20147138446 A1 1IN 0000 10 1000 OO0 00

W

(43) International Publication Date
12 September 2014 (12.09.2014)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2014/138446 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification:
A61B 5/00 (2006.01)

International Application Number:
PCT/US2014/021335

International Filing Date:
6 March 2014 (06.03.2014)

English
English

Filing Language:
Publication Language:

Priority Data:
61/773,647 6 March 2013 (06.03.2013) Us
14/198,807 6 March 2014 (06.03.2014) Us

Applicant: HOSPIRALINC. [US/US]; Hospira, Inc., 275
North Field Drive, Dept. NLEG, Bldg. H-1, Lake Forest,
Ilinois 60045 (US).

Inventors: JHA, Prakash, K.; 7665 Palmilla Dr., Apt.
5107, San Diego, California 92122 (US). CUDNEY,
James; 10718 Strathmore Dr., Santee, California 92071
(US). HERR, Benjamin; 1605 Westside Hwy., Kelso,
California 98626 (US). LEE, Mark, I.; 13864 Belvedere
Dr., Poway, California 92064 (US). PICINICH, Matteo,
D.; 46250 Carpet Ct., Temecula, California 92592 (US).

Agents: WOODWORTH, Brian, R. et al.; Hospira, Inc.,
275 North Field Drive, Dept. NLEG, Bldg. H-1, Lake
Forest, Illinois 60045 (US).

(8D

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to the identity of the inventor (Rule 4.17(i))
of inventorship (Rule 4.17(iv))

Published:

with international search report (Art. 21(3))

[Continued on next page]

(54) Title: MEDICAL DEVICE COMMUNICATION METHOD

FIG. 1
Destination/ | Source/ | Comm ID | File Descriptor
Device ID | Local Port
10 100 57 besas.
1 20 250 18 P
2 10 100 35 b,
7 40 175 17)
Application Port
Therapeutic 10
Status 20
Diagnostic 50
Address =5
Destination ID | Source/ | Comm ID | File Descriptor
Local Port
5 41 250 54 @
5 40 175 48
Application Port
Drug Lib 40 Address=7
Status 41 CE
Diagnostic 42

Destination ID | Source/ | Comm ID | File Descriptor
Local Port
5 10 100 22
5 20 250

Application Port
‘Therapeutic 10
Address=1 Status 20
PMC 1 Diagnostic 50

Destination ID | Source/ | Comm ID | File Descriptor
Local Port
5 10 100
7 20 250 48
¥

J Application Port

‘Therapeutic 10
G 2

Address =2 -Stams — ;0
PMC 2 Diagnoslic 50

- Application Port
|:| Therapeutic 10
Address=3 Status 20
PMC3 Diagnostic 50

- Application Port
|:| ‘Therapeutic 10
Address=4 Status 20
PMC4 Diagnostic 50

(57) Abstract: A medical device communication method that may be implemented within a variety of medical devices including but
not limited to infusion pumps. The method may be implemented with a protocol stack for at least intra-device communication. Em -
bodiments provide connection-oriented, connectionless-oriented, broadcast and multicast data exchange with priority handling of
O data, fragmentation, and reassembly of data, unique static and dynamic address assignment and hot swap capability for connected
peripherals or subsystems.

WO 2014/138446 A1 |IIIWAT 00TV 000 00 AN OO

— before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments (Rule 48.2(h))

WO 2014/138446 PCT/US2014/021335

MEDICAL DEVICE COMMUNICATION METHOD

BACKGROUND OF THE INVENTION
FIELD OF THE INVENTION

[001] One or more embodiments of the invention are related to the field of multiplex
communication protocols for medical devices such as, but not limited to, infusion pumps. More
particularly, but not by way of limitation, embodiments of the invention enable a medical device
communication method for communication between connected peripherals and subsystems that
includes connection-oriented, connectionless-oriented, broadcast and multicast data exchange
with priority handling of data, fragmentation and reassembly of data, unique static and dynamic

address assignment and hot swap capabilities.

DESCRIPTION OF THE RELATED ART

[002] Devices that exchange data generally do so using a communication protocol.
Communication protocols enable data to be transmitted and received in a controlled manner.
Medical devices are example devices that may utilize a communication protocol, for example to
exchange data between peripherals or subsystems that generate or utilize data. There are many
types of communications protocols that vary in complexity, efficiency and hardware utilization.
Current communication protocols utilized within medical devices make use of the operating
system and particular bus architecture within the medical device. A problem with this type of
architecture is that some implementations may prevent time-multiplexed access of the
communication link, thereby starving or otherwise preventing multiple applications from
communicating simultaneously. In addition, applications that transfer data using operating

system and bus specific software calls must be altered when the operating system or bus

WO 2014/138446 PCT/US2014/021335

architecture changes, specifically to account for differences in operating system calls or with
respect to the bus architecture, different data formatting, sequencing and any other protocol
specific nuances. In addition, medical devices in general must undergo extensive testing to
ensure that they do not fail. Thus, changing bus architectures increases costs associated with
applications that make use of the bus architecture, since the application must be retested if the

source code for the application is altered.

[003] Known communications protocols are generally targeted at a specific type of
communication bus architecture, for example Ethernet, WiFi, Bluetooth, CAN, Serial, 12C, SPI,
etc. Known communication protocols in general are not capable of use with more than one type
of communication bus since they attempt to provide a solution to a specific communication
problem in a coherent manner. Because of the low power requirements, limited processor
capabilities and limited memory capacity of medical devices with embedded processors that do
specific functions or tasks, such as infusion pumps, existing sophisticated communications

protocols are generally not utilized in such medical devices.

[004] In summary, known solutions use communication protocols that are tied to a specific
operating system and/or communications bus. Unfortunately, these communication protocols are
not agnostic to all communication bus types and do not provide an efficient and lightweight
protocol stack for intra-device communication that includes connection-oriented, connectionless-
oriented, broadcast and multicast data exchange with priority handling of data, fragmentation,
and reassembly of data, unique static and dynamic address assignment for connected subsystems
and hot swap capabilities. For at least the limitations described above there is a need for a
medical device communication method that provides these features as described and claimed

herein.

WO 2014/138446 PCT/US2014/021335

BRIEF SUMMARY OF THE INVENTION

[005] Embodiments of the invention enable a medical device communication method for
communication between medical peripherals and subsystems that includes connection-oriented,
connectionless-oriented, broadcast and multicast data exchange with priority handling of data,
fragmentation and reassembly of data, unique static and dynamic address assignment and hot
swap capabilities. Example medical devices that may employ an embodiment of the invention
include but are not limited to infusion pumps, both present and future. Embodiments of the
communication protocol provide an interface that is detached, or otherwise abstracted from the
operating system and underlying bus architecture within the medical device, making the behavior
and interface of communication protocol consistent across bus architectures and operating
systems, which is unknown in the art of infusion pumps for example. Hence, the same
application may be utilized on multiple hardware platforms, for example without altering the
application itself. Thus, embodiments enable simplified application code, portability thereof and
minimize maintenance and testing requirements. Embodiments may utilize any type of physical
communication path, for example wireless or hardwired, including but not limited to a data bus.
Embodiments for intra-device communications over a data bus generally employ data bus drivers
specific to each type of data bus to control reading and writing of data over the bus along with a

standard interface to these data bus drivers.

[006] Embodiments may be implemented in separate layers of software configured to execute on
one or more computing elements, wherein each layer performs operations to provide data
exchange that is generally independent of the other layers. Each layer for example may create,
read or update headers associated with data to be exchanged, wherein the headers contain

information to support the above-mentioned features. The layers make up what is known as a

WO 2014/138446 PCT/US2014/021335

protocol stack. Embodiments of the protocol stack may include a manager layer, session layer,
transport layer, and data link layer or any other architecture as long as the resulting

implementation provides the functionality described herein.

[007] Depending on the peripheral or subsystem, data type, priority and desired reliability of
data to be exchanged, applications may transmit data using connection-oriented data exchange to
provide guaranteed delivery of data or connectionless data exchange for less sensitive data.
Embodiments also support one-to-one, as well as one-to-many and many-to-one multicast, and
broadcast modes of data exchange between connected peripherals and sub-systems. At least one
embodiment also supports priority based data exchange and gives preference to high priority data
over low priority data to ensure that high priority messages are delivered first. Additionally, at
least one embodiment supports data fragmentation and reassembly data to comply with demands
of the particular physical communication technology. Embodiments also provide unique static
and dynamic address assignment for connected subsystems and hot swap capabilities, which are

unknown for example in current infusion pumps.

[008] Specifically, in the case of connection-oriented communication, at least one embodiment
utilizes a Communication ID or “CID”, as a token to uniquely identify all active connections
within a subsystem and route the data between respective applications. In the case of
connectionless communications, at least one embodiment uses port numbers, for example source
and destination port numbers, to identify the targeted application. At least one embodiment
supports subscription services for recipient applications, which enables multicasting of data to all
subscribed applications. Multicasting can be both connection-oriented and connectionless. In
connection-oriented communication sessions, at least one embodiment guarantees delivery of

data, for example using acknowledgements. Alternatively, connectionless communication

WO 2014/138446 PCT/US2014/021335

sessions do not guarantee delivery of data, but are very efficient. At least one embodiment
supports broadcasting of data/messages, wherein the broadcast messages are forwarded to all the

subsystems connected to the broadcasting subsystem.

[009] Applications may need to exchange data larger in size than an underlying communication
technology or data bus can support. In such cases, at least one embodiment breaks or fragments
the data into a smaller size, for example that the data bus can actually transfer. At least one
embodiment reassembles data into the original data size at the receiving end. At least one
embodiment executes on embedded systems that may have limited resources, including memory,
processing power, bus utilization, and power. Hence, embodiments efficiently utilize available
resources. Example data exchanges that are large enough to warrant fragmentation of messages

include drug library downloads and firmware updates.

[0010] With respect to fragmentation, at least one embodiment utilizes window that represents a
count of fragments that may be sent before receiving an acknowledgement from receiver. In at
least one embodiment, the transmitter requests for window size from the receiver before sending
the first fragment. The receiver determines the available memory space to accommodate
received packets and responds with the window size, for example as an integral multiple of the
maximum frame size that fits into the available memory. The transmitter numbers the fragments
in sequence and sends them to receiver. After a window size worth of messages have been sent,
the transmitter waits for an acknowledgement of the last fragment. The receiver accumulates all
the received fragments and verifies that all the received fragments are in sequence. If there is no
missing fragment, the receiver sends the fragment number of last fragment as an
acknowledgement, or otherwise sends the fragment numbers of missing fragments as part of

negative acknowledgement or NAK.

WO 2014/138446 PCT/US2014/021335

[0011] Since medical devices such as infusion pumps in the future may include hot swappable
peripherals or subsystems, at least one embodiment supports unique address assignments to
connected devices in order to provide conflict free exchange of data, thus reducing complexity in
applications. At least one embodiment supports communication over multiple underlying data
transfer technologies such as serial, CAN, SPI, SDIO, USB, or any other type of physical
medium or data bus. At least one embodiment also keeps track of devices connected on each bus

and routes data onto the respective bus.

WO 2014/138446 PCT/US2014/021335

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] The above and other aspects, features and advantages of the invention will be more
apparent from the following more particular description thereof, presented in conjunction with

the following drawings wherein:

[0013] Figure 1 illustrates an architectural view of a system having a user interface controller,
and multiple peripherals that communicate with one another using an embodiment of the

invention.

[0014] Figure 2 illustrates a hierarchical layered embodiment of the invention implemented as a

protocol stack.

[0015] Figure 3 illustrates an embodiment of an address request method implemented within the

manager layer.

[0016] Figure 4 illustrates an embodiment of a simple infusion sequence utilizing various

messages provided by embodiments of the method.

[0017] Figure 5 illustrates an embodiment of a connection method implemented within the

session layer.

[0018] Figure 6 illustrates an embodiment of a data exchange method implemented within the

session layer.

[0019] Figure 7 illustrates an embodiment of a disconnection request method implemented

within the session layer.

WO 2014/138446 PCT/US2014/021335

[0020] Figure 8 illustrates a layer flow diagram that shows the flow of data within the various

layers implemented in at least one embodiment of the invention.

[0021] Figure 9 illustrates an activity diagram showing routing between various devices.

[0022] Figures 10A-D illustrate the structure of the messages of the Session Layer.

[0023] Figures 11A-B illustrate the structure of the messages of the Transport Layer.

[0024] Figures 12A-B illustrate the structure of the messages of the Data Link/Physical Layer.

[0025] Figures 13A-B illustrate an exemplary message transfer of a medical function using
exemplary values within the messages to demonstrate the system and method according to at

least one embodiment of the invention.

WO 2014/138446 PCT/US2014/021335

DETAILED DESCRIPTION OF THE INVENTION

[0026] A medical device communication method will now be described. In the following
exemplary description numerous specific details are set forth in order to provide a more thorough
understanding of embodiments of the invention. It will be apparent, however, to an artisan of
ordinary skill that the present invention may be practiced without incorporating all aspects of the
specific details described herein. In other instances, specific features, quantities, or
measurements well known to those of ordinary skill in the art have not been described in detail
so as not to obscure the invention. Readers should note that although examples of the invention
are set forth herein, the claims, and the full scope of any equivalents, are what define the metes

and bounds of the invention.

[0027] Figure 1 illustrates an architectural view of a system having user interface controller or
“UIC”, and multiple peripherals that communicate with one another using an embodiment of the
invention. As shown user interface controller UIC communicates with peripherals Pump Motor
Control or “PMC”, PMC 1 and PMC 2 as well as communication engine or “CE” for various
applications including but not limited to drug library, status and diagnostic message handling.
For exemplary purposes, UIC has a destination/device ID, e.g., an address of 5 and messages
from UIC to the other devices travel over pathways uniquely defined by the tuples defined in the
table, for example on a per device and communication ID defined channel. These channels are
shown in the table above UIC, namely between UIC and PMC 1, at ports 10 and 20, i.e., the
therapeutic and status ports, via Communication ID or “CID” 100 and CID 250 respectively
followed by a channel used between UIC and PMC 2 at port 10, the therapeutic port, via
Communication ID 100, along with a channel between UIC and CE at port 40, via

Communication ID 175. The CE, whose address is 7, shows channels in the table above CE to

WO 2014/138446 PCT/US2014/021335

PMC 2 and the UIC, namely devices 2 and 5 via Communication ID’s 250 and 175 respectively.
PMC 1 is illustrated as having channels to the UIC, via Communication ID’s 100 and 250. PMC
2 1is illustrated as having channels to the UIC and CE through ports 10 and 20, via
Communication ID’s 100 and 250. PMC 3 and 4 may be hot swapped into the system or
otherwise commanded or queried on the fly. Embodiments of the invention are generally
configured to utilize minimal memory and processing to enable execution on devices having
limited memory and limited processing power, which is generally unknown in the art with
respect to sophisticated communications protocols for example. In one or more embodiments,
the stack utilizes one kernel thread to execute the Data Link layer and Transport lower layer,
whereas remaining layers are part of application process and execute in the context of
application. Minimum thread implementation supports blocking access, for example read and
write operations block until the operation is completed. Embodiments may also support
asynchronous callbacks, and in such cases, the stack may utilize two threads, one for write
operations and one for read operation, hence total number of threads utilized is 2*N + 1, where N

is the number of applications using the stack.

[0028] Figure 2 illustrates a hierarchical layered embodiment of the invention implemented as a
protocol stack. As shown, a data message in the application layer is N bytes long. The
application layer may include any functionality independent of the protocol stack that is
implemented in the layers beneath the application layer as shown. When the message is
transmitted from one application to another, for example to an application executing on a
peripheral or subsystem, control information or headers are appended to the message as the
message descends layers. The various headers or other appended information are removed as the

message rises through the protocol stack to the respective receiving application.

10

WO 2014/138446 PCT/US2014/021335

[0029] In one or more embodiments, a manager layer may be utilized to implement the first
layer in the protocol stack beneath the application. The manager layer may provide standard
interfaces to applications across any desired operating system. The layer provides application
programmer interfaces or API’s that enables socket-based communications between applications.
The manager layer also manages file descriptors and facilitates opening of ports. In at least one
embodiment, the manager layer creates and otherwise utilizes a message header having a port

number and file descriptor.

[0030] A session layer is another layer in the protocol stack and provides or includes API’s to
exchange data and control between manager layer and session layer. The session layer may
provide guaranteed application-to-application delivery of data and enables connection-oriented
and connectionless-oriented modes of communication. This layer also enables one-to-one, one-
to-many, many-to-one multicast and broadcasting mode of communication. The layer maintains
the translation between CID and an associated socket or virtual port. For connection-oriented
communication, the protocol utilizes the CID and otherwise generates and utilizes CID’s. As the
connection-oriented data exchange utilizes a handshake between applications for data exchange,
the session layer handles the handshake and generates a CID for the communication and informs
the other participating session layers of application(s) about the CID. After the handshake, data
packets utilize the CID for communication. In case of connectionless communication, no CID is
utilized and hence both source and destination port addresses are exchanged in each
communication packet or payload. In at least one embodiment, the manager layer creates and
otherwise utilizes a message header having control flags and a message type along with a
communication identifier. This structure along with an exemplary connection table is shown in

Figure 10A, along with exemplary message types in Figures 10B-D. The control flags may be

11

WO 2014/138446 PCT/US2014/021335

implemented with a layer flag of 1 bit, a connection type of 2 bits and a CID source of 1 bit for
example. The session layer utilizes some messages that are associated with the session-session
communications and are never passed up the stack to the manager layer in one or more
embodiments. These messages are generally used for establishing or closing connections,
acknowledgements, etc. If the layer flag is set, for example set to True or 1, the message will be
consumed at session layer and will not be forwarded up the stack. The connection type flag
indicates the type of connection, for example if connection-oriented, set to 01 or if
connectionless, set to 00. An example connectionless protocol is User Datagram Protocol or
UDP while an example connection-oriented protocol is Transmission Control Protocol or TCP.
The CID source bit is used to identify if the data as being sent from the entity that generated CID
for the connection in use or from sub-modules using this CID for communication. The entity that
generates CID for communication sets this bit for all the messages generated by it for the
respective active connection, while other entities involved in communication reset this flag for
messages while using this CID. As the CID is unique within the entity generating CID, there
may be duplicate CIDs across other entities. Hence, this layer helps in resolving the source of
CID (local or remote) via this flag. The message type field associates messages with categories
and lets the session layer know what to expect in the following fields. The message type field is
a 4-bit wide field in one or more embodiments. The message type field is used to determine the
type of message. Exemplary values include 0000 for data, 0001 for connection, 0010 for CID,
0011 for socket, 0100 for service and 0101 for device information. Any module that provides a
service generates a unique CID for communicating with the consumers of the service.
Communication ID ‘0’ is reserved for connectionless type of communication in one or more

embodiments. Communication ID field is 1 byte wide and is utilized for the data that is passed

12

WO 2014/138446 PCT/US2014/021335

up the protocol stack. CID can hold any number between 0 — 255. As state above, CID ‘0’ is for
connectionless type communication and is thus not a valid ID for connection-oriented
communication. Connection oriented type communications will have a CID in the range of 1-
255. Hence, CID ‘0’ is an implicit indication of connectionless communication, any other
number between 1-255 suggests connection-oriented. Applications may establish one or more
notification filters to select message to receive and process using a desired function. The
filtration mechanism may utilize one or more regular expression that specifies the location,
length and content of the matching data in the data portion of the packet. This functionality is
implemented in the management layer in one embodiment of the invention. Before the
management layer forwards the data to application, it may check if any filters are defined on the
data. Depending on the filter, the manager layer filters data and forwards the data to respective

callback handlers.

[0031] Embodiments of the invention enable a single application to maintain connections with
more than one device over one or more physical communication layers or bus implementations.
This is accomplished by the use of virtual ports. A single application such as the Therapeutic
Manager in the UIC may for example maintain open connections with more than one drug pump
PMC or other device as would be asserted during a multi-channel infusion. Similarly, many
applications may maintain a connection with one application or device, for example, UIC, CE,

and other applications may connect to a particular PMC to gather infusion status information.

[0032] The one-to-many and/or many-to-one communication relationship can further be
classified into three types, unicast, multicast and broadcast. For example, different applications
can gather infusion status from a PMC either by requesting, for example via multicasting, or the

PMC can broadcast its status on a known port and interested applications can listen to the port.

13

WO 2014/138446 PCT/US2014/021335

Listening to a known port can be either anonymous or subscription based. In anonymous mode,
broadcasting application continuously transmits on a known port and any application can listen
to the port. In subscription based mode, the broadcasting application will not transmit until there
is at least one recipient, interested application, which will have to request for service and

disconnect when done using the service.

[0033] Virtual ports can be implemented by enabling a handshake between participating
modules/applications. Applications providing the service generally open a port and connect to
the port. For every accepted connection request, CID is generated by the service provider and is
passed back to requesting entity in an acknowledgement. Subsequent communication is
performed using this CID. In general, the CID is unique to the entity that generated it. A
disconnection message is used to stop communication and the CID is then returned to the pool,
for example to be reused later. If the service provider runs out of CIDs, it may return a NAK to
incoming connection requests with appropriate NAK ID. In case of communication failure, for
example module shut down, too much waiting time, too many retries, etc., after waiting for
sufficient retries to send a message, one or more embodiments may assume that the
communication has stopped and CID is then returned to pool. As the CID are generated by the
service provider and are unique within the entity, there can be duplicate CIDs on other sub-
entities. To avoid the conflict because of duplicate CIDs, two CID tables may be maintained, one
for the CID generated by the system, and the other for the CIDs generated by other systems
engaged in communication. The creator of CID sets the “CID Source” flag, hence when other
involved applications look at this flag, they perform lookup in appropriate CID table. Each
entity may therefor maintain a table shared by the applications running on it. This table is

maintained at the session layer and serves as a reference table for routing incoming data packets

14

WO 2014/138446 PCT/US2014/021335

to respective ports/sockets.

[0034] As example scenario is illustrated in the following table, and is also shown in the bottom
portion of Figure 10A for illustration purposes and is not intended to limit the invention as
claimed. As shown, the connection type may be set to a value indicative of a connection-
oriented type of communication, such as TCP as shown, or a connectionless communication
type, such as UDP as shown, or a “Service”, for example an application that exists to log data for
other applications. The destination address, destination port and communication ID generally
uniquely identify a row in above-mentioned table. Destination address is the logical address of a
device engaged in a communication. Embodiments may support repeated entries with the same
destination address, which indicates multiple active connections with the same destination
device. The source port field stores the local port number responsible for handling
communication(s) with the CID associated therewith. Depending on CID, received messages are
routed to the respective port. Multiple repeated entries in the source port column suggest various
applications communicating over same port, which may be indicative of one-to-many
communication for example. In one or more embodiments, applications may register or
otherwise provide a request to a service provider to receive messages. The destination port is the
port number on the destination device engaged in a communication. The communication
between a destination port and the local port associated therewith takes place over the respective
CID. Hence, CID behaves as a key for this communication. Since the CID is a unique number
assigned to distinct communication requests, and which may be implemented with a particular
data type of a certain size, there may be an upper limit to the number of active connections that
can be handled by the system/application. The upper limit is thus an upper numerical limit of the

CID. Once the count of unique CID’s exceeds the upper limit, one or more embodiments send a

15

WO 2014/138446 PCT/US2014/021335

NAK to new incoming connection requests. The File Descriptor (FD) functions similar to file
handler or file descriptor in standard operating systems as one skilled in the art will recognize.
Communication related operations are performed using this descriptor. Repeating entries of FD
suggests multiple connections are being served by one application, many-to-one type of
communication. See also Figures 10B-D for specific message structures utilized in one or more

embodiments of the invention.

Connection Destination Destination Source Port CID File

Type Address Port Descriptor
Service 8 50 40 100 55

TCP 5 23 60 72 63

Service 15 68 40 110 87

UDP 4 20 55 103 21

[0035] The transport layer is another layer in the protocol stack and is responsible for transport
layer to transport layer delivery of data. This layer handles flow control, timeouts,
acknowledgements and fragmentation and reassembly of data and also resolves the data priority.
At least one embodiment of the protocol stack supports two or more priority levels, for example
three priority levels, High priority, Medium priority and Low priority and depending on the
priority of data, the transport layer puts the data in a respective priority queue. The transport
layer may be implemented with two sub-layers namely the transport upper and lower layers. The
transport upper layer along with manager and session layers resides in application space, whereas
the transport lower layer along with data link layer resides in kernel space. The transport upper
layer handles reading and writing to priority queues, fragmentation and reassembly of data and
transport-to-transport layer acknowledgements, whereas the transport lower layer may be

implemented as a very thin layer and handles reading from priority queues and communication

16

WO 2014/138446 PCT/US2014/021335

with one or more other stack layers, for example a lower stack layer. This structure along with

an exemplary message types in Figures 11A-B.

[0036] The transport layer generally ensures that manageable sized datagrams are sent over the
underlying bus. Hence, this layer looks at the data coming from upper layers and if the size of
data exceeds Maximum Transmission Unit (MTU) size, the layer fragments the incoming data to
fit within MTU boundary. Thus, embodiments of the invention may utilize any type of bus of
any size, e.g., one bit as per a serial bus, or multiple bits as per a parallel bus of any width. The
layer adds appropriate information to the data so that it can be reassembled faithfully at the
receiving end. If the incoming data can be sent in three fragments, ‘Fragment ID’ field is used to
number the fragments starting from ‘1’ and the ‘Extended flag’ bit is not used. All zeros in the
‘Fragment ID’ field indicates an un-fragmented message and hence is treated as a standalone
message. If a message requires more than three fragments to be transmitted, ‘Extended Flag’ is
set, which enables an extra of § bits (Extended Fragment ID field is 8 bits) to be used for
numbering the fragments. With this flag set, there are total of 10 bits available for numbering
which can support 1023 (2710 - 1) fragments. At the receiving end, ‘Extended flag’ is inspected
to determine if ‘Extended Fragment ID’ is used or not. If the flag is set, the receiver assumes the
fragments to arrive in sequence, starting from sequence number 1. But, if the flag is not set, the
receiver inspects the ‘Fragment ID’ field. If the ‘Fragment ID’ field has zero in it, it indicates an
independent message, but if it’s a non-zero value, the receiver treats the received message as
fragmented data (expects a maximum of three packets). Once all of the fragments are received,
the receiver will re-assemble all the fragments into one message. To do this, the receiver aligns
all the received messages in ascending order of their fragment ID. Then the receiver verifies that

no fragment has been missed in the sequence. If all fragments are received successfully, the

17

WO 2014/138446 PCT/US2014/021335

receiver removes the ‘Transport layer’ header information from all the related fragments and
concatenates them into one message. If Transport layer has limited memory to re-assemble all
the fragments, it forwards the fragments up the stack, as they arrive, which gets reassembled in

application buffer.

[0037] Congestion control is also provided by the transport layer, which may implement
messages dedicated specifically for transport layer to layer communication. These specific
messages are consumed at transport layer and not passed up the stack. One such message is the

window message, which is exchanged to determine window size for data exchange.

[0038] Before sending the first fragment from fragmented data, the transmitter requests a
window size from receiver. The receiver looks at the available buffer space in the application
buffer and computes the number of fragments it can stage before running out of available
memory. It responds to transmitters request with this computed number as window size. Then the
transmitter sends window size worth of fragments before expecting an acknowledgement. Once
the receiver receives all the messages transmitted in a window, it verifies that all the fragments
are in desired sequence and sends acknowledgement for last received fragment in the sequence.
If the receiver determines that fragment(s) is missing, it sends an NAK for the missing fragment
and the transmitter re-transmits the respective fragment(s). The transmitter may check for
window size in middle of communication to keep the data exchange optimized, also, if the
receiver gets low on resources, it can explicitly send a window response and update the

transmitter about the window size.

[0039] The transport layer is also responsible for the reliable delivery of data. The transport

layer has ability to ensure delivery of data to the receiving end. Transport layer has a field for

18

WO 2014/138446 PCT/US2014/021335

acknowledgement. The receiver may send an acknowledgement for every received data packet
with the acknowledgement flag set. In case of fragmented messages, an acknowledgement is sent
when the last fragment in a window has been received or last frame in the message has been

received or timer expires before all messages have been received.

[0040] Embodiments of the transport layer may also implement a “time to live”. For example,
after transmitting a message, the transmitter initiates a timer and waits for an acknowledgement.
If acknowledgement is received, the timer is reset and next packets are transmitted. But if no
acknowledgement is received, the transport layer re-transmits the message and again waits for an
acknowledgement. The transmitter will retry to send the message certain number of times and if
it fails to get an acknowledgement, it will assume that the receiver is not available and will
inform upper layers. In case of fragmentation, the transmitter sends window-sized messages and
then waits for an acknowledgement on the last fragment sent. If the timer expires, the transmitter

will resend the messages again.

[0041] The transport layer also may implement fault detection and recovery. For example, the
transport layer at the receiver may request the transmitter to re-transmit selected frames through

layer-to-layer messages.

[0042] The transport layer may also implement priority for messages. For example, the upper
layers may pass the message priority down to this layer and this layer adds the priority to the
message header. Header has a two bit fields for message priority and hence there are four priority
levels possible in one or more embodiments although any number of bits may be used for
priority to implement more levels and this applies to all message partitions and bit numbers

described herein. Each priority level has its own queue and depending on message priority,

19

WO 2014/138446 PCT/US2014/021335

transport layer puts them into respective queues to be processed by other layers. As there are four
priority levels in a 2-bit embodiment, there may be a maximum of four priority queues and a
minimum of one queue, but the number of priority queue depends on the number of priority

levels used.

[0043] The data link layer is another layer, by way of example and not limitation the
bottommost layer, in the communication stack and is responsible for subsystem-to-subsystem
delivery of data. This layer completely resides in the kernel space. Data link layer may also be
implemented with two sub-layers, for example a Link Layer and Media Access (MAC) layer.
The link layer verifies data integrity by calculating/verifying CRC for each outgoing/incoming
data frame and also handles any hardware acknowledgements for example. The layer also
handles requests for unique logical addresses as well and generates and assigns unique addresses.
The MAC layer utilizes driver(s) handling the underlying physical communication channels or
bus(es). As the data frames arrive on the buses, the MAC layer copies the received data into a
memory pool and passes the pointer to the copied data to Link layer. At least one embodiment
supports communication over multiple underlying data transfer technologies or hardware
implementations such as serial, CAN, SPI, SDIO, USB, or any other type of communications

medium or data bus. This structure along with an exemplary message types in Figures 12A-B.

[0044] In one or more embodiments, the data link layer is responsible for data integrity, for
example through the use of CRC checking or any other type data integrity coding or format
desired. Embodiments of the data link layer are also responsible for logical address assignment.
For example, this layer is responsible for assigning and managing logical addresses of modules
in a device. All the modules like Pump Motor Controller, Power Supply Controller,

Communication Engine, User Interface Controller, etc., have a unique ID so that they can be

20

WO 2014/138446 PCT/US2014/021335

uniquely identified in a pump. The protocol stack can support 254 modules as the address field is
1 Byte field and logical addresses 00, 01, and FF are reserved addresses. If modules are
identified according to their unique hardware address (MAC addresses), and as the hardware
addresses are more than a Byte in size, this would add overhead to the protocol. To avoid this,
each module may be assigned a logical address between 1 to 255 and this layer then maintains
the assigned addresses. The application layer does not need to know what the hardware address

is or what the logical address is in general, which simplifies logical and API calls.

[0045] One of the modules is generally assigned with the task of generating unique logical
addresses for other modules in the device, no matter if those modules are connected directly to
this special module or not. When the device powers on, all the modules power on as
programmed. The module responsible for generating address for devices is called the “root”
device. The root device is aware of its special role and assigns itself a logical address of 01. As
other modules wake up, they assume their logical address as 00. They know that 00 is not a valid
address but also know that there exists a module with address 01 who can provide a unique

address to them.

[0046] Hence, these modules send address requests to a destination with address 01. On receipt
of this message, the root module checks its internal table to verify if the requesting hardware
already has a logical address assigned. If a logical address is assigned, the root module sends that
same logical address in response; else it generates a unique logical address, updates this address
in its internal table against the requester’s MAC address and sends this address in response. On
receipt of an Address Response, the requester module starts communicating with this logical

address.

21

WO 2014/138446 PCT/US2014/021335

[0047] A module in one or more embodiments may not communicate without a valid logical
address. If multiple modules try to request for a logical address, there will be collisions. Due to
collisions, no requests ever reach the root module, and thus none of the modules receives a
logical address. In this scenario, other modules will retry after a random period of time.
Depending on the criticality of device, the amount of random time can be varied, i.e. critical
devices may wait for lesser period of time before a retry. The amount of wait time may be part of

configuration and the devices may wait with reference to their internal clock for example.

[0048] If a device does not desire to use the dynamic addressing mechanism, each module may
be programmed with a unique address, for example to implement a static versus dynamic address
assignment scheme. Embodiments may still utilize a root module that maintains the addresses of

the connected modules.

[0049] Embodiments of the data link layer may also implement routing. As mentioned, a
module may have multiple bus types or topologies and there may be different type of devices
connected on various buses. If a Data Link layer receives a packet that is not addressed to it, it
first checks if it has multiple bus architectures and if true, it forwards the message to other buses;
else it simply discards the packet. This kind of addressing mechanism is well suited for star
topology for example. Hence if PMC1 wants to send data to PMC2 but there is no direct data
path, then it will re-route it through the root module. In this case, the root module can broadcast
the message in the network or perform a lookup in its internal table and just forward the packet
on a specific line. Hence, in one or more embodiments that implement routing, each module that
supports multiple communication buses may maintain a list of all devices directly connected to
the module so that they can efficiently route the packets. As stack supports data routing, it

seamlessly bridges multiple heterogeneous data buses, thus making communication, bus

22

WO 2014/138446 PCT/US2014/021335

topology independent. Few examples of possible bus topologies include Ring, Star, Mesh, and

Tree topologies or any other topology that may be utilized to transfer data.

[0050] Figure 3 illustrates an embodiment of an address request method implemented within the
manager layer. As shown, when a device is added to the system, for example hot-swapped in,
the device boots and requests an address from the root device. The new device waits for a
response and if a timeout occurs, requests an address again. Once the root device receives the
address request message, it looks up an available device number and generates a logical address
for the new device and updates the table. Alternatively, if there are no available numbers left a
NAK with appropriate error message may be returned to the new device. The root device returns
the new device logical address to the new device in an address response message. Any further
requests for the address are handled by lookup via the root device. The new device stores the
logical address in a local table for further use. This capability generally does not exist in medical
devices or infusion pumps since the configurations are generally assumed to be fixed, using a
fixed operating system and fixed bus without regard to potential new devices and new types of

devices that may communicate with a root device.

[0051] Figure 4 illustrates an embodiment of a simple infusion sequence utilizing various
messages provided by embodiments of the method. Once the address of a new device is
obtained, it may communicate with the other components within the system. The figure shows
user interface controller UIC having device number 1, initially connecting to a drug infusion
pump having device number 3, wherein the logical addresses of the devices, or device numbers
are obtained as shown in Figure 3. The UIC accepts input from a Care Giver that indicates an
infusion is to take place. The UIC application calculates the necessary steps to achieve the

infusion and sends an infusion header and data message to the drug infusion pump, which

23

WO 2014/138446 PCT/US2014/021335

acknowledges the message. The UIC then sends an infusion safety data message, which is
acknowledged and after the infusion is complete, the UIC sends an infusion stop data message,
which is acknowledged. This scenario is a typical scenario that enables any type of drug
infusion pump to be added to a system and utilized, for example in a hot swap scenario where an
infusion pump may return an error or a different type of drug infusion pump is to be added to the

system and utilized for example.

[0052] Figure 5 illustrates an embodiment of a connection method implemented within the
session layer. In the scenario shown, the UIC requests a connection in order to communicate
with the PMC to command the PMC and/or for example obtain status updates. In this case, PMC
acts as a service provider as the PMC is providing status updates on a known port. UIC sends a
connection request to PMC on that port, e.g., port 10, shown as a message passing from left to
right. After receipt of the connection request, the PMC accepts the request, generates a unique
CID, e.g., 26 for this communication and updates its internal table. The PMC sends the
generated CID back to UIC as a part of connection accept message, shown traveling from right
to left. On receipt of connection accept message from the PMC, the UIC extracts the CID from
the message and updates its internal CID table as shown in the lower left. The UIC then sends an
acknowledgement message to the PMC to confirm the successful receipt of CID. If the PMC is
not able to process the request from UIC and hence cannot establish communication, the PMC
sends a connection reject message to the UIC. On receipt of connection reject message, the UIC
may retry to obtain a connection. See also Figures 10A-D, 11A-B and 12A-B for an
embodiment of the exemplary message structures that may be utilized to form an implementation

of various layers, which are described further in detail below.

[0053] Figure 6 illustrates an embodiment of a data exchange method implemented within the

24

WO 2014/138446 PCT/US2014/021335

session layer. Once the PMC receives acknowledgement from the UIC, the connection process
is complete. At this time, both devices may exchange data using the agreed CID. When the
session layer of PMC receives any data from the UIC with a valid CID, it performs a lookup in
its internal table against the ‘Destination ID’ and ‘CID’ to resolve the port number where the

packet is to be forwarded.

[0054] Figure 7 illustrates an embodiment of a disconnection request method implemented
within the session layer. On completion of data transmission, either of the communicating
parties may request for a connection termination. As shown, the UIC initiates the process of
connection termination. It sends a disconnect request to PMC with the respective CID. The PMC
processes the request and if there is no active communication, the PMC will send an
acknowledgement to the UIC and delete the CID entry from its table. On receipt of disconnection

acknowledgement from PMC, the UIC also removes the CID entries from its table.

[0055] Although the general session layer communication protocol has been described above, a
more in-depth description of the Session layer messages follows, according to one or more
embodiments of the invention. The message structures utilized in one or more embodiments of

the invention as described below are shown in Figures 10B-D.

[0056] Connection Request Message

[0057] For a connection-oriented communication session, when an application opens a socket to
communicate over a port on some other device, a handshake is performed before the
communication starts. The handshake begins with a connection request type message to the
service provider. The “layer flag” is set for this message type. Therefore, the request packet is

consumed by the session layer. The connection type may be initially set to “Unknown”

25

WO 2014/138446 PCT/US2014/021335

suggesting that the data packet is neither connection-oriented nor connectionless. The message
type is set to “Connection” as the command is used to establish new connection. The message is
a request for establishing new connection; hence “Command” field has “Connection Request”
set. The application requesting a connection specifies the destination’s port address and also
provides its own port address, hence the connection request packet has source and destination

port address.

[0058] Connect Accept Message

[0059] On receipt of a connection request message, if the service provider has enough resource,
it responds with a connection accept type of message. The service provider generates a CID for
the communication and sends it to the requester as a part of this message. As the connection
requesting entity has no information of the generated CID, the service provider sends source and
destination port address as a part of this message to let the other end know about the generated

CID.

[0060] Connection Acknowledgement Message

[0061] On receipt of a connection accept message, the requesting end updates its internal table
with the received CID. In response to connection accept message, the requesting end sends an
acknowledgement message to indicate the service provider about the receipt of CID and
complete the handshake. It is possible that multiple applications on one module request to
communicate with one application on another module on the same port number, e.g., many-to-
one. To inform the service provider about the particular application that is sending an

acknowledgement, “source port” is added to the acknowledgement message.

26

WO 2014/138446 PCT/US2014/021335

[0062] Connection Disconnect Message

[0063] Once the communication is completed, any one of the participating entities may request a

connection disconnect for a graceful termination of the connection.

[0064] Connection Disconnect Acknowledgement Message

[0065] This message is sent as an acknowledgement on receipt of a disconnect message. The
message is intended to ensure that a communication is not terminated if an active connection still
exists. If a disconnection acknowledgement is not received within a certain time period, a

disconnection attempt may be made again.

[0066] Connection Reject Message

[0067] If the service provider cannot accept any new connections, it sends a connection reject in
response to a connection request message. In the connection reject message, it sends the reason
for rejecting the request. On receipt of a connection reject message, the requester may retry after

some time for example.

[0068] CID Info Request Message

[0069] Any participant involved in communication can request for status of CID. This message

acts as a ping message to verify if the destination port is open and CID is an active CID.

[0070] CID Info Response Message

[0071] On receipt of a CID Info request, a CID Info Response is transmitted. This message
contains the source and destination port addresses involved in communication, window size for

transmission, etc., and also indicates if the CID is active or not.

27

WO 2014/138446 PCT/US2014/021335

[0072] Socket Status Request Message

[0073] This message is utilized to request socket related information such as the type of socket,

purpose of opening this socket, etc.

[0074] Socket Status Response Message

[0075] This message is sent in response to Socket Status Request message. The message

contains socket related information such as the type of socket, purpose of opening this socket etc.

[0076] Subscribe To Service Message

[0077] The communication protocol enables applications to provide a service, e.g. a broadcast
service. For example, the PMC may have a service running that broadcasts PMC status
periodically on a known port. If the UIC requests the PMC status, it may simply subscribe to
this service with the PMC and receive the messages. Typically these services are one-way

communication.

[0078] Subscribe To Service Acknowledgement Message

[0079] Once the service provider receives a subscription request, it has to provide a CID to the

requester. The CID is delivered through an acknowledgement message.

[0080] Unsubscribe From Service Message

[0081] If a subscribed application no longer desires to be subscribed to a service, it may request
to unsubscribe. On receipt of an unsubscribe service message, the service provider removes the
entries from its internal CID table and sends an acknowledgement to the requester. If the service

provider finds that there is no one subscribed to a service, it may decide to stop the broadcast

28

WO 2014/138446 PCT/US2014/021335

service until it has at least one subscribed application.

[0082] Unsubscribe From Service Acknowledgement Message

[0083] On receipt of this message the application requesting to unsubscribe, removes entries of

CID from its internal table and releases the involved sockets and ports.

[0084] Device Address Request Message

[0085] An application may request a logical address for a device using this message.

[0086] Device Address Response Message

[0087] On receipt of an “Address Request” message, a device sends its address as a part of the
response message. Alternatively, a Device Address Response Message may be sent

independently at anytime and may not necessarily be tied to a request message.

[0088] Device Type Request Message

[0089] This message is used to request name of a device. Every connected device has a unique

address but may have non-unique names or no names. Device types can be PMC, CE, UIC, etc.

[0090] Device Type Response

[0091] This message is generally sent in response to “Device Type Request” message and
contains the type of the device sending this message. Alternatively, a Device Type Response
Message may be sent independently at anytime and may not necessarily be tied to a request

message.

[0092] Connection-oriented Data Message

29

WO 2014/138446 PCT/US2014/021335

[0093] At least one embodiment of the session layer adds just two bytes of header information
when sending data between devices. The CID is generated and exchanged during the handshake

process prior to data transfer.

[0094] Connectionless Data Message

[0095] Connectionless data transfer is used when no handshake is required to transfer data. As
there is no handshake, there is no CID generated for the communication and hence both source

and destination port numbers are utilized to ensure the delivery of data.

[0096] Figures 11A-B and 12A-B illustrate corresponding message structures for exemplary
embodiments of the Transport layer and Data Link layer respectively and are described further

below.

[0097] Figure 8 illustrates a layer flow diagram that shows the flow of data within the various
layers implemented in at least one embodiment of the invention. Specifically, data flow up the
protocol stack for incoming data is shown. The destination application buffer location is not
known until the data frame moves up to manager layer. Hence, the fragment is stored in a
memory pool until it reaches manager layer and once the target application is resolved, the data
is copied from the memory pool into application buffer. In one or more embodiments, memory
utilization may be minimized by returning a buffer to memory if the buffer is over a predefined

age threshold.

[0098] Data Link Layer

[0099] Data Link layer controls one or more physical communications links, data buses. The

layer filters the messages directed to the specific device and ignores other messages. The layer

30

WO 2014/138446 PCT/US2014/021335

may compute a CRC on the received packet and verify it with the received CRC. Valid data
frames are copied into a memory pool and pointer to these messages are forwarded to the

transport layer.

[00100] The transport lower layer and data link layer run as an independent service and stores
data in the designated priority queue, P1, P2, P3 or P4. The transport upper layer, session and
manager layers execute in the application space, and the transport upper layer maintains pointers
to the priority queues and Communication ID tables. In one or more embodiments, the memory

pool, priority queues and CID tables are in shared memory space.

[00101] In one or more embodiments, the data link layer is further divided into two sub-layers, a
link layer and a MAC layer. The MAC layer may interface with bus drivers and has a buffer for
each underlying bus. As the data arrives on these buses, the data is copied into these buffers and
then forwarded to link layer. The buffer may be implemented as a pair of buffers, while one

buffer is used for receiving new data, other buffer is used to transfer previously received data.

[00102] The link layer copies the data from buffers into the memory pool. The memory pool is
a contiguous memory block and each memory block may be implemented as a factor of frame
length. As the application consumes data, the data is removed from the memory pool to make
room for new data packets. As the application consumes data randomly, there may be memory
holes in the memory pool. Hence, the link layer generally maintains a list of available memory
locations in the memory pool. When memory is freed from the memory pool, the pointer to
available location is added at the end of this list. When a new packet arrives, it is placed at the
memory pointed by the first element in this list. If there is no element in the list, memory pool

will be considered full and the packets will be dropped. In one or more embodiments of the

31

WO 2014/138446 PCT/US2014/021335

invention a memory manager may be utilized to control access to memory from the various
layers, including concurrent access control of memory from the various layers. Embodiments of
the invention may minimize or altogether avoid multiple copying operations by maintaining one
copy of data in the memory pool while passing pointers to the memory as the data moves up and
down the stack. By controlling access to the memory during access, semaphores may be utilized
to ensure data integrity while allowing multiple processes to effectively utilize the data in a
concurrent manner. Avoiding multiple copy operations enables minimal memory utilization in

embedded environments and minimizes processor utilization as well.

[00103] As the transmitter has tendencies to push data on buses, they can soon over-utilize the
bus by transmitting too much data. The bus driver at the MAC layer in one or more embodiments

may be implemented to handle such scenarios.

[00104] Transport layer

[00105] In one or more embodiments, the transport layer may be divided into two sub-layers, a
transport upper and a transport lower layer. The transport upper layer resides in application space
whereas the transport lower layer resides in kernel space. These two layers together handle

transport layer functionalities.

[00106] The transport layer is implemented in one or more embodiments to reassemble
fragmented data and also to resolve data priority. When a new data packet is received by
transport lower layer, a timer may be started for the data. If the data is not consumed before the
timer expires, the data may be discarded and the memory freed from the memory pool. This
avoids memory starvation if no application exists to consume received data. If the

acknowledgement field was set, the transport layer sends a NAK, “timed out in priority queue”

32

WO 2014/138446 PCT/US2014/021335

error code, for example.

[00107] The transport layer header has an acknowledgement flag and if the flag is set, the
receiving transport layer will have to send some kind of acknowledgement for the received data
fragment. If fragmented data is received, the acknowledgement is sent after receiving window
size amount of data or a complete message. This flag is set for a connection-oriented data
transfer to ensure delivery of data. This flag may also be set in a connectionless data transfer

only if data fragmentation is utilized.

[00108] Fragmented data packet handling

[00109] In case of fragmented data, before the transmitter starts sending any data fragments, the
transport upper layer at the transmitter first requests a window size from the receiver. The
window size may be exchanged once during first data transfer or may be obtained before every
data transfer. Window size is the number of data fragments that can be sent before an
acknowledgement can be expected. When receiver receives a window size request, transport
upper layer at receivers end, computes the amount of free memory in application buffer and

sends the response as window size in the ‘window size response’ message.

[00110] In one or more embodiments, the transport upper layer at the transmitter side initializes
a data structure for the CID that requested a window size. In this structure, the transport layer
stores the CID, last reported window size, last successfully received fragment number and the
maximum allowed time period between two fragments, etc. Also, the transport upper layer at the
receiver maintains same structure. The transport layer expects that the fragments will be

sequentially numbered starting from 1 in one or more embodiments.

33

WO 2014/138446 PCT/US2014/021335

[00111] As the transmitter receives a window message, it calculates the number of fragments to
be transmitted before expecting an acknowledgement. The transmitter starts sending data

fragments in sequence starting from fragment number 1 for example.

[00112] When the receiver receives first fragment, the transport lower layer starts a timer on the
received data frame and places the fragment it into the respective priority queue. The transport
upper layer updates the structure and stores the sequence number of the fragment. If the fragment
is delivered to the application buffer by upper layers, the upper layers inform the transport upper
layer about the success. The transport upper layer updates its structure with the first fragment
being delivered. Upper layers do not inform application about the available fragment until all the
fragments constituting to a message are received. An application buffer is used for re-assembly

of fragments to minimize memory footprint.

[00113] If the transport upper layer receives all the fragments for a window successfully, it
waits for all the fragments to be delivered to application buffer successfully. Once all the
fragments are sent to application buffer, the received fragment number and delivered fragment
number match and the transport upper layer sends an acknowledgement for the last fragment in

the sequence. The transmitter receives the acknowledgement at the transport upper layer.

[00114] Ideally, the transport layer accumulates all fragments, verifies that they are in sequence
and merges them into one complete message before sending it up the stack. However, in one or
more embodiments, the transport upper layer forwards the frames to the session layer as they are
received, but ensures that the fragments are delivered in sequence. This optional implementation
may be utilized to lower memory utilization. This is the case since the message does not have to

be reconstructed in full within the stack until the full message is received in the application. As

34

WO 2014/138446 PCT/US2014/021335

the fragment number in the transport header is 10 bits wide in one or more embodiments, the
layer can support a maximum of 1023 fragments (fragment number O is reserved and represents a
non fragment data frame) before the fragment numbering overflow. As each fragment has a
maximum of 248 Bytes payload, hence a total of 253,704 Bytes is required at the receiver end
for each active connection to accommodate all the fragments. Any other size of fragment

number field may be utilized to increase the overall size as one skilled in the art will recognize.

[00115] At the receiver, as the fragments are received, transport upper layer updates the last
fragment number in its structure. Before updating, it verifies that the received fragment is in
sequence with previously received fragment. If it detects a missing fragment, the layer still
forwards the fragments up the stack, but in their respective token puts an offset value. Metadata
along with a pointer to the received data fragment is called a token. This offset value is used by
manager layer to provide a gap while accommodating other fragments around the missing one,
so that the gap can be filled once the missing fragment is received. For example to create an
empty space in memory so that when the missing frame is finally received, it will be
accommodated in this empty space to complete the final message. Meanwhile, transport upper
layer waits for the fragments to arrive and then looks for any missing fragment in the sequence.
Once the layer generates a list of all missing fragments, it requests for retransmission of
fragments from the transmitter. Once the missing fragments are received, they are forwarded to

upper layers so that they can be used for filling the empty spaces in final message.

[00116] When retransmission is required, transport upper layer at receiver end, sends
retransmission request message with the desired fragment number in it. The receiving end
maintains a list of missing fragments and as the missing fragments are received, their entry is

removed from this list.

35

WO 2014/138446 PCT/US2014/021335

[00117] If the transmitter retransmits an already transmitted fragment, the receiver compares the
fragment number with last received fragment number and will detect that there has been a
retransmission. The layer checks if the retransmission was requested by the receiver explicitly or
not. If the retransmission was intentional, the fragment is consumed else the fragment is dropped

assuming a false retransmission of data.

[00118] Once the transmitter sends one window size worth of fragments, it starts a timer and
waits for an acknowledgement on the last fragment in the sequence. The transmitter may send
any further fragments only when it receives an acknowledgement. If the acknowledgement is
delayed and the timer expires, the transmitter may send a “window size” request message before
retransmitting the fragments. A receiver may fail to send an acknowledgement if the receiver is
too busy or its buffers are full. Hence, a “window size” message is sent because it serves two
purposes, the first being that a response to this message implies that the receiver is ready for
accepting messages, and the second being that the new responded window size buffer is

available at receiver so that chances of getting an acknowledgement increases.

[00119] In case of missing fragments, the receiver sends a retransmission request instead of an
acknowledgement. A retransmission request can only be sent if the last fragment in the sequence
was either received successfully or was found missing. Hence, the transmitter considers a
retransmission request message as an implied acknowledgement and no more waits for an

explicit acknowledgement, but may wait on acknowledgement for retransmitted fragment.

[00120] Missing fragments can be of three types, the first fragment missing, any fragment(s)
missing between first and the last fragment of a complete message, and the last fragment itself

missing. If the first fragment is missing and the receiver starts receiving from fragment number

36

WO 2014/138446 PCT/US2014/021335

2, it accumulates all the messages till it receives window size messages and explicitly requests
for the 1st fragment. The same technique is used for requesting any missing fragment between

Ist and last fragment.

[00121] Missing the last fragment of a complete message may be a complicated scenario
because transmitter never informs the receiver about total number of fragments needed to send a
message and hence, there is no way for receiver to know when the message completes. Missing
“last” fragments can be of two types, missing the last fragment from a window and missing the
last fragment of a message. In the case of missing the last fragment from a window, it is easy to
detect. Every time a fragment is received, the receiver starts a timer and waits for next fragment
to be receive before the timer expires. The transmitter sends the last message for the window and
waits for an acknowledgement. If this message is lost, the receiver waits for this last fragment to
arrive. The timer at the receiver expires earlier than the timer at the transmitter. As the receiver
keeps track of fragment sequences and window size, it realizes that the last fragment was not

received on time and hence sends a retransmission request for the last fragment.

[00122] A more difficult problem occurs when the last fragment of a message is lost. As the
receiver has no idea about how many fragments will constitute a message, it looks for the
fragment with ‘last fragment’ flag set. This fragment indicates the receiver that it was the last
fragment from the message. If this fragment is lost, the receiver has no idea when to stop
reassembling fragments. To ensure delivery of this last fragment, the transmitter can use

following two approaches.

[00123] In the first approach, the transmitter knows that the last fragment is approaching. It

explicitly reduces the window size to make sure that the last fragment of the message becomes

37

WO 2014/138446 PCT/US2014/021335

the last fragment of the window as well. As the receiver can detect the last fragment from a

window, if the last fragment from a message is lost, the receiver may request retransmission.

[00124] In the second approach, the transmitter will send the last fragment with ‘last fragment’
flag set, followed by few fragments with random payload but with incremental fragment number.
If the last fragment of the message is missing, the receiver will detect the missing fragment as
there will be gap in sequence numbers and will request for retransmission. When the receiver
attempts to arrange the fragments in sequence, it detects the fragment with ‘last fragment’ flag

set and hence discards all fragments following this fragment.

[00125] Non-fragmented data packet handling

[00126] For a non-fragmented data frame, it is first received by transport lower layer, which
starts a lifetime timer on this frame and puts the frame in appropriate priority queue. The frame is
picked from the priority queue by transport upper layer, which forwards it to other layers, for

example Session layer.

[00127] Session layer

[00128] Session layer major responsibilities are to ensure application-to-application delivery of
data and generate unique CID’s within a system. The stack works on the principle of service
provider and service consumer. The application providing service generates unique CID’s for the
engaged participants. The CID is unique within the system running the service provider
application in one or more embodiments. The CID may be thought of as a key used to hide the

information about source and destination ports engaged in communication.

[00129] The session layer may be implemented in a lightweight or a very thin layer to a

38

WO 2014/138446 PCT/US2014/021335

connectionless communication because a connectionless data packet will contain the source and

destination port addresses as part of their headers and hence does not utilize a CID.

[00130] Packets reaching the session layer may be divided into two categories, namely data and
control. Further, the incoming data can be connection-oriented or connectionless and fragmented

or non-fragmented.

[00131] Connection-oriented data transfer

[00132] Connection-oriented data transfer makes use of a connection through a handshake
process. After an initial handshake process is complete as is described further below, data
exchange occurs. In connection-oriented data transfer, embodiments of the invention utilize a
data header with an acknowledgement flag set and connection type set to 01, for example. Data
being exchanged may be fragmented or non-fragmented based on the size of the data and the

underlying packet size supported by the physical medium.

[00133] Fragmented data

[00134] When an application writes to a virtual port, the session layer adds a session layer
header to the data and forwards it down the stack. In one or more embodiments, the session
layer header is 2 bytes wide. Hence, if fragmentation is needed at the transport layer, the first
fragment is set to contain the CID from the session layer while the rest of the fragments may
contain only application data. The session layer at the receiving end forwards the first fragment
that contains the session layer header, but is unsure as to where to forward other fragments from
the sequence as there is no CID information in subsequent headers. Also, if two or more

applications on one device want to send data to one device, it is not possible without further

39

WO 2014/138446 PCT/US2014/021335

information in general at the receiving end to aggregate fragmented data because there is no way
to uniquely identify which application is sending what data fragment. To resolve this issue, the
transport layer copies session layer header to all the related fragments. As all the fragments will

now contain CID, they can be uniquely identified at the receiving end.

[00135] The session layer header contains an acknowledgement flag that is utilized in the case
of complete messages. As the session layer ensures application-to-application delivery of data, it
sets the acknowledgement flag for the receiver to acknowledge successful delivery of data. As
the header is copied in each fragment, the session layer will look at the flag and will
acknowledge the transmitter every time a fragment is delivered which is not what

acknowledgements are generally for, i.e., a complete message acknowledgement.

[00136] To avoid this issue, the transport upper layer at the receiver end appends metadata to
packets as they are sent up the stack. Metadata along with pointer to received data fragment is
called a token and instead of passing data, transport layer passes a token to session layer. In the
case of exceptions in behavior of the session layer, metadata provides guidelines for the session
layer to follow. For example, the session layer will not send any acknowledgements for data
fragments, and when the transport upper layer receives a fragment with a “last fragment” flag
set, it updates the metadata so that session layer knows that it needs to send an acknowledgement

to the transmitter regarding the receipt of a complete message.

[00137] Flow of control

[00138] As the fragments move through the session layer, session layer extracts the CID from
the fragments, performs a lookup in the Communication ID table based on CID and the sources

logical address obtained from the metadata. The session layer determines the associated file

40

WO 2014/138446 PCT/US2014/021335

descriptor source and destination ports for the CID. Once the file descriptor is known, it removes
all the headers and modifies the metadata to communicate the file descriptor detail to manager

layer.

[00139] Once the fragment arrives at the manager layer, the manager layer extracts the file
descriptor information from metadata and forwards the fragment to respective application.
Before the manager layer forwards the message to the application, it determines if the file
descriptor is still in use and in the state of accepting data. If conditions are favorable, the
message is copied into the application buffer and a “message received” flag in file descriptor is
set. If the current operation on the file descriptor is a blocking read, the read function call returns
with number of bytes available in application buffer. If the current operation is a non blocking
call, the application either checks the flag and if set, reads data from buffer, or the manager layer

may make an asynchronous function call on receiving data.

[00140] After delivering the data to the application, the manager layer returns the token to
session layer. This token contains information about the state of the previously passed message.
Depending on the state of token, the session layer performs activities such as sending a session-

to-session layer acknowledgement.

[00141] If the data is fragmented, session layer further modifies this token and sends it down to
transport layer, otherwise the session layer consumes the token. The transport layer determines
if the fragments were delivered in sequence they were sent and accordingly controls

acknowledgements and window sizes.

[00142] Non-Fragmented data

41

WO 2014/138446 PCT/US2014/021335

[00143] If a message size is less than the Maximum Transmission Unit (MTU), no
fragmentation is required and the complete message is sent in one frame. As the frame moves up
the stack, transport upper layer adds very little information to the metadata as complete
information for the session layer is already available in the frames header. The session layer
reads the header and extracts the data type. If the data type is connection-oriented data, the
session layer extracts the CID and performs a lookup in the CID table to determine source and
destination ports. The session layer removes all the headers from the datagram, updates the

metadata with the destination file descriptor, and forwards it to the manager layer.

[00144] Connectionless data transfer

[00145] As mentioned above, in a connectionless data transfer, the session layer may be
implemented in a lightweight or very thin layer. As connectionless data transfer does not utilize a
handshake, no CID is generated. Due to the absence of the CID, the protocol header utilizes
source and destination port addresses. The session layer reads the destination port address and
determines the associated file descriptor and forwards the message to that port. As
connectionless data transmission does not guarantee delivery of data, the acknowledgement flag

on the frames is set to false.

[00146] If a connectionless data frame is larger than the MTU, the transport upper layer
fragments the data into manageable sizes without setting the transport layer acknowledgement
flag as would be done in connection based communications. During reassembly, if transport
layer sees any missing fragments, it discards the complete message. Through a token, the
transport layer informs upper layers to discard previously accumulated fragments in application

buffer.

42

WO 2014/138446 PCT/US2014/021335

[00147] Manager layer

[00148] Manager layer handles file descriptors and forwards packets from lower layers to
appropriate file handlers. The manager layer also performs the copying of data from the memory
pool into the application buffer. The manager layer knows the size of the application buffer and

the application buffer size may be smaller than one frame length.

[00149] If the application buffer is large enough, the manager layer copies the complete
message into application buffer. If the application buffer is not large enough, the manager layer
copies data in a sequential manner. The manager layer fills the application buffer with data and
waits for the application to read the data before copying the next portion of data. Once data is
successfully delivered to the application, depending on the token, the manager layer informs the

session layer regarding success.

[00150] Control Flow up the stack

[00151] The flow of control is now described as data moves up the stack from the lowest layer

to the application layer.

[00152] Data Link Layer

[00153] The data link layer control is described with respect to the two sub-layers that make up
the data link layer, namely the link layer and the MAC layer. The MAC layer controls the

physical bus drivers.

[00154] MAC layer

[00155] As the datagram arrives on the physical bus, the bus driver copies the datagram into a

43

WO 2014/138446 PCT/US2014/021335

buffer. Once the complete datagram is available in the buffer, the MAC layer calls an API in

Link Layer to copy the available data into the memory pool.

[00156] The link layer API returns a value to indicate the outcome of the copy operation. The
operation may succeed or fail. The returned error code provides the reason for any failure. The
MAC layer waits for the API to finish the operation before storing newly available data into the

buffer.

[00157] Link Layer

[00158] As discussed in the sections above, the memory pool may be fragmented due to
applications consuming data at random rates, resulting in holes in the memory pool. In one or
more embodiments, the link layer maintains a link list, or a doubly link list, or bit map or any
other data structure capable of storing available memory locations in the memory pool. When a
memory location is made available, a pointer to the memory location is added to the tail of the
list. When a new datagram is available, it gets copied at the memory pointed by pointer in the
head of the list. Though the received message can be of any size and wherein a maximum size
exists, for example 256 bytes, the size of the memory pool is selected to be an integral multiple
of the maximum datagram size. This simplifies memory management, as the stack is aware of
the size of allocated memory given the pointer to that memory. There may be instances when a
datagram is available at the time when memory is made available in the memory pool. In this
case, both the copy and the delete processes will try to access the list simultaneously leading to
concurrency issues. In one or more embodiments, the memory pool may include non-uniform
size buffers for a more flexible buffer implementation at the cost of memory management

complexity as one skilled in the art will recognize.

44

WO 2014/138446 PCT/US2014/021335

[00159] When the MAC layer calls an API to copy the data from hardware buffer to memory
pool, the API first checks the list for any available memory location in the pool. If memory is
available, the API copies the datagram to the memory location pointed by the head of the list and
deletes the pointer from the list. If no space is available, for example the link list is empty, or

error occurs during the copying to memory pool, the API returns respective error code.

[00160] After successfully copying the datagram, the API adds the pointer to the datagram in a
list with a number of timer ticks remaining before the data should be delivered to application.
This API may be reentrant as the MAC layer may be riding over multiple bus architectures and
the data may be available in multiple buffers at the same time resulting in calling this API while

the layer is still servicing the previous call.

[00161] The protocol stack may be implemented with a time limit within which a datagram is to
be used by an application, or else the datagram is dropped from the memory pool. To enable this
feature, embodiments may implement a global list containing pointers to each datagram with the
timer count on each pointer. As the new packets arrive, an API adds the pointer to this packet at
the end of this list. The API adds “time to live” value to the current timer count and generates a
timer count that represents an expiration time for the packets. When timer count changes, an
API looks at the timer count starting from top most element in the list and starts deleting

datagram if their timer counts are less than or equal to current timer count.

[00162] Once the data is consumed by the application or the data times out, an API is called to
remove the datagram from the memory pool and add the pointer to the available memory list.
This API may be reentrant as the data may expire at the same time it was consumed by the

application. Both processes may attempt to delete the same datagram, therefore

45

WO 2014/138446 PCT/US2014/021335

semaphores/locks may be utilized to effectively serialize control.

[00163] When data gets copied to memory pool, the link layer generates a token for the packet.
The token contains the pointer to the datagram and length of the datagram. This token is

forwarded to the transport layer through a transport layer API for further processing.

[00164] Transport layer

[00165] After the transport lower layer receives a token, the transport lower layer determines if
the frame is a transport-layer-to-transport layer message. If the ‘layer flag’ is set, then these
types of messages are layer-to-layer messages and hence are not forwarded to upper layers. If
the flag is not set, transport lower layer looks at the priority of the message and places the token

into appropriate priority queue.

[00166] In one or more embodiments, the transport upper layer receives the token from the
priority queue and determines if the ‘extended flag’ is set or not. If the flag is set, it indicates
that a large volume of data is to be expected and informs the API that an extra byte has been used

in header for sequencing large number of fragments.

[00167] The layer also reads the “Last Fragment” flag. A set ‘last fragment’ flag indicates to the
layer that the current datagram fragment is the last fragment in the sequence of fragments and
hence the end of one message. If there is any fragmentation, at least one fragment will have this

flag set.

[00168] The layer further reads the acknowledgement flag. If the transmitter requests or
otherwise is to be sent an acknowledgement for delivery of the datagram to the receiver’s

transport layer, the layer will set this flag and the receiver will acknowledge the receipt of the

46

WO 2014/138446 PCT/US2014/021335

packet. If the devices engaged in communication have agreed on a window size for
acknowledgements, then the transport layer acknowledges after receiving window size messages

else the layer acknowledges each datagram.

[00169] The transport upper layer adds more information to the data token and forwards it to
session layer. The transport upper layer informs the session layer if the message is a complete
message or not. In case of fragmented message, the transport layer informs the session layer

about receiving the last fragment, so that session layer may send an acknowledgement if needed.

[00170] Session layer

[00171] From the data pointer in the token, the session layer accesses the frame and extracts
session layer header. From the header, session layer first determines if the message is a layer-to-
layer message or needs to be forwarded up the stack. If the message is a layer-to-layer type

message, then the message is consumed by session layer.

[00172] If the layer flag is not set, the frame is forwarded up the stack. The session layer reads
the ‘Connection Type’ field and determines if the message is of unknown connection type or
connection-oriented or connectionless. An unknown connection type is generally for the
messages exchanged during handshake process, whereas a connectionless message does not need
an acknowledgement for delivery, and connection-oriented messages are the ones that use an

acknowledgement on successfully delivery.

[00173] The session layer further looks into the message type field to determine the type of
frame. The frame type is used to determine the purpose of the frame, and only ‘Data’ type

frames are forwarded up the stack and the control type frames are consumed at session layer.

47

WO 2014/138446 PCT/US2014/021335

[00174] The CID is generated by the application providing a service. Any application that wants
to use the service will request a communication ID. CID is unique within one module, for
example all of the CID’s generated by the UIC are unique within a particular UIC. The CID is
generated through a handshake process, where the application using the service sends the details

required for uniquely identifying an active connection and receives the CID in response.

[00175] The CID specifics and details may be stored in a CID table located in a shared memory
region in one or more embodiments, so that the session layers of all the applications may access
the CID. In a connectionless data frame, there is no CID information as there is no handshake
utilized to establish a connection. Hence connectionless frames contain both source and

destination port address in the header.

[00176] In a connection-oriented data transfer, there exists a CID in the session layer header.
Once the session layer determines the CID from the header, the layer combines the information
with the source logical address available in the data token to uniquely identify an entry in CID
table. From this table, the session layer determines the source and destination port address and
the file descriptors handling the port. The source logical address of the received frame is set by
the data link layer along with the file handler information and is forwarded in the data token to

the manager layer.

[00177] If the received frame is connection-oriented and is a complete message, the session
layer maintains a record of the message and forwards the data token to the manager layer. Once
the manager layer copies the frame from memory pool into the application buffer, the manager
layer notifies the session layer about the successful delivery of data. On receipt of notification,

the session layer sends an acknowledgement to the transmitter session layer regarding the

48

WO 2014/138446 PCT/US2014/021335

successful delivery of data. If the delivery was unsuccessful, as a part of the acknowledgement,

the session layer forwards the error message returned from the manager layer to the transmitter.

[00178] Manager layer

[00179] The session layer calls an API in manager layer and passes the data token to the
manager layer. The manager layer copies the data from memory pool into the application buffer
and notifies the session layer regarding the copy. The manager layer notifies the lower layer
about the delivery of message by modifying the data token and sending the data token back to
the session layer. Once the data is successfully copied, the manager layer removes the frame
pointer from the list of frames monitored by the timer and deletes the frame from the memory

pool to make room for new packets.

[00180] It may happen that the application buffer is smaller in size than the received data frame,
in such cases the manager layer will fill the application buffer with what it can hold and wait for
the application to consume it. Once the application consumes the message, the remaining portion
of the message is copied and the process is repeated until the complete frame is consumed.
Before starting the progress of copying messages in small sizes, the manager layer removes the
pointer to the frame from the timer-monitored list because the timer may expire and corrupt the
message. Also, the manager layer notifies the lower layer regarding successful delivery of data
only when a complete message is sent to the application. At the end of the sequential copy

process, the manager layer deletes the frame from the memory pool.

[00181] In the case of fragmented data, as the fragments are received by this layer, it copies the
fragments into the application buffer and notifies the session layer. The session layer forwards

the notification to the transport layer. The transport layer, after receiving notifications for a

49

WO 2014/138446 PCT/US2014/021335

window size number of messages, sends an acknowledgement to the transmitter about receiving
the messages. When the last fragment is successfully delivered to the application, it implies that
one complete message was delivered. In such cases, the manager layer notifies the session layer
of success, and the session layer sends an acknowledgement message to the transmitter regarding

the success, thus providing guaranteed delivery of data.

[00182] Data Flow down the stack

[00183] Assuming that in case of a connection-oriented data transfer, the handshake process has
already been done and a valid CID has been already generated, the application copies data into
an application buffer and passes a pointer to the API exposed by the manager layer for sending
data over virtual ports. The application also specifies the file descriptor that handles the

communication and the size of data to be written on the virtual port.

[00184] The priority of a message is determined by the priority of the virtual port being used or
priority can be set for the message passing through. Hence, through a set of API’s, the manager
layer informs the session layer about the priority of data, size of data, file descriptor for the
communication, pointer to application buffer, and if data is connection-oriented or
connectionless. If the data is connectionless, the session layer looks into the file descriptor table
and determines the port number associated with the file descriptor. The session layer then adds
source and destination port addresses as header to the data. If the transfer is to be connection-
oriented, the session layer performs a lookup in the CID table and determines CID associated
with the file descriptor and adds this CID as header to the data. The session layer then forwards

this pointer to the transport layer and waits for an acknowledgement from the receiver.

[00185] The transport upper layer determines the size of the data and determines if

50

WO 2014/138446 PCT/US2014/021335

fragmentation is required or not. If fragmentation is needed, the transport upper layer breaks the
data into manageable sizes and adds information to the header so that the data can be
reassembled at the receiver’s transport upper layer. If fragmentation is not needed, the transport
upper layer still adds some information in one or more embodiments. For example, the transport
upper layer copies the data from application buffer into transmitter memory pool and depending

on the priority of data, stores the pointer into appropriate message queues.

[00186] The transport lower layer eventually reads the pointer from the priority queue and
forwards it to the link layer. The link layer determines the destination logical address and adds it
to the data header, computes a CRC on the frame and adds it to the frame before sending it. The
MAC layer determines the bus over which the destination is available and sends the data over

that bus.

[00187] Flow of data up the stack

[00188] As the data frame arrives at the underlying bus, the MAC layer determines if the frame
is for the subsystem or for some other subsystem. If it is for some other subsystem, the MAC
layer drops the data frame. The MAC layer copies valid data frames into a shared memory region
and calls an API in the Link layer to inform it about arrival of new data. Throughout the stack,

only the pointer to this data is updated to reduce multiple copying of fragments.

[00189] The link layer computes the CRC on the received frame and compares the computed
CRC with the CRC on the received frame. Frames with invalid CRC’s are dropped. Pointers to

valid frames are forwarded to the transport lower layer.

[00190] The transport lower layer reads the priority of the frame and adds a pointer to the frame

51

WO 2014/138446 PCT/US2014/021335

to the respective priority queue. The pointer to the frame remains in the queue and waits for
appropriate application to consume it. Eventually, the target application’s transport upper layer

reads the pointer to the frame from the priority queue.

[00191] The transport upper layer looks at the headers to determine if the data is fragmented or a
complete message. If the data is fragmented, the layer reassembles all the messages from the
sequence and then forwards it to the application layer. If the data is not fragmented, it directly

forwards the pointer to the frame to the session layer through appropriate API calls.

[00192] The session layer looks at the frame headers and determines if the message is of type
connectionless or connection-oriented. If the message is connectionless, the session layer looks
at the destination port number and determines the file descriptor handling that port. The session
layer forwards the pointer to the manager layer with appropriate file descriptor information. If
the frame is connection-oriented, the session layer reads the CID and determines the file handler
handling that communication. The session layer then forwards the file descriptor information to
the manager layer and waits for an acknowledgement from the manager layer. The manager
layer sends an acknowledgement indicating whether the data was delivered to the application or

not. This information is used by the session layer to acknowledge receipt of data.

[00193] The manager layer may be implemented with a lightweight or thin layer and is
responsible for copying the data from the memory pool into the application buffer and freeing
the memory pool. Once the data gets copied into the application memory, the manager layer
informs the application about data being available. = The manager layer sends an
acknowledgement to the session layer. Thus, to the applications, the manager layer offers

synchronous and asynchronous methods for reading and writing to virtual ports.

52

WO 2014/138446 PCT/US2014/021335

[00194] Figure 9 illustrates an activity diagram showing routing between various devices. As
shown, Device A is connected directly to Device B, which is directly connected to Device C.
Device A is not directly connect to Device C. When Device A attempts to send a message to
Device C, it sends the message out and Device B reads the message, determines that the message
is not for the device and checks to see if there is a path to the device in Device B’s destination
table. If so, Device B forwards the message to Device C, which processes the data. Hence,
embodiments of the invention enable routing and daisy chain or multi-bus configurations that are

generally not as flexibly possible in medical devices such as infusion pumps.

[00195] An embodiment of the manager layer API is detailed below. The manager layer
provides the API to enable socket programming over the protocol stack. The manager layer API
calls are utilized by any application that wishes to transfer data using an embodiment of the

invention.

[00196] pro_socket - creates an unbound socket in a communication domain, and returns a file

descriptor that can be used in later function calls that operate on sockets.

[00197] int16 pro_socket (ConnectionType type, uint§ *pSocket)

[00198] Arguments:

[00199] type: specifies the type of socket to be created (CONNECTIONTYPE and

CONNECTIONLESSTYPE for connection oriented and connection-less data exchange).

[00200] pSocket: integer pointer to return newly created socket.

[00201] typedef enum ConnType

53

WO 2014/138446 PCT/US2014/021335

CONNECTIONTYPE=I,

CONNECTIONLESSTYPE=2,

RAWTYPE=3

} ConnectionType;

[00202] On successful completion, the function shall return a SUCCESS; else appropriate error
code is returned. The API returns allocated socket in the reference variable pSocket passed as a

parameter.

[00203] pro_bind - assigns a local address to a socket identified by file descriptor socket.

[00204] int16 pro_bind (uint8 uint8Socket, const ProSockaddr *pAddress)

typedef struct pro_sockaddr

uint8 address;

uint8 portNo;

uint8 priority;

uint8 flags;

uint32 timeout;

54

WO 2014/138446 PCT/US2014/021335

datafilter *filter;

} ProSockaddr;

[00205] address: holds logical address of device

[00206] portNo: holds port number for connection

[00207] priority: holds the priority of the port. All the data passing through this port inherits

ports priority

[00208] flags: holds configuration flags for changing behavior of socket

[00209] TIMEOUT: flag is set, waits for an operation to complete within a given period of time,

else returns.

[00210] SO_LINGER: set flag indicates that a connection will be terminated only when all the

data pending to be sent is sent successfully.

[00211] FILTER_DATA: set flag indicates that the data matching supplied filter pattern will
only be forwarded to callback function registered to handle it. If flag is reset, data matching the

filter will be sent to both, regular socket handler as well as to the registered callback function.

[00212] timeout: If the TIMEOUT flag is set, timeout value is specified here. A timeout value of

0 returns immediately.

[00213] filter: link list of datafilter type structure defining the filter to be applied on received
data. More than one element in this link list will have an ORing property. As an example, if an

application wants to process data either from PMC, or UIC, or CE or all three, it will create three

55

WO 2014/138446 PCT/US2014/021335

nodes in this link list one for each PMC, UIC and CE.

[00214] Datafilter structure is used to allow applications to select what messages they want to
receive, and which function should handle what type of messages. A regular expression pattern is
used to create a filter on received data and once a match is found, data is forwarded to registered

callback function.

[00215] typedef struct

[00216] {

[00217] char *regEx;
[00218] uint8 index;
[00219] uint8 length;
[00220] void *callback;
[00221] datafilter *filter;

[00222] }datafilter;

[00223]

[00224] regEx: pointer to regular expression to be used for matching.

[00225] index: location to start looking for match in the data section of received message. A ‘0’

in this field indicates that the match will start from the beginning.

[00226] length: staring from the provided index, indicates the length of data section to be

56

WO 2014/138446 PCT/US2014/021335

considered for regular expression matching. If index contains ‘0’ and length contains ‘0’, match

will be performed over the entire data section.

[00227] callback: function to be called in case of a successful match. If this field is set to null,

all the matching data packets will be dropped depending on FILTER_DATA flag.

[00228] filter: linklist of any additional filter to be added over existing filter. If this filed is
contains additional filters, on a successful match, callback is made to the function specified in
the structure containing this linklist. This link list of filters has anding properties, i.e. a match is
successful only if all the regEx specified in all the filters match. As an example, if an application
wants to process data containing expressions PMC, UIC and CE, it will instantiate this filter for

PMC and have a link list containing filters for UIC and CE respectively.

[00229] One or more embodiments support three priority levels for messages namely high,

medium and low. The enum defining message priority is as follows.

[00230] typedef enum ProPriority

[00231] {

[00232] HIGHPRIORITYTYPE =1,
[00233] MEDIUMPRIORITYTYPE = 2,
[00234] LOWPRIORITYTYPE =3

[00235] } MessagePriority;

[00236] Arguments:

57

WO 2014/138446 PCT/US2014/021335

[00237] uint8Socket: file descriptor of socket to be bound

[00238] pAddress: pointer to ProSockaddr struct containing address to be bound to the socket.

[00239] Return Value:

[00240] Upon successful completion, the function shall return SUCCESS, otherwise appropriate

error code.

[00241] pro_connect - attempts to connect a socket to the specified address.

[00242] int16 pro_connect (uint8 uint8Socket, const ProSockaddr *pAddress)

[00243] Arguments:

[00244] uint8Socket: socket to be connected to specified address.

[00245] pAddress: pointer to structure pro_sockaddr containing peer address.

[00246]

[00247] Return Value:

[00248] Upon successful completion, the function shall return SUCCESS; otherwise returns

appropriate error code

[00249] pro_listen — marks the socket referred to by “socket” as a passive socket, that is, as a

socket that will be used to accept incoming connection requests using accept().

[00250] int16 pro_listen (uint8 uint8Socket, uint8 uint8Backlog)

58

WO 2014/138446 PCT/US2014/021335

[00251] Arguments:

[00252] uint8Socket: file descriptor of a socket that needs to be put in accepting connections

mode.

[00253] uint8Backlog: set a limit on number of outstanding connections in the socket’s listen

queue. A zero would set the queue length to system defined minimum queue length.

[00254] Return Value:

[00255] Upon successful completion, the function shall return SUCCESS; otherwise,

appropriate error code is returned.

[00256] pro_accept — extracts the first connection on the queue of pending connections, creates
a new connected socket with same socket type protocol and address family as the specified

socket, and returns a new file descriptor for the socket.

[00257] int16 pro_accept (uint8 uint8Socket, ProSockaddr *pAddress, uint8 *pClientSocket)

[00258] Arguments:

[00259] uint8Socket: file descriptor associated with socket.

[00260] pAddress: Either a NULL pointer, or a pointer to ProSockaddr struct where the address

of connecting socket shall be returned.

[00261] pClientSocket: pointer to an unsigned integer for returning file descriptor associated

with the newly created socket.

[00262] Return Value:

59

WO 2014/138446 PCT/US2014/021335

[00263] Upon successful completion SUCCESS is returned along with an associated file

descriptor for the newly created socket, on failure, returns appropriate error code.

[00264] pro_send — initiates transmission of a message from the specified socket to its peer.

The pro_send() function sends a message when the socket is connected.

[00265] intl6 pro_send (uint8 uint8Socket, const void *pBuffer, uint32 intLength, uint32

*pBytesSent)

[00266] Arguments:

[00267] uint8Socket: socket’s file descriptor

[00268] pBuffer: points to buffer containing the message to send.

[00269] intLength: length of message in bytes.

[00270] pBytesSent: pointer to an integer for returning actual number of bytes sent.

[00271] Return Value:

[00272] Upon successful completion, the API returns SUCCESS else appropriate error code is

returned.

[00273] pro_recv - receives a message from a connection-mode or connectionless-mode socket.
It is normally used with connected sockets because and does not provide the source address of

received data to the application.

[00274] intl6 pro_recv (uint8 uint8Socket, void *pBuffer, uint32 uintLength, uint32

*pBytesReceived)

60

WO 2014/138446 PCT/US2014/021335

[00275] Arguments:

[00276] uint8Socket: file descriptor of socket.

[00277] pBuffer: pointer to the buffer where message should be stored.

[00278] uintLength: length in bytes of the message to be received.

[00279] pBytesReceived: pointer to an integer for returning number of bytes actually received.

[00280] Return Value:

[00281] Upon successful completion, SUCCESS is returned along with number of bytes in the

reference passed as a parameter, else returns appropriate error code.

[00282] pro_close — deallocates the file descriptor and makes the file descriptor available for
functions which allocate file descriptors. All outstanding record locks owned by the process on
the file associated with the file descriptor are removed. Causes the socket to be destroyed. If the
socket is in connection-oriented, and the SO_LINGER option is set for the socket with non-zero
linger time, and the socket has un-transmitted data, then pro_close() blocks for up to the current

linger interval for all pending data to be transmitted.

[00283] int16 pro_close (uint8 uint8Socket)

[00284] Arguments:

[00285] uint8Socket: file descriptor of socket that needs to be closed.

[00286] Return Value:

61

WO 2014/138446 PCT/US2014/021335

[00287] Upon successful completion, function shall return SUCCESS; otherwise appropriate

error code shall be returned.

[00288] One skilled in the art will recognize that in addition to the exemplary API illustrated
above for the Manager Layer, API's for the Session, Transport and Data Link Layers may be
implemented as desired to communicate the messages shown in Figures 10A-D, 11A-B and 12A-

B depending on the desired application.

[00289] One or more embodiments of the invention may be implemented as a system or method.
For example at least one embodiment may include a medical device communication method that
includes accepting a request by a programmable device to obtain a device identifier associated
with a transmitting device associated with the request, a connection type of connection-oriented
or connectionless-oriented, and a receiving device number associated with a receiving device to
transmit a message to. The method may also include determining a port number of a port to
transmit said message to, for example either via a requesting programmable device or the
programmable device that receives the request. Embodiments may also include generating a
communication identifier or CID for at least the advantages stated throughout this disclosure.
Embodiments may also include accepting a request associated with a medical function, inserting
the CID and the medical function into the message, determining if the connection type is
connection-oriented or connectionless and transmitting the message to a medical device. This
scenario is shown with exemplary values to demonstrate the previous message formatting and
transfer in Figures 13A and 13B, which are intended to couple with one another on the right side

of Figure 13A and the left side of Figure 13B.

[00290] Embodiments may also include transmitting the message to the receiving device even if

62

WO 2014/138446 PCT/US2014/021335

the receiving device is not directly connected to the transmitting device. This enables built in
routing that allows for devices to pass through messages without requiring a master to control all

phases of communication for example.

[00291] Embodiments may also include accepting a multicast request configured to enable
multiple receiving devices to receive the message. Embodiments may further include accepting
a priority parameter configured to enable prioritized handling of the message. This enables
messages with high priority to be delivered before other lower priority messages and in one or
more embodiments may be implemented with a plurality of message data structures such as
queues, linked lists or any other data structure or structures. Embodiments may include
transmitting messages from a high priority message queue before transmitting data from a low
priority message queue. Other embodiments may apply any type of strategy pattern to the
delivery process, and may for example change strategies depending on the type of messages that
are likely to be received in particular time periods. This enables predictive handling and

processing of messages to provide intelligent and robust delivery of medical functions.

[00292] Embodiments may also include determining if a size of data to transfer is larger than a
predetermined fragmentation value and packing the data in a plurality of messages to facilitate
transfer. Embodiments may efficiently utilize memory and for example reduce latency by
copying a pointer to the message between a plurality of message layers without copying the
message itself. This is the case since the message does not have to be reconstructed in full
within the stack until the full message is received in the application. Furthermore, embodiments
of the invention may utilize optimized memory management that includes requesting memory
from a buffer that includes non-uniform sizes to further increase efficiency of data memory

utilization and lower overall required memory. When sending data packets or message that are

63

WO 2014/138446 PCT/US2014/021335

larger than the maximum size allowed by the underlying hardware, embodiments may include
setting a last fragmentation flag in a final message of fragmented message, starting a timer for an
acknowledgement and retransmitting the final message if said timer expires. Further increases in
efficiency may be achieved by embodiments that include receiving a request to change a window
size for receipt of fragmented messages and adjusting memory usage based thereon, for example
having lower window sizes for more reliable communication links. Embodiments may also
include providing the device identifier to a new medical device that replaces the medical device
after hot-swapping the new medical device for the original medical device, i.e., if a failure
occurs. This allows embodiments of the invention to provide robust functionality and
transparent replacement of hardware without interrupting medical functions or at least
minimizing the interruptions. Embodiments may also include providing a pointer to a complete
message after receipt of multiple fragmented messages without copying received message data
after receipt thereof. This enables incoming data to be inserted into a buffer once and given to
the application after the data is received without extraneous copying for example, which reduces
memory utilization and programmable device processing required. One or more embodiments of
the invention may include accepting an infusion request associated with an infusion related
medical function. Any other type of medical function is in keeping with the spirit of the

invention.

[00293] Embodiments of the system may include a programmable device configured to accept a
request to obtain a device identifier associated with a transmitting device associated with the
request, a connection type of connection-oriented or connectionless-oriented, a receiving device
number associated with a receiving device to transmit a message to. Embodiments of the system

may further determine a port number of a port to transmit said message to, generate a

64

WO 2014/138446 PCT/US2014/021335

communication identifier or CID and accept a request associated with a medical function. The
system may also insert the CID and the medical function into the message, determine if the
connection type is connection-oriented or connectionless and transmit the message to a medical
device. Embodiments of the system may also implement all functionality of the method
previously described and may utilize any of the data structures or API’s described herein in

combination.

[00294] While the invention herein disclosed has been described by means of specific
embodiments and applications thereof, numerous modifications and variations could be made
thereto by those skilled in the art without departing from the scope of the invention set forth in

the claims.

65

WO 2014/138446 PCT/US2014/021335

CLAIMS
What is claimed is:
1. A medical device communication method comprising:
accepting a request by a programmable device to obtain
a device identifier associated with a transmitting device associated with said request,
a connection type of connection-oriented or connectionless-oriented,
a receiving device number associated with a receiving device to transmit a message to;
determining a port number of a port to transmit said message to;
generating a communication identifier or CID;
accepting a request associated with a medical function;
inserting said CID and said medical function into said message;
determining if said connection type is connection-oriented or connectionless; and,

transmitting said message to a medical device.

2. The medical device communication method of claim 1 further comprising:

routing said message by transmitting said message to said receiving device even if said receiving

device is not directly connected to said transmitting device.

3. The medical device communication method of claim 1 further comprising:

accepting a multicast request configured to enable multiple receiving devices to receive said

message.

4. The medical device communication method of claim 1 further comprising:

66

WO 2014/138446 PCT/US2014/021335

accepting a priority parameter configured to enable prioritized handling of said message.

5. The medical device communication method of claim 1 further comprising:
determining if a size of data to transfer is larger than a predetermined fragmentation value; and

packing said data in a plurality of said messages independent of an underlying data bus width.

6. The medical device communication method of claim 1 further comprising:
copying a pointer to said message between a plurality of message layers without copying said

message itself.

7. The medical device communication method of claim 1 further comprising:

requesting memory from a buffer comprising non-uniform sizes.

8. The medical device communication method of claim 1 further comprising:

returning a buffer to memory if said buffer is over a predefined age threshold.

9. The medical device communication method of claim 1 further comprising:

setting a last fragmentation flag in a final message of fragmented message;

starting a timer for an acknowledgement; and,

retransmitting said final message if said timer expires.

10. The medical device communication method of claim 1 further comprising:

67

WO 2014/138446 PCT/US2014/021335

receiving a request to change a window size for receipt of fragmented messages and adjusting

memory usage based thereon.

11. The medical device communication method of claim 1 further comprising:
providing said device identifier to a new medical device that replaces said medical device after

hot-swapping said new medical device for said medical device.

12. The medical device communication method of claim 1 further comprising:

transmitting messages from a high priority message queue before transmitting data from a low

priority message queue.

13. The medical device communication method of claim 1 further comprising:

reassembling a fragmented message into a complete message in an application buffer.

14. The medical device communication method of claim 1 further comprising:

accepting an infusion request associated with an infusion related medical function.

15. The medical device communication method of claim 1 wherein the session layer

communication is made independent of bus topology.

16. The medical device communication method of claim 1 further comprising utilizing one

kernel thread to execute a Data Link layer and Transport lower layer for blocking read and write

68

WO 2014/138446 PCT/US2014/021335

operations or utilize 2*N + 1 kernel threads for asynchronous read and write operations, where N

is the number of applications that are utilizing said asynchronous read and write operations.

17. The medical device communication method of claim 1 further comprising communicating
using a MAC layer that abstracts at least one underlying data bus wherein said at least one

underlying data bus comprises serial or parallel data paths or heterogeneous data buses.

18. The medical device communication method of claim 1 further comprising communicating
across multiple heterogeneous data buses in a bus topology independent manner wherein said
multiple heterogeneous data buses comprise Ring, Star, Mesh, or Tree topologies or any

combination thereof.

19. The medical device communication method of claim 1 further comprising filtering said

message based on a regular expression.

20. A medical device communication system comprising:
a programmable device configured to
accept a request to obtain
a device identifier associated with a transmitting device associated with said request,
a connection type of connection-oriented or connectionless-oriented,
a receiving device number associated with a receiving device to transmit a message to;
determine a port number of a port to transmit said message to;

generate a communication identifier or CID;

69

WO 2014/138446 PCT/US2014/021335

accept a request associated with a medical function;

insert said CID and said medical function into said message;

determine if said connection type is connection-oriented or connectionless;

transmit said message to a medical device; and,

route said message through a transmit of said data to said receiving device even if said

receiving device is not directly connected to said transmitting device.

70

PCT/US2014/021335
1/19

WO 2014/138446

0S onsouder(q , |¢mw_w\u_mv< e onsouder(q
0¢ SIS ED I¥ snyels
01 snnaderayf, _H_ [=Ss21ppy 0% qr1 3niq
1104 uoryedrddy == 1104 uoneoddy
0S onsougerq € Jd
0z SIS ¢ =Sssalppy
01 snnaderayy, _H_ ~0 8% SL1 0¥ S
1104 uonedrddy 22J /N T X ¥S 05T Iy S
" 1104 [8007]
0s onsouderq 7 =ss31ppy 10)d1msag oty | I wwo) | /e0Imog | I uoneunsaqg
0¢ sTyels
01 opnaderayr, | ||| @ L. =020 1 N T
1104 uonjesrddy _\
—k IIIIII
8¥ 0S¢ 0¢ S SnsouSeIq
(4 00T 01 o SmeS
1104 [e00T] \
\ 01 snnaderayr,
10ydrrosog a1 | @1 wwo) | /e0mog | @I woneunsag !
A 1104 uonedrddy
0S onsouder(q L DN d ____
02 sTyeIS L Z55oiPpY , 1 R /
01 opnaderayy, _" W 0 s¢ 001 0t ¢
110 uoneoyddy AN T 057 0z T
Iz 057 0z ey VA S 0ot o !
yod reoo1 [@raoaeg
44 00T Ot 5 ¢ 103dimosag A | @1 wrwro) | /eormog | juoneunsag
1104 [e00T
10ydiosa@ oy | @ wwo) | /eoanog | I uoneunsaq

1 'Ol

PCT/US2014/021335
2/19

WO 2014/138446

asn el NVO IdS
uonejuawa|duwy o1j1099dg asempieH
Johe
quii ejeq
so1kd ¢ S 05T aUg T | Mg g | oid |
Moy aiempleH,
Fji6) SSax $SA.X Jure.r A38YD DY«
O proked pawa PPV PPV a
W | 9%mog [uoneunsaq JO eI
> SOV«
$014 2k 9 91 Aoud,
d8vT a1 197 199 AqUIossEay. 1oke
a1 wSer uonejuswbel, Jodsueu]
peolAeq R I ywuwsery | sser [onuo) aA o] awi],
[ouoD MO|d,
Y /’
sok 0k - . o diO ©} spxe0s
aN a1 1q ¥ 1q ¢ usamjaq aje|sued] , 19fe
alo sessusn,
uolssa
peojieg :cdwo_M_MEEcU 9dAT, 9Gessafy[| sSepy [03u0)) | SUOISSSS UIBJUIBIA, 1s888
T AIaAljep 1od-1od,
\ y I
_ _ SJod o
sohe N alAg | alAg | Buiuado sayeyioe, 19KeT
_ | Q4 sebeuep, Jabeuep
peojied joduosag oy | sequnNpog | JokeT "|ddy
|||||| | _ 7 | cejepspiemod,
so1e N
Johe
uoneoidd
— jedlday

TAE

WO 2014/138446

Device Assumes
its logical address
as 00,

Hew
Device

T
1
|
1
—
&

‘—

3/19

PCT/US2014/021335

Root
Device

1: Device Boots

2 Address Request Message

3: Wait for response

4: Timer Expired, resend the message

4. Address Request Message

7 Wait for response

Mo Entry iz found
inthe table

——

‘_

10 Addrezs Responze Meszage
8

11: Timer Expirez, resend the message

12: Address Reguest Message

- -

- - -

—

14: Address Response Message

15 Update its internal takle

e

~

FIG. 3

B Lookup inthe irternsl table

3: Generste Logical Address

9 Update Internat table

13 Lookup inthe internal takble

b

Previously generated
address found in takls.
Resend the same address

WO 2014/138446

Care Giver

4/19

Program Infusion

PCT/US2014/021335

FIG. 4

Normal infusion

125 mL/hr, 500mL D5SW

\

Start Infusion

uIcC PMC
Device Address = 1 Device Address = 3
Connection Request
P
Connection Ack
1
ot
Calculate Infusion
<
Infusion Header Data Message
Pt
Ack
n
Infusion Safety Data Message
]
Ack
1<
Infusion Step Data Message
Pt
Ack
<

PCT/US2014/021335

palepdn s| 9|qe} pue abessaw YOy
W0l pa3oeIIXd Sl 1D

5/19

WO 2014/138446

ad4T,
9t S 01 uondauuo) ¢ oG 97 S I
Hod Hod 110g ar
/ 97 01 ¢ amn | voneunsaq | 20imog | yadessay | 1290149 ad | amo | ero1 | voneunsag
3104 a1t
ad | dio | [e207 | uoneunsag MDY UoI3daUU0D)
diD 1esausb pue
d|ge) aepdn)
ad4T,
01 S UOTIDAUUON) I
3104 1104
uorjeun}sa(g | adanog | (qra8essay | I 2189
uol1O3UU0)) 1daddYy « ¢ . 10d dl
| [01 140d uo 931A43s] 1sanbay uoildauuo0) 1 | dd | dID | [e207T | uoneunsag
I I
LDOWd oIn
0l -1lod 61°G-1H0d
L -diae=Q €-Aainr=g

S Dl

PCT/US2014/021335
6/19

WO 2014/138446

1od o)1 painol si ejep pue
pawulogiad si 9|gel ul dnyoo

ei1e(

L | 9T 01 €
3104 al
ai | am | reoo1 | woneunsaqg

ei1e(

ad47 e

9¢

ele(q

(J1 38esSaq

aio

1iod 01 painol st ejep pue
pawuoyiad si o|gel ul dnyoon

9¢ | 1€ 61 ré
SS | 9¢C < I
31104 al
ai | am | reoot | woneunsaq

ei1e(

ei1e(

9O

PCT/US2014/021335
719

WO 2014/138446

paiesauab si
YDV UOI1D3UU0dsI(—>

panowsal s 9|qe) wouy A1pul

A0V
U013 UU0ISI(] 9¢
(] 93essaN aio

DV uolldauuodsiqg

3104 al
ai | am | reoo1 | woneunsaqg

1sanbay
109UU0DSI(] 97
(J1 98essaq an
122UU0dsI(g

9¢ | 1¢ | 61 14

10g ar
ai | am | reoo1 | woneunsaq
9¢ | 1¢ 61 [4
S| 9¢ < I

3104 al
ai | am | reoo1 | woneunsaq

/Ol

WO 2014/138446 PCT/US2014/021335
8/19

FIG. 8

Application Layer

? Inform the application Shared
i about arrived data Memory

Manager Layer o
Copy the actual data

T into Application Buffer

Session Layer Application
T Space
Transport Layer Upper €« - —
W~ o~ T —
\ \\ N
Data pointer picked \ \
from priority queue : :
Priority | p P2 P3 P4
Queues
Kernel P1-P4
Space
A A A
— - — - ~ — -
B Data pointers moved to
Transport Layer Lower respected priority queues
f Only the pointer to
| data gets passed Memory Pool
Data Link Layer 4
Data Packets get copied

into the memory pool

PCT/US2014/021335

9/19

WO 2014/138446

, ¥ 931A3Q : w
; | wouy awed Ajtadp Pyoed ; ;
: ayjeu) ssasdlaq O adiaa(: W
eyoed ayy uy BulgjAue; w
. abueyd Jusaop g adiaaq ”
_ ey " paddoip !
Y, s19b 9@ panou ”
R £106 joyoed 2 “
Blep ay] ££3304d 'S W 7 83IAa(q 0} papiesrio) sbessap § __o,._uh.wnP % wmm \._o%mﬁ W
i uoleulS3R J| !
i - !
i w i - i
H t
u 3[Ge] jBUiadl Ul UojeUlSaR 401 Yo8UD £ *
g 8214aq 40} afessaw ay 8| 7
. A 2 80IAa 104 Ibessap puas [} w
: ; v adnag
e e S B D8l e

¥ 80inaq; : : 0] PRICAULCS JOU puB

0] PaJOBUU0D; J 32A3Q 0] pajoauu0d i gaomaac] o] pelasuuod

10U 81 D 991Ka(]: Afoauip €1 g 901aag Aosdip 81 23188

6 "©Old

WO 2014/138446 PCT/US2014/021335
10/19
FIG. 10A
Session Layer Internals
< 2 Bytes >
0 bits 4 bits 8 bits 16 bits
\Control Flags | Message Type Comm:J[r)ncanon
Payload (N
Bytes)
Control Flags
1. Layer Flag [1 bit]
2. Connection Type [2 bits]
3. CID Source [1 bit]
Connection | Destination | Destination Source cID File
Type Address Port Port Descriptor
Service 8 50 40 100 55
TCP 5 23 60 72 63
Service 15 68 40 110 87
TCP 4 20 55 103 21

WO 2014/138446 1 1/1 9 PCT/US2014/021335
FIG. 10B
Connection Oriented
Data Transfer
Layer Flag Connection |Message Type
[1bifl | Type [2bits] | [4bits] cib Data
onnection
0 Oriented Data 1 Byte N Bytes
Connectionless Data
Transfer
Layer Flag | Connection [Message Type Source Destination Data
[1 bit] Tgpe [2 I?its] [4 bits] Port Port
onnection
0 Less Data 1 Byte 1 Byte N Bytes
Connection
Request
Layer Flag | Connection [Message Type] Command Source Destination
[1 bit] Type [2 bits] [4 bits] C[1 thtgl Port Port
. onnection
1 Unknown Connection Request 1 Byte 1 Byte
Connection
Accept
Layer Flag | Connection| Msg. Type | Command Destination Source
[1 bit] Type [2 bits]| [4 bits] C[1 th?] Port Port
. onnection
1 Unknown Connection Accept 1 Byte 1 Byte 1 Byte
Connection
Acknowledgement
Layer Flag | Connection [Message Type| Command cID Source
[1 bit] Type [2 bits] [4 bits] [1 Byte] Port
1 Unknown Connection Co'l'\flf tion 1 Byte 1 Byte
Connection
Disconnect
Layer Flag | Connection [Message Type| Command cID Source
[1 bit] Type [2 bits] [4 bits] Cr 1 thtg] Port
. onnection
1 Unknown Connection Disconnect 1 Byte 1 Byte
Connection
Disconnect Ack
Layer Flag Connection |Message Type[Command cID Source
[1 bit] Type [2 bits] [4 bits] C[1 thtg] Port
. onnection
1 Unknown Connection Disconnect Ack 1 Byte 1 Byte

WO 2014/138446

PCT/US2014/021335

12/19
FIG. 10C
Connection
Reject
Layer Flag [Connection| Msg. Type | Command |Destination| Source Reason
[1bit] [Type [2 bits]| [4 bits] C[1 th?_] Port Port
. onnection
1 Unknown | Connection Reject 1 Byte 1 Byte 1 Byte
CID Info
Request
Layer Flag | Connection [Message Type] Command cID Source
[1 bit] Type [2 bits] [4 bits] [C‘IIDB;/t)g] Port
nfo
1 Unknown CID Request 1 Byte 1 Byte
CID Info
Response
Layer Flag [Conn. Type| Msg. Type | Command cID Source |[Info Length CID Info
[1 bit] [2 bits] [4 bits] [C‘Ilg\llt?] Port [1 Byte]
nfo
1 Unknown CID Response 1 Byte 1 Byte 1 Byte 1 Byte
Socket Status
Request
Layer Flag [Conn. Type [2[Message Type] Command cID Source
[1 bit] bits] [4 bits] = [l‘i ?\gte]t Port
ocket Status
1 Unknown Socket Request 1 Byte 1 Byte
Socket Status
Response
Layer Flag [Conn. Type| Msg. Type | Command cID Source [Info Length| Socket
[1 bit] [2 bits] [4 bits] [:IS B\l/(tet] Port [1 Byte] Status
ocke
1 Unknown Socket Status Res 1 Byte 1 Byte 1 Byte 1 Byte
Subscribe To
Service
Layer Flag | Connection [Message Type] Command Source Destination
[1 bit] Type [2 bits] [4 bits] S[[)I Byt?] Port Port
. ubscription
1 Unknown Service Request 1 Byte 1 Byte
Subscription To
Service Ack
Layer Flag [Connection| Msg. Type | Command cID Destination| Source
[1bit] [Type [2 bits]| [4 bits] [1 Byte] Port Port
1 Unknown Service SUb‘Xthlon 1 Byte 1 Byte 1 Byte

WO 2014/138446 1 3/1 9 PCT/US2014/021335
Subscription FIG. 10D
Reject

Layer Flag [Conn. Type| Msg. Type [Command |Destination| Source Reason
[1 bit] [2 bits] [4 bits] = [2) Bv_tet] Port Port
. ubscription|

1 Unknown Service Reject 1 Byte 1 Byte 1 Byte
Unsubscribe From
Service

Layer Flag [Conn. Type| Msg. Type | Command cID Source
[1 bit] [2 bits] [4 bits] U[1 Igvte%) Port
; nsubscribg

1 Unknown Service Request 1 Byte 1 Byte
Unsubscribe From
Service Ack

Layer Flag | Conn. Type | Msg. Type | Command cID Source
[1 bit] [2 bits] [4 bits] U[1 Izvte_]b Port
; nsubscribe

1 Unknown Service Request Ack 1 Byte 1 Byte
Device Address
Request

Layer Flag |[Conn. Type [2| Msg. Type Command cID Source

[1 bit] bits] [51 bits] . [1 I?qv(;cejl Port
evice evice ress
1 Unknown Info Request 1 Byte 1 Byte

Device Address
Response
Layer Flag [Conn. Type| Msg. Type | Command cID Source [Info Length| Device

[1 bit] [2 bits] %bi_ts] [1D Byte] Port [1 Byte] | Address

evice evice

1 Unknown Info Addr. Resp. 1 Byte 1 Byte 1 Byte 1 Byte
Device Type
Request
Layer Flag [Conn. Type| Msg. Type | Command cID Source

[1 bit] [2 bits] [51 bits] D[1_Bv%e] Port
evice evice Type

1 Unknown Info Request 1 Byte 1 Byte
Device Type
Response
Layer Flag [Conn. Type| Msg. Type | Command cID Source [Info Length| Device

[1 bit] [2 bits] %bi_ts] D[1 .Bvi%gl Port [1 Byte] Name
evice evice Type

1 Unknown Info Response 1 Byte 1 Byte 1 Byte 1 Byte

WO 2014/138446

PCT/US2014/021335
14/19
FIG. 11A
Transport Layer Internals
< 2 Bytes >
0 bits 6 bits 8 bits 16 bits
A
Fragment Extended
\ Control Flags D Fragment ID
250 Bytes Payload (247 - 248
Bytes)
v
Control Flags L.
1. Layer Flag [1 bit] Priority Flags
o . 00 Low Priority
2. Priority Flags [2 bits . .
. 01 Medium Priority
3. Extn. Flag [1 bit] : o
. 10 High Priority
4. Last Frag Flag [1 bit] 11 Realtime data
5. Ack Flag [1 bit]
Acknowledgement Message
Layer Flag Message Type Msg. Length Information Fragment ID
(1 bit) (4 bits) (3 bits) (6 bits) (10 bits)
Message Type
0000 — Ack
0001 — Nak
Re-transmit
Layer Flag Message Type Msg. Length Information Fragment ID
(1 bit) (4 bits) (3 bits) (6 bits) (10 bits)
Message Type
0010 - Re TX

Window Size Request

Layer Flag Message Type Msg. Length
(1 bit) (4 bits) \ (3 bits)

Message Type
0011 — Window Size Request

WO 2014/138446 1 5/1 9 PCT/US2014/021335
FIG. 11B
Window Size Response
Layer Flag Message Type Msg. Length Information Window Size
(1 bit) (4 bits) \ (3 bits) (6 bits) (10 bits)
_Message Type
| 0100 - Window Size Response
Ping
Layer Flagi Message Type Msg. Length
(1 bit) (4 bits) \ (3 bits)
Message Type
0101 — Ping
Ping Response
Layer Flagi Message Type Msg. Length
(1 bit) (4 bits) \ (3 bits)
Message Type
0110 — Ping Response
Intent
Layer Flag Message Type Msg. Length

(1 bit)

(4 bits) |

(3 bits)

Message Type
0111 — Intent

WO 2014/138446 1 6/1 9 PCT/US2014/021335
FIG. 12A
Physical Layer Internals
< 2 Bytes >
0 bits 8 bits 16 bits
* Start of Frame (8 Source Address (8
bits) bits)
Destination Address Message Length (8
(8 bits) bits)
256 Bytes
Payload (250
Bytes)
CRC (16 bits)
 /
Bus Device ID HW Device Device Status Last
Interface Address Type Status Duration | Updated
Serial 10 23:ad:33:56 CE Online 0 112548
CAN 20 44:56:ac:eb| PMC1 Pumping 0 125489
CAN 50 44:56:¢ef:bd PMC2 Sleep 100254 095446
Address Request
Message
SOF Destination| Source Message | Message | Physical CRC
Address Address Length Type Address
Address
1 Byte 01 00 2 Request 1 Byte 2 Bytes
Address Response
Message
SOF Destination| Source Message | Message | Physical Logical CRC
Address Address Length Type Address Address
Address
1 Byte 00 01 3 Response 1 Byte 1 Byte 2 Bytes

WO 2014/138446

PCT/US2014/021335

17/19
Disassociation
Message FIG. 12B
Destination| Source Message | Message
SOF Address Address Length Type CRC
Disconnect.
1 Byte 01 1 Byte 1 Request 2 Bytes
Request Device Type
Message
Destination| Source Message | Message
SOF Address Address Length Type CRC
Device Type
1 Byte 1 Byte 1 Byte 1 Request 2 Bytes
Device Type Response
Message
SOF Destination| Source Message | Message Device CRC
Address | Address Length Type Type
Device Type
1 Byte 1 Byte 1 Byte 2 Response 1 Byte 2 Bytes
Device Status Request
Message
Destination| Source Message | Message
SOF Address | Address Length Type CRC
1 Byt 1 Byte 1 Byte 1 Device | 5 Bytes
yte Y Y Status Req. Y
Device Status Response
Message
SOF Destination| Source Message | Message Device CRC
Address | Address Length Type Status
Device
1 Byte 1 Byte 1 Byte 2 Status Resp. 1 Byte 2 Bytes
Device Status Duration
Message
SOF Destination| Source Message | Message Device CRC
Address Address Length Type Status
Status
1 Byte 1 Byte 1 Byte 2 Duration 1 Byte 2 Bytes
Data Re-Transmission Request
Message
Destination| Source Message | Message
SOF Address Address Length Type CRC
Data
1 Byte 1 Byte 1 Byte 1 ReTransmis. 2 Bytes

PCT/US2014/021335
18/19

WO 2014/138446

1 0 0 0 9¢ ¢ I
A 1 AUg 1 sHg / ng A 1 AUg 1 AU 1
an xgqrdery | grSery | SepySergyixg | uogadessaiy | appvisaq | ippy aoinog

€ wanne

-
-

nqi

A4g 1 A

-
-

AU 1 A

IPPY 3820

g a%cwm tmE_

19Keq

juiered

Zeess= 3bpSSOW uiejep Jo junowe

uo paseq uone[nje)

d] uorsnyuy

19Keq

uodsuel]

-9|qe] Joadirsaq 3|14 wox
uoye suoijesunwwo
AU 1 sa14g ¥ A 1 sa14g ¥ sa14g ¥ sHg ¢ A 1 L)
sdag jo # aurt], moyoo] | ad4g, 308 d] uorsnjug (1 25essa sSe[] an .
19Ae
UolissoS
00¥¥1 005 I 0 I €T S L-===""" PappY %gww__\w_%m@ wﬂw:
$a14g ¥ $a14g ¥ A4 1 sa14g ¥ AU 1 sa14g ¥ sa14g ¥ St
SWIT, JuJ XeA I9LA sda)gjo # | owy noyd07 adA47 198 1 uorsnjuy [(I 23eSSIN p
19Ae
labeuepy
AAA shiBics
oo__\o_ mﬁmﬁwm mwm L I ot € uonedijddy E._\J_% mw_
005 y awnjoA daig 10)dross@ oty | 1D | 1104 18007 | T uoneunssq Msa
oJey duey uoisnju PA@QEA A|
mﬂ - Smm :o_mswc_ 9[qer, 101d11sa(T AL L =ssaippy [\@ / uoisnjuj Jeyg
mw Jaquinu %M_ﬂ uwnwuﬁ_ DIA9Q DIN \\
& L]
[doys uoisnju|) weibelq buliahe] yiomiaN <m — mu _ n_

PCT/US2014/021335
19/19

WO 2014/138446

0 00%H1 005 I 0 I €T S
saldg ¢ | saMg ¥ $3)4g ¥ $Ag ¥ [sarkg ¥ $314g ¥ A 1 $14g ¥ $3)4g ¥ sng ¢
H Ad ND |9y OAM [oy jur xeiy | 19LA | sdais jo # |aun, moypoT | odAT 195 | @1 uotsnyuy | Q[a3esson s3]
[X A
0 00%H1 005 I 0 I €T S
saldg ¢ | saMg ¥ $3)4g ¥ $Ag ¥ [sarkg ¥ $314g ¥ A 1 $14g ¥ $3)4g ¥ sng ¢
H Ad O [o1eyg OAM | awnnp juy xey | T9LA |[sdais jo # | sy, oo | adAT, 39S | T wotsnyuy | (I 93essajy s3]
22)& .x.
- eyep obessaw pue 10 00F¥1 00S I 0 I
19pESY |[€ 10§ PS1EINDIES 51 580 sakg ¥ s14g ¥ sakgy | kg1 sakg ¥ g 1
E ey OAY |owiLjur xey [I9LA | sdaigjo# [dwiy noxpoT | adAL 398
[X~
0 00¥¥1 00S
$ANAG ¥ $ANAG ¥ sa4g ¥
H ey OAN | dwnp julxelN | I4LA
[X4 A
| obesssw 10} pa11ew.o) T°0
lspesy uoisnjup V mwuk»m T
E Aed OAN
[X! P -
< Y
! 9]¢
¢ = ssalppy _ w wsm @_\v,__ 00L SwWn|oA pajejnwinde |y
JINd 00S 1917 0§ awnjoA snjoq jy
€€ 11 01 1 L sdais o saquiny 0¢l uonenp wuefe uoisnpdQ
0 aull[INoy}0oT] ¥ [9A3] UOISN0 [PWIXO0I4
E 10)dIosa [| AID | 104 [8207T | (T UoTRUnSaq L adhy w_%mwa_o 3 [2A3] UOISN220 [R1SI(]
LA 1qe, 103drIosa(ot 14 (] uoisnyuy| €t (] uoisnjuj .
ﬁﬂ [1apeay >uwu_.mm mm —\ _.llu_m

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2014/021335

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - A618 5/00 (2014.01)
USPC - 600/300

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC(8) - A61B 5/00; GO6F 15/16; A61B 8/00 (2014.01)
USPC - 600/300; 709/238; 600/437

Minimum documentation searched (classification system followed by classification symbols)

CPC - A61B 5/0002; HO4L 29/06; A61B 8/00 (2014.02)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Orbit, Google Patents, Google Scholar,

Electronic data base consulted during the intemational search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y US 2002/0,019,584 A1 (SCHULZE et al.) 14 February 2002 (14.02.2002) entire document 1-20
Y US 2003/0,115,358 A1 (YUN) 19 July 2003 (19.07.2003) entire document 1-20
Y US 2005/0,043,620 A1 (FALLOWS et al.) 24 February éOOS (24.02.2005) entire document 2,3,20
Y US 2012/0,070,045 (VESPER et al.) 22 March 2012 (22.03.2012) entire document 4,6

Y US 6,721,286 B1 (WILLIAMS et al.) 13 April 2004 (13.04.2004) entire document 5,9

Y US 2010/0,146,137 A1 (WU et al.) 10 June 2010 (10.06.2010) entire document 8

Y EP 0830775 B1 (YUENG et al.) 14 August 2002 (14.08.2002) entire document 10,13
Y US 2012/0,284,734 A1 (MCQUAID et al.) 08 November 2012 (08.11.2012) entire document 11,14
Y. US 2011/0,296,411 A1 (TANG et al.) 01 December 2011 (01.12.2011) entire document 16

Y US 2010/0,191,525 A1 (RABENKO et al.) 29 July 2010 (29.07.2010) entire document 17

Y US 2004/0,073,811 A1 (SANIN) 15 April 2004 (15.04.2004) entire document 19

D Further documents are listed in the continuation of Box C.

L]

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the a;;ﬂhcanon but cited to understand

the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

document member of the same patent family

wyr

wy»

“&”

Date of the actual completion of the international search

06 June 2014

Date of mailing of the international search report

08 Jul 2014

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571-273-3201

Authorized officer:
Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: §571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - claims
	Page 69 - claims
	Page 70 - claims
	Page 71 - claims
	Page 72 - claims
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - wo-search-report

