraw from the browser for the newly moved virtual screen. Once
this redraw is complete functions 10506 and 10510 will capture the newly drawn elements and will
draw them, as has been described above with regard to FIGS. 106A through 106B.

If the browser's proxy receives a zoom command from the thin client, function 10536 of
FIG. 105A causes functions 10538 through 10552 to be performed.

WO 02/089105 PCT/US02/14217

-71-
Function 10538 changes the display scale factor according to the zoom change.

Function 10540 scales the view window relative to the browser's virtual window according

to the selected zoom.

Function 10542 checks to see if the scaled view window includes portions of the web
page’s layout not currently contained within the virtual screen. If not it causes function 10544 to
scroll the virtual screen or change its resolution to make the scale view window fit within the virtual

screen.

If scrolling the virtual screen will enable to new view window to fit within the virtual screen,
there is no need to re-layout the web page, and the zoom can be used to display the same layout
as existed before the zoom, by showing a different location within it and/or by displaying it at a
different scale factor. If, however, the zoom is a zoom out that causes the view window to be
larger than the virtual screen size, in the embodiment shown in FIG. 105A, this will require that the
web page be laid out at a new virtual screen size that allows the view window to fit entirely within it
the virtual screen, so that the proxy browser can handle any input supplied to any portion of the
view window displayed on the client as if it had occurred at a corresponding location on the proxy
browser’s virtual screen. In the embodiment being described, this may cause the web page to be
displayed at a new layout if the new virtual screen resolution is larger than the layout resolution

used in the previous layout, and this can cause line breaks to occur in different locations.

In other embodiments of the invention, such as ones in which proxy browser was
designed, rather than patched, to support zoomed views, and such as the ones described with
regard to FIG. 115 in which the client zooms directly relative to a download of an entire layout,
extreme zoom outs need not require a re-layout of the web page.

Finally function 10552 calls for a screen redraw. This causes the screen capture and
download routine to capture the redraw of the current view window with the new zoom scale factor,
and download corresponding display information to the thin client so they can display the web page

at the new zoom setting.

As indicated in FIG. 105B, if the browser's proxy receives a virtual resolution change
command from the thin client, function 10554 causes functions 10556 through 10560 to be

WO 02/089105 PCT/US02/14217

-72-
performed. Function 10556 changes the browser's virtual screen resolution to the requested

resolution. Then step 10560 calls for a screen redraw. This is because the browser re-lays out the
current web page at the new virtual screen resolution, and redraws all of the current view window
to be captured ét the display's scale factor corresponding to the ratio between the number of pixels
the view window has in the virtual screen relative to the number of pixels it has on the thin client

screen.

Such a change in virtual resolution changes the size at which a layout is performed relative
to the size of images and text within such a layout. Such a change in relative layout size changes
the size at which images and text will be displayed on the screen, unless the user makes a change
in the relative size of the view window relative to the virtual screen that cancels such a change in
size. In the absence of such a compensating change in relative view window size, decreasing the
virtual resolution increases the size at which images and text will be shown on the screen, and
tends to make the text lines shorter relative to the size of the fonts shown on them, so as to allow
more of text lines to fit on the screen at one time at a larger text size. Thus, changes in virtual

layout size can be used to provide a certain type of zoom capability to the display of web pages.

The inventors have found that quite good readability can be supplied using virtual screen
of 640 by 480 when displaying web pages on a typical PDA-sized 320 by 240 screen, which
envolves scaling down the layout by a factor of 2. However, the invention can be used to display
web pages at even more reduced scales, such as displaying an 800 by 600 virtual screen
resolution on a PDA-sized 320 by 240 display, even though readability will suffer, so as to enable a
user to see how the web page might look when laid out for larger resolution displays. Of course, if
the reader chooses to have the minimum font size limited, as was described above with regard to
function 10614 of FIG. 106A, the text, even with such a large virtual resolution would still be shown
with readable fonts, although the layout of the page would be quite different than that originally
intended for display at such a resolution, because of the relative increase in font size that would

result.

As indicated by function 10562 of FIG. 105B, if the browser's proxy code receives other
user input from the thin client associated with a click on the thin client's screen, function 10564
transforms the thin client screen position associated with the click to the corresponding position on

the virtual screen, and function 10566 relays the event to the browser's event queue so that it can

WO 02/089105 PCT/US02/14217

-73-
respond to it as if the user had actually clicked on the virtual screen which most of the browser's

code thinks it is laying out.

This is the method by which the browser on the proxy responds to input the user of the thin
client makes to select most links, whether they be text links or image links, on the web page
displayed on the thin client. For example, if the user clicks on a link displayed on the thin clients
screen, the corresponding click will be relayed to the browser on the proxy, which will act as if the
user had clicked on the same link in the virtual screen which it thinks it is displaying. The proxy's
browser then responds by issuing an HTTP request over the Internet corresponding to the link.
When the web page corresponding to that link is received, the browser will lay out and seek to
display it on the virtual screen, causing functions 10506 and 10510 of FIG. 105A to capture the
information contained in that the portion of the layout corresponding to the view window and to
download it to the thin client for display on it's screen. As a result, the user of the thin client is able

to surf the Web, in much the same manner as a user of a normal browsing computer.

FIGS. 109A through 109C are highly simplified pseudocode representations of code 10900
on the thin client computer designed to help it operate in conjunction with the proxy browser to

enable its users to browse the World Wide Web using its screen.

Function 10902 of FIG. 109A responds to the receipt of all or an initial portion of the
download stream sent to the thin client by function 10708 of FIG. 107. It does so by starting to
respond to the individual commands, of the type illustrated in FIG. 108, contained in that stream in
the order in which they are received. It starts doing this as soon as one or more such commands
are received so that the work of drawing the new screen need not be delayed until the download
stream has been fully received. The response to each different type of command contained in the
download stream is indicated by the functions numbered 10904 through 10956 in FIGS 109A
through 109B.

As indicated by functions 10904 and 10906, when the thin client reads a clear command in
the download stream it causes the bitmap displayed on its screen to be cleared, or set to a totally

white value.

WO 02/089105 PCT/US02/14217

-74-
When the thin client reads a scroll command in the download stream, function 10908

causes functions 10910 and 10912 to be performed Function 10910 copies the portion of the thin
clients screen's bitmap that is to be reused after the scroll specified in the scroll command to a new
position on that screen indicated by the XY shift value included in the command. Then function

10912 clears the remaining portion of the screen.

When the thin client reads a background color command in the download stream, functions
10914 and 10916 set the current rectangle background color variable to the color specified in the
command. This causes all rectangles drawn by the thin client in response to rectangle commands

until the background color value is changed to have that specified color value.

When the thin client reads a rectangle command in the download stream, functions 10918
and 10920 draw a rectangle, using the current background color, having a screen position, width,

and height specified in the command.

When the thin client reads an image locations command, functions 10922 and 10923 do
nothing at that time. This is because the bitmap's necessary to draw the image referenced in such
an image locations command usually will not have been received at such time. In other
embodiments, the browser associates rectangle draw commands with images, which will cause the
portion of the thin browser screen associated with images to have a rectangle drawn on them

indicating where a bitmap image is to be displayed.

When the thin client reads a font command, functions 10924 and 10926 set the value of all
font attributes listed in the font command to the values listed for those attributes in that command.
In different embodiments of the invention different font attributes can be used. It is preferred that

at least font family, font size, and font foreground color be supported font attributes.

When the thin client reads a string command in the download stream, function 10928
causes functions 10930 through 10940 to be performed.

Functions 10930 tests to see if the thin client has in its font bitmap cache a bitmap for each
character of the current string in the current size and font family specified by the current font

attribute values. If not, functions 10932 through 10936 are performed.

WO 02/089105 PCT/US02/14217
-75-

Function 10932 sends an HTTP request over the thin client’s Internet connection to the
font server 134 described above with regard to FIG. 2. When the requested font is received from

the font server, functions 10934 and 10936 place it in the thin client's font bitmap cash.

It should be noted that some embodiments of the invention permanently store, as part of
the thin client browser software, a sufficient set of font bitmaps so that the use of the functions
10930 through 10936 are not necessary. In other embodiments, subpixel-optimized font outlines
are either stored permanently by the thin client or are requested as needed, as are the font

bitmaps in the example described in FIG. 109A.

. When the thin client has all of the font bitmaps necessary to render the current string,
functions 10938 and 10940 draw the string using the current font attribute values including
foreground color, upon the screen at the specified screen position. In the current embodiment font
bitmaps are represented as alpha value bitmaps of the type described above with regard to FIGS.
60, 96, and 97. When doing so, the background color is driving the portion of the bitmap currently

upon the screen over which the string is to be drawn.

In some embodiments, in order to reduce computation, the color value of the portion of the
screen over which the string is to be drawn is sampled at a relatively few number of points, and the
average of those sampled color values is used as the background color for the entire string display,

as is described above with regard to FIG. 97.

In the embodiment being described, all of the strings contained in the download stream are
single line text strings, many of which may have resulted from the wrapping of continuous text
across line boundaries by the proxy browser's layout engine. As a result, in this embodiment, the

thin client does not have to perform any such wrapping of text.

Function 10940 draws a bitmap image of a strings by composing it from a plurality of
separate font bitmaps corresponding to the letters of the string. Normally in such composition each

different separate character will be represented by a different separate font bitmap.

WO 02/089105 PCT/US02/14217

-76-
It is preferred that the fonts used in such composition at different font sizes (such as

different font sizes caused by changes in scale factor) have the shape and pixel alignment of each
character selected to improve readability at each such font size. In most embodiments this
improved readability is produced by selecting the character shape and position relative to a font
bitmap so as to increase the alignment of the character shape with the pixelation of the bitmap.
Such shape and pixel alignment is particularly critical when dealing with font bitmaps of ten pixels
per em or less, and is even more critical at eight pixels per em or less. This is because as font
bitmaps became smaller they become more difficult to read because of their more course
pixelation, and thus it becomes even more critical that they have character shapes and alignments

selected to fit such pixelation.

The fonts in these figures have a pixel size of eight pixel per em. A majority of the lower
case letters in this font fit within an advance width of four pixel columns of less. This width of four
pixel columns or less includes the spacing, if any, that occurs between the shapes of characters
having such widths. In these particular fonts, over eighty-percent the lower case characters of the
roman alphabet fit within such an advance width These characters have an x-height of more than
four pixel rows, which makes them generally considerably taller than they are wide. As a generally
rule, such a relatively narrow font can represent a larger amount of text within a given area at a

given level of readability than a wider font.

In many embodiments of the invention the font bitmaps used by step 10940 at smaller
scales are subpixel optimized bitmaps created by non-linear color balancing of the type described
above, in which only color imbalances that occur within a pixel are distributed. When such
subpixel-optimization is combined with shapes that have been properly shaped and aligned to
better match their bitmap pixelation, the resulting bitmaps drawn are amazing easy to read

considering their pixel size.

Returning now to FIG. 109B, when the thin client reads a control command from the

download stream, function 10942 causes functions 10944 through 10948 to be performed.

Function 10944 tests to see if it already created a data or program object corresponding to
the control ID specified in the current control command. If not function 10946 creates such a data

WO 02/089105 PCT/US02/14217

-77-
or program object of the type specified in the control command and associates it with the control ID

specified in that command.

Then step 10948 draws a subpixel-optimized bitmap of the specified type of control object
on the thin client's screen at the location specified in the control command. It then draws the text
associated with the control on the control object’s bitmap using subpixel-optimized fonts. Then it
associates a hot zone, having a display screen position corresponding to the control's bitmap, with

the data object or program object representing the control on the thin client.

When the thin client reads an image command from the download stream, function 10950

causes functions 10952 through 10956 to be performed.

Function 10952 scans the current display stream for all occurrences of an image location
command that has the same image ID as the current image command. For each such image
location command, it causes function 10954 to draw the bitmap at the location specified by that
image location command upon the thin client's screen. As with all the thin client's draw functions,
any portion of the image which does not fit on the thin client screen is clipped in such draw

operations.

Next function 10956 redraws all other items in the display list that occur at the same
location as any of these drawn bitmaps. This is necessary because it is common for web pages to
place text on top of images, and, thus, it is desirable that any strings which are intended to be
displayed at the same location as a bitmap image be redrawn after those images are drawn. In .
one embodiment of the invention, the thin client merely redraws all non-image elements of the *

download stream's display list which occurs after the first image location command in that list.

If the user clicks on a hot zone 11000 associated with a text entry field, as indicated in
FIG. 110, functions 10958 and 10960 of FIG. 109B cause a keyboard routine comprised of
functions 10962 through 10978 to be executed.

Function 10962 displays a pop-up user keyboard 11102 and text edit field 11104,
illustrated in FIG. 111, on the thin client's screen. Then a loop 10964 is performed until the user

presses the enter key on the pop-up keyboard. During this loop each time a user types a text

WO 02/089105 PCT/US02/14217

-78-
character, function 10966 causes function 10968 to place a subpixel-optimized text bitmap of the

character on the pop-up keyboard's text edit line at the current cursor position and moves the
bitmap of the cursor to a position after the newly drawn character, and then function 10970 adds
the typed character to a temporary text edit string associated with the pop-up keyboard's

programming.

When the user presses the enter key of the pop-up keyboard, function 10972 causes
functions 10974 through 10978 to be performed. Function 10974 stores the value of the temporary
text edit string associated with the pop-up keyboard in the text edit control for which the pop-up
keyboard has been evoked. Then function 10976 draws the characters of that text edit string,
using subpixel optimized bitmaps, in the bitmap of the text entry field 11000 of the control object on

the thin client's screen, as shown in FIG. 112.

Then function 10978 removes the pop-up keyboard from the thin client’s screen by

drawing over it the bitmap which was displayed on-screen before the pop-up keyboard was drawn.

FIG. 113 illustrates that the pop-up keyboard routine can be used for other purposes
besides entering text in text entry field. Although it is not represented in the pseudocode of FIGS.
109A through 109C, the pop-up keyboard can also be used to enter the URLs of web pages a user

would like to see displayed on the thin client.

FIG. 114 is virtually identical to FIG. 113, except it illustrates an embodiment of the
invention which has a button bar, or Toolbar, at the top of its graphical user interface. This button
bar includes at its leftmost end back and forward buttons of the type commonly found in Web
browsers. It also includes buttons labeled R, B, and H, which correspond to a refresh button, a
bookmark button, and a history button, which are also functions commonly found on Web
browsers. The button bar also includes an URL text entry field, which if clicked will cause the pop-
up keyboard shown in FIG. 114 to appear. When the pop-up keyboard is not being displayed, this
text entry field displays the URL of the current web page displayed on the thin client's screen. In
one embodiment of the invention a user can select whether or not to display such a toolbar by
pressing a hardware button. In this embodiment, even when such a tool bar is not shown the user
can use hardware buttons to invoke some of the more common web browsing functions, such as

the back command and forward commands.

WO 02/089105 PCT/US02/14217

-79-
In other embodiments of the invention, such a graphical user interface Toolbar would

preferably also include buttons or menus allowing the user to access other functionality of the
browser, including changing the zoom and/or relative layout size of a web page’s display.
Returning now to FIG. 109B, if the user clicks on a hot zone of a button or menu item

control, function 10980 causes functions 10981 and 10982 to be performed.

Function 10981 changes the appearance of the button or menu item appropriately. In the
case of a button, the bitmap associated with the button is redrawn to indicate the button is being
pressed. In the case of a menu item, either a submenu will be display, or the display of the menu

item will be removed, depending upon whether or not a final selection has been made.

~ If a final selection has been made in the case of a menu item, or the button has been
pressed and released, function 10982 sends the button's or menu item's control ID and an
indication that it has been selected up to the browser, which responds by causing the

comresponding button or menu item control object on the browser to act as if it had been clicked.

If the user clicks on the hot zone associated with another type of thin client control,
function 10983 changes the appearance of the control's bitmap on the thin client's display
accordingly. For example, in the case of a check box, a check would either be displayed or
removed from the display of the control on screen. Then step 10985 stores the corresponding
state change in association with the control object. As stated above, in the embodiment being
described, the state of such control objects are not communicated to the browser until the browser

requests such information, in order to reduce communication demands.

If the user clicks on any other portion of the thin client's screen not associated with the
control interface of the thin client program or its computer, functions 10986 and 10987 send an
event corresponding to that click up to the proxy browser along with the screen location at which it
occurred. As was described above with regard functions 10562 through 10556 of FIG. 1058, the
browser will transform the location of such a click to the corresponding location on its virtual
screen, and will respond to such a click as if it occurred upon the screen which the browser thinks it
is drawing at the resolution of the virtual screen. In some embodiments, to further reduced
communication demands, the thin client will only report such other clicks to the browser if it has

reason to believe they corresponds to a user input the proxy’s browser is supposed to respond to.

WO 02/089105 PCT/US02/14217
-80-

Referring now to FIG. 109C, if the thin client receives a query from the proxy browser
asking the state of one or more control objects, function 10988 causes function 10989 to query the
state of the corresponding controls on the thin client, and function 10909 to transmit that state
information to the browser. As was described above with regard to function 10518 of FIG. 105A,
the proxy browser will then return such requested information to the part of the browser which
requested it, as if that information were part of the current state of the corresponding control

objects associated with the virtual screen.

If the user of the thin client enters the command to scroll its screen, functions 10991 and
10992 upload that scroll command to the proxy. This causes the functions 10520 through 10534
described above with regard to FIG. 105A to generate and download a new download stream for

the display of the current web page at the newly scrolled position.

If the user enters the command to change the zoom, i.e., scale, of the image displayed on
the thin client, functions 10993 and 10994 upload a corresponding zoom command to the proxy.
This causes the functions 10536 and 10552 described above with regard FIG. 105A to cause a
new download stream to be downloaded to the thin client for display of the current web page at the

new zoom setting.

If the user enters the command to change the virtual resolution of the thin client’s display,
that is to change the resolution at which the virtual screen on the proxy browser is laid out,
functions 10995 and 10996 upload the selected virtual resolution to the proxy. This causes
functions 10554 through 10560, described above with regard FIG. 105B, to have the virtual screen
re-laid out at the new resolution and a corresponding downloads stream to be sent to the thin
client, so it can display the portion of the virtual screen corresponding to the window at the current

zoom setting upon the thin clients screen.

As indicated at the bottom of FIG. 109C, if the user enters another command associated
with the thin client's control graphical user interface, function 10997 will cause a correspondingly
appropriate response, indicated by the ellipses 10999 to be performed. Such other functions can
include the selection of bookmarks, the accessing of bookmarked web pages, back and forward

functions, or any other function which can be part of a browser's user interface. Such demands

WO 02/089105 PCT/US02/14217

-81-
can be selected by use of physical buttons or other physical inputs on the thin client computer, by

the selection of graphical objects, such as buttons, menu item, or dialog box controls, or virtually

any other known graphical user interface technique.

Figures 115 through 118 relate to an alternate method for enabling a thin client computer
to browse the web through a proxy server. In this embodiment the entire layout 10206 of a web
page created by the proxy computer is downloaded to, and cached by, the thin client, as indicated
in FIG. 117. As will be described, this allows the thin client to scroll within the layout at
substantially higher speeds, although it can increase the total number of bits downloaded, since it

attempts to download the entire layout and all images for each web page viewed.

FIG. 115 illustrates portions of the proxy browser's code 11500 that can be used with such

a page layout caching scheme.

In this embodiment of the invention if the proxy browser receives a request for a web page

from the thin client, functions 11502 causes functions 11504 through 11524 to be performed.

As indicated by the pseudocode associated with function 11502 in FIG. 115, in this
particular web caching embodiment the thin client can request a web page with a desired view
setting for that page, including a desired virtual resolution, zoom setting, and view window position.
This is done to allow a user to associate such view settings with a bookmark, including a particular
URLs or a portions of a URL path name, so as to allow the user to automatically see such web
pages at a desired virtual resolution, zoom setting, and view window position, without having to
separately enter such setting values each time the page is requested. This, for example, would
allow a user view commonly accessed web pages with the display automatically zoomed in on a

desired portion of that page using text of a desired size.

Once a request for a web page has been received from the thin client, function 11504 on
the proxy browser requests that web page from the server identified in the URL of the request from
the thin client. When the web page is received from the server function 11506 causes functions
11507 through 11516 to be performed.

WO 02/089105 PCT/US02/14217

-82-
Function 11507 causes the layout engine of the browser on the proxy to lay out the

received web page at the virtual screen resolution associated with the view setting specified in the
web pages request. This layout is made using scaled string measurements for substituted fonts, in
a manner similar to that described above with regard to functions 10606 through 10618 of FIG.

106A. The scale factor used is determined by the view setting specified in request for the current

page.

Function 11508 specifies a virtual screen position relative to the resulting layout which will
include the view window implicit in the view setting of the current request. Thus for example, if the
view setting requests to see the rightmost portion of a 640 by 480 virtual screen resolution output,
and the layout is forced to have a width of 800 pixels, the virtual screen position would extend from

approximately pixel column 160 over to pixel column 800 in the layout.

Function 11518 causes functions 11520 to scale and subpixel-optimize each image 11702,

illustrated schematically in FIG. 117, received in association with the web page being laid out.

Once all the images referenced in the web page have been received, scaled, and subpixel
optimized, function 11522 causes function 11523 to create a display list for that layout, and to
compress that display list and all its associated subpixel-optimized, scaled-down images. Then
function 11524 transmits that compressed data to the thin client in a download stream that includes

the web pages layout, followed by its scaled-down, subpixel-optimized images.

If the user receives a request from a thin client to rescale and subpixel-optimized one or
more images previously downloaded at a different scale, function 11526 through 11532, rescale
and subpixel-optimize, compress, and download such images to the thin client. This allows the
user to view the web page at a different subpixel optimized size if he or she seeks to view the

downloaded web page layout at a different zoom setting.

If a screen input's event is received from the thin client function 11534 causes functions
11536 through 11542 to be performed.

WO 02/089105 PCT/US02/14217

-83-
Function 11536 tests to see if the page layout coordinate associated with the command

corresponds to a portion 10206A of the web page layout 10206 currently mapped to the proxy
browser's virtual screen 10208, shown in FIG. 117. If not, function 11538 scrolis the virtual screen
to a new portion 102068 of the layout that includes the layout coordinates associated with the

command.

Function 11540 calculates the virtual screen coordinate corresponding to the page layout
coordinate of the received screen event. Then function 11542 places the input screen event with
its virtual screen coordinates in the browser's event queue, so that it can respond to that event,
such as the clicking of a link, as if the user had clicked at it's the corresponding virtual screen

coordinate on the virtual screen itself.

FIG. 116 is a highly simplified pseudo code description of portions of the thin client code
that can be used to support the page layout caching scheme illustrated in FIGS. 115 and 117.

If the thin client starts to receive a download stream containing a page layout's display list,
function 11602 causes function 11604 and 11606 to be performed.

Function 11604 sets the mapping of the view window (such as the view window 10210A
shown in FIG. 117) relative to the page layout, and then calculates the current display scale factor

based on that mapping.

Function 11620 displays any portion of the downloaded page layout that falls within the
current view window, using the current scale factor. This process includes the functions 11622
through 11630.

Function 11622 displays each string element that occurs within the current view window
with font sizes that are a function of the current scale factor. When it does so it adjusts, if
necessary, for any disproportionate changes in the relative size of characters that might result
from the uneven effects of font hinting as the pixel size at which such characters are displayed
changes. It does this by using techniques for compensating for the discontinuities and
disproportionalities, such as changing spacing between characters, similar to thosetraditionally
used to provide a WYSIWYG correspondence between the display of text on a computer screen

WO 02/089105 PCT/US02/14217

-84-
and its appearance when printed at a much higher resolution. If font bitmaps having a different

size that than previously displayed are required, font bitmaps for such differently sized characters
can be either accessed from storage on the thin client, accessed from a network font server, or

rasterized at the needed size from a font outline.

If the display created by function 11620 is at a different scale factor than that for which the
bitmap images 10818 have been scaled-down, function 11624 causes functions 11626 through
11630 to be performed. These request the proxy server to rescale at the new scale factor and
subpixel-optimize all images that are totally or partially within the view window. Then the bitmaps
of the same images are locally rescaled from the formerly downscaled and subpixel-optimized
images 10818 stored on the thin client and displayed on the thin client screen to provide a
temporary representation for such images. Then, when the requested images which have been
rescaled from the original, higher resolution bitmaps associated with the web page have been
received by the thin client from the proxy server, they are drawn at the appropriate location on the

display screen.

In some embodiments, when a user changes the zoom of the display, the bitmaps of any
images corresponding to a portion of the page on the screen at the new scale factor are displayed
with a quick, but crude representation of the image generated on the thin client to provide the user
a temporary representation of such images to be used until the properly subpixel-optimized
versions of the images have been downloaded. Such quick representations are relatively simple to
generate when the new scale factor is an integral ratio of the scale factor of the previously
downloaded bitmaps. When this is not the case, the temporary representation could be produced
in any of a number of ways. These include displaying them as images having integral scaling ratio
that have been either cropped or scaled to an integral ratio smaller than the proper scale so to not

take up more space than the properly scaled images that are intended to over draw them.

If the user generates a screen input to be sent to the proxy browser, function 11632
through 11636 transform the thin client screen coordinate of the input to a corresponding page
layout coordinate. Then the screen input and corresponding page layout coordinate are uploaded
to the proxy browser. The proxy browser then responds to such an input using the functions 11534

WO 02/089105 PCT/US02/14217

-85-
through 11542 described above with regard FIG. 115. This causes the proxy browser to respond

to such screen input as if the user had clicked on a corresponding portion of the web page on the

proxy browser's virtual screen.

Caching schemes, such as that just described with regard FIGS. 115 through 117, that
allow the thin client to store more than the portion of a web page currently displayed on a screen,
can be used to allow a user to scroll and/or zoom more rapidly relative to web page's content. This

is particularly true if the thin client has a relatively low bandwidth to its proxy server.

The embodiment of such a caching scheme which has just been described operates
relatively well even with bandwidths as low as those associated with current digital cellular
communication rates commonly available at the time of this application. This is because all the
content, except images, including in most web pages can normally be compressed to fit into 3,000
bytes or less. Thus, at such current digital cellular communication rates, such the entire text
portion of most web pages could be downloaded in several seconds, and the initial portions of it
could be drawn in even less time. Of course the downloading of the images might take more time,
but all but large images at the start of the web page would commonly be displayed within a few

seconds. And with faster communication links this delay can be reduced tremendously.

FIGS. 118 through 120 illustrate aspects of the invention that can be used in virtually any
Web browsing environment, but which are particularly useful when browsing the Web on small
screens. This includes use on small screen devices such as the thin client computers discussed
above. Because these aspects of the invention involve a zoom into or out of a selected portion of
a web page, they can be made to work quickly on such thin client computers by use of a layout

caching scheme of the type just described.

FIG. 118 shows the view of a standard web page that has been laid out at a virtual
resolution of 640 by 480 and then downscaled and subpixel-optimized for display on a 320 by 240
screen. Such content is readable by those with good eyes at the distance at which most people
commonly use handheld computers. However the content of most Web pages can be made even
easier to read if it is displayed at a larger size. Since most Web content is laid out in a plurality of
columns, it would often be desirable to be able to quickly zoom a display to the top of a column at

which a user would like to start reading. In the interface shown in FIG. 119 and 120 a user can do

WO 02/089105 PCT/US02/14217

-86-
this by dragging the pointing device 11902 across the desired text column at a vertical position

which the user would like displayed near the top of the display screen in the zoomed view. When
the display is in the mode to perform this type of zoom, a horizontal linear drag of the type shown
in FIG. 119 will cause the display to scale the width of the web page layout indicated by the drag to
fit the width of the screen. In the example shown in FIG. 119 this user input would cause the

display to be zoomed as shown in FIG. 120.

Preferably the user interface also allows a user to drag a selection box around an area in
the web page layout shown on the screen, and the system will zoom the display of the web page

so that the selected area in the web page fits the screen.

It is also preferred that in such drags the user be allowed to drag the pointing device
across a boundary associated with each edge of the screen, and if this is done the portion of the
web page shown on the screen will scroll in response, to allow the user to select to perform a zoom
to fit to a width, height, or area within the web page layout that is too large or improperly positioned
to fit totally within the screen as the start of such a drag. If such a drag selects a portion of the
layout too large to it on the screen at the scale factor displayed during the drag, it would change
the scale factor so as to decrease the size at which text and images were displayed.

When we say that a selected width, height, or area in the layout is scaled to fit the screen,
we mean that it is scaled to have its largest dimension ranges between two thirds and the full
corresponding dimensions of the screen. Normally it would be preferred that such scaling make
the selected length or area have a largest dimension that ranges from eighty or ninety percent to

the full corresponding dimension of the screen.

FIGS. 121 to 128 illustrates a feature of the invention called zoom-click. This feature
allows a user to more easily and accurately select items within a screen which is seen with a low
resolution, which is very small, or which is being used with a pointing device that can not be as
easily positioned with accuracy relative to desired locations on a screen. This is particularly useful
with dealing with cell-phone sized screens, with touch screen devices using fingers as a pointing
device, and for touch screen devices used in an environment such as a moving car in which it is

difficult to accurately place the pointing device.

WO 02/089105 PCT/US02/14217

-87-
In zoom click when the user clicks down at a given location in a screen, the portion of the

screen upon which he or she has clicked is shown at an expanded scale. The user is then free to
navigate in this expanded representation with the pointing device held down until the pointing
device is in the desired location. Atthis point the user can stop pressing down, and release the
pointing device, causing the current location at the time of the release to be treated as the selected

location for purposes corresponding to a traditional graphical user interface click.

With zoom click double clicks can be represented in different ways. One of the easiest is
merely to record a quick secondary click and release shortly following a zoom click and near the

same location as the zoom click as converting the zoom click into a double-click.

Although other embodiments of zoom click it can operate differently, the preferred
embodiment causes pointer movement in the enlarged view during the down click in a zoom click
to occur at the same rate as normal pointer navigation. This means that a user will have
approximately twice the pointing resolution as he otherwise would. It is also preferred that when a
user gets to the edge of the screen while moving the pointer during a sustained down click in zoom

click mode the image will scroll to enable the user to navigate the entire page in this mode.

In the example of FIGS. 121 through 128, a clamshell cellphones/computer 120C is
shown. In this example, it is assumed that the cellphones has a 320 by 240 whole pixel resolution
and color subpixel addressability. Of course in other embodiments of the invention other
resolutions could be used. For ease of use, the cellphone is assumed to have a touch sensitive

screen that can be operated by users finger.

FIG. 121 shows the cellphones with the same image of the priceline.com Web page
shown in FIGS. 11 and 110.

FIG. 122 shows what happens when, while in zoom-click mode, the user tries to press his
or her finger 12102 down upon the screen to select the same text entry field 11000 discussed
above with regard FIG. 110. Itis often difficult to estimate in advance the exact location at which a
cursor will be placed when one touches one's finger to a touchscreen. Zoom click helps with this,
since it allows the user to see the position of the cursor 170 which results from a finger touching

the touch screen before any selection is made. It also shows the screen at a larger view scale to

WO 02/089105 PCT/US02/14217

-88-
make it easier for the user to position the cursor 12204 on the desired link or control, such the

desired text entry field 11000 shown in FIG. 123. Once the user removes his finger from the
touchscreen, as shown in FIG. 124, the pop-up keyboard 11102 appears, just as it did in FIG. 111,

described above.

As shown in FIG. 125, when the user, while in zoom click mode, tries to touch a desired
letter in the pop-up keyboard 11102, in this case the letter "b," the image of the portion of the
keyboard touched increases its scale. In the example shown in FIG. 125 the user has not exactly
position the cursor 12204 at the desired location at the time of his initial pressing of the
touchscreen. The user can easily correct this problem in zoom-click mode by dragging his finger
12202 to position the cursor 11102 at the location shown in FIG. 126. If the user then removes his
finger from the screen, the screens image will revert to its normal scale, which enables the entire
pop-up keyboard 11102 to be shown to allow rapid selection of the next character, no matter where

it might lie within the keyboard.

As shown in FIG. 127, the letter "b" selected in FIG. 126 is shown as having been entered

in the pop-up keyboard's text entry field 11104.

If the user continues selecting characters by the process shown in FIGS. 125 through 127
he or she will be able to enter an entire string of text followed by the selection of the enter key
which will cause the desired text to be entered at the desired location in the web page, as indicated
by FIG. 128.

In many embodiments of the invention, the zooms used in zoom click involve expanding
the bitmap previously shown on all or part of the screen by an integral ratio, such as 2x or 3x. This
allows such zooming to be performed virtually instantaneously, even by relatively low powered
processors, making zoom click a very rapid user interface.

FIGS. 129 through 137 illustrate an aspect of the invention that enables a user of a Web
browser to select a portion of text from a web page to be the reflowed, or re-laid out, across line
boundaries at a substantially larger scale factor. Such reflowing of text is particularly useful on
displays having small screens, since it allows selected Web text to be displayed with much larger

fonts, while at the same time allowing entire lines of such text to fit within such screens. This

WO 02/089105 PCT/US02/14217

-80-
enables such lines to be read quickly, without the need to repeatedly horizontally scroll back and

forth to read successive lines of such text.

Regardless of how high the resolution of a small screen display is, the human eye can only
see what it displays at a relatively large resolution if the display is held relatively close. This aspect
of the invention enables Web text to be display wrapped across lines that fit within the width of a
display at a relatively large scale factor. For example, it allows the user of a handheld computer
with a four inch diagonal screen to display text at a sufficiently large scale to be seen by a group of
people who are standing five or six feet away. Similarly it would allow a user to view text on
cellphone or wristwatch sized display without having to hold them close to his or her face. It can
also be used with normal sized computer display screens to display Web text to people who are at

a relatively large distance from the screen, or who are visually impaired.

FIG. 129 provides a highly simplified pseudo code description of programming 12900
which could be used by a client computer to redisplay Web text according to this aspect of the

invention.

It should be understood that this aspect of the invention is not limited to use on client
computers. In fact, with modification this aspect of the invention can be used in viewing visual
output generated by applications other than Web browsers, such as in systems of the type
described below with regard FIG. 140 and 141.

Many web pages are designed to have their text laid out in different columns, that is, in
different horizontal positions relative to such a layout. A web page can indication such different
desired horizontal displacements in multiple different ways, including the use of tables and frames.
It is preferred that the method shown a system used with the methodis capable of displaying a web
pages text in such a multi-column layout which reflects such indications of different desired

horizontal displacements.

If the user selects an area of a web page layout for text reflow in a single column at a new
scale factor, function 12902 causes function 12,904 through 12908 to be performed. The If such

a selection is made when a web page'’s content is being displayed in a relatively normal manner

WO 02/089105 PCT/US02/14217
-90-

In some embodiments of the invention such a selection is made by dragging a pointing
device, such as the stylus 11,9002 shown in FIG. 130 across the portion of the width of a web
page which the user desires to have reflown at a larger scale across the width of a display screen
or window. This is similar to what was discussed above with regard to FIG. 119, except that the
method currently being discussed allows text to be re-flowed across line boundaries, letting a
selected column of text be displayed with much larger fonts while at the same time allowing whole
lines of such text fit within the screen.

Function 12904 of FIG. 129 selects all strings and corresponding underlining (i.e., labeling
of text as bing a link) in the layout of the current web page which are substantially within the

selected layout area.

FIG. 131 illustrates the top portion of the layout 10206A, similar to that shown in the
| bottom half of FIG. 117, of the web page shown in FIG. 130. In FIG. 131 the dashed rectangle
13,102 represent the portion of the web page's layout corresponding to the column selected by the
user in FIG. 130.

in some embodiments of the invention, a string will be considered to be within the selected
area only if a substantial portion, such as two-thirds or three-quarters of its length fits within the
area selected by the user. For example, in FIG. 130, the user intended to select the text at the
right hand portion of the screen displayed in that figure. However, in the example of FIG. 130 the
user failed to exactly select the width of that intended column with the drag of the stylus.
Nevertheless, because function 12904 selects all strings which are substantially within the selected

area, the text reflow will operate as if the user had selected exactly the intended column.

FIG. 132 illustrates an initial portion of the strings in the layout of the web page shown in
FIG. 131 thatfall within the selected area. In this figure, underlining indicates portions of text which

correspond to links.

Once all of the strings in the selected area have been selected, function 12906 labels any
groups of one or more successive strings whose closeness in the layout or other characteristics
indicate they are part of the same paragraph. This is indicated in FIG. 132 by the paragraph
brackets 13202.

WO 02/089105 PCT/US02/14217
91-

As indicated in FIG. 132, this method might not detect all groupings of fonts which are
paragraphs, but it does detect many of them without the need to reference the HTML
corresponding to the text. In the embodiment of the invention being described, such HTML is
stored on the proxy server, meaning that such an access would require the delay associated with
communication between the client computer and a proxy server. In other embodiments,
particularly those in which the client computer has a full browser resident upon it, or those having a
high access bandwidth link to a proxy server, access to the HTML code could be used to more
accurately determine how the selected strings should be grouped in paragraphs. In other
embodiments, the layout information downloaded to a proxy server could contain any information

about paragraph boundaries contained within a web pages HTML.

Once the selected strings have been grouped into paragraphs, function 12908 reflows the
text of each paragraph using the selected expanded scale factor across the width of the display

screen (or display window if the image is being shown on less than an entire display screen).

This text reflow process is illustrated in FIG. 133, in which the strings in the top portion of
FIG. 132 are laid out at a new scale factor. In the example being shown, the text of FIG. 130 has
been selected to be reflown at twice its original size within the same screen. Preferably the user
interface of the thin client allows the user to select a plurality of different scale factors for use with
the selected-text-reflow function, ranging from rather modest to rather extreme increases in font

size.

In FIG. 133 underlining is used to represent something different than it does in FIG. 132.
In FIG. 133 the text on each line which came from a common layout string in FIG. 132 is shown
with continuous underlining. Underlining gaps between portions of text on the same line in FIG.
133 which come from different strings in FIGS. 132 are exaggerated to make their difference more
readily visible. In FIG. 133 all of the individual strings from the original layout shown in FIG. 132
that have been wrapped across a line boundary are indicated by a arrow from their portion on one

line to their following portion on the next line.

FIG. 134 provides a schematic illustration how the selected strings of the original layout

shown in FIGS. 130 and 131 look once they have been reflown at approximate twice the size on

WO 02/089105 PCT/US02/14217

-92-
the thin client's screen. As can be seen by looking at FIGS. 134, such a text reflow makes Web

text much easier to view from a distance. Reflowing the same text at 4x or 6x instead of 2x would
make it possible to show the same web content to people at quite a distance from the display

screen.

FIGS. 135 through 137 illustrate other methods that can allow a user to select a portion of

text to be reflown.

FIG. 135 illustrates a portion of a web page having a central column of text which has

intruded into that column one or more portions of other text.

FIG. 136 illustrates how the user obtained a zoomed out view of the entire web page’s
layout. In many actual embodiments, text greeking would be used to indicate portions of text too
small to be represented in such zoom-out views as individual characters. Such a zoomed-out view
could be generated quickly on thin client computers such as those described above with regard

FIGS. 115 through 117 in which a web page's entire layout was stored on the thin client, itself.

In FIG. 136 the user has selected a mode which allows her or him to define a polygon
shaped area upon the zoomed-out web page view by clicking the display of the web page at
comers in such an area. Once this is been done, the selected area will be used by the function
12904 shown in FIG. 129 to select which text is to be reflown.

FIG. 137 illustrates how the selected text will appear once it has been reflow and

displayed.

FIGS. 138 and 139 provides more description of the font server 230 described above with
regard FIG. 2.

FIG. 138 corresponds to FIG. 2, except that in it there are plurality of the client browsers
200 each of which accesses content from one or more servers 220 through the same proxy server

210 and each of which accesses fonts from the same font server 230.

WO 02/089105 PCT/US02/14217

93
This is because the software sold, licensed, or distributed for use in each of the thin client

browsers has been programmed to seek fonts such clients do not have from the same font server
230 and to make Web requests through the same proxy server 210. Of course, in other
embodiments of this aspect of the invention the thin clients could be programmed to select which
of a common plurality of proxy servers to use based on such factors as their geographic location,
or their Intemet service provider. Similar considerations could be used by the thin clients to select

from which of a common plurality of font servers they are to request and receive fonts.

FIG. 139 provides a highly simplified pseudo code description of programming 13900 that
can be used on a font server of the type illustrated in FIG. 138. This font server could also be used
by normal browser computers, as well as by computers running applications other than Web

browsers.

If the font server receives an HTTP request from a computer for a character of a particular
font, function 13902 causes steps 13904 through 13922 to be-performed.

The particular embodiment of font server code shown in FIG. 139 is designed for use with
a protocol which specify each character desired for particular font at a particular size with a
separate HTTP request. It specifies the desired font, font size, and character as part of a URL
pathname. Of course, in other embodiments font servers could allow HTTP request to specify

more than one font, and could specify fonts other than with URL pathnames.

In systems which request each character-font shapes separately, it is preferable that the
HTTP protocol 1.1 or later be used, since it allows multiple HTTP request to be handled by a server
from a given client computer without having to open and close a separate connection for the

handling of each such request.

In the embodiment of the invention shown in FIG. 139, if the font server determines that it
currently has stored a font bitmap corresponding to the URL pathname specified in the request,
function 13904 causes function 13906 to send that font in an HTTP response to the network
address from which the URL request came, and then function 13908 charges an account
associated with a transaction. Such a downloaded font could be either a font bitmap or a font

outline description.

WO 02/089105 PCT/US02/14217
-94-

Such a charging an account is not used in all embodiments of the invention. In some of
those in which it is used, the account charged is one associated with the computer to which the
font is sent. In other embodiments, the charge is to an account of a party associated with the web
page which included a specification for such fonts. In yet other embodiments, the charge is to an
account associated with a proxy server of the type described above, or to a user of the services of

such a proxy server.

If the requested font is not in the font server's storage and it is a bitmap for which the font
server has a corresponding outline font, function 13910 causes function 13,912 through 13,922 to

be performed.

Function 13912 generates a font bitmap having the attributes, such as size and possible
transformation, indicated by the font pathname of the HTTP request. This function includes
determining if the requested font's pathname indicated that a subpixel-optimized version of the font
is desired. If so, function 13914 and 13916 generate a subpixel-optimized version of the font,
preferably using the non-linear color balancing method described above with regard FIGS. 55
through 96.

Once the font bitmap has been created, function 13918 sends the bitmap over the network
in an HTTP response to the requesting address. Function 13920 caches the font bitmap at an
address corresponding to the pathname specified in the request. Function 13922 charges an
account associated with the transaction, as discussed above with regard to function 13910, in

embodiments where such charging is performed.

FIG. 140 illustrate that certain aspects of present invention can be used to enable a thin
client computer 200 to display digital content corresponding to the text and the images generated
as screen output by one or more applications running on upon a remote computer 14000. Such
applications can include Web browsers, spreadsheets, word processors, database programs, or

virtually any other type of software capable of generating screen displays.

The remote computer includes remote screen generator programming 14006, which

includes hooks in the dispatch table 14008 of the remote computer’s operating system 14004.

WO 02/089105 PCT/US02/14217

-95-
These hooks intercept calls made by one or more of the applications 14002 to the operating

system to draw text, shapes, lines, control objects, and bitmap's to a screen at a given display
resolution. In some embodiments, such draw commands will actually cause content to be
displayed on a screen associated with a remote computer, in others there will be no screen at the
remote computer, and thus such draw commands will be made to a virtual screen. In the text that
follows, for purposes of simplicity, | will refer to the video space to which these application thinks
they are displaying graphic output and receiving user input on a given client computer as a virtual

screen.

When one of the applications 14002 request the operating system to draw a display
element, that call is intercepted by one of the hooks in the operating system's dispatch table, so as
to make a corresponding call to a corresponding routine 14010 of the remote screen generator. In
a manner similar to that described above with regard to FIGS. 102 and 106A through 106C, this
causes a download display list 10212A fo be created which is substantially similar to the display list
10212 described above with regard to FIG. 102 and the figures that follow it. A zoom, scroll, and
virtual layout control 1412, corresponding to the controls 10214 through 10218 shown in FIG. 102,
controls the mapping of the thin client's view window into the virtual screen and, thus, the display
scale factor at which the elements drawn by an application into the virtual screen are drawn and
positioned in the download display last 10212A. Preferably this includes subpixel optimization of
image bitmaps, and font substitutions of the type described above with regard to FIGS. 106A
through 106C.

Once the download display list has been created for a given virtual screen, it is
compressed and downloaded to the corresponding client computer, which then draws it upon its

screen in much the manner described above with regard to FIGS. 109A through 109C.

In some embodiments of the invention, individual draws to the virtual screen will have
corresponding draw commands downloaded to the thin client. This, can be used to speed the rate
at which minor changes to the thin clients screen can be made in response to corresponding

changes to the virtual screen.

In the embodiment shown in FIG. 140, user input associated with screen locations are

uploaded to the remote computer from the thin client, and they have their screen coordinates

WO 02/089105 PCT/US02/14217

. -96-
transformed to reflect the mapping between the thin clients view window and virtual screen. Once

this is done such events are placed in the event queue 14014 of the remote computers operating
system with their transformed screen coordinates so the associated application 14002 will respond

to that event as if it had been entered upon the remote computer’s corresponding virtual screen.

Many of the techniques used by screen sharing applications, such as LapLink or
pcAnywhere can be used in conjunction with an embodiment of the invention of the type shown in
FIG. 140. In fact, when the remote computer in that figure has its own screen, the embodiment
shown in FIG. 140 can be used to perform screen sharing between the client computer and the

remote computer.

It should be appreciated that in embodiments in which the client computer has a
reasonable amount of a computational power, the client and the remote computers can operate in
a peer-to-peer manner. The remote computer can be a dedicated application server computer or it
can be any other type of computer, such as a personal computer, including a desktop computers,

laptop computers, or tablet computers.

FIG. 141 illustrate an embodiment of the invention that is somewhat similar to shown in
FIG. 140, in that it uses hooks into the dispatch table 14008 of a computer’s operating system
14004 to intercept operating system calls made by one or more applications 14002 in order to
cause the screen displays generated by such applications to be scaled-down and/or subpixel-
optimized according to aspects of the invention described above. Itis different in that the client-
server embodiment shown in FIG. 140, in that is designed to run on one computer system 14100,
shown in FIG. 141.

In this embodiment, when an application makes a call to the operating system to draw an
element to a screen, the hooks placed in the OS dispatch table 14008 cause a corresponding draw
routine within the programming 14010 of a scaled subpixel-optimized screen generator program
14006A to be evoked. This substitute draw routine draw a corresponding element to a virtual
screen display list 10,206B. It also causes any portions of such screen elements drawn into the
part of the virtual screen that fits within a view window 10210 see to be immediately displayed on
the display screen 10220A0f the computer 14,100 by means of calling draw commands in the

operating system, or by directly drawing to that screen themselves.

WO 02/089105 PCT/US02/14217
-97-

When an application program calls the operating system for a measure string commands,
that commands is likewise intercepted so the call returns font metrics for a substituted font size in
the manner described above with regard to functions 10608 through 10618 of FIG. 106A.

A screen event input into the computer’s screen is taken from the operating system's event
queue and passed to an event position scaler, which transforms the screen coordinate at which
such an event was generated on the screen into a corresponding position in the virtual screen’s
layout represented by the display list, using the mapping of the view window into that virtual screen
to control such a transformation. Once the coordinates of the event have been appropriately
transformed, the event is returned to the operating system event queue so the operating system

will respond to the event as if it have been entered onto the virtual screen.

An embodiment of the invention of the type shown in FIG. 141 would allow a user of a
computer to subpixel-optimized, scaled-down, zoom, and perform selected text reflow upon
screens generated by standard computer applications 14002, even if they have not been designed

to support such functions.

In other embodiments of the invention not shown, the operating system of a computer can
be modified to include functionality of the type shown in the scaled-subpixel-optimized screen
generator 14006A shown in FIG. 141. In yet other embodiments of the invention, application
programs 14002, including browser programs, can be modified to support all or much of such

functionality directly.

FIG. 142 illustrates how the embodiment of the invention shown in FIGS. 102 and 140 can
be used to allow thin client computers, such as the thin client computers 200A through 200D
shown in that figure, to be used to access Internet content or application programs over wireless

network.

In this figure the computers 200A through 200D correspond to the thin client computer 200
shown in FIGS. 102 and 140. The computer 200A is a handheld computer. The thin client
computer 200B is a cellphone. The thin client computer 200C is a wristwatch computer. The thin

WO 02/089105 PCT/US02/14217

98-
client computer 200D is a headmounted computer, or headmounted display for a portable

computer. Each of these client computers can have a subpixel addressable display.

At the time of the filing of this application it is currently possible to manufacture screens for
each of these types of devices having resolutions high enough for use by most aspects of the
present inventions. For example, at the current time it is possible to manufacture a 320 x 240 color
LCD display with a diagonal measurement of 2 inches or less. Organic LED devices can currently
be manufactured with even higher resolutions. In the near future, the cost of such small screens

should come down, and their availability and resolution should go up.

All of the thin client computers shown in FIG. 142 have wireless transceivers which enable
them to transmit and received information of the type described above with a remote remote proxy
server computer 210 of the type shown n FIG. 102 or a remote application server 14000 of the type
shown above with regard FIG. 140. Such transceivers can be wireless LAN transceivers for
communicating with a wireless LAN transceiver 14204 or digital cellular wireless transceivers for
communicating with a wireless Internet transceiver 14202, or preferably a transceiver which has
been designed to communicate with both types of wireless transceivers. In other embodiments

other types of wireless communication, such as Bluetooth or infrared communication, can be used.

The remote computers 14,000AA through 14,000AC shown in FIG. 142 correspond to the

remote server computer 14,000 shown in FIG. 140.

The remote application server computers 14,000AA shown in FIG. 142 represent laptop,
desktop, server or other types of computers which can be programmed to operate as a remote
application server computer 14,000. The subpixel-optimized application server 14,000AB is a
remote computer of the general type illustrated in FIG. 140 that is designed to run applications for
a plurality of thin client computers connectéd to a LAN or WAN associated with such clients. The
remote computers 14,000AA and 14,000AB can communicate with thin clients over a private local
area wireless transmitter 14,2004, or can communicate with them over the wireless Intemet as
indicated by the numerals 10222 and 14202.

The subpixel-optimized application server 14,000AC is an application server similar to

server 14000AB, except that it is connected directly to the internet to allow multiple thin client

WO 02/089105 PCT/US02/14217

-99-
computers 200 to use applications over the Internet by means of the wireless transmission network

indicated by the numeral 14202.

In FIG. 142 a proxy server 210, of the type described above with regard to FIG. 102, is
shown connected to the LAN or WAN 14204. This, for example might be a proxy server intended
to handle Web browsing which the Corporation wishes to keep off the Internet. It should be
understood that other such proxy servers, such as those operated by companies providing
commercial proxy serving services, would normally be connected directly to the Intemet 10222

shown in FIG. 142 as well.

The system illustrated in regard FIG. 142 allows small computers that can be conveniently
carried at virtually all times to access and display web pages and the output of most application
programs. At the time of filing this application, the bandwidth of relatively inexpensive wireless
LAN transceivers, such as the LAN transceiver 14204 shown in FIG. 142, is fast enough to allow
thin clients of the type shown in FIG. 142 to view web content or the output of application programs
almost is rapidly as one could view such digital content on a desktop computer connected to a
cable modem. And this is on a machine that can be carried one's pocket, or on one's wrist, or as
part of one's glasses, and which can be capable of accessing such media within several seconds

after being turned on.

At the digital cellular bandwidth commonly available in America at the time of filing this
application, it will normally take several seconds to download the entire text of the most web
pages, and longer to download the web pages images. Of course many embodiments of the
present invention start to display text as soon as part of it is received, allowing the user starts to

start seeing part of a downloaded page very quickly.

As of this filing new, higher speed, digital cellular systems have been developed that are
capable of providing bandwidths in the range of hundreds of thousands or millions of bits per
second. Once such higher speed systems become commonly deployed, users of the invention wil
be able to read and interact with web pages and application screen on small, portable devices, that
can be used within seconds of being turned on most places they travel, with almost as much speed
and convenience as if accessing them on a desktop or laptop through a DSL or cable modem

connection.

WO 02/089105 PCT/US02/14217
-100-

FIGS. 143 and 144 provide two views of a handheld computer 200A capable of functioning
as a thin client for either proxy servers of the type described above with regard to FIG. 102 or a

remote application server computer of the type described with regard to FIG. 140.

In FIG. 143, the computer is shown in the portrait orientation in which it has been designed
for use. The native operating system on the computer is designed to draw fonts and graphical user
interface elements in this portrait orientation. This is the manner in which many of the handheld
computers sold at the time of the filing of this application have been designed and built. For
example, there are multiple such handheld computers on the market today which have subpixel
addressable screens with a 240 x 320 whole pixel resolution. Many of these computers also have
subpixel striping which runs in a horizontal direction when the displays are in their intended portrait

orientation.

Unfortunately, such a portrait orientation does not provide the type of landscape aspect
ratio with which most people are used to using computers, and for which most web pages have
been designed. Furthermore, in the case where such computers have horizontal subpixel striping,
such striping provide all of its potential increase in subpixel resolution in the vertical direction.
Unfortunately, the display of text tends to benefit substantially more from an increase in horizontal

resolution than it does from such an increase in vertical resolution.

For all these reasons, many embodiments of the invention which use such portrait-
orientation machines are designed to use them when they been rotated by 90 degrees, as shown
in FIG. 144, so they will have a landscape aspect ratio more like that of the layout of most
computer screens, and so that their subpixels will provide an increase in horizontal resolution

which is most useful for displaying text.

The FIG. 145 is a highly simplified pseudocode representation of how some aspects of the
present embodiments can be used to respond to requests to draw basic shapes -- such as
rectangles, ovals, lines, and curves -- using subpixel optimization. Such functionality can be used

in applications of many different types, in operating systems, and in thin client software.

WO 02/089105 PCT/US02/14217

-101-
In the example of FIG. 145, the pseudocode shown relates to a rectangle draw function

14500, which could, among other uses, be used in place of the rectangle command 10918
described above with regard FIG. 109A. Such a routine is evoked by a call to draw a rectangle
which has its position, width, and/or height defined at higher resolution than the whole pixel
resolution of a subpixel addressable screen on which is to be shown. In response, the function
14502 uses a subpixel-optimization routine to render the image of the rectangle defined at such a
higher resolution, at subpixel resolution. This can be done using virtually any subpixel optimization
scheme, but for monochrome rectangles a bicolor optimization scheme, such as that described

above will tend to provide the highest perceived spatial resolution.

FIG. 146 is a highly simplified pseudocode representation 14600 of code 14602 which
operates on a server and/or proxy computer and code 14604 which can be run on a client
computer, including a thin client computer, to allow applets downloaded from the server to draw

subpixel-optimized screen elements on the screen of the client.

In such an embodiment, a function 14,606 of the client requests media from the server.
The server responds in function 14608 by downloading media, or data, including one or more
applet programs which can run on the client computer. In function 14610 the client computer
receives the media including the applets, and function 14612 loads and runs the applets. In
function 14614 the applets draw subpixel-optimized elements to the subpixe! addressable screen

on the client computer.

The applets can draw subpixel-optimized elements either by copying or generating
subpixel-optimized bitmaps, by rendering text with subpixel-optimized fonts, or by drawing subpixel
optimize shapes, such as the shapes of vector defined graphics or relatively simple geometric

shapes, such as lines, rectangles, and ovals.

FIGS. 147 and 148 illustrate how subpixel optimization can be applied to rollover images

and GIFF animations, respectively.

In the subpixel optimization routine 14700 shown in FIG. 147, both a non-rollover image
14702, which is to be displayed when a pointing device is not detectably over the portion of the

screen associated with the images, and a rollover image 14704, which is displayed when the

WO 02/089105 PCT/US02/14217

-102-
pointing device is detectably over that screen portion, are both downscaled and subpixel-optimized

by a function 14706. This produces a scaled subpixel-optimized non-rollover image 14708 and a
scaled subpixel-optimized rollover image 14710. Then a function 14712 is used to select which of
these two subpixel-optimized images is displayed based on whether the pointer is detectably over
their associated screen area or not. This makes the two subpixel-optimized images act as a

combined "rollover” graphic.

In other embodiments of this aspect of the invention, a similar technique could be applied
to two images that are associated with a button, one displayed when the button is not being

pressed, and another displayed when the button is pressed.

The method 14800 shown in FIG. 148 is similar to that described above with regard FIG.
147. It takes each separate image 14802 through 148906 of a GIFF animations and subpixel-
optimizes it in a function 14808 to produce a corresponding set of scaled-down, subpixel-optimized
GIFF animations images. Then function 14816 displays the subpixel-optimized images in

substantially the same manner that non-subpixel-optimized gift animations are displayed.

The subpixel optimizations described with regard to FIGS. 147 and 148 can be used with
other aspects of the invention described above, including in the accessing of web pages on a

subpixel addressable screen, including those on thin client computers.

FIG. 149 illustrates a method 14900 for subpixel optimizing 3-D animation. This method
includes performing a set of functions 14904 through 14908 for each successive frame of the

animation.

Function 14904 runs a 3-D animation engine to create a bitmap of the current frame, or at
least of those portions of the image which have changed since the last frame. This function
generates such bitmaps at a resolution higher than the whole-pixel resolution at which the

subpixel-optimized version of such bitmaps are to be displayed.

Function 14906 then uses technigues, such as those described above, for scaling down
and subpixel optimizing the frame bitmap, or at least changes made in the frame bitmap since the

last frame.

WO 02/089105 PCT/US02/14217
-103-

Next function 14908 displays the scaled-down, subpixel-optimized image of the frame

bitmap, or at least of the changed portion of the frame, on a subpixel addressable screen.

The method shown in FIG. 149 can be particular useful to allow people to play games, and
see the images produced by such games at the higher resolution made possible by subpixel
optimization. It can be used for such purpose on small screen, handheld devices. It can be used
both with client computers displaying animated images generated on a remote computer, as well

as with computers which are generating such animated images locally.

FIGS. 150 and 151 illustrates one way in which the method of FIG. 149 can be used in a

client server gaming application.

FIG. 150 illustrates programming 15000 on a game server computer used in such an
embodiment. As indicated by the numeral 15002 and 15004, if the game server receives user
input from one or more game client computers it sends input to the game engine. If such input is
screen input, it is scaled appropriately to compensate for the difference between the user's screen

resolution and the space which the game engine associates with screen inputs.

In function 15006 the game engine computer computes a display list for the current frame,
or for any changes associated with the current frame to a prior display list. Then function 15008
has a 3-D rendering program render a frame bitmap corresponding to the display list generated for
the current frame, or render the changes required to the bitmap of the current frame. Such
bitmaps are generated at a higher resolution than that of the subpixel-optimized images which are

to be created by the function 15010.

If the client is generating different screen images for different clients, the function 15008

would be performed separately for each of those separate views.

Next function 15010 scales down and subpixel optimizes the current frame bitmap or the
bitmaps of current changes to the frame. When the function is scaling down only bitmaps of such

changes it also correspondingly scales down the screen positions associated with those changes.

WO 02/089105 PCT/US02/14217

-104-
Next function 15012 compresses the subpixel-optimized bitmaps, and if appropriate, their

locations, and function 15014 downloads the compressed, scaled, subpixel-optimized images and

any such locations to the client for display.

FIG. 151 illustrates programming 15100 on a game client designed for use with a

programming of FIG. 150.

Function 15101 receives downloaded images, then function 15102 decompresses them.
Next function 15104 displays the scaled, subpixel-optimized animation frame bitmaps, or it displays
bitmap of changes over the image of the prior animation screen at the locations indicated for those

changes. This is done on a subpixel addressable display.

As indicated by numeral 15106 and 15108, when the client receives user input, it uploads
that input to the game server with any screen coordinates associated with those inputs being
appropriately translated.

In other embodiments of this aspect of the invention the distribution of functionality
between the game server and the game client could be different. In some embodiments, a proxy
server generally similar to that described above could be used to perform the subpixel optimization
for display on a thin client of game content originally generated on a game server which is different
than the proxy server. In yet other embodiments the game client could itself perform the subpixel

optimization.

FIG. 152 is a highly simplified pseudo code description of an aspect of the invention which
allows images having associated transparency maps to be displayed with the subpixel optimization

of both their forground image and transparency map

The programming 15200 shown in FIG. 152 includes a function 15202 that produces a
scaled subpixel-optimized bitmap of a foreground image, that is an image, the display of which on
top of a background or other prior bitmap is to be controlled by an associated transparency bitmap.
The subpixel optimization used can be either a bicolor or a multicolor subpixel optimization, or a
combination of the two. Any method known for producing subpixel-optimized representations of

images could be used, including those which have been described above.

WO 02/089105 PCT/US02/14217

-105-
Function 15204 produces a subpixel optimization of the image’s associated transparency

map. Preferably a bicolor subpixel optimization is used, since a high resolution source image ofa
transparency map has transparency values that vary along a straight line in 3-component color
space, that of an alpha value ranging from 0 to 1. Such source image alpha values correspond to
grayscale colors because, if the area of the transparency map source image corresponding to a
given pixel in the subpixel-optimized output image of that map is covered by a uniform
transparency value, all of that output pixel's subpixels will tend to have equal alpha values.
Preferably the bicolor subpixel optimization of the transparency map is createdusing the non-linear

color balancing described above.

Once such a subpixel optimization of a foreground image and its associated transparency
map has been created, function 15206 displays this combination on a subpixel-optimized display.
This process includes performing a loop 15208 for each pixel row of the displayed image, which
includes a loop 15210 for each subpixel of each such row. The function 15210 causes function
15212 and 15214 to be performed for each subpixel. The function 15212 sets the current alpha
value to the alpha value of the corresponding subpixel of the subpixel-optimized transparency map.
Then function 15214 sets the luminosity of the current subpixel o the current alpha value multiplied
by the luminosity of the corresponding subpixel of the subpixel-optimized foreground image plus
the prior luminosity value of the current subpixel in the background bitmap over which the

transparency image is being drawn multiplied by one minus the current alpha value.

This means that if the foreground image is drawn over a prior bitmap, the extent to which
luminosity of each of its separate subpixel's is derived from the corresponding subpixel value of the
foreground image, or of the prior bitmap is determined as a function of the corresponding subpixel

alpha value of the subpixel-optimized transparency map.

In some embodiments of the invention images with associated transparency maps will be
scaled and subpixel-optimized on a server or browser computer, downloaded, and then displayed
by function 15206 on a client computer. In other embodiments of the invention, such subpixel-
optimized transparency images will be made available on recorded digital media. In yet other

embodiments of the invention they will be generated by the same computer that displays them.

WO 02/089105 PCT/US02/14217

-106-
In other embodiments of the invention subpixel-optimized foreground images could be

displayed using alpha values contained in a non-subpixel-optimized transparency map.

In some embodiments of the invention lossy color compression will be used to represent
groups of colors that are perceptually close with one color. Such compression can be performed
upon one dimentional transparency values, upon three dimensional transparency (i.e., opacity or
alpha) values of the type described above with regard to FIGS. 60, 96, and 97, or upon color
values having a transparency component value as an extra color dimension, as well as upon RGB
component values. In such compressions, it is generally advisable to prevent transparency values
or component color valuesrepresenting an alpha one or zero, or values very close to one or zero,
from being represented by transparency values further from one or zero, respectively. This is
because the eye is more sensitive to slight changes in opacity at the extremes of the transparency

range than it is to such changes elsewhere in that range.

Subpixel-optimized images with transparency maps can be used on subpixel optimize
displays for all the purposes for which non-subpixel-optimized images are used with transparency

maps. This includes use in animations and in web page layouts.

FIGS. 153 through 162 are highly simplified pseudo code descriptions of aspects of the
invention relating to subpixel optimization of video and/or animation. Such subpixel optimization
can be used in the context of Web browsing as well as in virtually any other context in which video

and animations is used.

FIG. 153 represents programming 15300 used to subpixel optimize video represented
using interpolation between video key frames. This programming includes a function 15302 that is
used in the case where the video to be subpixel-optimized is received in compressed format. It

decompresses such video, so they can be subpixel-optimized.

Function 15304 scales down and subpixel optimizes the keyframes of the video. Function
15306 scales down but does not subpixel optimize interpolated changes between keyframes. In
some embodiments of the aspect of invention shown in figure 153, such interpolation changes

could be subpixel-optimized, but there is little benefit from doing so, since such changes appear so

WO 02/089105 PCT/US02/14217

-107-
rapidly on a screen that their subpixel optimization would not be noticeable, and avoiding their

subpixel optimization reduces computational overhead.

Then function 15308 displays the scaled down video on a subpixel addressable display

with the subpixel-optimized keyframes and the non subpixel optimize interframe interpolation.

In other embodiments of the invention, this concept of only subpixel optimizing portions of
video that will be on the screen at one location long enough to be clearly perceived could be used

in other ways.

FIG. 154 illustrates programming that can be used to subpixel optimize video represented
totally or partially by sequences of sub-whole-frame image elements that are to be drawn to a
display frame. Commonly such video will also include whole frame images, and will use a
sequence of sub-whole-frame draws to incrementally changes screen as needed to represent
motion of one or more objects within it. This would include animation of the type described above
with regard FIG. 149. It can also include various forms of video compression, including video
having keyframes and interframe interpolation of the general type described above with regard
FIG. 153.

The programming of FIG. 154 includes a function 15402 used where the video to be
subpixel-optimized is received in compressed format, in which case that function decompresses it.
Next function 154004 scales and subpixel optimizes any frame images contained in the video,
scaling them down by a display scale factor. Then function 15406 scales and subpixel optimizes

any change bitmaps, scaling both the size of such images and their location by the scale factor.

Functions 15407 and 15408 repeatedly display on a subpixel addressable screen any
scaled subpixel-optimized video frame in the video sequence. After the display of such a video
frame it displays any of one or more scaled, subpixel-optimized change bitmaps over the bitmap of

that frame at the scaled position associated with that change bitmap by the function 15406.

It can be seen that the method of FIG. 154 enables subpixel-optimized video and

animation to be drawn in a manner that reduces the amount computation required for subpixel

WO 02/089105 PCT/US02/14217

-108-
optimization, since it does not require the subpixel optimization of an entire frame each time a

change is made to its video image.

FIGS. 155 and 156 illustrate two different methods in which subpixel-optimized images that

move relative to a frame can be displayed.

FIG. 155 includes programming 15500 which displays an image with fixed subpixelation as
it moves in whole pixel increments relative to a larger image on a subpixel addressable display. It
includes a function 155002 which stores a subpixel-optimized image, which can be produced by
any method, including those described above. It includes a loop 15503 performed for each
successive frame time. This loop comprises the function 15504 and 15506. The function 15504
calculates a movement for the image relative to the larger image. In this movement calculation the
position calculated for the object at each display frame is rounded to the nearest whole horizontal
and vertical pixel location and the size and orientation of the image is not altered. The function
15506 displays the image at the whole pixel resolution location calculated for it by the function
15504. Since only one subpixel-optimized bitmap of the image has to be calculated, and that
single image is repeatedly used as it moves across the screen, this method is quite

computationally efficient.

FIG. 156 describes programming 15600 which displays a moving image with changing
subpixelation. Itincludes a function 15602, which stores a high resolution source image of the
image to be moved. It also includes a loop 15603 performed for each successive frame time. This
loop includes a function 15604, which calculates the current translation, rotation, and/or
transformation of the high resolution source image, if any for the current frame. Then the loop’s
function 15606 generates a scaled-down, subpixel-optimized bitmap of the translated, rotated,
and/or transformed bitmap so produced. This subpixel optimization takes into account the location
of this transformed bitmap relative to the subpixel array upon which it will be displayed at a
resolution higher than whole pixel resolution. Then function 15608 of the frame loop displays the

resulting subpixel-optimized bitmap on a subpixel addressable display.

Either of the methods described above with regard FIG. 155 or 156 can be used to display
sprites in game animation, as well as animated text, or any other type of visual representation

which is moved relative to a larger frame.

WO 02/089105 PCT/US02/14217
-109-

The method of FIG. 155 tends to provide a less accurate representation of the motion of
the visual object, but it is more computationally efficient. The method of FIG. 156 provides a more

accurate visual representation, but is more computationally expensive.

In some embodiments of the invention a combination of these two methods could be used.
For example, a small subset of possible mappings between the object and a subpixel array can be
stored, and as the object moves it is displayed with that one of such stored mappings which most
closely represents a higher resolution representation of its current location relative to the subpixel

array upon which it is to be displayed.

FIGS. 157 and 158 illustrates aspects of the present invention used to optimize the display
of DVD or an HDTV video by downscaling and subpixel optimizing such video for display on a
subpixel addressable screen. This is particularly useful when used in conjunction with subpixel
addressable screens that have a higher subpixel resolution in the horizontal direction than they do
in the vertical direction, because both DVD an HDTV video commonly has an aspect ratio

substantially wider than it is high.

FIG. 159 illustrates aspects of the invention that can be applied to video formats which
represents subcomponents of video images as separate objects having different attributes. The
particular example in FIG. 159 involves programming 15900 which subpixel optimizes the display
of MPEG-4 video.

The programming shown in FIG. 159 includes a functiqn 15902 that receives and
decompresses and MPEG-4 video. It includes functions 15904 and 15906 that use different
subpixel optimization methods when scaling down different types of objects in the MPEG-4 video.
This function uses bicolor subpixel optimization, preferably with nonlinear color balancing, on
bicolor objects, and it uses multicolor subpixel optimization on multicolor objects. It's function
15908 displays a combination of the bicolor and multicolor objects on a subpixel-optimized screen,
moving such subpixel-optimized objects relative to the screen as dictated by the MPEG-4

description, using methods of the type discussed above with regard to FIGS. 155 and/or 156.

WO 02/089105 PCT/US02/14217

-110-
Some aspects of the invention are not limited to such use of different subpixel optimizing

algorithms for different object types in the MPEG-4 data stream. But the use of such different
subpixel optimizing algorithms can provide higher perceived resolution for bicolor objects, such as

text, and thus has the advantage of providing a somewhat better image.

FIGS. 160 and 161 relate to systems in which users access subpixel-optimized video over

a computer network.

FIG. 160 illustrates programming 16000 used by a server computer that serves subpixel-
optimized, scaled down, video. Such a server could be a proxy server which accesses video
requested by the client from yet another server computer and then downscales and subpixel
optimizes it before downloading to the client. In other embodiments, the serving of such subpixel-

optimized video is performed without such an intermediary proxy server.

The programming of FIG. 160 includes a function 16002 which receives a request for
certain video from a client computer. In many embodiments, such as the one shown in FIG. 160,
the request will also describe the horizontal and vertical subpixel resolution for which the video is to
be subpixel-optimized. In embodiments in which the server is only serving a set of clients having

one fixed subpixel resolution, such information is not needed as part of the request.

The function 16004 receives the requested video content. This can be done by accessing
it from a remote server, as described above; by accessing it from RAM or a mass storage device
associated with the serving computer; by having such content dynamically generated; or by

selecting a video fed from some source.

Function 16006 scales down and subpixel optimizes the received video to the subpixel
resolution associated with the request of function 16002. Then function 16008 compresses the
subpixel-optimized video and function 16010 download that compressed video to the requesting

device.

The compression algorithm used for such subpixel-optimized images can include one
which has a certain amount of loss without substantially decreasing the increased spatial resolution

made possible by subpixel optimization, as long as the location of the color values associated with

WO 02/089105 PCT/US02/14217

-111-
any pixel in such subpixel-optimized images are not moved in RGB color space by more than a

relatively limited color distance.

FIG. 161 describes a system 16100 that can be used with the aspect of the invention
described in FIG. 160. This system includes proxy computer code 16100 and thin client computer
code 16112, both of which are illustrated by highly simplified pseudocode in FIG. 161.

When the thin client receives a user request for certain video, function 16113 response by
sending a request for the video, including the subpixel resolution at which the video is to be
displayed to the proxy. When the proxy receives the request for such video its function 16100
causes function 16103 to send a corresponding request for the video to a server from which it can

be obtained. In many embodiments this will be a server identified in the URL of such a request.

When requested video is received by the proxy server, function 16104 causes function
16106 through 16110 to be performed. Function 16106 scaled down and subpixel optimize the
video to the subpixel resolution associated with its request from the client; function 16108
compresses that subpixel-optimized video; and function 16110 downloads it to the client that has

requested it.

When the client receives requested video from the proxy, function 16114 causes function
16115 to decompress it, and function 16116 to display that downscaled, decompress the video on

a subpixel addressable display.

FIGS. 162 through 166 are used to illustrate how aspects of the invention can be used to
improve the appearance of digital ink. Digital ink is usually a black and white bitmap drawn on a
screen in response to a user attempting to write or draw with his or her pointing device. In the
past, digital ink bitmaps have usually been represented at a whole pixel resolution in which each

pixel is shown as either black, white, or in some devices a grayscale value.

One aspect of the invention is the use of subpixel optimization to represent digital ink with
a higher resolution. When digital ink which is represented within the computer's memory by points

and lines or curves between such points, the resulting mathematical description of the lines

WO 02/089105 PCT/US02/14217

-112-
between such points can have a much higher resolution than the whole pixel resolution of the

screen.

FIG. 162 is a highly simplified pseudocode description of programming that can be used to

optimize the clarity with which digital ink can be viewed.

The digital ink code 16200 shown in FIG. 162 includes a function 16202 which responds
to user input with a pointing device while in digital ink draw mode, by recording the strokes of the
pointing device as a series of points and curve or lines between such points. Function 16206
draws ink on the screen using a subpixel optimization of the lines and curves. This can be done
with virtually any subpixe! optimization scheme, but it is preferrably done with a bicolor subpixel
optimization scheme, such, as for example, a bicolor subpixel optimization scheme using non-

linear color balancing.

FIG. 163 illustrates some digital ink 16302 which has been drawn on the screen of a
handheld computer 16300. Because this illustration is printed with a printer which can only
represent whole pixel luminosity values, the digital ink illustrated in FIG. 163 displays subpixel
optimization as grayscale anti-aliasing. It to be appreciated that when viewed on a subpixel

addressable display the image would appear even more clear than shown in FIG. 163.

If the user of the digital ink programming selects to scale up a representation of a portion
of digital ink, function 16208 causes function 16212 to produce a subpixel-optimized bitmap of the
digital ink lines and curves, using a bicolor subpixel optimization with non-linear color balancing, at
the user selected scaled-up size. Then function 16212 displays that scaled-up image on the users

screen.

FIG. 164 illustrates a scaled-up representation 16302A of the portion of digital ink 16302
shown in FIG. 163. This provides a substantially more clear representation of the digital ink, than
is produced by merely blowing up the pixelation of the digital ink's representation 16302 shown in
FIG. 163, as is illustrated by the bitmap 16302B shown in FIG. 165.

It should be noted that the bitmap shown in FIG. 165 is actually more pleasant to look at

than somescaled-up representation of digital ink because the bitmap shown in FIG. 163 has been

WO 02/089105 PCT/US02/14217

-113-
printed with whole pixel grayscale values with anti-aliasing, which is not used in some digital ink

representations.

If the user selects to scale down the representation of digital ink, function 16214 causes
function 16216 to produce a subpixel-optimized bitmap of the ink’s lines and curves using bicolor
subpixel optimization with non-linear color balancing at the selected scaled-down size, and then
causes function 16218 to display that scaled-down bitmap on the subpixel addressable display.

The results of such a process is illustrated by the bitmap 16302C shown in FIG. 166.

These aspects of the invention can be modified to deal with digital ink that has been
recorded as whole pixels that are either on or off. This can be done by having a routine estimate a
centerline of each stroke represented by such “on” pixels, and then producing a subpixel optimize
image of the digital ink's centerline at various scales as described above. An more accurate but
more computationally expensive approach would be to seek an optimal fit between successive
portions of such digital ink and a corresponding succession of lines and curves, such as, for

example Bezier curves.

In other embodiments, subpixel optimization could be performed on bitmaps which have
been produced by digital ink drawing by merely performing subpixel-optimized scale ups or scale

downs upon such bitmaps.

Some embodiments of the invention that relate to digital ink could be used with non

subpixel-optimized displays, by replacing subpixel optimization with grayscale anti-aliasing.

FIG. 167 illustrates components that can be included in many of the server, client, proxy
server, thin client, remote, desktop computer, or other computers referred to above. It should be
understood that not all of the components shown in FIG. 167 will be in all such computers, and

most such computers will include other components besides those shown in FIG. 167.

This figure is provided to make clear that most of the computers used with various aspects
of the present invention include some type of processor 16716 capable of executing programming

16702 to cause it to perform the functions of such aspects of the invention and to read and write

WO 02/089105 PCT/US02/14217

-114- :
data 16704 according to the methods of such aspects. The present invention relates to not only to

methods but also to such computer programming and data, as well as to computer systems which

have been programmed and/or hardwired to perform such methods or to use such data.

In most such computers the invention’s programming will be stored in RAM 16706; ROM
16707; or a mass storage device such as a hard drive 16708, floppy drive 16709, CD-ROM drive
16711, and/or DVD drive 16713. It can also be stored in machine-readable media, such as on a
floppy disks 16710, CD ROMs 16712, DVD ROMs 16714, or virtually any other type of machine
readable storage media. The invention's programming and/or data can also be the represented as
propagated signals indicated by the numeral 16719 which can be received by the computer

through some sort of communication port, such as the network interface 16720.

FIG.FIG. 168 provides a whole-pixel grayscale representation of a 320 by 240 screen
showing a small subpixel-optimized font produced using the non-linear color-balance method
described above with regard to FIG.FIG. 60 through 97. This figure is identical to FIG.FIG. 56
except that a portion of its text is encircled by dotted lines 16800.

FIG. 169 is an eight times blowup of the portion of the bitmap shown in FIG. 168 within the
dotted lines 16800. it shows that most of the vertical strokes in the font shown in FIG. 168 contain
color-balance distributions one their lefthand side which blur the clarity of such fonts.

One of the major benefits of the non-linear color-balancing method of producing subpixel
optimized font bitmaps is its ability to decrease the blurring of character-font shapes by the non-
linear method with which it seeks to substantially prevent the distribution of color balancing values

where it is not needed for color balance.

Upon observing the spreading of color values to the left of the main strokes of fonts of the
type shown in FIG. 169, the inventor of this aspect of the invention sought to see if such spreading

could be reduced. He tried to determine what the source of such spreading was.

Referring now to FIG. 170, he found that the algorithm used for creating non-linear color-

balanced bitmaps was designed to automatically place two padding columns of subpixels 17000 to

WO 02/089105 PCT/US02/14217

-115-
the left of the leftmost subpixel column 17002 in the rasterization of a character-font shape that

included an actual non-zero coverage value 17004 (i.e., was actually covered by a portion of the
character-font shape being represented by the rasterization). This was done to provide room for
the spreading of color balancing color values into the two subpixel column to the left of the leftmost
subpixel column containing such a non-zero coverage value, if such a leftward spreading was
required by the non-linear color balancing algorithm, described above, which allows color balancing

distribution two pixel to the left of a totally or partially covered subpixel..

Unfortunately padding the rasterization subpixel array with only two such subpixel columns
17000 tends to have the undesirable effect of making the leftmost subpixel column 17002 that
contains such a coverage value be the rightmost subpixel column of the pixel column containing
the two padding subpixel columns. In an RGB display this would cause the leftmost subpixel

column containing an actual coverage value to correspond to a blue subpixel.

This is undesirable because it tends to cause pixels in the leftmost pixel column in a font
bitmap to contain two leftmost subpixels which have no actual coverage value and a rightmost
subpixel which does include a non-zero coverage value, requiring that non-zero coverage value to
be distributed to achieve color balancing. This is a reason for much of the leftward blurring of

major vertical strokes shown in FIG. 169.

The inventor noted that character-font shapes hinted with systems that allowed boundaries
of vertical strokes to be positioned in increments finer than the width of a subpixel column had
often been designed by the individuals who hinted them to start the leftmost edge of their leftmost
vertical stroke, such as the edge 17100 shown in FIG. 171 only a slight distance into the leftmost
subpixel column containing non-zero coverage values 17002. This would substantially reduce the
amount of the non-zero coverage value contained within the subpixel column 17002 which had to
be distributed by non-linear color balancing, thus greatly reducing undesirable blurring in the

subpixel optimized representation of the character.

For example, the inventors found that many of the best hinting combinations, when used
with such algorithm, cause the first vertical strokes of a character, such as the vertical strokes
17102 shown in FIG. 171 to have its leftmost edge slightly into one subpixel column, with total

coverage in three successive subpixel column to the right, so as to cause the second leftmost pixel

WO 02/089105 PCT/US02/14217

-116-
column 17103 in the resulting bitmap to have one or more pixels totally covered so as to require no

color-balance spreading.

In such an optimized hinting process, subsequent vertical strokes would be aligned to
cover three adjacent subpixel column starting at a distance of three, six, or nine subpixel column
from the rightmost edge of the first vertical stroke. This would cause the subsequent vertical
strokes, such as the vertical strokes 17104 and 17106 shown figure 171, to have multiple pixels

that are totally covered, so as to require no color balancing.

Although fonts of the type shown in FIG. 168 to 171 are more readable than most
subpixel-optimized font bitmaps produced by prior art method, as a result of these investigations
the inventor has figured how to produce even more clear subpixel optimized font, as shown in figs.
172 through 174.

FIG. 172 shows a whole-pixel grayscale bitmap representing a subpixel-optimized 320 by
240 pixel display of a web page of the type shown in FIG. 168, except that it uses a new, more
clear method for producing and displaying font bitmaps.

FIG. 173 shows a four times blowup of the portion of FIG. 172 shown in the dotted box
numbered 17200FIG..

FIG. 174 shows a further four times blowup of the portion of text shown in the dotted lines
17300 in FIG. 173.

As can be seen from looking at FIGS. 172 through 174, there is relatively little horizontal
spreading of color values from many of the vertical strokes contained in the font bitmaps shown in
those figures. It should be noted that the uniform light gray background in FIGS. 173 and 174
results because the text in those figures was taken from a portion of the web page of FIG. 172 that
had a background color, not because of any spreading due to color balancing. The fonts shown in

these figures are substantially more clear than those shown in FIGS. 168 and 169.

The inventor has made this improvement by aligning the leftmost edge of a character's

leftmost vertical stroke with the left edge of a pixel boundary. In many embodiments this is done

WO 02/089105 PCT/US02/14217

-117-
by inserting three padding subpixel column 17500, shown in FIG. 175 before the leftmost subpixel

column that contains a non-zero coverage values. This automaticallyaligns the leftmost
rasterization unit (i.e., subpixel) all or partially covered by a character’s outlinewith the leftmost
edge of a pixel column. If a characters is hinted so its leftmost outline edge is aligned with the
leftmost edge of a rasterization unit, this will automatically cause that leftmost outiine edge to be
aligned with the leftmost edge of a pixel in the resulting font bitmap. When the leftmost edge of a
font outline is a vertical stroke this makes it very easy to create a font bitmap that has clear

leftmost vertical edge, even after non-linear color balancing.

FIG. 176 shows one of many possible hinting interfaces that can be used with the present
invention. In this hinting interface the dotted lines 17602 is a line that can be moved by the user to
interactively define the left side bearing for a desired character. The dotted line 17604 is a
movable line that defines the right side bearing. The left side bearing is the distance between the
initial reference point, sometimes called the pen position, relative to which a character is to be
drawn and the leftmost edge of the bitmap of the character being drawn. The line 17604
corresponds to the location relative to the bitmap at which the pen position will be normally be
placed at the start of the drawing of the next successive character along a line of text. The right
side bearing is the distance between the line 17604 and the rightmost edge of the bitmap of the
character being drawn. The advance width is defined as the distance between the lines 17604 and
17602. This represents the normal total width between pen positions before and after the drawing
of a character’s bitmap. In some embodiments, the left side bearing value and the advance width
are rounded to whole multiples of pixel widths, although in other embodiments this need not be
true. In some cases, the left and/or right side bearing values can be negative. For example this
often happens with italic fonts in which the bitmaps associated with successive characters often

overlaps portions of each other’s advance width.

Each of the small rectangular dots 17606 shown in FIG. 176 correspond to the center of a
rasterization unit, which, in subpixel-optimized font bitmaps, correspond to an individual subpixel.
In this particular hinting interface asterization units more than half covered by a character-font
shape's outline are shown in black, although in more advanced interfaces such rasterization units
could be shown with grayscale coverage values. The character-font shape’s outlines are shown in
the FIG.figure and each point which defines a segment in the outline is numbered, whether it be a

control point or a segment endpoint.

WO 02/089105 PCT/US02/14217
-118-

FIGS. 177 through 181 are used to help explain some of the steps described in the highly
simplified pseudocode contained in FIG. 182.

FIG. 182 is a highly simplified pseudocode description of programming 6000A, which
corresponds generally to the pseudocode shown in FIG. 60, except that the pseudocode shown in
FIG. 182 focuses on computational aspects which relate to the improved method of producing
more clear nonlinearly color-balanced subpixel-optimized bitmaps described above with regard to
FIGS. 172 and 176.

The pseudocode includes a function 18202, which determines the tightest rectangular
array of rasterization units into which a character-font shapes can be placed, taking into account

the alignment of its shape relative to such rasterization units defined by its hinting.

The position of the font outline relative to the individual rasterization units in which it occurs
is not changed by this function. Thus, if such an outline’s leftmost point occurs other than at the
left edge of the rasterization unit it is in, that rasterization unit will appear at the leftmost edge of the
tightest rectangular array produced by function 18202, and the leftmost point of that outiine would
occur within the leftmost rasterization unit column of that rectangle, but it would not occur at the

leftmost edge of that leftmost column.

FIGS. 177 and 178 are used to help explain this function. FIG. 177 corresponds to a
hinted character-font shape outline. FIG. 178 shows the rectangle ofrasterization units (each
corresponding in size to a subpixel) returned by function 18202 for the character outline shown in
FIG. 177. This grid corresponds to the tightest, or smallest, rectangle into which the rasterization

unit containing the character font shape fits.

Once the function 18202 has been completed, functions 6002A through 6006 are
performed. These correspond to steps 6002 through 6006 of FIG. 60. They are used to determine
a coverage value for each rasterization unit contained in the rectangle returned by function
18202FIG.. Each such coverage value represents the percent of the subpixel covered by the

higher resolution character-font shape outline being rasterized.

WO 02/089105 PCT/US02/14217

-119-
FIG. 179 illustrates the coverage values calculated for each rasterization unit in the array

shown in FIG. 178. In it coverage is represented by the percent of the rasterization unit that is
colored black. In FIG. 179 the portion of the resulting bargraph in each rasterization unit
representing coverage is placed at the top of that unit if the corresponding part of the unit covered

by the character-font shape outline occurs at the top of the rasterization unit.

In FIG. 180 the bargraphs for all individual rasterization units are placed starting at the
bottom of the corresponding subpixel unit, so as to make them correspond more closely with the
representation of coverage values shown in FIGS. 46 through 52 and 92 through 93, described

above.

Once the character-font shape has been rasterized, step 18204 maps the resulting array
of subpixel coverage values into an array of subpixel-addressable pixels. It does so aligning the
first column of rasterization units in the tight rectangle described above with the leftmost subpixel of
a pixel row. This causes the leftmost column of rasterization units which have a nonzero coverage
value to be placed as a leftmost subpixel column in a whole pixel as described above with regard
to FIG. 175.FIG. In the example illusted in FIGS. 177 through 181, this causes the resulting

subpixel array to appear as shown in the central pixel columns labeled 18102 in FIG. 181.

Next a step 18206 pads the bitmap array being created for the current character with a
pixel column comprised of three subpixel's to the left of the pixel containing the leftmost subpixel
column containing an actual nonzero coverage value. This causes the subpixel array in the

example to appear as shown by the combination of pixel columns 18104 and 18102 in FIG. 181,

Next a step 18208 pads the bitmap array with two or more subpixel columns to its right, so
as to cause the total number of subpixel columns of the bitmap to be an even multiple three, that is
to be an even number of whole pixel columns. This causes the example subpixel array to appear
as shown by the combination of pixel columns 18104, 18102, and 18106 in FIG. 181.

Step 18210 adjusts the left and right side bearing value to compensate for the addition of
the padding pixel columns. Thus, for example, a bitmap which would otherwise have a left side

bearing of one pixel width would be changed to have a left side bearing of zero to compensate for

WO 02/089105 PCT/US02/14217

-120-
the addition of the left side padding column. Similarly a bitmap which had and extra pixel column

added to its right side would decrease its right side bearing by one pixel width.

Next function 18212 performs non-linear color balancing, which in many embodiments will

correspond to the steps described by the loop 6008 shown in FIG. 60, described above.

Once this has been done, in embodiments using a packed color value representation of
the type described in FIG. 96 above, step 18214 converts the pixel color values resulting after the

color balancing operation into corresponding values from a more limited color palette.

Note that the method of FIG. 182 allows room for any color balancing which might be
necessary, without tending to cause the unnecessary color spreading discussed above with regard
to FIGS. 168 and 169. It does this by insuring that there are at least two subpixels to the left and

to the right of any subpixels corresponding to area covered by the font shape being rasterized.

In other embodiments of this aspect of the invention other methods will be used to cause
leftmost and rightmost edges of font shapes and vertical strokes to be aligned with whole pixel
boundaries, so as to take maximum advantage of the capability of non-linear color balancing to
reduce smearing. In some such embodiments, whether or not a padding pixel columns was added
to the left or right side of a font bitmap could be a function of whether or not color balancing

distributions were required in such columns.

FIG. 183 describes functions for drawing a string of characters using the bitmaps produced
by the method described in FIG. 182. This pseudocode is similar to that described above with
regard FIG. 97, except that it focuses on an aspect of the invention that is quite useful with the
method for producing more clear non-linearly color-balanced subpixel-optimized font bitmaps
describe with regard to FIG. 182.

When the draw string function 18300 shown in FIG. 183 is called, a step 18302 sets the
pen position to a start position specified by the draw string call that indicates where the display of

the string is the start.

WO 02/089105 PCT/US02/14217

-121-
Then a loop 97 14A similar to the loop 9714 described in FIG. 97 is performed for each

character the string to the display.

In this loop a step 9716 accesses the current character's font bitmap. Then a step 18304
sets the character start position to the current pen position. Then a step 18306 adjusts the current
pen position by the left side bearing. As has been described above, the left side bearing has been
changed from what it would normally be to take into account the fact that the character bitmap has
been padded with one extra pixel column on its left hand side, and thus will be decreased by the

width of one pixel column.

Next a step 9718A is performed for each pixel in the font bitmap. This includes a substep
18308, which tests to see if the current pixel's value is nonzero. If so, it draws the pixel on the

screen at a position determined as a function of the current pen position.

If the current pixel's value is zero, it represents a totally transparent pixel, meaning the
background color previously at the position of the current pixel should be left unchanged. In this
embodiment of the invention the functions described in FIG. 96 reserve the value 0 to represent

such a totally transparent pixel.

This practice of not writing transparent pixel's is applied to all pixels of the bitmap in the
embodiment described in FIG. 183. This practice is particular valuable with regard to pixels in the
padding column placed at the left most edge of a character-font bitmap by step 18206 described
above regard FIG. 182. This is because pixels in such padding columns will commonly have no
color values spread into them as a result of non-linear color-balancing when vertical stroke
boundaries have been aligned to vertical pixel boundaries. As a result, such pixels will be
transparent and color values which may have been placed in their location by the character to its
left can remain unchanged, allowing the pixel columns of adjacent characters which contain

coverage or color balancing information to be placed adjacent to each other.

This can be seen for example at the location indicated by the numeral 17302 in FIG. 173
where the pixel column between the “w” and “e” of the word "Web" contained color values from the
“w” which have been allowed to show through the transparent, and thus non-written, left side

padding column associated with the "e". This can also be seen at the location indicated by the

WO 02/089105 PCT/US02/14217

-122-
numeral 17402 shown in FIG. 174, in which the pixel column between the “r" and the “¢” contain

color values from the “r” which are not overridden by the transparent padding pixel column of the

“n

e.

As those skilled in the art will recognize, function 9718A will require some sort of iteration
controlling the position at which pixels are drawn to be repeated for each row of a font bitmap, so

as to have each of its bitmaps drawn in the proper place.

It should be appreciated that in other embodiments of the invention, function could be
provided which would allow overlapping non-transparent pixel values from adjacent characters to
be combined, rather than merely allowing non-transparent color values from one character to show

through when the corresponding pixels of the following character are transparent.

Preferably such a process would allow combination of such transparency values on a
subpixel-by-subpixel basis. Such a process could provide an even more accurate representation

of closely spaced letters, although it would require more computation.

One way of achieving this result would be as follows: Add each of the three corresponding
alpha component values associated with any overlapping pixel between characters, clipping any
component values at their maximum possible value. And then drawing each of the resulting pixels,
using the combined component alpha values to determine how much foreground color and how

much background color should be drawn at its location.

FIG. 184 illustrates an alternate embodiment of this method for providing more clear non-
linear color-balanced font bitmaps. It illustrates a hinting interface similar to that described above
regard FIG. 176, except that it includes an interface feature 18402 comprised of a user-movable
line or control. This control allows the user to selectively position, relative to his or her character-
font shape outline, the location to be aligned with the leftmost edge of a pixel column following the

leftmost padding pixel column.

Such an interface feature is more desirable when hinting fonts which have a leftmost edge
which is other than a vertical stroke. For example, when dealing with a character-font shape
having a leftmost main vertical stroke with a small serif sticking out from to its left edge by less than

WO 02/089105 PCT/US02/14217

-123-
a full pixel width, the hinter may want to have the main leftmost edge of the vertical stroke aligned

with a whole pixel boundary, rather than the more leftward serif. The interface feature shown in

FIG. 184 would make such an alignment easy for a hinter to select.

Another way of giving a hinter the equivalent capability would be to allow him or her to
select whether to add only two subpixel padding columns, as described above with regard FIG.
170 or 171, or to add three or more such subpixel padding columns, as is described above with
regard to figs. 175, 181 and 182.

The just described method for making non-linear color balanced subpixel optimized
bitmaps more clear is not only applicable to small fonts of the types shown in figs. 172 through 174
but also to larger fonts, such as the relatively large font shown in FIG. 55.

It should be appreciated that subpixel optimization can usually represent a font bitmap with
just three different types of pixels: a foreground pixel, a background pixel, and an intermediary,
color balancing, pixel. A foreground pixel represents a portion of the font image totally covered by
the font shape being represented, and is drawn with the foreground color with which the character
is being represented. A background pixel represents a portion of the font image totally uncovered
by the font shape, and is drawn with the color of the background on top of which the font is being
shown. An intermediate pixel represents a pixel that is partially covered by the font shape and/or
which receives color balancing distributions for a nearby pixel. The color of each of its subpixel's is

determined separately by color balancing.

When prior art linear color balancing of the type described above with regard to FIGS. 46,
47, 52, and 93 are applied to fonts, color balancing is performed across every edge of a character
shape in the direction of subpixel color variation, even if that edge is perfectly aligned with a pixel
boundary. This leads to the spatial smearing of the shape of all letters, no matter how well hinted.

When non-linear color balancing of the type described above with regard to FIGS. 48, 49,
51, and 91 is applied to fonts, hinting can be used to greatly reduce the spatial smearing caused
by color balancing. In portions of a character's shape where its edges are aligned with pixel
boundaries, often no color balance distribution will be required across pixel boundaries. This is
because such non-linear color balancing only distributes color imbalance that occurs within a give

pixel. This allows foreground pixels to be next to background pixels along the direction of subpixel

WO 02/089105 PCT/US02/14217

-124-
color variation in such locations, greatly increasing the perceived clarity of the font shape. This is

shown in FIG. 173 and 174 in which substantial portions of the vertical strokes in the 8 pixel per em
font shown those figures have been hinted so that the edges of those strokes align with pixel
boundaries. As a result, foreground pixels are located horizontally next to background pixels along
substantial portions of the edges of many such vertical strokes. Even with the less optimal hinting
of leftmost vertical stroke edges shown in FIGS. 168 and 169, the amount of color-balance

smearing is substantially less than that which would result from prior art linear color balancing.

FIGS. 185 through 190 are highly simplified pseudocode descriptions of user interface
innovations that can be used to improve the browsing of Web pages, particularly when such

browsing is performed on relatively small or relatively low resolution screens.

FIG. 185 is a higher level description of the selected-text reflow method described above
with regard to FIGS. 129 through 134. This method 18500 includes a function 18502 that
accesses a Web page's content and a function 18504 that performs a first layout of the Web
page's content, placing text at different horizontal locations indicated for text in the web page. The
markup languages used to describe Web pages have multiple methods of indicating that different
portions of text are to be drawn at different horizontal locations or in different horizontal ranges in a

web page's, including, to name just two, the use of tables and frames.

Once such a layout has been performed, function 18506 displays the elements of the
layout at a given scale and at relative positions determined by the first layout. After this display
has been performed a step 18508 enables the user to select a portion of the text at a given
horizontal location in the display of the first layout. On way of enabling this is described above with
regard to FIG. 130.

If such a selection is made, function 8510 causes function 18512 and 18514 to be
performed. Function 18512 performs a second layout of the text that has been selected by the
user. This second layout reflows the selected text across the lines of the new column in which the
text has a different, ususally larger, font size relative to the width of the lines in that column. When
this second layout is been performed, function 18514 displays the layout of the new column at a
scale that fills at least two thirds of the width of the screen or screen window on which the web

page is being displayed.

WO 02/089105 PCT/US02/14217
-125-

As indicated above with regard to FIGS. 135 through 137, the second layout in such
selected-text reflow method allows a user to see selected portions of the Web pages layout in at
large easy read font sizes. This can be a tremendous advantage on both low resolution screens,
screens that are small, and/or screens that are relatively far from their viewer. The first layout in
such a method allows the user to get a view of how the web page is intended to look in more
normal displays, and allows the user to more rapidly select which portions of the text he or she

desires to see re-displayed at a larger font size.

FIG. 186 is a high-level pseudocode description of a zoom-to-fit method 18600, of the
general type described above with regard to FIGS. 118 through 120.

This method includes a function 18602 that accesses a Web page’s content, and a

function 18604 that lays the Web page’s content out.

Once such a display of the layout is being shown on a screen, function 18608 enables the
user to drag a pointing device across this display. During such a drag, if the drag continues across
a boundary associated with a screen edge, a function 18610 causes function 18612 to scroll, onto
the screen, portions of the layout that were previously off screen on the other side of the screen
edge. This is done to allow user to select with a drag a portion of the layout that is either too large
to entirely fit on the screen at the current display scale or that was positioned at the start of a drag

so that only part of it was on the screen.

If the user releases the drag, function 18614 causes functions 18616 and 18618 to be
performed. The first of these causes a part of the layout to be defined as selected based on the
positions in the layout that corresponds to the start and end of the drag. Such a selected part can
correspond to a portion of the layout having the horizontal or vertical range of the drag or to an
area having diagonal comers corresponding to the start and end of such a drag. Then function
18618 displays the selected part of the layout at a scale that causes it to substantially it the

screen.

FIG. 187 is a high-level pseudocode description of a drag scroll method 18700 that allows

a user to easily navigate within the display of a web page’s layout.

WO 02/089105 PCT/US02/14217
-126-

This method includes a function 18702 that accesses the Web page’s content, a function
18704 that performs a layout of the Web page’s content, and a function 18706 that displays all or
portion of that layout at a given scale factor. Then a function 18708 enables the user to drag a
pointing device across the display of the layout. Function 18710 responds to any such drag across
a boundary associated with a screen edge by scrolling onto the screen, past the screen edge,

portions of the layout previously off screen.

This method can be used as part of, or independently from, zoom selection functions. It
has the advantage of enabling a user to scroll around the display of the layout of a web page by

merely dragging a pointing device across a boundary at, or near, an edge of the display screen.

FIG. 188 is a high-level pseudocode description of a click-zoom method 18800 that
enables the user to rapidly selected to zoom in on a desired portion of the display of a layout of a
web page. This method includes a function 18802 that accesses the web pages content, a
function 18804 that performs a layout of the Web page’s content, and a function 18806 that
displays all or a portion of the Web page’s layout at a first scale. A function 18802; enables the
user to click appointing device at a selected location in the display of the layout at the first scale,
and function 18810 responds to such a click by performing a zoomed-in display of the portion of
the layout around the location in the layout at which the click was performed. Commonly the

zoomed-in display will be centered on the location in the layout at which the click was made.

FIG. 189 is a highly simplified pseudocode description of the zoomclick method 18900
described above in some detail with regard to FIGS. 121 through 128.

This method includes a function 18902 that accesses the Web page’s content, a function a
18904 that performs a layout of that content, and a function 18906 that displays all or a portion of
the web page’s layout at a first scale on a display screen having an associated pointing device. In
the particular embodiment of this method described in FIG. 189, the screen is a touch screen and it

is intended that the pointing device can be a person's finger.

WO 02/089105 PCT/US02/14217

-127-
Once the display of the layout at the first scale has been performed, a function 18908

responds when a press has been made to the touch grain display. When such a press occurs, this

function causes functions 18910 through 18922 to be performed.

Function 18910 replaces on the screen the display of a portion of the web page at the first
scale with a zoomed-in display of a portion of the web page at a larger scale. This zoomed portion
includes a selected location in the layout associated with touch screen press. Preferably the
selected layout position has substantially the same location on the screen in the zoomed-in display
as it had in the display at the first scale at the time of selection. By substantially same position, it is
meant that the selected positioned should have locations on the screen both immediately before
and after the zoom that appears to correspond to the same touch positioned on the screen.
Preferably this would mean that the change in the selected positions screen location would not
change by more than twenty percent of the width or height of the screen immediately after such a

zoom.

Once the zoomed-in display is shown, function 18912 displays a cursor above the location
at which the screen is being touched to indicate the selected location in the web page layout
associated with the touch. In some touch screen devices, particularly those designed for use with
styluses having relatively fine points, there is no need for such a cursor, since the user can see
with considerable accuracy the point at which the screen is being touched. But in touch screens
designed for use with fingers as pointing devices it is often desirable to place a cursor above the
location at which the screen is being touched so the user can accurately see the location in the
screen’s display that is associated with such a touch. This is particularly desirable when the
method is being use with a display, such as that shown in FIGS. 121 through 128, that is relatively

small compared to the size of a human finger.

During the continuation of the touch a function 18914 responds to any movement of the
touch by correspondingly moving the cursor in the zoomed display. Also during the continuation of
such a touch, a function 18916 response to any movement of the touch across a boundary
associated with a screen edge by scrolling onto the screen, past the screen edge, portions of the
layout at the zoomed scale that were previously off the screen. This allows the user to rapidly and

conveniently scroll within the zoomed display of the web page while in zoomclick mode.

WO 02/089105 PCT/US02/14217

-128-
Function 18918 responds if the user releases a touch at a given positioned in the zoomed

display of the web page. If so, a function 18920 acts as if a pointing device click had occurred at a
positioned in the web page corresponding to that of the release. For example, if the release is at a
layout location corresponding to a web link, the system will respond by selecting the link, or if the

release is at the location of a radio button, the system will respond by flipping the state of the radio

button.

Once this has been done, a function 18922 replaces the display of the zoomed-in layout
on the screen with a display of the layout at the same first scale factor at which the web page was

displayed before the pointing device press was detected by function 18908.

As described above with regard to FIGS. 121 through 128, zoomclick provides a valuable
technique for allowing a user to rapidly see and select desired portions of a web page at a
zoomed-in scale that makes the contents of those selected parts easier to read and easier to

accurately select with a pointing device.

FIG. 190 is a highly simplified pseudocode description of a method 19000 that allows a
user to see a zoom-out view of a web page using greeking to represent text lines. Greeking is the
representation of the size at which portions of text are laid out in a document by non-readable

graphic representations.

This method includes a function 19002 that accesses a Web page’s content, a function
19004 that performs a layout of the web page’s content, and functions 19006 and 19014 that
detects the scale at which the user has selected to have the layout of the web page's contents

display.

If the user has selected to have the web page’s layout displayed at a given larger display
scale, function 19006 causes function 19008 to display a portion of the web pages layout at the
larger scale. This includes performing a function 19010 to represent the layout's images with
bitmap images scaled for display at the larger scale and a function 19012 that represents the
layout of the web page'’s strings with bitmaps composed from separate font bitmaps that have

sizes appropriate for display at the larger scale.

WO 02/089105 PCT/US02/14217

-129-
If, on the other hand, the user has selected a given smaller display scale, one which is so

small that at least some of the text of the web page cannot be displayed at that scale in a size that
is readable, function 19014 causes a function 19016 to display a portion of the web page’s layout
at the smaller scale. This includes performing a function 19018 that represents the layout's images
with bitmap images that have been scaled down for display at the smaller scale, and a function
19020 that represents at lease some strings with bitmaps composed of greeked text
representations that indicate the size and location of individual strings in the display at the smaller

scale.

In many cases the bitmaps used to represents strings in such greeking will merely be lines
or rectangles having a width and/or height corresponding to the size of their corresponding strings

in the web page’s layout at the small-scale.

When a layout is displayed at a size in which text is too small to read the use of greeked
representations of text can makes such a display easier and more pleasant to see, and such
greeking generally takes less computation to generate that would corresponding string images

generated from unreadabily small font bitmaps.

One of the major uses of the method shown in FIG. 190 is to enable a user to quickly gain
an overview of a web page's layout and to allow him or her to quickly select different portions of

such a web page, such as has been described above with regard to FIGS. 136 and 137.

Those skilled in the art of computer user interfaces will appreciate that some of the
methods described in FIGS. 185 through 190 can be used in combination with each other and with
other aspects of the invention described above as part of a single user interface mode, whereas
others are them would normally be used in different user interface or different user interface

modes.

It should be understood that the foregoing description and drawings are given merely to
explain and illustrate, and that the invention is not limited thereto except insofar as the interpretation
of the appended claims are so limited. Those skilled in the art who have the disclosure before them
will be able to make modifications and variations therein without departing from the scope of the

invention.

WO 02/089105 PCT/US02/14217
-130-

The invention of the present application, as broadly claimed, is not limited to use with any
one type of operating system, computer hardware, or computer network, and, thus, other

embodiments of the invention could use differing software and hardware systems.

Furthermore, it should be understood that the program behaviors described in the claims
below, like virtually all program behaviors, can be performed by many different programming and
data structures, using substantially different organization and sequencing. This is because
programming is an extremely flexible art in which a given idea of any complexity, once understood
by those skilled in the art, can be manifested in a virtually unlimited number of ways. Thus, the
claims are not meant to be limited to the exact steps and/or sequence of steps described in the
figures. This is particularly true since the pseudo-code described in the text above has been highly
simplified to let it more efficiently communicate that which one skilled in the art needs to know to
implement the invention without burdening him or her with unnecessary details. In the interest of
such simplification, the structure of the pseudo-code described above often differs significantly
from the structure of the actual code that a skilled programmer would use when implementing the
invention. Furthermore, many of the programmed behaviors which are shown being performed in

software in the specification could be performed in hardware in other embodiments.

In the many embodiment of the invention discussed above, various aspects of the
invention are shown occurring together which could occur separately in other embodiments of

those aspects of the invention.

Most of the various illustrations of subpixel optimization and non-linear color-balancing
described in various parts of this specification relate to RGB subpixel addressable displays having
vertical subpixel striping. It should be appreciated that many of inventions innovations relating to
non-linear color balancing and subpixel optimization can be used with subpixel displays that have
BGR or other types of subpixel addressability, as well as subpixel displays having horizontal

subpixel striping.

In the non-linear color balancing methods shown above the only portion of a subpixel's
luminosity distributed by color balancing is that which is higher than the minimum subpixel

luminosity value within a pixel. But in other embodiments other portion of a subpixel's luminosity

WO 02/089105 PCT/US02/14217

-131-
that cause color imbalance within a pixel could be distributed, such as portions that differ from the

mean or maximum subpixel luminosity of pixel. In such embodiments subpixel luminosity values
below such a mean or maximum would, in effect, be negative luminosity values, that could be

distributed by a weighted decreasing of subpixel luminosities in such a subpixel's neighborhood.

All the non-linear color balancing methods shown above only distribute those portions of a
subpixel's luminosity that cause color imbalance within a subpixel's corresponding pixel. This is
done because the arrangement of three successive RGB or BGR subpixels commonly found within
a whole pixel are perceptually well color balanced. If the subpixels of such a whole pixels are of
equal luminosity they tend to appear more color balanced to the eye than an isolated set of the
same three colored subpixels shown at the same intensity in an order in which green is not the
central color. This is one of the reason why edges of fonts that appear at other than whole pixel

boundaries appear color imbalanced.

But other non-linear color balancing embodiments need not be limited to only distributing
subpixel luminance that causes imbalance within individual whole pixels. Other non-linear color
balancing embodiments could determine the degree of subpixel color imbalance within regions
other than whole pixels, and distribute subpixel luminance values based totally or in part on
imbalance with such regions. For example, studies could be performed to find which distributions
of imbalanced coverage values created a minimal spatial spreading while maintaining the
perception of color balance, for each of a plurality of commonly occurring imbalance patterns, and
such perceptually selected distributions could be used to distribute color imbalance that occurs in

spatial regions other than whole pixel regions.

Certain aspects of the invention relate to the creation and use of subpixel optimized
images that calculate luminosity values for individual pixels by line coverage techniques. It should
be appreciated that other aspects of the invention claimed below without specific recitation of such
line or area coverage functions are not limited to such methods of determining subpixel luminosity
and could for example use other known methods for determining coverage values with source
images comprised of color bitmaps, greyscale bitmaps, fonts, and other shapes, including, but not

limited to, area sampling techniques.

WO 02/089105 PCT/US02/14217

-132-
In the discussion above, the source image windows used to assign luminosity or coverage

values in subpixel-optimized bitmaps are rectangular, and have sizes corresponding a whole pixel
in a multi-color subpixel-optimized image and corresponding to a subpixel in a bi-color subpixel
optimized image. In other embodiments windows of different shapes and sizes can be used. For
example, in multi-colored subpixel-optimized images source image windows might have a size
somewhat smaller that that corresponding to a whole output image pixel. In some embodiments, a
non-uniform weighting function could be used to translate coverage or luminosity values in a
source image window into coverage or luminosity value in the output image. For example, in multi-
color subpixel-optimized images it might be preferred to give more weight to the luminosity in
portions of a source windows that corresponds in size and location to the subpixel whose
luminosity is being determined. In fact, the line coverage arrangement discussed above with
regard to FIGS. 17 through 19 provides such central weighting because its vertical line runs only
through the portion of the source image window that correspond to the location of the subpixel for

which its line coverage values are being determined.

Although many aspects of the invention explicitly relate to the use of subpixel optimization,
many other aspects do not depend on subpixel-optimization. In some such aspects of the
invention forms of anti-aliasing can be used that do not involve subpixel-optimization. Forms of
anti-aliasing that do not involve subpixel optimization can allow images to appear to have a higher
resolution than could be provided in the absence of such anti-aliasing. This is particularly true for
font images. For example, fonts as small as seven pixel's per em can be read relatively easily
provided that they have the right shape, are properly hinted, and use anti-aliasing -- either with or
without subpixel-optimization, although proper subpixel-optimization makes such small fonts easier

to read.

In this specification and the claims that follow reference to a “screen’, particularly a screen
on which scaled-down images, text, or web page layouts are displayed, can normally include either
whole screens or parts of screens, such as graphic windows on screens. For example, the scaled
down screen images referred to might be shown in a window on a considerably larger screen, or
may be shown on a portion of a small screen that is left after space is dedicated to certain
graphical user interface elements, such as, for example, the tool bar shown in FIG. 114. It should
also be appreciated that certain subpixel-optimized aspects of the invention can be used to display

images and/or text across all or a substantial portion of a large screen, such as to allow such a

WO 02/089105 PCT/US02/14217

-133-
large screen to see content at a higher spatial resolution that it could with non-subpixel-optimized

techniques.

Some aspects of the invention specifically relate to laying out digital content at a virtual
resolution and then displaying it at a scaled-down resolution. It should be appreciated that in other
aspects of the invention the images and text of the digital content could be scaled down before

layout, and then be laid out at the actual resolution they are to be shown at.

WO 02/089105 PCT/US02/14217

-134-
WHAT WE CLAIM IS

-1. A method of displaying -- on a subpixel addressable screen having pixels comprised of
separately-addressable, differently-colored subpixels - digital content including text and/or images
represented by a mark-up language including tags that dictate the format in which such content is
to be displayed and tags that identify images to be displayed as part of said content, said method
comprising:
-accessing said digital content, including accessing one or more images, from a device in
which said content is stored or is generated dynamically;
-performing a down-scaling and subpixed-optimization process in which:
-—each of said accessed images is a source image for the process;
—said process produces from each such source image a corresponding scaled-
down, subpixel optimized image;
—each such scaled image represents the source image from which it has been
produced at a lower pixel resolution than the pixel resolution of said source image;
—each such scaled image also represents said source image in a subpixel-
optimized manner by causing the luminosity associated with each subpixel within a
given pixel of the scaled image to represent the luminosity of the subpixel's color
in a portion of the source image that differs for each subpixel as a function of the
subpixel's different position in the given pixel; and
-displaying said accessed digital content on said subpixel-addressable screen in a format
determined at least in part by one or more tag in said content, including, as part of said
formatted display, displaying said scaled images in a subpixel-optimized manner on said

screen.

-2. A method as in Claim 1 wherein:
-said accessed digital content includes one or more strings of displayable text characters;
and
-said display of said the digital content also includes drawing a string bitmap on said
screen to represent said string, which string bitmap is composed from a succession of
separate font bitmaps each selected to correspond to an individual character iri the text of

said string.

WO 02/089105 PCT/US02/14217

-135-
-3. A method as in Claim 2 wherein one or more of said single line strings are represented by font

bitmaps that:
-have a font size of 10 pixels per em or less;
-are anti-aliased font bitmaps that assign a color value to a given screen pixel as a graded
function of a coverage value representing the percent of the given pixel that is covered by
a character shape being represented by the font bitmap; and
-have the shape and pixel alignment of the character represented by such a font bitmap
selected to increase the degree of alignment of edges of the character shape with pixel

boundaries of said bitmap.

-4. A method as in claim 3 wherein:
-said font bitmaps are anti-aliased because they are subpixel-optimized images of
character-font shape;
-said subpixel-optimized font images are subpixel-optimized in a different manner than the
scaled images in that:
~the luminosity assigned to each given subpixel of a pixel in one of said scaled
. images represents the intensity of the given subpixel's corresponding color in a
portion of the source image having a position corresponding to the position of the
given subpixel in the scaled image; and
--the luminosity assigned to each given subpixel in one of said font bitmaps is a
function of:
—-a coverage value representing the percent of the given subpixel's area
in the font bitmap that is covered by the character-font shape represented
by the bitmap; and
for at least some subpixels of said font bitmaps, a color balancing
distribution between the given subpixel's coverage value and coverage
values of other nearby subpixels that reduces perceptible color
imbalances that would result from differences between coverage values of
nearby subpixels of different colors in the absence of such color balancing

distributions.

WO 02/089105 PCT/US02/14217

-136-
-5. A method as in Claim 4 wherein the percent of a given font bitmap subpixel's luminosity values

that is distributed to achieve color balance is a function of the percent of the given subpixel's

luminosity value that causes color imbalance within pixel of which the given subpixel is part.

-6. A method as in Claim 3 wherein:
-said anti-aliased font bitmaps include small font bitmaps having a small font size of eight
pixels per em or less; and
-the shape and pixel alignment of the character represented by such a small font bitmap
have been selected to increase the degree of alignment of edges of the character shape

with pixel boundaries of said small bitmap.

-7. A method as in Claim 6 wherein the font bitmaps of said small font size represent a majority of

characters of the Roman alphabet within an advance width of 4 pixel columns or less.

-8. A method as in Claim 7 wherein the font bitmaps of said small font size represent a majority of

lowercase letters with an x-height greater than 4 pixels.

-9. A method as in Claim 1 wherein said accessing of said digital content is performed over an

computer network.

-10. A method as in Claim 9 wherein said accessing of said digital content is performed over the

Intenet.
-11. A method as in Claim 1 wherein said digital content includes web pages.

-12. A method as in Claim 1 wherein:
-said screen is part of a browser computer capable of browsing digital content;
-the browser computer includes browser programming that responds to user input
requesting a given portion of digital content by requesting that content from a another
entity, either a storage device, another computer, or other programming running on the
browser computer;
-said accessing of said digital content is performed in response to the request from the

browser programming; and

WO 02/089105 PCT/US02/14217

-137-
-said display of said accessed digital content, including said scaled images, is performed

on the screen of said browser computer.

-13. A method as in Claim 12 wherein:
-said user request is communicated over a computer network from said browser computer
to one or more servers;
-the digital content is accessed by being read from memory or dynamically generated by
one or more of said servers,
-said down-scaling and subpixel-optimization of said source images is performed by one or
more of said servers; and
-said digital content, including said scaled images, is downloaded over said computer

network to said browser, which then performs said display of the digital content.

-14. A method as in Claim 12 wherein:
-said browser computer communicates said user request over a computer network to a
proxy server;
-said proxy server communicates said user request over a computer network to one or
more servers that store or dynamically generate said digital content, including said source
images,
-said one or more servers sends said source image to said proxy server,
-said scaling down of said source images is performed by said proxy server; and
-the proxy server downloads the digital content, including said scaled images to said

browser, which then perform said display of the digital content.

-15. A method as in Claim 12 wherein said down-scaling and subpixel-optimizatin of said source

images is performed by said browser computer.

-16. A method as in Claim 12 further including:
-allowing a user of the browser computer to select one of a plurality of scale factors; and
-said down-scaling and subpixel-optimizing produces one or more scaled, subpixel-
optimized images that each have a pixel size relative to the respective source image that is

selected as a function of said user selected scale factor.

WO 02/089105 PCT/US02/14217

-138-
-17. A method as in Claim 16 wherein:

-said accessed digital content also includes one or more strings of text characters; and
-said display of said the digital content also includes drawing a string bitmap on said
screen to represent said string, which string bitmap is composed from a succession of
separate font bitmaps each selected to correspond to an individual character in the text of
said string, and

-the size of said font bitmaps varies as a function of said user selected scale factor.

-18. A method as in claim 16 wherein:
-said other entity from which said browser programming requests said digital content is
one or more remote computers that said browser programming communicates said request
to over a computer network;
-said user selected scale factor is also communicated from said browser programming
over said computer network to one or more of said remote computers; and
-said scaling down and subpixel optimizing of said source images is performed on one or
more of said remote computers at a scale factor that varies as a function of said user

selected scale factor communicated over said network.

-19. A method of producing a subpixel-optimized display image to represent a higher resolution
source image, which display image is suitable for display on a subpixel addressable screen having
pixels comprised of separately-addressable, differently-colored subpixels, said method comprising:
-determining the luminosity of each given subpixel in a given pixel of said display image
by:
—-defining a plurality of coverage lines within a window in said source image having
a position relative to the source image corresponding to the given subpixel’s
position relative to the display image, with the position of different source image
windows associated with different subpixels of a given display image pixel differing
as a function of the different positions of said subpixels within the given display
image pixel;
~determining which source image pixels overlaps each of said coverage lines
within the given supixel's source image window;
~determining what length of each of said coverage lines is overlapped by each

such overlapping source image pixel;

WO 02/089105 PCT/US02/14217

-139-
—determining the luminosity of the given subpixel as a function of the length of

each coverage line overlapped by each such overlapping source image pixel and
the respective luminosity, in the given subpixel’s color, of each such overlapping

source image pixel.

-20. A method as in Claim 19 wherein the coverage lines associated with a given subpixel include
at least two coverage lines that run in non-parallel directions on said subpixel's source image

window.

-21. A method as in Claim 19 wherein the source image window associated with each given
subpixel has a size relative to the source image corresponding to the size of a whole pixel relative

to said display image.

-22. A method of producing a subpixel-optimized display image to represent a higher resolution
source image, which display image is suitable for display on a subpixel addressable screen having
pixels comprised of separately-addressable, differently colored supixels, said method comprising:
-defining a window in said source image having a position relative to the source image
corresponding to the given subpixel's position relative to the display image, with the
position of different source image windows associated with different subpixels of a given
display image pixel differing as a function of the different positions of said subpixels within
the given display image pixel;
-determining the luminosity of each given subpixel in a pixe! of said display image as a
function of:
—~the whole pixel luminosity of each of one or more source image pixels that
overlaps the given subpixel's source image window;
~the percent of the given subpixel's source image window overlapped by each
such overlapping source image pixel; and
--a color balancing function that distributes subpixel luminosity values between

nearby subpixels in the display image to reduce color imbalance.

-23. A method as in claim 22 wherein the source image is a grayscale image.

WO 02/089105

PCT/US02/14217

-140-

-24. A method as in claim 22 wherein the source image is a color image, and the whole pixel

luminosity value associated with each source image pixel is a function of the average of the source

image pixel's luminosity values over all of the source image pixel's different component colors.

-25. A method as in Claim 22 wherein the percent, if any, of a given subpixel’s luminosity value that

is distributed by said color balancing varies as a function of the percent of said coverage value that

causes color imbalance within the pixel of which the given subpixel is part.

-26. A method as in Claim 22 wherein a source image window has a size relative to the source

image corresponding to the size of a subpixel relative to the display image.

-27. A method as in Claim 26 wherein:

-a plurality of coverage lines are defined within the given subpixel’s source image window;

-the luminosity of the given subpixel is determined by:

--determining which source image pixels overlaps each of said coverage lines
within the given supixel's source image window,

—determining what length of each of said coverage lines is overlapped by each
such overlapping source image pixel; and

~determining the luminosity of the given subpixel as a function of the length of
each coverage line overlappled by each such overlapping source image pixel and

the respective whole pixel luminosity of each such overlapping source image pixel.

-28. A method as in Claim 26 wherein:

-a plurality of coverage lines are defined within the given subpixel's source image window;

-the luminosity of the given subpixel is determined by:

-determining which source image pixels overlaps the given supixel's source
image window;

--determining what area of the given subpixel's source image window is
overlapped by each such overlapping source image pixel, and

--determining the luminosity of the given subpixel as a function of the area of the
source image window overlappled by each such overlapping source image pixel
and the respective whole pixel luminosity of each such overlapping source image

pixel.

WO 02/089105 PCT/US02/14217
-141-

29. A computer system comprising:
-one or more computer readable memory including program instructions for performing the
functions of the method of any one of the claims numbered 1 through 28; and

-one or more processors for executing said instructions.

30. A computer system comprising one or more computer readable memory including program
instructions for performing the functions of the method of any one of the claims numbered 1
through 28.

WO 02/089105

- . e = wwmeew = - - e o

(USE SUBPIXEL
OPTIMIZATION
ROUTINE OPTI-

MIZED FOR

COLOR BITMAPS
TO PRODUCE
SCALED DOWN:

BITMAP FOR

SMALL SCREEN

iy
bR
R RE N SN NN N N M EEmNEmEmE

BROWSER)

!
'
1
!
A
gyt
é:
~|I
B
o
é‘l‘ S
B
=
g
1
N

\

PCT/US02/14217

‘Airline Tickets

ioave up to 40% or

...................................

REPLACE FONTS SPECIFIED
BY WEB PAGE WITH FONTS
OPTIMIZED FOR SMALL RESO-
LUTION SUBPIXEL OPTIMIZED
DISPLAY

/

110
\

GSE FONT BITMAPS PRODUCED
BY SUBPIXEL OPTIMIZATION
ROUTINE OPTIMIZED FOR
HIGH RESOLUTION IMAGES
OF SHAPE OF UNIFORM
_. COLOR SUCHAS FONTS)

WO 02/089105

2/87

Thin Client Browser

N 200

PCT/US02/1421

7

210
\ 202 212 — 230
P K
— |
Proxy Server < ! --“—\ ——————— | Font Server !
+ e P
Proxy Process 4 / network ! I Font Bitmaps ¥
~ -~y T ememem—e—————— - l
—/ L1 ~. T
216 214 222 \138 232
Server
Standard Web | T_ 1
Content 00
220
FIG. 2
;00 200 2/00"\
Thin Client Browser Thin Client Browser Browser
Scaling
202A 202A and/or L
(N D N Jmm——— e Sub-Pixel 510
L - 1 L — 1 .. .
(: i ‘network :3\ \«:) §network : 3 Optimization
212~ | 212~ | —
N~ 138 N 138 Lreees |
, ~
Server 100A Server 2028 \:\rletwork {)
Prox Process Scaled and/or \ ———————
ey N o 212A~_
216A Optimized
Standard Web — | Standard Web Standard Web | R20C
Content Content Content
. V 100
FIG. 3 FIG. 4 FIG. 5

WO 02/089105 PCT/US02/14217
3/87

Computer Computer
600 700
N Browser \\ _ Browser \\ .
720
Scaling 620
and/or
Sub-Pixel -
/— Optimization P Proxy Process
Scaling
640 ' / and/or
740 : Sub-Pixel
/* Optimization
760 —]
Standard Web gtandard Web
Content ~ ontent -
FIG. 6 " FIG. 7
rComputer
800
Browser

\820

Scaled and/or
Sub-Pixel
Optimized
Web Content \\

' 410

J

FIG. 8

WO 02/089105 PCT/US02/14217

4/87

c8 C9 C10 C11 C12

C4 C5 C6 C7

910. C1 C2 3

2
N\

RO SRy,

PLAL LY bl

NN

el iy 3 -
N\
NNN NN

anunen i n
s

NN

R?\ 920

e, A

s

T a]

R1
I
1Y g R2
e L]
! &
it Bitigl G : R3
Ly L% (e '
Lt 3 a3 < R4
o - A 2
N o s ol
i A s :
o . Ay Y R5
tH o i ‘.
oyt . . o ')
s K. [o o
50 2, o o R6
e LY Y [}
ad By B o
. . -
/] 2 R7
] ;
Ara o
;] R8
.:u

R9

R10

R11

R12-

WO 02/089105 PCT/US02/14217
5/87

= 1060B

WO 02/089105 PCT/US02/14217

Airline Tickets |
Save up to 40% or |

moare 11 15 minutes or
lessl

D51 1y it i

New to priceNpe? {lick hers to findout more.

Top-shelf hramig at savings.of up-to 451 _everyday?
1130 Mgt Wit _
\ |.de.) diffine Tickets | Mﬂm

L Save up toa0dor | . 1 Pre-pay fordong
! mane inls minutesy distane and sare 200B
\ l -y) upto Al Bareine
/ Hotel Bpoms m 2 I_)zp}qtgr@ City-.
- —_— Save at the best el Interestratas -
/ 1\ hatelsin the US. wntinue to drop. . —
l and Canada. Refinance today [MTWAIGH = ol

Rent from the ﬁ Theresnoeacier |D2partur Date:

nations top 5 way ta-buy your May Wll2 Eil2000 &l
agendes. nextnew r. Py A

> Get Last Minuts i Top Hotel Destinatians
oavingson Aitling i Save up to 400 at the best

. JFIG. 11

1 ticket

WO 02/089105 PCT/US02/14217

1210~_

1220 — i

1
|

#4

| FIG. 12

1400

FIG. 15 o FIG. 16

WO 02/089105 PCT/US02/14217

1700

1720
1740

1800

1820

1840

1900

" FIG. 19

WO 02/089105 PCT/US02/14217
9/87

2000
2020
2040 FIG. 20
2120
2140
2160 FIG. 21
2220
2240

WO 02/089105 PCT/US02/14217

FIG. 23

FIG. 24

FIG. 25

PCT/US02/14217

WO 02/089105

11/87

o
o
©
N

WO 02/089105 PCT/US02/14217
12/87

-subpixel optimization routine (using line coverage)~2900
- -for each row in output image~2901
-for each pixel in row~2902
-for each subpixel in pixel~2904
-for each of its scan lines~2906
-calculate each intersection between that scan line
and a pixel boundary~2908
-for each portion of a scan line which occurs
between two scan line ends, a scan line end and a
pixel boundary, or two pixel boundaries~2910
-add to a coverage value associated with the
subpixel the multiple of the percent of that
scan line covered by the portion times the
component color value of the pixel covering
that portion corresponding to the color of the
current subpixel, all divided by the number
of the subpixel’s scan lines~2912
-Set the pixel's color value equal to a color having an compound
RGB value with red, green, and blue values equal to the subpixel
luminosity value of the pixel's red, green, and blue subpixels,
respectively.~2914

FIG. 29

PCT/US02/14217

WO 02/089105

13/87

3020

FIG. 30

o
N
-—
™

FIG. 31

N
™
O
L

WO 02/089105 PCT/US02/14217
14/87

Lemas

WA

FIG.35 FIG.36

FIG. 37 FIG. 38

WO 02/089105 PCT/US02/14217

E0)
E00
1=]= x
§80
]
BER
[Fi]w
@ i
B30
E820 '
D 3
5 1
= :
|
)
n]s]sfslola]ela] xlagx2fale]][
TEEECREEE R s = YA 1
DEOBEDAIBE C7 LI E

«»%w«x‘é"f““ ﬁ'"‘. 4000

SR P

FIG. 40

WO 02/089105 PCT/US02/14217
16/87

-subpixel optimization routine (using area coverage)~4100
-for each pixel row in output image~4102
-for each pixel in row~4104
-for each subpixel in a pixel~4106
-determine which pixels of source image are in a source
image window associated with the subpixel~4108
-for each such included source image pixel~4110
-calculate the percent of the subpixel's source
image window's area covered by the pixel's
area~4112
-add to a luminosity value being calculated for the
subpixel the multiple of the percentage of the
subpixel's source image window area covered by
the pixel times the pixel’s color component value
Czr1r$‘slponding to the color of the current subpixel
-Set the pixel's color value equal to a color having an compound
RGB value with red, green, and blue values equal to the subpixel
luminosity value calculated for the pixel's red, green, and blue
“subpixels, respectively.~4116

FIG. 41

PCT/US02/14217

WO 02/089105

17/87

4230

o
N
N
<r

4300

L3P
<
o
T

WO 02/089105

PCT/US02/14217
18/87

4610 4612 4614 4616 4618 4620 4622 4624 4626 4628 4630 4632
N R I [

A

4600 FIG. 45

4740 4742 4744 4746 4748 4750 4752 4754 4756 4758 4760 4762
NV v N N e [[

¥
R |G |B R !

®

B R

B R G B

- - - mf

NN

4700

19 | 2/9 | 3/9 § 2/9 [1/9

N\

b [1V

4746 4748 4750 4752 4754
4702

FIG. 46

WO 02/089105 PCT/US02/14217
19/87

4740 4742 4744 4746 4748 4750 4752 4754 4756 4758 4760 4762

A U U W N S N
Bl R| G| B] R|I G| B

% A/%
".7//
R A AR AR

R G B R

/

%
P 1

N

_— Yoty

s\
N\

/////A . A /L

7777 ‘ /', v

70 .
//// /4‘//////

R EEEEEE

N\
N\

\ 4804 FIG. 47

4908

4906

4904

4902

NN

4922

7
)
= |

|

FIG. 48

WO 02/089105

4740 4742 4744 4746 4748 4750 4752 4754 4756 4758 4760 4762

\

\

\

21/87

|

|

R |G |B R//G/B 2| G
7%t
B9

\- 5000 Jv ¢ ¢ ‘ ‘ $

Vil it il I

PCT/US02/14217

|

///////

|

/////

Z

AR IR NI

5058

4910

i

.

Y rrrssi N

A

5004

FIG. 49

N\
\

NN

N
///A

FIG. 50

N\

FIG. 51

N\

N\

FIG. 52

WO 02/089105 PCT/US02/14217

23/87

-subpixel optimization for bicolor bitmap ~5300
-for each pixel row in image~5301
-for each pixel in row~5302
-for each subpixel in the pixel~9304
-determine which pixels of source image are in a window
portion of source image corresponding to subpixel's area
in scaled image~5306
-for each source image pixel all or partially in the
subpixel’s source image window~5308
-calculate the percent of the window's area covered
by the pixel's area~5310
-add to a luminosity/coverage value calculated for
the subpixel the multiple of the percentage of the
window area covered by the pixel times the pixel
average foreground color intensity~5312
-find the minimum subpixel luminosity/coverage value so
calculated for the pixel~5314
-for each subpixel in pixel~5316
-set a luminosity/alpha value being calculated for the sub
and the pixel to the pixel's minimum subpixel
luminosity/coverage value~5318
-distribute that portion of the subpixel's
luminosity/coverage value that exceeds the pixel's
mininum subpixel luminosity/coverage value to the
luminosity/alpha values being calculated for the subpixel
and adjacent subpixels in the pixel row using a color
balance distribution filter~5320
-For each pixel in row~5322 |
-set the pixel’s color value equal to a color having an compound
RGB value with red, green, and blue component values equal to
thlse luminosity/alpha values calculated for the pixel's red,
green, and blue subpixels, respectively.~5324

FIG. 53

WO 02/089105

PCT/US02/14217
24/87
5400
—
Color Bitmap
Image
4 calculate each B 5420 4
subpixel’s luminosity \ calculate each
as function of subpixel’s luminosity
whole pixel luminosity as function of average
in portion of source luminosity of subpixel's
image correspondmg color component
_ to subpixel J in pixel-sized portion of
_ source image centered
‘ around a location
corresponding to
color balance subpixel
subpixel luminosities
\ J
\ 5430
scaled scaled
subpixel optimized subpixel optimized
grayscale bitmap color bitmap
5440 5450
\
/ 5460 (

receive

color/grayscale
tradeoff from user

blend color values of
corresponding pixels from the
grayscale and color bitmaps,
weighing color values from
each as a function of user
selected color/grayscale
tradeoff

N , _/
5470 -
M l 15480

Image having
user selected
color/grayscale
tradeoff

FIG. 54

WO 02/089105 PCT/US02/14217
25/87

5508
5506 5510 5500
~ |~ \ — > 5504
R|B[G|R|B|G|R|B[G|R|B[G]R|B|G BGRBGRBGI.\/
457 gLy
7 T
2
Zgy /,///7 5502
2 NMis
g
% 7
“27 %
4
i %
47,
7
%
2
%

FIG. 55

WO 02/089105 PCT/US02/14217
26/87

100k smart The gustity web dirsctory

The global teagerin, 5 Sear
search infrastructure, &
LookSmart provides.
quality searth
solutions toteading § 540
portats, media
companiesang ISPs
around the warld.

Submit your Wb 5
tothe lookSmart o
netwark.and reach 83
percent of US Web
users. Enable your
site withBespen,

forisPsand
We provide search
salutions far MSH, ap parts:

FIG. 56

weh directory

&

The global leaderin
search infrastructure,
LookSmart provides:
quality search
solutions:todeading
portals, media
campanies and I5Ps:
around the world.

Vi o

toithe LookSmart
network and reach &3
percent af LS Web
users: [Enabile pour
site withBespen,

We provide search
solutions: for MSH,

FIG. 57

WO 02/089105

27/87
Client Computer |~ 9808
Application
1~—5810
[17T 5814
c network)/-
5812
v -
Font Server
Font Bitmaps |4~ 2804
Font Renderer|_L—~ 5806
IFont Outlines |_|— 5802

FIG. 58

PCT/US02/14217

Computer

Application

Font Bitmaps | | — 5904

Font Renderer| |~ 5906

Font Outlines . 1~ 5902

FIG. 59

WO 02/089105 PCT/US02/14217

28/87

-subpixel optimized font bitmaps with non-linear color balance~6000
-for each pixel row~6002
-for each subpixel in a row~6004
-determine a coverage value representing the perecent the
subpixel which is covered by the font shape~6006
-for each pixel in row~6008
-determine the minimum coverage value calculated for each of
its three subpixels ~6010
-add minimum to temporary alpha value being calculated for
each subpixel of the pixel~6012
-for each of pixel’'s subpixels~6014
-determine excess of subpixel's coverage value over the
pixel'’s minimum~6016
-distribute this excess value into sub-pixel alpha values
based on color balance distribution filter appropriate for
sub-pixel’s color~6018

-for each pixel in row~6020
-use the three color alpha value defined for each pixel by the

three alpha values calculated for its subpixels in a look-up table
to map that value into one of relatively small palette of

colors~6022
FIG. 60

WO 02/089105 PCT/US02/14217

29/87

5506 —

5504 —"|

FIG. 63

WO 02/089105

_~ 6400

/ |~ 6404

A 6402

PRIOR ART
FIG. 64

/? L

A L — 6402

PRIOR ART
FIG. 66

PCT/US02/14217

AN

//

o

_~ 6400

| ~— 6504

— 6402

PRIOR ART
FIG. 65

_~6400

PRIOR ART
FIG. 67

WO 02/089105

]~ 6400
6802

7R

T
'G_)/
o2
©

77770777
|

L
2
N
w

FIG. 81

i

31/87

\

FIG. 70

FIG. 74

PCT/US02/14217

O, -

L
@
~J
-_—

L
N
o

-1 elzZZZ

ZZ

FIG. 79

N

FIG. 83

FIG. 87

WO 02/089105 PCT/US02/14217
32/87

FIG. 90

WO 02/089105 PCT/US02/14217
33/87

5506 5508 5510 5506 5508 5510
NN N NN

5504 9102 5504

5506 5508 5510 5506 5508 5510
N N NN N

9202 9202 FIG. 92
R |G |B R| G! B R| G| B R| G| B
R|c |B|JR|G|BJR|G|B R|I G| B

N

7
1/9 2/9 3/9 2/9 1/9

FIG. 93

WO 02/089105 PCT/US02/14217

34/87

-Center-Weighted Color Balance Filter~9400

-For Coverage Value 0 0,0,0,0,0
-For Coverage Value 31 0,1,1,1,0
-For Coverage Value 62 0,2,2,2,0
-For Coverage Value 93 1,2,3,2,1
-For Coverage Value 126 1,3,4,3,1
FIG. 94

-Asymetric Color Balance Filter~9500

-For Coverage Value 0 0,0,0,0,0
-For Coverage Value 31 1,1,1,0,0
-For Coverage Value 62 2,2,2,0,0
-For Coverage Value 93 3,3,3,0,0
-For Coverage Value 126 3,34,11

FIG. 95

WO 02/089105 PCT/US02/14217
35/87

-Creation of input-color-to-output-color look-up table~9600
-run the characters of muitiple fonts through non-linear algorithm for deriving
subpixel optimized font bitmaps, while keeping a histogram of the number of
_times each of one of the 2196 possible three color alpha values is calculated

for a pixel~9602.
-create a 122 color output palette by~9604
-selecting the thirteen grayscale colors possible for whole pixel alpha
values in which each subpixel can have one of thirteen levels including,
black and white~9606
-selecting the 109 other most frequently occurring colors in the
histogram~9608
-for each of the 2196 possible calculated alpha values~9610
-if that input color exactly matches one of the pallette’s colors~9612
-associate the input color with that palette, or output, color~9614
-if not~961 6
-for each of 122 output colors~9618
-if (ri-ro) and (gi-go) are of same sign and if
|[ro-go| < Jri-gi|+x~9620
-calculate the distance from the input color to the

output color~9622
-if that distance is the closest distance so far to the

input color~9624
-save it as closestAllowedPalette Color~9626

-associate the input color with the
closestAllowedPaletteColor~9628

FIG. 96

WO 02/089105 PCT/US02/14217
36/87

-Displaying text with font bitmaps having subpixel alpha value components ~9700
-for each string to be displayed~9702
-sample points in rectangle of bitmap in which it is to be drawn to
determine its background color~9704
-for each of the 122 whole pixel alpha values used to represent font
bitmaps~9706
-for each of the three subpixel component colors~9708
-calculate color luminosity for the subpixel component
color as the current subpixel’s alpha value in the current
whole pixel alpha value (the current supixel's alpha)
times luminosity of the current subpixel color in the
foreground color with which the fonts are to be drawn plus
(1 minus the current subpixel's alpha) times the luminosity
of the current subpixel’s color in the background
color~9710
-map the current whole pixel alpha value to the whole pixel color
comprised of the three subpixel luminosities calculated for the
whole pixel alpha value~9712
-for each character of string to be displayed~9714
-access its associated font bitmap~9716
-for each of pixel of the font bitmap~9718
-find the color value which has been mapped to the pixel’s
corresponding whole pixel alpha value in the font
bitmap~9720 :
-set the corresponding pixel in the subpixel addressable
display to that whole pixel color value~9722

FIG. 97

WO 02/089105

PCT/US02/14217
37/87

TUESDAY, MAY 1, 2001

Luxurv by de51gn quality by chance

i Contractors cutting comers, developers misleading customers
-- the Globe's Spotlight Team has uncovered scores of such
problems in new suburban housing. Today's stories document
substandard materials and workmanship in high-end homes.

Energy plan to promote new supply

| Cheney pushes drilling over conservation
d (By Anne E. Kornbluf, Globe Staff)

bererd]
O

331]

PNLAAIG W

¢ Boston Globe

TUTSDAT, MAT 1. 308

=

et

. Lusury by design. guality by chance

iConirackors culting corners, develnpers misigadi
Spotiigha] |CUSKIMErs - 1he Glabes Spotiight Team has
UNCovered SCores o such probiems in new
Isuburban housing. Touays stories document
isubstandard materials ang warkmanship in
thigh-end homes.

u’ﬁﬁx i

ARt el W]
R AR e
Wi mmmm?ﬁ

SR

Energy plan to promote new
supply
<Cheney pushes drilling over

roncorusting

BERHER

J

FIG. 99

WO 02/089105 PCT/US02/14217
38/87

63;\“-6‘lobé~lilnll; Spotlight 7 Lu mi)y chance - Netscape N
NN (B . . :) g A

. Neeeem

ton.com/globe/spotlight/

ste

EHCY Kompréhensive
click here

omPile} i ot ek her

City & Region

spotight] LUXURY BY DESIGN,
QUALITY BY CHANCE

4 subdivision in Fairfax,
Va. (Globe Staff Photo /

Cay & Region

necingye] LUXURY BY CESIGN,
QUALITY BY CHANCE

teplacing

§| troutied
synthetic stuom
withreal stucm

g at a Tl Brothers
y subdivisionin

=3t Fairfax, ¥a_

jl {Giobe Staff Photo
/4 John Tlumacki}

PRI I LR e

g i Stucco misrepresentation not atypical _
\ »
FIG. 101

M

WO 02/089105 PCT/US02/14217

39/87
10200 | Proxy Server 210 10204 10206 -
10202 | Browser HTML | |Layout H-110208
i -brox_/Iyr?tzl&A:inCl:ienﬂnterf' ace Virtual Screen 41710210
-screenCapture&Download
-downloadDisplayListRoutine View |—HT1
- Window
HayoutEngine
-measureStingCommand
~stringDraw
~ectangleDraw
bm"gD,aw 10214
-oontrolCreate Virtual
- —=» Resolution —17
10212\ | Control 10216
L L(-Dov i - Zoom/Scale '
Dov_én;g?gn?(ljsplay LIS't o | Facor »
-scrollCmd -+ Contrd 10218 .
. -backgroundColorCmd v V2
-rectanglleCmd -« ~p Scroll | L
-imageLocationCmd Control -
-FontCmd '/10220
-StringCmd . - ‘)
-ControlCmd - > g",em 1T -
-ImageCmd - _ ueue
e R I 1| R . 10222
A Network) /
B R N Jzoo
10222 | client computer 10224
10224 0Ss Client Screen App. 10219 _/
|| [Event -if recei_/e download
Queue "# -rectangleCmd A J 10212A
% “stingCmd « Display List i |/
-controldCmd 10214
- -mageCmd : :
, -if non-client Input <¢— Supixel opt. images |-
10221 V -relay input 10217
vy -if zoom or scroll input . /
| screen -upload input [«—— Subpixel opt. fonts L1

FIG. 102

WO 02/089105 PCT/US02/14217

40/87

-Sample html~10300
-</head>

-<body }
background="http://a1636.g.akamai.net/7/1636/797/e5e77dd148cc98/graphics

.boston.com/globe/images/tiles/tile.gif" link="5C3317" vlink="5C4033"
onLoad="FrameThis()">

-<p> 10300
10300

-E-mail to a friend

-See what stories users
are sending to friends<p>
10300 10300
-Free headlines e-mail
 /
-The best of the Globe each weekday

morning<p> 10300

10300
-Alternative vi&é/b>

-Low-graphics version

-How it looks in print

-<p> 10302

-<!--SECTIONS-->

-<IMG WIDTH="120" HEIGHT="27"
SRC="http://a1636.g.akamai.net/7/1636/797/0df5e88d0bb528/graphics.boston
.com/globe/images/navs/nsections.gif" border="0" alt="Sections" VSPACE="1"
WIDTH="120" HEIGHT="27">

-<a href="/globe" onMouseOver="loadimage('pageone’,
‘http://graphics.boston.com/globe/images/navs/rpageone.gif'); status='"Boston
Globe Online: Page One'; return true;" onMouseOut="loadimage('pageone’,
'http://graphics.boston.com/globe/images/navs/npageone.gif'); status="; return
true;"><IMG WIDTH="119" HEIGHT="14"
SRC="http://a1636.g.akamai.net/7/1636/797/f0a63d528dc7e3/graphics.boston
.com/globe/images/navs/npageone.gif" border="0" alt="Boston Globe Online:
Page One" name="pageone" VSPACE="1">

10300

FIG. 103

WO 02/089105 PCT/US02/14217
41/87

10206
10208

N

o

\\\\\\

ARGk

el
RS

FIRBAING R

@
Boston Globe
iy } g
Onling : z
TUL3TY, WIT 3, 003 24
T =] éfz
= p Luxury by design, guality by chance it
] ContracioTs cutting corners, developers miskeadings
' Spotiight] | CUSDMErS - the Glode's Spotlight Team has £
§ iuncoverad scores of such problems dn new b
suburban housing. Todays stosies gocument o
CCETTTITTITIITIYITT) a4 ials and hip in %
I rrn . high-end homes. £
5 B
= Energy plan to promote new £
upply i
Cheney pushes drlfing aver
o o o o o o caruation
O
T TT I - o |
—]
pe—r—n |5 00 o o o o e |

T
I n
= xmn
o

o
o= | XTI o mn
o= | T oo
[o= o o 2 v 1

==]
o= xT
[====2

UI_I
i

FIG. 104

WO 02/089105 PCT/US02/14217

42/87

-Browser's Proxy Code~10500

-if receive request from thin client for a web page~10502
-relay request to server indicated in URL of request~10504
-if receive indication that browser has completed a screen draw or
redraw~10506
-call the screen capture and download routine when screen redraw is
complete ~10510
-if receive control object state query from browser~10514
-query thin client for state of indicated one or more controls~10516
-send those control states to browser~10518
-if receive scroll/move command from thin client~10520
-move view window accordingly relative to browser’s virtual
screen~10522
-if portion of view window which was in view window before move is still
in view window~10526
-place appropriate scroll command at start of download display
list~10528
-if moved view window includes portlon of web page not currently in’
virtual screen~10530
-scroll browser’s virtual screen accordlngly~10532
-request redraw for the newly scrolled virtual screen from
browser~10534
-if receive zoom command from thin client~10536
-change view scale factor accordingly~10538 -
-scale view window accordingly relative to browser’s virtual
screen~10540
-if scaled view window includes portion of web page not currently in
virtual screen~10542
-scroll virtual screen change its resolution to cause scaled view
window to fit in virtual screen~10544
-call for screen redraw~10552

FIG. 105A

WO 02/089105 PCT/US02/14217
43/87

-if receive virtual resolution command from thin client~10554
-change browser’s virtual screen resolution to requested virtual
resolution~10556
--call for screen redraw~10560
-if receive other user input event from thin client~10562
-transform its screenXY on client screen to corresponding location in
browser screen using location of view window and display scaling
factor~10564

-relay event to browser’s event queue~10566

FIG. 105B

WO 02/089105 PCT/US02/14217
44/87

-Screen Capture And Download Routine~10600
-ask for browser for screen redraw~10602
-if browser calls~10604
-measureString~10606
-map requested font family and font size into substitute font
family and size, including:~10608
-select size for substitute fonts as a function of the
requested font size and downscaling by the display
scaling factor~10610
-replace smaller size fonts with narrower and taller size to
take advantage of the higher ratio of horizontal resolution
of subpixels~10612
-if limitMinimumFontSize is on~10614
-prevent substitute font size from being below a
minimum pixel size~10616
-return string measurement for substituted font and font size,
scaled up measurements by display scale factor~10618
-stringDraw~10620
-transform string’s virtual screen screenXY to thin client
screenXY by scaling and/or translating as a function of the
- display scale factor and the view window's position relative to
virtual screen~10621
-if substituted font family and size associated with string in prior
measure string call and any other font attributes for string is
different than current font attribute for end of display list~10622
-store a font command at end of display list changing
current font attributes to attributes corresponding to
current string~10623
-store string, its thin-client screenXY, and its substituted font,
, including size and color, at end of download display list~10624
-rectangleDraw~10626
-transform rectangle’s virtual screen screenXY, width, and height
to thin client screenXY, width and height by scaling and/or
translating as a function of the display scale factor and the view
window’s position relative to virtual screen~10628
-if rectangle’s color is different than background color for current
end of download display list~10630
-add a background color command changing to new
background color at end of download display list~10632
-store rectangle, transformed screenXY, width, and height at end
of download display list~10634

FIG. 106A

WO 02/089105 PCT/US02/14217
45/87

-bitmapDraw~10636
-if images URL is not already in a download image list~10638
-if bitmap is color bitmap~10642
-scan image for one or more portions of sufficient
size which have only colors from a given bicolor
spectrum~10644
-for each bicolor portion of image found~10646
-perform bicolor subpixel optimization,
scaled down by display scale factor, on
portion using opposite ends of its bicolor
spectrum as foreground and background
color at display scale factor~10648
-if foreground color is too chromatically
unbalanced, render image with a substituted
more-balanced foreground color~10650
-for each non-bicolor portion of image found~10652
-perform multicolor subpixel optimization,
scaled down by display scale factor, on
bitmap using color image subpixel algonthm
at display scale factor~10654
-else if bitmap is grayscale bitmap~10656
-perform bicolor subpixel optlmlzatlon scaled down
by display scale factor, on bitmap using black and
white as foreground and background colors at
display scale factor~10658
-store scaled-down, subpixel-optimized bitmap, with a
unique imagelD, transformed width and height, and its
URL at end of image list~10662
-transform image’s screenXY for download and store an image
location command having the imagelD and the transformed
screenXY, width, and height stored for the image in the image
list at end of download display list~10664

FIG. 106B

WO 02/089105 PCT/US02/14217
46/87

-controlCreate~10666
-transform control's screenXY by scaling and/or translating as a
function of the display scale factor and the view window's
position relative to virtual screen~10667
-place corresponding control command, its transformed
screenXY, and corresponding text in download list~10668
-create corresponding browser-side portion of distributed
control~10670

_when screen redraw is complete~10672
-call download display list routine~10674

-clear display list~10676
FIG. 106C

-download display list routine~10700 .

. -select all elements in display list which will be all or partially be included in the
new image which is to be created on the thin client’s display screen in a
download stream~10702 '

-place all bitmaps in image list corresponding to one or more image locations
commands in download stream at end of download stream, performing lossy
compression on them first~10704

-user a lossless compression algorithm to compress download stream~10705
-open a the socket connection between browser’'s computer and thin
client~10706

-send display list to thin client over socket connection~10708

FIG. 107

WO 02/089105 PCT/US02/14217

47/87

-Download Stream~10800

-clearCmd~10802
-scroliCmd + XYShift~10804

-BéckgroundColorCmd + color~10806
-rectanglleCmd +ScreenXY + width + Height~10808
-rectanglleCmd +ScreenXY + width + Height~10808

-BéckgroundColorCmd + color~10806

-imageLocationCmd + ImagelD + ScreenXY+ width + height~10810
-FontCmd + FontAttribute1 + NewValue1 + FontAttribute2 +
NewValue2~10812_ _

-StringCmd + ScreenXY + String~10814

-StringCmd + ScreenXY + String~10814

-imageLocationCmd + ImagelD + ScreenXY+ width + height~10810
-FontCmd + FontAttribute3+ NewValue3...~10812
-StringCmd + ScreenXY + String~10814

-StringCmd + ScreenXY + String~10814

-StringCmd + ScreenXY + String~10814

-rectanglleCmd +ScreenXY + width + Height~10808

-ControlCmd + ControlID + ControlType + ScreenXY + ControlTextList~10816
-StringCmd + ScreenXY + String~10814

-ControlCmd + ControllD + ScreenXY + Control Label~10816
-ImageCmd + ImagelD + width + height + Bitmap~10818

-ImageCmd + ImagelD + width + height + Bitmap~10818
-ImageCmd + ImagelD + width + height + Bitmap~10818

FIG. 108

WO 02/089105 PCT/US02/14217

48/87

-thin client code~10900

-if receive a download stream, start responding to individual commands in
stream in the order in which they are received as soon as one or more are
received, including responding to each of the following commands as

- follows~10902

~clearCmd ~10904
-clear thin client screen~10906
-scrollCmd~10908
-bitblit portion of screen which remains on screen after XYShift to
appropriate position after that shift~10910
-clear rest of screen~10912
-backgroundColorCmd~10914
-set current rectangle background color to the color specified in
command~10916
-rectangleCmd~10918
-draw rectangle with upper left hand corner at ScreenXY, havmg
the width and height specified in command using current '
background color~10920
-imagel.ocationCmd~10922
-do nothing~10923
-FontCmd + FontAttributer1 + NewValue1 + FontAttnbuteQ +
NewValue2...~10924
-set current value of all font attributes listed in command to the
corresponding values listed in the command~10926
-StringCmd + ScreenXY + String~10928
-if thin client does not have font bitmap for each character of the
specified string at the current font size and font family~10930
-send separate HTTP request for font of each such
bitmaps from font server, specifying size, character, font,
and that is to be subpixel optimized, and subpixel array
type~1 0932
-when receive each requested font~10934
-place it in font bitmap cache~10936
-if have all characters of string specified in the command~10938
-draw string, using current font attributes values, including
foreground color, and using color from portion of screen
on which it is being written as the background
CO|OI’~1 0940

FIG. 109A

WO 02/089105 PCT/US02/14217

49/87

-ControlCmd + ControlID + ControlType + ScreenXY +
ControlTextList~10942
-if no control has been created having controllD specified in

command~10944
-create thin client side of distributed control associated

with that controllD~10946
-draw specified control type on screen using subpixel optimized
bitmaps for control image, at specified screenXY, using drawing
one or more text items in controlTextList using subpixel
optimized text, and set control's associated screen hotzone, if
any to the appropriate portion of screen~10948
-lmageCmd~10950
-for each imagelLocationCmds in display list having same -
ImagelD~10952
-draw bitmap at that location~10954
-redraw all other items in display list which occur at the same
location as any of these drawn bitmaps~10956
-if user clicks hotzone assocated with text entry field~10958
-execute keyboard mode routine~10960
-display pop up user keyboard and text edit line, saving the
bitmap which was in its location~10962
-until user presses enter~10964
-if user user types text character~10966
-place corresponding subpixel-optimized text shape
on text edit line~10968
-add character to position corresponding to cursor
in a temporary text-edit string variable~10970

-when user press enter, ~10972
-store text-edit string state in corresponding text field
control~10974
-draw text-edit string in bitmap of text entry field using
subpixel optimized fonts~10976
-remove popup keyboard, replacing the bitmap with was
in its place before it was displayed~10978
-else if user clicks on hot zone of a button or menu item control~10980
-change appearance of button or menu item appropriately~10981
-send event along with button or menu item ID up to proxy~10982
-else if user clicks on hot zone of another type of thin client control~10983
-change appearance of control appropriately~10984
-store user selected state change~10985
-else if user clicks on other portion of screen not associated with the thin client
program's or its computer’s control interface~10986
-send even with screen location up to proxy~10987

FIG. 109B

WO 02/089105 PCT/US02/14217
50/87

-if receive query from proxy process re state of control~10988
-query state of corresponding control on thin client~10989
-transmit state to browser~10990

-if user enters a command to scroll screen~10991
-upload command to proxy~10992

-if user enters a command to change zoom,~10993
-upload command to proxy~10994

-if user enters a command to change virtual resolution,~10995
-upload command to proxy~10996

-if user enters another command associated with thin client's control

GUI~10997
-..~10998

FIG. 109C

WO 02/089105

51/87

PCT/US02/14217

(
00
OO |, s

00
00

Hew to pricetine? CHk 2278 to Find out more.
Top-shelt irands at sanings of up to 4)_everyday!

Pre-pay for 1ang
§ mare ind5 minutes
orfest upta 410

\ I / { Hote1 Rooms m + Home Finzndna
_ - Isgraatthevest WV | intavest rates
/ \ i hotelsin the LLS. | continuz to drap.
I and Ganata, Refinance taday:
1t s
3 ‘There's no easizr
i way to buy your
NEX REW Gl

jdistanc ang sare

dew to pricfine? QickIrE to find out more.
“Top-shedt Drands 2t $3¥ings of up to G ereryday

e

+ more inlS minutes

; Lana Distanee

{ Pre-pay for tony

1 distance and sava
up to 408

11104

11102

. - . ",.Z"E
O O 52 gi;inasonnirﬁm ;

N

New to priceline? gL hara to find out more.
Top-sheti brands at savings of up to 4g..everyday

Al Tk ?

,ﬁ;‘, irlipg Jitkets s {lomaDistaoe
Fe { Saveup to 400 or i | Pre-pay for fong
| more inl S minutes {distance and save
\ | of fese "upto 400,
/ ; tolel Booms m + Home Finandng
- - § Save at the best 58T Interest rates
/ \ Fhotelsinthe US. 1 continug to drop.
I and Qanata. today
; fzotal Gars {Hew Lars
i Rant from the | There's no easier
i natioms top 5 w3y 1o buy your
agences fext new ar.

op Hotel Destinations
: Save up o 4] at the dast

FIG. 112

WO 02/089105 PCT/US02/14217
52/87

o, N o 4 st wdum MaBucin 6 (3 5 !
O O pricelinecom” o™

Hew to prictine? Click here to Fnd out more.

Tog-shelf brands at savings of up 10 4T3.everydayt HrTiRe Tty
wumone Y
Save up to 407 or 1Pre-payfar ong het Lok

mOre il minutes §¢immx and ave
Upto &E).

FIG. 113

New to pricding? Clickhere te find out mera,
Top-shell teands 3t $avings of Bp-0 4. everyday!

o firing Tickels { Lana Distange
ﬁ' Save up to &80 or { Pre-pay for ong
b nutas Fditan:

i

FIG. 114

WO 02/089105 PCT/US02/14217

53/87

-proxy browser code with use of page layout caching~11500
-if receive request for web page with an associated view setting~11502
-request web page from server~11504
-when a web page is received from a server~11506
-have layout engine layout web page at the virtual screen resolution
specified in the view setting, substituting fonts for layout engine’s
measure string calls according to view setting’s appropriate scale
factor~11507
-select virtual screen position relative to resulting layout which will fit the
view window implicit in the view setting, and redraw screen~11508
-when receive image referenced in web page~11518
-scale and subpixel optimize image according to scale
factor~11520
-once have all images referenced in web page~11522
-compress layout and images~11523
-download layout followed by images~11524
-if receive request from thin client to rescale and subpixel optimize bitmaps of
images at a given scale~11526
-rescale and subpixel optimize them~11528
-compress them~11530
-download them to thin client~11532
-if input event from thin client~11534
-if its layout coordinate associated with it is not currently on virtual
screen~11536
-scroll virtual screen so that it is~11938
-calculate virtual screen coordinate corresponding to layout

coordinate~11540
-place input event with calculated virtual screen coordinate in browser’s

event queue ~11542

FIG. 115

WO 02/089105 PCT/US02/14217

54/87

-thin client code with use of page layout caching~11600

-if start receiving downloaded page layout display list~11602
-set mapping of view window to page layout and calculate scale factor
as function of view selection~11604
-display received elements of display list which fall within view window
at current mapping of screen window to display list, including current
scale factor~11606

-if user generates input to changes size or location of view window relative to

downloaded layout~11616
-make the corresponding change to the mapping of view window to
display list and calculate scale factor as function any such
changes~11618
-display any portions of page layout which fall within current view

window at current scale factor including~11620
-displaying strings with font sizes which are function of current

scale factor, and adjusting for disproportionate changes in size of
individual or all characters as font sizes change, by changing
spacing between characters~11622

-if there is a new scale factor~11624
-requesting proxy to re-scale at new scale factor and
subpixel optimize all images on screen at new
mapping~1 1626
-scaling at new scale factor and re-subpixel optimizing,
and displaying the previously downloaded bitmaps of all
on-screen images~11623
-when newly scaled images are received, displaying them
in place of locally rescaled versions~11630
-if user generates input event relative to screen~11632:

-use view-window-to-page-layout mapping to determine location of

input in layout cooridinates~11634

-send input event and page layout coordinates to proxy~11636

FIG. 116

WO 02/089105

55/87

PCT/US02/14217

Proxy

10206A E=l
= |

10206

/.

.

AL 10208
102068 & L
\> Virtual
= |8 s Screen

ANNNYNNY
Y

}

- -

...........

EB

10220

Screen

v

k\\?)k\W
N

E

Ny

N

'/ 10818

FIG. 117

WO 02/089105

56/87

Ll nn ark More Than An[un .
™G e 5115 — hey
Amtrkan o¢s. Eve e

M:tfans spend on the job. Warking oo Hoai?

A SRLNEWS rom 0

pERE ey P AR

FIG. 118

PCT/US02/14217

00
00

Mo
/l\

00
00O

00O
00

o
/|\

00
OO

. nmerlcuns Wnrk Mure Than Anyone
The Germans, the Brits — theyVe got nothing on the amount of work the average 5
American does. Even the Japanese work less. Day One of ABCNEWS.com's four- g
day series on the impact of the American workdoad takes a logk al how much time & }»
Americans spend on the job. Working Tog Hart? ﬁ
®
+ ABCNEWS.com Pell: Dg We Work Toa Hard? ;’E
An ABCNEWS.com poll finds thal more than one in four Americans feel theyare |
working t00 hard, twice as many as fefl they were overworked In 1965, i Yyelgr: [n:
£
£
* U.S. Report: Terrorism Increased in 2000 g
« More Girls Are Golng to Jail, Study Finds §
+ San Fran to Pay for Sex Changes 5 D
T T P O L S P o T PO 5

FIG. 120

FIG. 119

WO 02/089105 PCT/US02/14217

57/87
e =
%‘fﬁ 11000
fﬂt.lim —/
perdeoiin
Q;-éﬁ;w!iﬁll \
s 12204
11000
. % 11104
Lars
| 12204 11102
—\
\
e
C CJ)(C%) 12202 12202
au
GBRE
OO
O

pumn |

\

FIG. 123 FIG. 124

WO 02/089105

-

000

FIG. 125 \

12202

58/87

PCT/US02/14217

WO 02/089105 PCT/US02/14217
59/87

-Client code for selected text reflow~12900
-If user selects area of downloaded page layout for text reflow at a new scale
factor~12902
-select all strings and corresponding underlines in layout which are substantially
within selected layout area~12904
-label any group of one or more strings whose closeness in layout
indicates that they are part of the same paragraph~12906
-reflow and display the text of each group of strings labeled as a
paragraph across screen area’s across boundaries at new scale factor,
underlining text in reflowed lay that was underlined before~12908

FIG. 129

WO 02/089105

60/87

o] i CUSOMArS - ihe GlobEY S00TigM Teamnas

ote nEw

A e 0 lan to

QAL Cheney pushes arifiing over

e wred SCOTES of SUCh protiems in ney \ 4
SuDUTDN housing. Todays siories document |

PCT/US02/14217

10206A

“a

CONNNNNNNNNY

13102 E |
;00./ 11902 ‘___ l-------l
FIG. 130 FIG. 131
Luxury by design, quality by chance } p \
Contractors cutting comers, developers misleading
customers — The Globe's Spotlight Team has 13202
uncovered soores of such problems in new L p
suburban housing. Today's stories document
substandard materials and workmanship in
high-end homes]
Energy plan to promote new p
Supply I
- 13202
Cheny pushes drilling over _J
conservation P
FIG. 132
Luxury by design, quality by
= —)
chance
) O O Luxury by design, quality by ©
Contradtors autting comers, de- S O O chance
(ﬂgmmm customers — N I Contractors cutting corers, de-
) - N1/ | | velopers misleading customers —
& The Globe's Spotight Team has The Globe’s Spotlight Team has
noovered soores of such p uncovered scores of such pro-
Tu = ¢ SUch pro- _ D D O blems in new suburban housing.
bemsinnew suburban housing. y Today's stories document
(T davs stories doournent D D substandard materials and work- O
su ials and = g
substandard materials and work-
200'/

FIG. 133

FIG. 134

WO 02/089105 PCT/US02/14217
61/87

Ive cold & flu relief

¢

5
Army berets won't bs made in China

€2 €2 2

My 1, 2001
‘ab posied al £ 41 PMEDT (0141 OMT)

From Cnny Planke

NN Natonal Secunly Produce

WASHINGTON -- A f2p ever the Arzy's plan & buy euere than 600,000
s) :

bereta “made in China® labels has been put to rent by the
Peolagoa's ousber two civilian leader.

Tucsday said the berets wont be made in
Comrmeist Chine. The sexiouncement dreve &
stake trwogh the heart of # plan by Army Chic!
f Stall Enc Shinseld to dstbate 1.4 eallion
Hlack berets to soidicrs by June 14, which is the
Amy's Wtday.

“The Army Chie(of Staff has depermained that U, . troops shall oot wear T
berets made @ China, o berets made with Chinese conteat” the statement als

\|/

FIG. 136

(N 200

o _/
O O Army berets won't be made in
D O China
May 1, 2001
\] y Web posted at: 9:41 PM EDT (0141 GMT)
— | |From Chris Plante
7| N\) | cNN National Security Producer
O O WASHINGTON -- A flap over the
Army's plan to buy more than
O O 600,000 black berets with "made O
__ ‘ J

FIG. 137

WO 02/089105 PCT/US02/14217
62/87
200 200 200 —
Thin Client Browser Thin Client Browser Thin Client Browser
4 % \ \ A
L
——
210 A=~] | 230
Proxy Server <« —x_____—*|Font Server |
< network AN '
Proxy Process) Font Bitmaps
o 138
)\
2 . 22 220
220 \ 220 | AV
Server Server Server
Standard Web Standard Web Standard Web
Content Content e Content

FIG. 138

WO 02/089105 PCT/US02/14217
63/87

-font server code~13900
-if receive http request for one or more characters of a font~13902

-if there is a font file matching having path name spacified in http
request~13904
-send that file over network in an http response to network
address from which the font request came~13906
-charge account associated with transaction~13908
-else if font request is for a font bitmap~13910
-generate font bitmap file having attributes indicated for font by
path name, including~13912 ‘
-if font request specifiestaht a subpixel optimazed version
of the font is desired~13914 :
-generates subpixel optimized font of character
using non-linear color balancing~13916
-send that file over network in an http response to the requesting
address~13918
-cache the font bitmap file at address corresponding to path
name specified in request~13920
-charge account associated with transaction~13922

FIG. 139

WO 02/089105 PCT/US02/14217
64/87
14000 | Remote computer T 14004
Application | 0.S. /"‘14014
| Routines Event Queue
' Dispatch Table 14008
measureString routineAdr /
14002 stringDraw hook —— |_| 1+
\t—- lineDraw hook —
1 “bitmapDraw hook —
~—— 14006
Remote Screen Generator |
10212A | | | Download Display List Routines 14010
\ bitmaps & loc. - bitmapDraw - %
] lines & loc. - lineDraw g .
strings & font & loc stringDraw g
measureString
14012
- * [14013
___ Zoom, Scroll, and Evga_nt /
Virtual Resolution % Position |-
Control Scaler
| A
____"_-"—— Network N N ..l
. 200
10222 | client computer |
A 0s Client Screen App.
1022< Event Routines
| Queue - Zoom Control
- Input Relay v
ﬁ Display List 10212A
drawBitmap - bitmaps & loc.
drawLine lines & loc. T
- drawString g strings & font & loc|| | 109216
10220 | _[¥¥¥ = B
| |screen Subpixel opt. fonts |1+

FIG. 140

WO 02/089105 PCT/US02/14217

65/87
14100
10220'6‘\ Computer '/14004
| screen 0.S. 10216
Routines SPO
Fonts
T L stringDraw -l—
lineDraw .
bitmapDraw 14014
measureString
» Event Queue _—
Apps |-
- Dispatch Table 14008
14002 ININS routineAdr |/
& L > hook ' 1]
— - hook
—] hook ‘
14006A
Scaled-Subpix. Opt. Screen Gen. /
Routines |
Zoom & Scale
éfringDraw
lineDraw 14010A
bitmapDraw /
measureString LT
— - 10206B
Virtual Screen Display List
bitmaps & loc. e
lines &loc. — | | 10210C
strings & font & loc
—P> ______.—-——//
View
Window 14012
3 -~ /
Zoom, Scroll, and Event /1 4013
— Virtual Resolution —» Position |——
Control Scaler

FIG. 141

WO 02/089105

66/87

PCT/US02/14217

The Germans, the Brits - they've
got nothing on the amount of
work the average American
does. Even the Japanese work
O O less. Day One of ABCNEWS.-
com's four-day series aon the
impact of the American workioad O

J

Subpixel
Optimized
Application
Server

k14000AC

14204\

Wireless LAN
Transmitter

Subpixel
Optimized
Application
Server

Proxy Server

210J

14000AA\

14000AB

FIG. 142

WO 02/089105

PCT/US02/14217

67/87
/2OOA
r ™
° @
TestTest.txt [[@[x
File Edit View Insert Format
Tools Table Windows Help
This is text produced by this ||
computers operating system
in the portrait orientation in
which this computer's oper- | |
ating system and graphical
user interface was designed
to work.
OO0 00
OO0y 00
\ J
FIG. 143
/200A
(A
00 ?
: !ba;‘;”'; - — } . ‘inr;m =
DU . TheBoston Globe
Online : .
\\ I / Luxury by design, quality by chance
§Gnnlmlurs cutling corners, qevel:mersmineadi g
/ I \ ;cnsmmers-me em‘nmSpn|lgntTgamnas Is
bt housg. Todaysstores socoment |
isubstandard materials and warkmanship in
O O thigh-eny homes.
RN Encrgy plan to promote new ’
00 i] ()
Cheney DI!ShES arillireg over
\ J

FIG. 144

WO 02/089105 PCT/US02/14217

68/87

-rectanglleCmd~14500
-draw rectangle with screem position, height, and width defined with higher

resolution than screen pixel resolution, using bicolor subpixel optimization and
using current background color~14502

FIG. 145

-downloading web applets which creates subpixelized elements on screen~14600

-server and/or proxy~14602
-in response to request for media from thin client download media

including applets~14608

-client~14604
-request media~14606
-receive media including applet~14610

-load and run applet~14612
-applets draw subpixel optimized elements to subpixel addressable

screen on client~14614

FIG. 146

-subpixel optimization of 3-d animations~14900
-for each of successive frame times~14902
-run 3-d animation engine to create bitmap of current frame, or at least

of those portions of image which have changed since the last frame, at

a higher resolution than the resolution at which subpixel-optimized

images will be displayed~14904

-scale-down and subpixel optimize frame bitmap, or at least of changes
" in it since the last frame~14906

-display scaled-down subpixel optimized frame bitmap, or at least

scaled subpixel optimized bitmaps of changed portion of frame~14908

FIG. 149

WO 02/089105 PCT/US02/14217
69/87
e 14700
14702 14708
14706 Scaled 14712
() Subpixel- (" select which)
Non-Roll — —> - —{ Select whiC
Over Image Optimized ‘of two sub-
Non-Roll pixel-optimized
Scaled Over Image images
Su ixei to display as
14704 i 14710 function of
plmi- whether
zation Scaled pointer is
Subpixel over their
Roll-Over — | Optimization |—s sCreen area,
Image t
Roll-Over _ or no)
Image
FIG. 147
14800
s
14802 ~14810
14808 14816
(\ Scaled, Subpixel- 4)
GIFF animation optimized
image 1 > » GIFF animation >
image 1
14804 14812
: -display
Scaled Scaled, Subpixel- successive
GIFF animation " ot | optimized subpixel-
image 2 g%zlr);:_l GIFF animation optimized
zation image 2 imgglg’e:efs: of
. . animation
* 14806 * 14814
o Scaled, Subpixel-
GIFF animation 1] — > optimized
image n GIFF animation
\ / image n _ Y.

FIG. 148

WO 02/089105 PCT/US02/14217
70/87

-game server computer~15000

-if have receive user input from one or more game client computers~15002
-feed it to game engine~15004

-have game engine compute display list for current frame (or changes to

display list for current frame)~15006

-have 3-d rendering routine render bitmap frame of current display list(or

current changes to display list) at higher resolution than that at which

corresponding subpixel-optimized bitmaps will be shown~15008

-scale-down and subpixel optimizie current frame bitmap(or bitmaps of current

changes to frame and their scaled down locations)~15010

-compress one or more successive scaled-down subpixel optimized bitmaps

(and their locations) ~15012
-download compressed, scaled, subpixel-optimized animation frames (or

changes and their locations) to game client~15014

FIG. 150

-game client~15100

-receive downloaded images (and screen locations)~15101
-decompress animated images (and screen locations)~15102
-displays the scaled, subpixel optimized animation frame bitmaps (or change
bitmaps at their respective positions)~15104
-if have received any user input~15106
-upload user input to game server~15108

FIG. 151

WO 02/089105 PCT/US02/14217
71/87

-subpixel optimization of images with transparency maps~15200

-produce scaled, either a bicolor or multicolor subpixel-optimized bitmap of the

foreground image~15202

-produce a correspondingly scaled, bicolor subpixel optimized bitmap of the

images transparency map~15204

-display foreground image’s bitmap on a subpixel optimized display

including:~15206

-for each pixel row of the displayed image~15208
-for each subpixel of such row~15210

-set currentAlpha to the alpha value of the corresponding
subpixel of the transparency map~15212
-set the luminosity of the current subpixel to currentAlpha
times the luminosity of the corresponding subpixel of the
foreground image plus (1 — currentAlpha) times the prior
luminosity value of the current subpixel~15214

FIG. 152

-subpixel optimizing video having interpolation between keyframes~15300
-decompress video~15302
-scale and subpixel optimizing key frames~153040
-scale but do not subpixel optimize interpolated changes between keyframes
because of its rapid speed~15306
-display scaled video on subpixel addressable display with subpixel optimized
keyframes and non-subpixel optimized interframe interpolation~15308

FIG. 153

-subpixel optimizing video representing changes to portions of frame~15400

-decompress video~15402

-scale and subpixel optimizing frames~15404

-scale and subpixel optimize change bitmaps, scale their location relative to

frame~1 5406

-repeatedly display on subpixel addressable display~15407
-any scaled, subpixel optimized video frame followed by a sequence of
one or more scaled subpixel optimized change bitmaps.over the bitmap
of that frame at corresponding scaled positions on the frame~15408

FIG. 154

WO 02/089105 PCT/US02/14217
72/87

-moving images with fixed subpixelation~15500
-store subpixel-optimized bitmap of image~15502
-for each successive frame time~15503
-calculate movement of image at fixed size and orientation, rounding
location to nearest horizontal and vertical whole pixel location~15504

-display image at that location~15506
FIG. 155

-moving image with changing subpixelation~15600

-store high resolution source image~15602

-for each successive frame time~15603
-calculate translation, rotation, and/or transformation of high resolution
source~15604 N
-generate scale-down and subpixel optimized bitmap of image with
images mapping into subpixel grid associated with bitmap being a
function of its tranlation, rotation, and/or transformation~15606
-display resulting subpixel optimized bitmap on subpixel display~15608

FIG. 156

-subpixel optimazation of DVD video~15700
-decompress DVD video to a resolution higher than that at which it is to be
displayed in subpixel optimized image~15702
-scale and supixel optimize decompressed bitmaps of video images~15704
-display scaled subpixel optimized bitmaps of video images on subpixel
addressable display~15706

FIG. 157

-subpixel optimization of HDTV~15800
-decompress HDTV video to a resolution higher than that at which it is to be
displayed in subpixel optimized image~15802
-scale and supixel optimize decompressed bitmaps of video images~15804
-display scaled subpixel optimized bitmaps of video images on subpixel
addressable display~15806

FIG. 158

WO 02/089105 PCT/US02/14217

73/87

-subpixel optmization of mpeg4~15900
-receive and decompress mpeg4 video~15902
-use bicolor subpixel optimization with non-linear color balance in scaling
down of bicolor objects~15904
-use multi-color subpixel optimization in scaling down of non-bicolor
objects~15906
-display combination of bicolor and multicolor objects on subpixel optimized
display moving subpixel optimized objects relative to screen~15908

FIG. 159

-server subpixel optimization of scaled down, downloaded video~16000
-receives request for video and specification of subpixel dlsplay
resolution~16002
-receives requested video content~16004
-scales down and subpixel optimizes the received video to subpixel resolution
association with request~16006
-compresses video~16008
-downloads it to requesting device~1 6010

FIG. 160

-proxy subpixel optimization of scaled down, downloaded video~16100

-proxy computer code~16100
-when receive request for video (and specification of subpixel

resolution)~16102
-send corresponding request for the requested video to a

server~16103
-when receive requested video content~16104
-scale down and subpixel optimizes video (to specified subpixel
resolution)~16106
-compress subpixel optimized video~16108
-download it to thin client~16110

-thin client code~16112
-in response to user input, send request for video to proxy (including

subpixel resolution at which video is to be displayed)~16113
-when receive requested video from proxy~16114
-decompress video~16115
-display scaled-down decompressed video on subpixel
addressable display~16116

FIG. 161

WO 02/089105 PCT/US02/14217

74/87

-Electronic ink code~16200

-if user enters electronic ink input~16202
-record strokes as series of points and curves or lines in
between~16204)
-draw ink on screen using subpixel optimization of lines and curves with
non-linear color balance~16206

-if user selects to scale up representation of electronic ink~16208
-produce subpixel optimized bitmap of ink’s lines and curves using
bicolor subpixel optimization with non-linear color balancing at the
selected scaled up size~16210
-display scaled up image~16212

-if user selects to scale down representation of electronic ink~16214
-to produce subpixel optimized bitmap of ink’s lines and curves using
bicolor subpixel optimization with non-linear color balancing at the
selected scaled down size~16216
-display scaled down image~16218 -

FIG. 162

WO 02/089105

—
© O
TestTest. txt L |3 |X

File Edit View Inset Format
Tools Table Windows Help

Lpurs Lo

pome, |

W

v

OO
00

\|/
/|\

00
00

75/87

—

FIG. 163

(o 0O

TestTest txt [~ [8]X

File Edit View Insert Format
Tools Table Windows Help

16300

PCT/US02/14217

° O
TestTest.txt [1&]x]

File Edit View Inset Format

Tools Table Windows Help

FIG. 164

O

N

O

TestTest.txt

1=lelx] -

File Edit View Inset Format

Tools Table Windows Help

L Ao i

WO 02/089105 PCT/US02/14217
76/87

’/ 16700

TR O IO T

JOI IO I T
T LI I
00080000 [0
| S S— 8

/ 16707 /‘16716 /1 6706 16702

[
VIDEO 1/0
1 /16702
NETWORK|| DVD CD FLOPPY || HARD [Programs]
INTERFACE DRIVE DRIVE DRIVE || DRIVE [Data
\

1 1
T\16720 \16713 \16711 ?\16709 \- 16708 16704

PROPA- L 1]
loo)s

k16719 16714 16712 \16710 FIG. 167

WO 02/089105

16800

o e
————
{ The gloval leader in |
| searchinkrastrocture,
| LookSmart provides <y
\quality searen | _
solutions toieading
portais, media
tampanies ang 15Ps
argund the warid.

tothe LookSmart i
netwark and reach 83 iShg
jpercent of Us Weh
users Enable your
site withieseen,
EoriSPsand
‘Bartals

We provide search
solutions for MSH,

77/87

168ksmart The quslity web dirsciory

A5

FIG. 168

PCT/US02/14217

FIG. 169

WO 02/089105 PCT/US02/14217
78/87

17000 17002

17004 FIG. 170

17000 17002 17102
‘—

17100

Lo Ll .. We——— .-
17103 17104 17106

FIG. 171

WO 02/089105 PCT/US02/14217
79/87

lcoksmart THE STRENGTH 15 [N THE SEARDH RESULTS

our heartfelt mndolentes go but to all the yictims of the recent tragedy and their familig

Gam:s,uumnr_&f.un, MSIIES,MEHS!ML

Maowies Musir Telawisinn FI“HI‘II’II Brofessinns Small ga%a‘

FIG. 174

WO 02/089105 PCT/US02/14217
80/87

FIG. 175

PCT/US02/14217

WO 02/089105

81/87

9.l

Old

: [sivulod g ‘sunojuos rupnba
"n zie=R o0lz-=x "[3sHoyINGT ‘a/0'g” P |uwxo"mw_

WO 02/089105 PCT/US02/14217
82/87

| R m“il ol

llllllgi!l?' ||i i

i

FIG. 177 FIG. 178

il 1L
!_ ll'!'illl lll!IIH i]llli

FIG. 179

18104 18102 18106

FIG. 181

WO 02/089105 PCT/US02/14217
83/87

-subpixel optimized font bitmaps with non-linear color balance~6000A
-determine tightest rectangular array of rasterazition units into which character
font shape fits, taking into account alignment of character-font shape relative
to raterization units due to hinting18202
-for each pixel row~6002A
-for each subpixel in a row~6004

-determine a coverage value representing the percent of the

subpixel which is covered by the font shape~6006
-map resulting array of subpixel coverage values into an array of subpixel
addressable pixels, aligning first column of rasterization units with leftmost
subpixel of a pixel row~18204
-pad array with pixel column comprised of three subpixel’s each to left~18206
-pad array with two, three, or four more sub-pixel columns to right, so as to
cause the total number of sub-pixel columns to be an even multiple of
three~18208
-adjust left and right side bearing values to compensate for padding subpixel
column on left and right side of bitmap~18210
-perform non-linear color balancing~18212
-convert to packed color value pixel bitmap~18214

FIG. 182

-drawing character string~18300

-set pen position to start position for string~18302

-for each character of string to be displayed~9714A
-access its associated font bitmap~9716
-set character start position to pen position~18304
-adjust pen position by left side bearing~18306
-for each pixel value of the font bitmap~9718

-if pixel is non-zero, draw pixel18308

-set pen position to character start posmon plush current character’s
advance width~18310

FIG. 183

PCT/US02/14217

WO 02/089105

84/87

141

Ol

HEHE e
2 FELS

\)

g

e\
N

e

[s3ulod §C ‘sdnojuoa
o7 ‘e/0'8°0s

0ig-=x [3SHIY

401 4°1%

2 mas WM A B

| :Jo|nbay
X0<-pgxQ:uw]|

-

WO 02/089105 PCT/US02/14217
85/87

-selected text reflow~18500

-access web.page’s contents~18502

-perform first layout of web page’s contents, placing text at different horizontal

locations as indicated by web page~18504

-display elements of web page at positions determined by the first

|ayout~18506

-enable user to select a portion of text at a given horizontal location in display

of first layout~18508

-respond to user selection of such a portion of text by~18510
-performing a second layout of the selected text by re-flowing it in a new
column, at a different font size relative to new column’s width~18512
-displaying layout of new column at scale that fills at least two thurds of
width of screen~18514 :

FIG. 185

-zoom to fit~18600

-access web page’s contents~18602

-perform layout of web page’s contents~18604

-display all or portion of layout at first scale~18606

-enable user to drag pointing device across first scale layout display; ~18608

-if drag continues across screen boundary ~18610
scroll onto screen portions of layout at first scale prewously off
screen~18612 , _ .

-if drag is released~18614
-define selected layout part based on position in first scale layout
display of start and end of drag ~18616

-display selected part of layout at second scale that fits selected layout part to

screen. ~18618

FIG. 186

-drag scroll ~18700
-access web page’s contents~18702
-perform layout of web page'’s contents~18704
-display all or portion of layout~18706
-enable user to drag a pointing device across display of layout~18708
-responding to any such drag across a boundary associated with a screen
edge by scrolling onto screen, past the screen edge, portions of layout
previously off screen~18710

FIG. 187

WO 02/089105 PCT/US02/14217

86/87

~clickzoom~18800
- -access web page’s contents~18802
-perform layout of web page’s contents~18804
~display all or portion of layout at first scale~18806
-enable user to click a pointing device at a selected location in display of
layout at first scale~18808]
-responding to such a click by performing a zoomed display of portion of layout

around selected location~18810

FIG. 188

-zoomclick~18900
-access web page’s contents~18902
-perform layout of web page’s contents~18904
-display all or portion of layout at first scale on touch screen~18906
-if user presses touch screen at first posmon in first scale layout
d|sp|ay~1 8908
-replace first scale layout display with a display at larger scale of portion
of layout that includes first position at substantially same position on
screen as in first scale layout display~18910
-display cursor slightly above location of touch~18912
-respond to any movement of touch by correspondingly moving cursor
on display at second scale~18914
-respond to any movement of touch across a boundary associated with
a screen edge by scrolling onto screen, past the screen edge, portions
of layout at second scale previously off screen~18916
-if user subsequently releases of press at a selected position in second
scale layout display~18918
-act as if a mouse click had occurred at corresponding position
relative to web page~18920
-replace second scale layout display with first scale layout

FIG. 189

WO 02/089105 PCT/US02/14217
87/87

-zoom out with greeking~19000
-access web page’s contents~19002
-perform layout of web page’s contents~19004
-if user has selected given larger display scale~19006
-display portion of web page'’s layout at larger scale, mcludmg~19008
-representing layout’s images with bitmap images scaled for
display at larger scale~19010
-representing layout’s strings by bitmap images composed of
font bitmaps sized for display at larger scale~19012
-if user has selected given smaller display scale~19014
-display portion of web page’s layout at smaller scale, including~19016
-representing layout’'s images with bitmap images scaled for
display at smaller scale~19018
-representing layout’s strings by bitmaps composed of a greeked
text representation designed to indicate size and location of each
such string at smaller scale~19020

FIG. 190

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

