

Published
With international search report.

(54) Title: APPARATUS FOR EVALUATING PLANE STRAIN STRETCH FORMABILITY, AND METHOD THEREFOR

(57) Abstract

The invention provides an apparatus and a method for evaluating the plane strain stretch formability for thin steel sheets used in automotive bodies, so that manufacturing factories and stamping shops can easily evaluate the plane strain stretch formability. The apparatus includes: a lower die (10) and an upper die (9) with a lock bead (8) installed thereon. A test specimen is inserted into between the upper and lower dies (9) and (10), and is clamped by means of the lock bead (8) along the circumferential edge of said test specimen, so that the material of the test specimen should be mobilized into the upper die (9). Then a punch is elevated to apply a stretching force on the test specimen, and then, the plane strain stretch formability is evaluated based on the fracture limit punch height at the instant of the fracture. The punch has a saddle-like semi-cylindrical shape.
FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
AU	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP	Japan	PT	Portugal
BY	Belarus	KE	Kenya	RO	Romania
CA	Canada	KG	Kyrgyzstan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LI	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LU	Luxembourg	TD	Chad
CS	Czechoslovakia	LV	Latvia	TG	Togo
CZ	Czech Republic	MC	Monaco	TJ	Tajikistan
DE	Germany	MD	Republic of Moldova	TT	Trinidad and Tobago
DK	Denmark	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzbekistan
FR	France			VN	Viet Nam
GA	Gabon				
Field of the invention

The present invention relates to an apparatus and a method for evaluating the stamping formability for thin steel sheets used in manufacturing automotive bodies. In particular, the present invention relates to an apparatus and a method for evaluating the stretch formability which refers to the fracture limit under the plane strain mode which occupies the greater part of the fractures occurring during the stamping process for the automotive steel sheets.

Background of the invention

Generally, the manufacturing process for the automotive body includes stamping, welding, coating and assembling. In the stamping process which is the first step of the manufacturing process, drawing, trimming and flanging are carried out by passing through 3 to 4 stamping dies. The formation defects such as fractures, buckling and the like which occur during the drawing step give influence to the later processes. As a result, the quality of the final products is deteriorated, and the productivity is lowered, thereby leading to the increase of the manufacturing cost. The drawing step of the stamping process, which plays the critical role in forming the automotive body will be described referring to the attached drawings, for the case where a single acting press is used.

As shown in Figure 1, a steel sheet 5 to be subjected to a formation is inserted into between a lower die 3 and an upper die 1 on which a draw bead 4 is installed. Then the upper die 1 is lowered, so that it should give a proper force to the steel sheet by the help of the reaction force of a cushion 6 which supports the lower die 3. At the same time, as shown in Figure 2, the lower die 3 is lowered down to the depth of the panel to be formed. As the
lower die 3 is lowered, the steel sheet 5 which is positioned between the upper die 1 and the lower die 3 passes through the draw bead 4 to be put into the upper die 1, so that the steel sheet should be formed in accordance with the shape of a punch 2, thereby completing the stamping process. However, as shown by the portion A of Figure 2, fractures can occur on the wall of the formed panel during the drawing process. The occurring of such fractures is very sensitively affected by the mechanical properties of the steel sheet, the design of the dies, and other stamping conditions.

The deformation which occurs to the steel sheet during the stamping process includes stretching and drawing deformations, and, in the former, the material is not permitted to be mobilized at the flange portion by the lock bead, while, in the latter, the mobilization of the material is accompanied in the flange portion. Meanwhile, the deformation mode in which the reduction of the thickness of the steel sheet occurs in connection with the fractures during the stamping process includes a bi-axial tensile deformation mode, and another deformation mode in which the deformation in one direction is inhibited, and the deformation in the perpendicular direction exists. About 75 - 90% of the fractures which occur during the stamping process belong to a plane strain mode in which the deformation in one direction is zero. Therefore, in order to prevent fractures during the stamping process and to forecast the stamping formability, it is desirable to evaluate the stamping formability, i.e., the formability limit of the steel sheet under the plane strain mode.

There is a conventional method for evaluating the formability under the plane strain mode without considering the frictions between the die and the steel sheet. According to this conventional method, the steel sheet is formed into a tensile test piece having a shape such that the test specimen has multi-stepped widths. Then a tensile test is carried out to realize a plane strain mode,
and then, the formability under the plane strain state is evaluated based on the tensile properties such as the elongation to the fracture. This conventional method cannot take into account the frictions occurring between the die and the steel sheet due to the surface condition of the steel sheet. Further, the plane strain state occurs locally on the central portion of the tensile test specimen, and a considerable time and caution are required in preparing the test specimen.

Meanwhile, there is a conventional method for evaluating the stretch formability under the plane strain mode, with the contact between the die and the steel sheet being taken into account. That is, as shown in Figure 3, a rectangular test specimen 7 which has a constant width and has a length longer than a lock bead 8 is inserted into between a lower die 10 and an upper die 9 on which the lock bead 8 is installed. Then the circumferential edge of the test specimen is strongly clamped by means of the lock bead 8, so that the material should not flow into the upper die 9. The a dome shaped punch 11 having a diameter of 101.6 mm is elevated to apply the stretch formation force to the test specimen 7. Thus, the limit dome height LDH at the instant of the fracture of the test specimen 7 is recorded, thereby assessing the stretch formability under the plane strain mode.

In this method, there is realized a geometrical restriction in which the test specimen 7 having a diameter larger than that of the dome shaped punch 11 and smaller than that of the lock bead 8 surrounds the peak portion B of the dome shaped punch 11. Further, there is obtained a plane strain state in which the deformation in the direction of the width of the test specimen 7 and around the fracture area C of the test specimen 7 is zero as shown in Figure 4. According to this method, the plane strain state is realized only around the fracture area C, but the peak portion B of the punch does not represent the stretch
formability under the plane strain mode in the stern standard of the bi-axial tensile state.

Further, in the case where there are differences in the surface roughness and other surface characteristics such as surface treatment among the test specimens, the width of the test specimens does not give constant values, and therefore, deviations are severe in the repeated tests for the height of the punch until a breaking occurs after the variation of the width. Further, in order to decide the width of the test specimen representing the plane strain mode, many rounds of repeated tests have to be carried out, and therefore, much time is consumed.

Summary of the invention

The present invention is intended to overcome the above described disadvantages of the conventional techniques.

Therefore it is the object of the present invention to provide an apparatus and a method for evaluating the plane strain stretch formability, in which the plane strain stretch formability for automotive steel sheet can be evaluated in advance for preventing fractures in stamping shops, and the evaluation for the plane strain stretch formability can be easily carried out in stamping shops.

In achieving the above object, the present invention is characterized in that: a rectangular test specimen having a certain width is inserted into a lower die and an upper die on which a lock bead is installed; the circumferential edge of the test specimen is tightly clamped by the lock bead so as for the material not to be mobilized into the upper die; then a semi-cylindrical punch having a length smaller than that of the rectangular test specimen is elevated to apply a stretch formation force on the test specimen; and then, the limit punch height at the instant of the breaking of the test specimen is recorded for evaluating the stretch formability under
the plane strain mode, wherein the punch has a saddle-like semi-cylindrical shape.

Brief description of the drawings

The above object and other advantages of the present invention will become more apparent by describing in detail the preferred embodiment of the present invention with reference to the attached drawings in which:

Figure 1 is a sectional view of the usual stamping die;

Figure 2 is a sectional view showing a formation defect occurred during a stamping process;

Figure 3 is a sectional view of a conventional apparatus for evaluating the stretch formability;

Figure 4 is a photograph showing an etched test specimen formed by the conventional stretch formability test;

Figure 5 is a sectional view of the plane strain stretch formability evaluating apparatus according to the present invention;

Figure 6 is a perspective view of the semi-cylindrical punch of the plane strain stretch formability evaluating apparatus according to the present invention;

Figure 7 is a graphical illustration showing the deformation rate distribution as against the width of the test specimen as a result of a plane strain test according to the present invention;

Figure 8 is a photograph of an etched test specimen formed according to the present invention; and

Figure 9 is a graphical illustration comparatively showing the results of the conventional test and the test according to the present invention for the plane strain stretch formability.

Description of the preferred embodiment

As shown in Figure 5, the apparatus for evaluating the plane strain stretch formability according
to the present invention includes: a lower die 10 and an upper die 9 on which lock bead 8 is installed. Within the upper and lower dies 9 and 10, there is installed a semi-cylindrical punch 21 which is movable up and down.

As shown in Figure 6, the opposite edges 21a and 21b of the punch 21 are rounded with the same curvature, and the radius of curvature R should be desirably 5.0 - 9.0% of the length l of the punch 21. The reason is that, if the radius of curvature R is shorter than 5.0% of the punch length l, the deformation is concentrated on the rounded portion so as to cause a fracture on the test specimen, while, if the radius of curvature R is longer than 9.0% of the punch length l, the mobilization of the material is made in the direction of the width of the test specimen, i.e., in the lengthwise direction of the punch 21, whereby plane strain is not assured.

That is, the curvature of the edges of the punch 21 is designed such that the fracture probability due to the 90° bending should be eliminated, and that the flow of the material in the lengthwise direction of the punch is inhibited, whereby the plane strain is assured over the whole surface of the test specimen.

Meanwhile, as shown in Figures 5 and 6, the magnitudes of the length l and the diameter d of the semi-cylindrical punch 21 are designed such that the diagonal length \(\sqrt{d^2 + l^2} \) should be smaller than the inside diameter D1 of the upper die 9, and the contact area between the punch 21 and the test specimen 7 should be as large as possible. The reason is that the magnitude of the frictions between the punch 21 and the test specimen 7 affects the formability of the steel sheet. Further, the length of the rectangular test specimen 7 is made to be larger than the diameter D2 of the lock bead 8, and the width of the test specimen 7 is made to be smaller than the diameter D2 of the lock bead 8, so that, in accordance with
the elevation of the punch 21, the test specimen should not be mobilized in the lengthwise direction, but the material of the test specimen 21 should be mobilized in the direction of the width, whereby the opposite edges 21a and 21b of the punch 21 are surrounded by the material.

Similarly to the case of the conventional dome shaped punch, the size and length of the punch according to the present invention are designed such that the influence of the mechanical properties of the test specimen to the stretch formability under the plane strain mode should be sufficiently considered, and that the characteristics of the frictions between the punch and the steel sheet should also be sufficiently considered. Because, if the contact area between the punch and the steel sheet is too small, the friction between the die and the steel sheet cannot be sufficiently evaluated. On the other hand, if the contact area is too large, the influence of the frictions is too much exaggerated relative to other mechanical properties of the steel sheet.

In the present invention, the desirable dimensions for the diameter d, the length L and the radius of curvature R of the rounded portion are 70 mm, 70 mm and 5 mm respectively.

Now the method for evaluating the plane strain stretch formability by using the plane strain stretch formability evaluating apparatus according to the present invention will be described.

As shown in Figure 5, there is prepared a rectangular test specimen 7 which has a constant width in the rolling direction of the steel sheet, and which has a length larger than the diameter of the lock bead 8. This test specimen 7 is inserted into between the lower die 10 and the upper die 9 on which the lock bead 8 is installed. Then the circumferential edge of the test specimen 7 is strongly clamped by the lock bead 8, so that the material of the test specimen 7 should not be mobilized into the upper die 9.
As shown in Figure 6, by using the semi-cylindrical saddle-like punch 21, a stretch formation is carried out until the test specimen 7 breaks, and then, the plane strain stretch formability is evaluated based on the limit punch height LPH at the instant of the fracture of the test specimen. As the semi-cylindrical punch 21 is elevated, the test specimen 7 which has a width larger than that of the punch 21 is deformed in such a manner as to totally surround the punch 21. Meanwhile, if the lengthwise section of the punch is observed, the test specimen 7 is bent by about 90° at the opposite ends D of the punch 21, whereby the test specimen 7 is deformed into a U shaped form. As the punch 21 is elevated, the material flow is inhibited in the lengthwise direction of the punch 21 owing to the geometric restriction at the place where the test specimen is formed into a U shape by being bent by 90° at the opposite ends D of the punch 21.

Therefore, the deformation of the test specimen 7 is concentrated on the arcuate portion of the semi-cylindrical punch 21. Thus the test specimen 7 maintains a plane strain state, and, as shown in Figure 8, as the punch 21 is elevated, a fracture of the test specimen 7 occurs at the position E near the boundary of contact portion between the punch 21 and the test specimen 7. In the present invention, the superiority of the plane strain stretch formability, i.e., the stamping formability, is decided based on the limit punch height LPH at the instant of the fracture of the test specimen 7. That is, the higher the limit punch height to the fracture is, the more superior the formability of the material is. The lower the limit punch height is, the more inferior the formability of the material is. Meanwhile, in the case where the width of the test specimen is not larger than the length of the punch, the restriction of the material flow at the opposite ends of the semi-cylindrical punch is weakened, with the result that the material flow occurs, whereby a plane strain is not obtained. On the other hand, if the
width of the test specimen is too large, the restriction condition becomes too strong due to the bending deformation at the opposite ends D of the semi-cylindrical punch. Consequently, the fracture occurs too early at the opposite ends D due to the bending deformation, with the result that the stretch formability of the steel sheet cannot be known. Therefore, the width of the test specimen should be designed such that the plane strain should be assured on the whole surface of the test specimen.

In the present invention, the width of the test specimen is preferably designed such that it should be 1.78 - 1.82 times the length of the punch. The reason is that, if the width of the test specimen is less than 1.78 times the length of the punch, the material is mobilized in the direction of the width, whereby it is difficult to be assured of the plane strain. If it is more than 1.82 times the length of the punch, a bi-axial tensile state occurs, whereby it is impossible to be assured of the plane strain.

According to the present invention, the most desirable width of the test specimen is 126 mm, when the length of the punch is 70 mm.

According to the present invention, even if there are great differences in the surface characteristics due to the existence or absence of surface treatments or great differences in the mechanical properties such a anisotropic coefficient, still the width of the test specimen for obtaining the plane strain based on the geometric restriction conditions should be almost constant.

Now the actual examples of the present invention will be described.

<Example 1>

Test specimens having widths of 94 mm, 117 mm and 126 mm were prepared, and a stretch formability evaluating apparatus was used in which, for the semi-cylindrical punch, the radius of curvature R of the opposite edges 21a
was 5 mm, the length \(l \) was 70 mm, and the diameter \(d \) was 70 mm. Thus a plane strain stretch experiment was carried out, and then, the major and minor strains were measured. The major strain is illustrated in Figure 7A, while the minor strain is illustrated in Figure 7B.

The surface strain state of the test specimen was measured in the following manner. Circular grids having a size of 2.5 mm were etched on the surface of the test specimen before the formation, and an etching was carried out. Then a stretch formation was carried out to form the circular grid into an ellipse, and then, the major and minor strains for the longer side and shorter side were measured by using an optical grid measuring instrument.

Meanwhile, for the case where the width of the test specimen was 126 mm, the photograph of the stretched and etched test specimen was observed. The test results are illustrated in Figure 8.

As shown in Figure 7, in the case where the test specimen has a width of 126 mm according to the present invention, the minor strain occurred over the whole portion in the lengthwise direction in the rate of \(-3\% - 1\%\), thereby obtaining a plane strain having an minor strain of almost zero. In the case where a test specimen having a width departing from the size range of the present invention was used, the plane strain occurred only on a part of the whole portion.

Figure 8 illustrates the form of the fracture of the test specimen in which the circular grid was uniformly etched, with the width of the test specimen being 126 mm, and with the evaluating apparatus of the present invention being used. The plane strain was as follows. That is, the deformed circles were such that the minor strain was almost zero over the whole surface of the test specimen including the portion of the fracture E.

Therefore, according to the present invention, if a proper width of the test specimen is used relative to the size of the punch, the plane strain stretch
formability can be certainly evaluated.

<Example 2>

The plane strain stretch experiments were carried out by using the conventional dome shaped punch (Figure 3) and the semi-cylindrical punch of the present invention (Figure 5). Then the major and minor strains were measured, and the major strain distribution is illustrated in Figure 9A, while the minor strains are illustrated in Figure 9B.

As shown in Figure 9B, in the case of the conventional dome shaped punch, a plane strain was obtained in which the minor strain was zero only near the fractured portion. On the other hand, in the case of the semi-cylindrical punch according to the present invention, a plane strain was obtained in which the minor strain is zero over the whole surface of the test specimen.

<Example 3>

The plane strain stretch formability tests were carried out for the typical steel sheets for automotive bodies, and the limit punch height and the Erichsen values are shown in Table 1 below.

<Table 1>

<table>
<thead>
<tr>
<th>steel sheet</th>
<th>yield strength kgf/mm²</th>
<th>tensile strength kgf/mm²</th>
<th>elongation %</th>
<th>erichsen value mm</th>
<th>LPH of invention mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CQ</td>
<td><21</td>
<td>>28</td>
<td>>42</td>
<td>>9.4</td>
<td>>30.9</td>
</tr>
<tr>
<td>DQ</td>
<td><20</td>
<td>>28</td>
<td>>43</td>
<td>>10.0</td>
<td>>31.5</td>
</tr>
<tr>
<td>DDQ</td>
<td><18</td>
<td>>28</td>
<td>>45</td>
<td>>10.4</td>
<td>>32.6</td>
</tr>
<tr>
<td>EDDQ</td>
<td><16</td>
<td>>28</td>
<td>>48</td>
<td>>10.9</td>
<td>>34.0</td>
</tr>
</tbody>
</table>

As shown in Table 1 above, the Erichsen value which has been widely used in evaluating the stretch
formability of the steel sheets conventionally do not show much differences. On the other hand, the limit punch height for the fracture in the plane strain stretch formability test according to the present invention shows much differences for the different steel sheets. The elongation of the material is raised in the order of $CQ < DQ < DDQ < EDDQ$, and the limit punch heights are also same, thereby making it possible to distinguish the steel sheets.

According to the present invention as described above, there are provided an apparatus and a method for evaluating fracture limit and the stretch formability under the plane strain mode which occupies the most parts of the fractures occurring in the stamping process of the automotive steel sheets. That is, a semi-cylindrical punch is used, and the stretch formability is evaluated by using a test specimen having a width larger than the length of the punch. Thus the plane strain stretch formability, i.e., the stamping formability is evaluated based on the fracture limit punch height in a simple manner, so that fractures in the actual stamping process can be predicted.
What is claimed is:

1. An apparatus for evaluating a plane strain stretch formability, characterized in that: a test specimen is inserted into between a lower die 10 and an upper die 9 with a lock bead 8 installed thereon; said test specimen is clamped by means of said lock bead 8 along the circumferential edge of said test specimen so as for the material of said test specimen not to be mobilized into said upper die 9; then a punch is elevated to apply a stretch force on said test specimen; and then, the stretch formability is evaluated based on the fracture limit punch height under the plane strain mode, the apparatus is further characterized in that: said punch 21 has a saddle-like semi-cylindrical form; and the width of said rectangular test specimen is larger than the length of said punch 21.

2. The apparatus as claimed in claim 1, wherein the edges of said punch is rounded with a certain curvature.

3. The apparatus as claimed in claim 2, wherein the radius of curvature for the rounded portion is equivalent to 5-9% of the length L of said punch.

4. The apparatus as claimed in any one of claims 2 and 3, wherein said punch has a length L of 70 mm, a diameter of 70 mm and a radius of curvature R of 5 mm.

5. A method for evaluating a plane strain stretch formability, characterized in that: a test specimen is inserted into between a lower die 10 and an upper die 9 with a lock bead 8 installed thereon; said test specimen is clamped by means of said lock bead 8 along the circumferential edge of said test specimen so as for the
material of said test specimen not to be mobilized into said upper die 9; then a punch is elevated to apply a stretch force on said test specimen; and then, the stretch formability is evaluated based on the fracture limit punch height under the plane strain mode,
the method further characterized in that:
said punch 21 has a saddle-like semi-cylindrical form; and
the width of said test specimen is 1.78 - 1.82 times the length \(l \) of said punch.

6. The method as claimed in claim 5, wherein the length \(l \) of said punch is 70 mm, and the width of said test specimen is 126 mm.
FIG. 7
Fig. 9

Width of test piece = 126 mm

- Minor strain (%)

Position of grid

- SEMI-CYLINDRICAL PUNCH
- DOME SHAPED PUNCH
A. CLASSIFICATION OF SUBJECT MATTER
 IPC*: G 01 N 3/28

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

 G 01 N 3/28, 3/04, 3/08

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>DT, A1, 2 612 278 (F. FISCHER) 06 October 1977 (06.10.77), claims; fig. 1.</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>DD, A, 153 433 (LORENZ REINER) 06 January 1982 (06.01.82), totality.</td>
<td>1, 2</td>
</tr>
<tr>
<td>A</td>
<td>DD, A, 152 417 (VEB INGENIEURBETRIEB) 25 November 1981 (25.11.81), claims; fig.</td>
<td>1</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 3 421 365 (W.B. DEAN) 14 January 1969 (14.01.69), totality.</td>
<td>1</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier document published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "Z" document member of the same patent family

Date of the actual completion of the international search

<table>
<thead>
<tr>
<th>Date of mailing of the international search report</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 March 1994 (07.03.94)</td>
</tr>
</tbody>
</table>

Name and mailing address of the ISA/AT

AUSTRIAN PATENT OFFICE
Kohlmarkt 8-10
A-1014 Vienna
Facsimile No. 1/53424/535

Authorized officer

Erber e.h.

Telephone No. 1/53424/382

Form PCT/ISA/210 (second sheet) (July 1992)
<table>
<thead>
<tr>
<th>Document de brevet cité dans le rapport de recherche</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglied(er) der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT A 2612278</td>
<td></td>
<td>keine - none - rien</td>
<td></td>
</tr>
<tr>
<td>DD A 153433</td>
<td></td>
<td>keine - none - rien</td>
<td></td>
</tr>
<tr>
<td>DD A 152417</td>
<td></td>
<td>keine - none - rien</td>
<td></td>
</tr>
<tr>
<td>US A 3421365</td>
<td>14-01-69</td>
<td>keine - none - rien</td>
<td></td>
</tr>
</tbody>
</table>