(12) 特許協力条約に基づいて公開された国際出願
(19) 世界知的所有権機関
国際事務局
(43) 国際公開 曰
2012 年 1 月 5 日(05.01.2012)
(51) 国際特許分類:
H04L 12/56 (2006.01)
(21) 国際出願番号:
PCT/JP20 11/002727
(22) 国際出願日:
2011 年 5 月 17 日 (17.05.2011)
(25) 国際出願の言語:
日本語
(26) 国際公開の言語:
日本語
(30) 優先権データ:
特願 2010-146958 2010 年 6 月 28 日 (28.06.2010) JP
(71) 出願人 (米国を除く全ての指定国について):
パナソニック株式会社 (PANASONIC CORPORATION -
TION) [JP/JP]; 15718501 大阪府大阪市中央区
1 006 番地 Osaka (JP).
(72) 発明者および考査者 (米国についてのみ):
B 亜則 美里子 (Badege, Thimée-Ma-
linda); 村本 衛一 (MURAMOTO, Eichi).
(74) 代理人: 新居 広子 (Hiromori); 〒532-0001 大阪府大阪市淀川区西中島 5 丁目 3 番 10 号タ
ナカ・イトーピア新大阪ビル 8 階新居国際特
許事務所内 Osaka (JP).
(54) Title:
COMMUNICATION TERMINAL, COMMUNICATION PROGRAM, AND INTEGRATED CIRCUIT
(57) Abstract:
A communication terminal (100) is one of a plurality of communication terminals that constitute an ALM (Application Layer Multicast) delivery tree where each communication terminal has a respective one master terminal and no or one or more slave terminals allocated to that communication terminal and where retransmitted data of stream data is seque-
cntially transmitted from the master terminal to the slave terminal. The communication terminal (100) comprises: a reproduction delay time deter-
ing unit (1010) that determines a reproduction delay time by use of the maximum one of round-trip delay times that are necessary to transmit and receive data along the sections between respective two adjacent terminals on the ALM delivery tree and that are related to the sections from a root terminal to the communication terminal (100); and a reproduction control unit (1020) that delays, by the reproduction delay time determined by the reproduction delay time determining unit (1010), and reproduces the stream data received from the root terminal.

(57) 要約：通信端末（100）は、それぞれに1つの親端
末と、0以上の子端末とが割り当てられていることによっ
て、ストリームデータの再送データを親端末から子端末に順次
送信するALM（Application Layer Multicast）配信木を構成
している複数の通信端末のうちの一つの通信端末である。そして、該当の通信端末
は、ALM配信木上の親接する2つの端末の間
の区間でデータを送受信するのに必要な往復遅延時間であ
って、ルート端末から該当の通信端末に遅延了
間の往復遅延時間のうちの最大値を用いて再生遅延時
間を決定する再生遅延時間決定部（1010）と、ルート
端末から受信したストリームデータを、再生遅延時間決定
部（1010）で決定された再生遅延時間だけ遅延させて
再生する再生制御部（1020）とを備える。
明細書

発明の名称：通信端末、通信方法、プログラム、及び集積回路

技術分野

[0001] 本発明は、A L M (A p p l i c a t i o n L a y e r M u l t i c a s t) 配信木によるストリーム配信を行う場合において、再生遅延時間を制御する通信端末及び通信方法に関する。

背景技術

[0002] 図12に示しているように、インターネット上で、送信側の端末11と受信側の端末12との間で映像データ（パケット）の送受信を行う場合、映像データの損失（パケット損失）が起こり得る。映像データの損失が発生することにより、受信側の端末12で再生する映像又は音声に乱れが生じることになる。この乱れを防ぐためには、損失したパケットを送信側の端末11に再度送信してもらう必要がある。

[0003] そこで、例えば、受信側の端末12は、図13に示しているように、損失した映像パケット（p2）の再送を送信側の端末11に要求する。そして、送信側の端末は、図14に示しているように、受信側の端末12からの要求に応じて、該当する映像パケット（p2）を再送するのが一般的である。

[0004] この再送された映像パケット（p2）を受信側の端末12で再生させるためには、受信側の端末12での映像パケット（p2）の再生開始時刻を、再送に必要な時間を考慮して設定する必要がある。具体的には、図15に示しているように、映像パケット（p2）の最初の到着予定時刻から1RTT分だけ遅延させて再生を開始する必要がある。ここで、RTT（Round Trip Time）とは、受信側の端末12と送信側の端末11との間をパケットが往復するのに要する時間である。

[0005] この最初の到着予定時刻から再生開始時刻までの時間は、通常、再生遅延時間と呼ばれ、図11～図15で示しているような1対1通信においては、送受信端末間のRTTに基づいて設定されるのが一般的である。再生遅延時
間は、例えば、再生遅延時間が RT の倍数、又は RT 以上になるように設定される。

ところで、従来、映像データを複数の端末に同時に配信する技術として、ALM配信木を用いたストリーミング配信が知られている。図16及び図17を参照して、ALM配信木の概要を説明する。複数の端末11、12、13、14、15、16、17は、図16に示されるように、インターネットやLAN(Local Area Network)等のスター型の通信ネットワーク10に接続されている。

ここで、例えば、端末11から他の全ての端末12、13、14、15、16、17に対して直接ストリーミングデータを配信しようとすると、データ量が端末11に接続されている回線の帯域幅の上限を超えてしまい、遅延が生じる可能性がある。

そこで、図17に示されるように、ストリーミングデータの配信元である端末11を頂点(ルート端末)とする論理的な階層構造を構築する。つまり、端末11は、ストリーミングデータを端末12、13にのみ配信する。そして、端末12、13は、端末11から受信したストリーミングデータを再生すると共に、それぞれ配下の端末14、15、16、17に配信する。上記構成によれば、トラフィックを分散させることができるので、遅延のないストリーミング配信を実現することができる。

このようなALM配信木による映像配信等を行う場合にも、再生遅延時間を考慮する必要がある。1対1通信の場合と同様に、再生データの送信元端末との間のRTに基づいて設定することが考えられるが、ALM配信木の場合は特に、以下の3つの再送方式が存在する。以下、図18〜図20に示される15台の端末20〜34で構成されるALM配信木において、端末21と端末23との間で映像データの損失が発生した場合の再送方式を説明する。

第1の再送方式は、ALM配信木のルート端末(配信元)から損失データを再送する方式である。具体的には、図18に示されるように、端末23は
ルート端末である端末20に対して損失データの再送を要求（一点鎖線で示す）する。そして、端末23から再送の要求を受けた端末20は、端末23に対して再送データ（破線で示す）を送信する。

第2の再送方式は、自端末の親端末（配信木上の自端末の親端末）から損失データを再送する方式である。具体的には、図19に示されるように、端末23は、親端末である端末21に対して損失データの再送を要求（一点鎖線）する。そして、端末23から再送の要求を受けた端末21は、端末23に対して再送データ（破線）を送信する。

第3の再送方式は、上記以外の第3（ルート端末、親端末以外）の端末から損失データを再送する方式である。具体的には、図20に示されるように、端末23は、ALM配信木上の接続関係のない端末22に対して損失データの再送を要求（一点鎖線）する。そして、端末23から再送の要求を受けた端末22は、端末23に対して再送データ（破線）を送信する。

上記の第1の再送方式を適用した場合には、再生遅延時間の設定基準となるRTTは、端末23とルート端末である端末20との間のRTTとなる。上記の第2の再送方式を適用した場合には、再生遅延時間の設定基準となるRTTは、端末23と親端末である端末21との間のRTTとなる。上記の第3の再送方式を適用した場合には、再生遅延時間の設定基準となるRTTは、端末23と第3の端末である端末22との間のRTTとなる。

一方、非特許文献1は、上記のように、再送データの受信端末と再送データの送信元端末との間のRTTを意識せずに、各端末に固定の再生遅延時間を設定している。しかしながら、これは通信品質の低下を招く。何故ならば、この方式は実際の端末間の遅延を意識しないために、設定する再生遅延時間が短過ぎることによって、損失した映像データの乱れが回復されないまま再生されたり、又は、設定する再生遅延時間が長過ぎることによって、再生開始時間が必要以上に遅れたりするからである。

先行技術文献
非特許文献
発明の概要

発明が解決しようとする課題

[001 6] 上述のように、ＡＬＭ配信木の場合は、自端末と再送データ送信元との間のＲＴＴを考慮して再生遅延時間を設定した方が品質向上につながる場合が多い。しかしながら、この方式を上記の第２又は第３の方式に適用する場合に、端末間の遅延に差があると、想定している通信品質が得られないという課題がある。この課題を、図２１〜図２３を参照して、各端末間の遅延が等しい場合（図２１）と、各端末間の遅延が等しくない場合（図２２）とを比較しながら説明する。

[001 7] 図２１及び図２２は、図１９に示されるＡＬＭ配信木において、端末２０→端末２１→端末２３→端末２７の経路上にデータが流れる様子を時刻推移と共に示しており、特に、図２１は各端末間のネットワーク遅延が等しい環境（以降、等遅延環境と表記する）、図２２は各端末間のネットワーク遅延が等しくない環境（以降、非等遅延環境と表記する）を示している。ここで、ネットワーク遅延とは、例えば、ＡＬＭ配信木上の親端末から子端末に１つのパケットを送信するのに必要な時間を指し、典型的には、ＲＴＴの２分の１に相当する。以下、「ＲＴＴ＝ネットワーク遅延×２」として説明する。

[001 8] また、どの場合にも端末２０→２１間でパケットが損失したものとして説明する。また、図２３に示されるように、等遅延環境での各端末間のネットワーク遅延は１００ｍｓである。一方、非等遅延環境では、端末２０→２１間のネットワーク遅延は２００ｍｓ、それ以外の端末間のネットワーク遅延は１００ｍｓであるとする。そして、どの場合も等端末21〜34の再生遅延時間を、親端末（再送データの送信元端末）との間のＲＴＴに等しく（
つまり、ネットワーク遅延の2倍）なるように設定しているとする。さらに、どの場合も上述の第2の再送方式によって損失データの再送を行うものとする。

端末20_21間でパケットpの損失が発生すると、パケットpが端末21とその下流にいる全ての端末23、27に到着しなくなる。よって、第2の再送方式では、それら各端末（端末21、23、27）は、パケットpの到着予定時刻が過ぎると親端末に対してパケットPの再送要求を送信し、親端末よりパケットpを再送してもらうことになる。この動作の時間的な流れを等遅延環境（図21）、非等遅延環境（図22）の順で説明する。

図21の等遅延環境では、端末21、23、27からの再送要求を受信する端末20、21、23がそれぞれの各端末21、23、27宛にパケットpを再送する。つまり、端末21、23、27は、再送要求を送信してから（言い換えれば、パケットpの到着予定時刻を経過してから）2000ms（=1RTT）後に再送されたパケットpを受信することになる。また、図23に示されるように、端末21、23、27の再生遅延時間は、2000msであるため、各端末21、23、27上で、映像を途切れさせることなくパケットPを再生させることができる（パケットpの再送が各端末21、23、27の再生に間に合う）。

一方、図22の非等遅延環境においては、端末20_21間のネットワーク遅延が2000msである。このため、端末21に端末20からの再送パケットが到着するのは、パケットpの最初の到着予定時刻の4000ms後である。すなわち、端末21が端末23に対してパケットpを再送できるのも4000ms後となる（端末23の再送要求が端末21上で2000ms待機することになる）。よって、端末23に再送されたパケットpが到着するのは、最初の到着予定時刻の4000ms後となる。ここで、図23に示されるように、端末23の再生遅延時間は2000msであるので、端末23に再送されたパケットpが到着したときには、既に再生開始時刻を過ぎてしまっている（端末27も同様）。
すなわち、第2の再送方式を適用する場合において、端末間のネットワーク遅延に差があると、想定している通信品質が得られないという課題がある。ここでは、第2の再送方式を適用した場合についてのみ説明したが、第3の再送方式を適用した場合も同じ課題が存在する。

なお、第1の再送方式を適用した場合は、直接ルート端末から再送データを受信するため、他の端末間の遅延の差に影響されず、本課題は存在しない。しかし、第1の再送方式は、受信ノードの数に比例してルート端末に送信される再送要求の数が上昇するため、ルート端末の処理能力、帯域を圧迫させるという欠点があり、実用的ではない。

そこで、本発明は上記の課題に鑑みてなされたものであり、伝送路上でストリームデータの損失が生じた場合でも、高品質にストリームデータを再生できる通信端末及び通信方法を提供することを目的とする。

課題を解決するための手段

本発明の一形態に係る通信端末は、ルート端末から配信されるストリームデータを受信して再生する複数の通信端末のうちの一の通信端末である。前記複数の通信端末は、それぞれに1つの親端末と、0以上の子端末が割り当てられることによって、前記ストリームデータの再送データを前記親端末から前記子端末に順次送信するALM（Application Layer Multicast）配信木を構成している。そして、該一の通信端末は、前記ALM配信木上の隣接する2つの端末の間の区間でデータを送受信するのに必要な往復遅延時間であって、前記ルート端末から該一の通信端末までの各区間の往復遅延時間のうちの最大値を用いて再生遅延時間を決定する再生遅延時間決定部と、前記ルート端末から受信した前記ストリームデータを、前記再生遅延時間決定部で決定された前記再生遅延時間だけ遅延させて再生する再生制御部とを備える。

上記の構成によれば、ルート端末から自端末までの各区間のうち、往復遅延時間の最も大きい区間、すなわち、再送処理に最も時間のかかる区間でストリームデータの損失が生じたとしても、再送データを再生時間までに取得
することができる。その結果、ストリームデータを高品質に再生することができる。

なお、上記の構成において、再送データはALM配信木を利用して送信される。一方、ストリームデータの送信方法は特に限定されない。例えば、再送データと同じALM配信木を利用して送信してもよいし、再送データとは異なるALM配信木を利用して送信してもよいし、ALM配信木を利用せず、ルート端末から各通信端末に対して直接送信してもよい。また、本明細書中の「親端末」とは、ALM配信木において、自端末に対してデータを直接送信する送信元端末を指す。「子端末」とは、ALM配信木において、自端末がデータを直接送信する送信先端末を指す。

…例として、前記再生遅延時間決定部は、前記往復遅延時間の大振幅の整数倍を、前記再生遅延時間と決定してもよい。

他の例として、該一の通信端末との間の往復遅延時間を\(rtt (self) \)と、該一の通信端末の前記再生遅延時間を\(x (self) \)と、前記親端末の前記再生遅延時間を\(x (parent) \)と、正の整数を\(self \)と定義したとき、前記再生遅延時間決定部は、\(rtt (self) \geq x (parent) \)を満たす場合に、下記式1を用いて前記再生遅延時間\(x (self) \)を決定し、\(rtt (self) < x (parent) \)を満たす場合に、下記式2を用いて前記再生遅延時間\(x (self) \)を決定する。

\[
\begin{align*}
x (self) &= \alpha_{u} \times rtt (self) \quad \text{（式1）} \\
x (parent) &= (\alpha_{u} - 1) \times rtt (self) + x (parent) \quad \text{（式2）}
\end{align*}
\]

上記の各方法で再生遅延時間を決定することにより、再送データに損失が発生した場合でも、再生時間までに再送データを取得できる可能性がある。その結果、さらに高品質にストリームデータを再生することができる。

さらに、該一の通信端末は、前記ルート端末から受信したストリームデータの一部に損失が生じた場合に、前記親端末に対して、当該損失に対応する
再送データの送信を要求する再送要求部を備えてもよい。そして、前記再送要求部は、前記A LM配信木上の前記ルート端末から前記親端末までの1以上の前記往復遅延時間を含む往復遅延時間の間隔を前記親端末から受信し、前記往復遅延時間検出器に設定された前記往復遅延時間を含めて前記子端末に送信する往復遅延時間帯とを備えてもよい。これにより、通信ネットワークのトラフィックを最小限に抑えて、各通信端末に必要な情報を（往復遅延時間）を配布することができる。

また、前記往復遅延時間帯は、所定の時間間隔毎に前記往復遅延時間帯通知を受信してもよい。前記往復遅延時間帯検出器は、前記往復遅延時間帯通知を受信する度に、前記一の通信端末とその親端末との間の前記往復遅延時間を測定してもよい。そして、前記往復遅延時間帯検出器は、前記往復遅延時間帯通知を受信する度に、前記往復遅延時間帯通知に含まれる1以上の前記往復遅延時間帯時間と、前記往復遅延時間帯検出器で測定された前記往復遅延時間が用いて、前記往復遅延時間帯を検出してもよい。このように、所定の時間間隔毎に往復遅延時間帯を更新することにより、より高品質のストリーミングデータを再生できる。

本発明の他の形態に係る通信端末は、ルート端末から配信されるストリーミングデータを受信して再生する数の通信端末のうちの一の通信端末である。前記複数の通信端末は、それぞれに1つの親端末と、0以上の子端末とが割り当てられることによって、前記ストリーミングデータの再生データを前記親端末から前記子端末に順次送信するALM（Application Layer Multicast）配信木を構成している。そして、該一の通信端末は、前記ALM配信木上の隣接する2つの端末の間の区間でデータを送受
信するのに必要な往復遅延時間であって、前記ルート端末から該一の通信端末までの各区間のうちの各ストリームデータの損失率が最も大きい区間の前記往復遅延時間を用いて再生遅延時間決定部と、前記ストリームデータを受信してから、前記再生遅延時間決定部で決定された前記再生遅延時間だけ遅延させて再生する再生制御部とを備える。

[0037] 上記構成のように、各区間におけるストリームデータの損失率を考慮し、最も損失率の大きい区間の往復遅延時間を用いて再生遅延時間を決定することで、さらに高品質にストリームデータを再生できる。

[0038] さらに、該一の通信端末は、該一の通信端末とその親端末との間の前記損失率を測定する損失率測定部と、前記ALM配信木上の前記ルート端末から前記親端末までの1以上の前記損失率を含む損失率通知を前記親端末から受信し、前記損失率測定部で測定された前記損失率を含めて前記子端末に送信する損失率管理部とを備えてもよい。

[0039] また、前記損失率管理部は、所定の時間間隔毎に前記損失率通知を受信してもよい。前記損失率測定部は、前記損失率通知を受信する度に、該一の通信端末とその親端末との間の前記損失率を測定してもよい。そして、前記再生遅延時間決定部は、前記損失率通知を受信する度に、前記損失率通知に含まれる1以上の前記損失率と、前記損失率測定部で測定された前記損失率とを用いて、前記再生遅延時間を決定してもよい。

[0040] 本発明の一形態に係る通信方法は、ルート端末から配信されるストリームデータを受信して再生する複数の通信端末のうちの一の通信端末により実行される。前記複数の通信端末は、それぞれに1つの親端末と、0以上の子端末が割り当てられることによって、前記ストリームデータの再送データを前記親端末から前記子端末に順次送信するALM（Application Layer Multicast）配信木を構成している。そして、該通信方法は、前記ALM配信木上の隣接する2つの端末の間の区間でデータを送受信するのに必要な往復遅延時間であって、前記ルート端末から該一の通信端末までの各区間の往復遅延時間のうちの最大値を用いて再生遅延時間を
決定する再生遅延時間決定ステップと、前記ルート端末から受信した前記ストリームデータを、前記再生遅延時間決定ステップで決定された前記再生遅延時間だけ遅延させて再生する再生制御ステップとを含む。

[0041] 本発明の一形態に係るプログラムは、ルート端末から配信されるストリームデータを受信して再生する複数の通信端末のうちの一の通信端末により実行される。前記複数の通信端末は、それぞれに1つの親端末と、0以上の子端末とが割り当てられることによって、前記ストリームデータの再生データを前記親端末から前記子端末に順次送信するALM（Application Layer Multicast）配信木を構成している。そして、該プログラムは、前記ALM配信木上の隣接する2つの端末の間の区間でデータを送受信するのに必要な往復遅延時間であって、前記ルート端末から該一の通信端末までの各区間の往復遅延時間のうちの最大値を用いて再生遅延時間を決定する再生遅延時間決定ステップと、前記ルート端末から受信した前記ストリームデータを、前記再生遅延時間決定ステップで決定された前記再生遅延時間だけ遅延させて再生する再生制御ステップとを、該一の通信端末に実行させる。

[0042] 本発明の一形態に係る集積回路は、ルート端末から配信されるストリームデータを受信して再生する複数の通信端末のうちの一の通信端末に搭載される。前記複数の通信端末は、それぞれに1つの親端末と、0以上の子端末とが割り当てられることによって、前記ストリームデータの再生データを前記親端末から前記子端末に順次送信するALM（Application Layer Multicast）配信木を構成している。そして、該集積回路は、前記ALM配信木上の隣接する2つの端末の間の区間でデータを送受信するのに必要な往復遅延時間であって、前記ルート端末から該一の通信端末までの各区間の往復遅延時間のうちの最大値を用いて再生遅延時間を決定する再生遅延時間決定部と、前記ストリームデータを受信してから、前記再生遅延時間決定部で決定された前記再生遅延時間だけ遅延させて再生する再生制御部とを備える。
発明の効果

[0043] 本発明によれば、各受信端末で再生される映像、音声等のストリームデータの品質を高めることができる。

図面の簡単な説明

[0044] [図1] 図1は、実施の形態1に係る通信端末の機能ブロック図である。
[図2] 図2は、実施の形態1に係る通信端末の動作を示すフローチャートである。
[図3] 図3は、実施の形態1に係る通信端末の詳細な機能ブロック図である。
[図4] 図4は、A LM配信機における再送要求の送信先（左側）、及び再送データの送信先の例を示す図である。
[図5] 図5は、手法1〜3のそれぞれによって決定される再生遅延時間の例を示す図である。
[図6] 図6は、手法1の場合におけるデータフローの一例を示す図である。
[図7] 図7は、手法2の場合におけるデータフローの一例を示す図である。
[図8] 図8は、手法3の場合におけるデータフローの一例を示す図である。
[図9] 図9は、R TT通知メッセージの送信手順を示す図である。
[図10] 図10は、R TT通知メッセージに含まれるR TTの例を示す図である。
[図11A] 図11Aは、記録媒体本体である磁気ディスクの物理フォーマットの例を示す図である。
[図11B] 図11Bは、磁気ディスクを保持するケースの正面図、断面図、及び磁気ディスクを示す図である。
[図11C] 図11Cは、フレキシブルディスクに上記プログラムの記録再生を行うための構成を示す図である。
[図12] 図12は、通信ネットワーク上でデータの損失が生じる例を示す従来図である。
[図13] 図13は、損失データの再送を要求する例を示す従来図である。
[図14] 図14は、再送データを送信する例を示す従来図である。
図15] 図15は、再送遅延時間の決定方法の例を示す従来図である。
[図16] 図16は、従来のネットワーク構成を示す従来図である。
[図17] 図17は、図16の端末でALM配信木を構成した例を示す従来図である。
[図18] 図18は、第1のデータ再送方式を説明するための従来図である。
[図19] 図19は、第2のデータ再送方式を説明するための従来図である。
[図20] 図20は、第3のデータ再送方式を説明するための従来図である。
[図21] 図21は、等遅延環境における再送処理フローの一例を示す従来図である。
[図22] 図22は、非等遅延環境における再送処理フローの一例を示す従来図である。
[図23] 図23は、ネットワーク遅延と再生遅延時間との関係の例を示す従来図である。

発明を実施するための形態

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。

（実施の形態1）

図1及び図2を参照して、本発明の実施の形態1に係る通信端末100の構成及び動作を説明する。なお、図1は、通信端末100の機能ブロック図である。図2は、通信端末100の動作を示すフローチャートである。

実施の形態1に係る通信端末100は、図1に示されるように、再生遅延時間決定部1010と、再生制御部1020を備える。この通信端末100は、ルート端末から配信されるストリームデータを受信して再生する複数の通信端末（図1では図示省略）のうちの1つである。そして、複数の通信端末は、それぞれに1つの親端末と、0以上の子端末とが割り当てられることによって、ストリームデータの再送データを親端末から子端末に順次送信するALM（Application Layer Multicast）配信木を構成している。
再生遅延時間決定部１０１０は、ルート端末から通信端末１００までの各区間の往復遅延時間のうちの最大値を用いて再生遅延時間を決定する（S１１）。ここで、往復遅延時間とは、ＡＬＭ配信木上の隣接する２つの端末の間の区間でデータを送受信するのに必要な往復遅延時間であって、典型的には、ＲＴＴ等に相当する。

再生制御部１０２０は、ルート端末から受信したストリームデータを、再生遅延時間決定部１０１０で決定された再生遅延時間だけ遅延させて再生する（S１２）。具体的には、再生制御部１０２０は、ルート端末から受信したストリームデータを一旦バッファ（図示省略）に格納し、受信後から再生遅延時間だけ経過したタイミングでバッファから読み出して再生する。

次に、図３を参照して、実施の形態１に係る通信端末１００の詳細な構成を説明する。図３は、通信端末１００の詳細な機能ブロック図である。図３に示される通信端末１００は、再送要求送信部１０１と、再送データ送信部２０１と、ＡＬＭ制御部３０１と、再生遅延時間決定部４０１と、ＲＴＴ管理部４０２と、ＲＴＴ測定部５０１とを備える。なお、図１の再生遅延時間決定部１０１０は図３の再生遅延時間決定部４０１に相当し、図１の再生制御部１０２０は図３のＡＬＭ制御部３０１に相当する。

ＡＬＭ制御部（再生制御部）３０１は、ＡＬＭ配信木上の親端末からストリームデータを受信し、受信したストリームデータをバッファ（図示省略）に格納すると共に、子端末に送信する。また、ＡＬＭ制御部３０１は、バッファに保持されているストリームデータを、再生遅延時間だけ経過後に再生する。

ＲＴＴ測定部（往復遅延時間測定部）５０１は、自端末と親端末との間のＲＴＴを測定する。ＲＴＴを測定する方法は特に限定されないが、例えば、ＲＰ（Real-time Transport Control Protocol）で用いられている既存ＲＴＴ測定手法を用いることができると。

ＲＴＴ管理部（往復遅延時間管理部）４０２は、親端末からＲＴＴ通知メ
メッセージ（往復遅延時間通知）を受信し、R T T測定部5 0 1で測定された自端末一親端末間のR T T（往復遅延時間）を含めて、子端末に送信する。なお、親端末から受信したR T T通知メッセージには、A L M配信木上のルート端末から親端末までの各区間のR T Tが含まれている。

再生遅延時間決定部4 0 1は、R T T管理部4 0 2で親端末から受信したR T T通知メッセージに含まれるR T Tと、R T T測定部5 0 1で測定されたR T Tとを用いて、再生遅延時間を決定し、A L M制御部3 0 1に通知する。再生遅延時間の具体的な決定方法は、後述する。

再生要求送信部（再生要求部）1 0 1は、ルート端末から受信したストリームデータの一部に損失が生じた場合に、親端末に対して、当該損失に対応する再生データの送信を要求する。また、再生要求送信部1 0 1は、再生データを取得するまで再生要求を繰り返し送信する。このときの再生間隔は、通信端末1 0 0とその親端末との間の往復遅延時間以上で、且つルート端末から自端末までの各区間の往復遅延時間のうちの最大値以下の間隔であるのが望ましい。

再生データ送信部2 0 1は、子端末から再生要求を受信したことにより、当該再生要求に示されるデータをA L M制御部3 0 1のバッファから取得し、再生要求の送信元である子端末に送信する。また、再生すべきデータがA L M制御部3 0 1のバッファに存在しない場合、当該データを受信するまで待機し、受信後速やかに送信する。

次に、図4 ～8を参照して、通信端末1 0 0が再生遅延時間を決定する具体的な手法1 ～3を説明する。なお、簡単なため図4 ～図8においては、第2の再生方式を用いて、再生データを送受信するものとする。つまり、ストリームデータと再生データとは、同一のA L M配信木を用いて配信される。

なお、手法1 は、自端末への再生データが通る端末間のR T Tの最大値を再生遅延時間とする方法である。手法2 は、手法1における最大値をさらに整数倍して再生遅延時間とする方法である。手法3 は、下記式1及び式2に基づいて導いた値を、自端末の再生遅延時間に設定するものである。なお、
「自端末への再送データが通る端末」とは、自端末の上流（自端末からルート端末までの経路）の全端末となる。

図4は、親端末による再送（第2の再送方式）を例示したものであり、端末20—21間にデータの損失が発生した場合を想定している。この場合、端末21とその下流の端末23、24、27—30がその影響を受けることになる。よって、端末21が端末20に、端末23、24が端末21に、端末27、28が端末23に、端末29、30が端末24に再送要求を送信することになる（図4の左側）。また、これらの再送要求を受信する端末20、21、23、24は、それぞれ再送要求を送信した端末に対して再送データを送信している（図4の右側）。

このとき、図4の右側の図を参照すれば明らかのように、各端末への再送データがその上流の各端末を経由している。すなわち、配信木の任意の区間（隣接する2つの端末間の通信路）を指す）に損失が発生した場合に、再送データは、損失発生区間の下流の全ての端末を通ることになる。また、損失発生区間はルート端末を含む最大区間である可能性もあり、この場合の再送データが通る端末は、ALM配信木を構成する全ての端末となる。

まず、手法1では、各端末より上流の各区間におけるR TT の最大値を、各端末の再生遅延時間に設定する。具体的には、図5に示されるように、端末20と端末21との間のR TT が200msであるので、端末21の再生遅延時間は200msとなる。また、端末21と端末23との間のR TT が100msであるので、端末23の再生遅延時間は200ms（端末20—21間のR丁丁）となる。さらに、端末23と端末27との間のR TT は100msであるので、端末27の再生遅延時間は200ms（端末20—21間のR丁丁）となる。その他の端末22、24、25、26、28、29、30、31、32、33、34についても同様の方法で再生遅延時間を設定することができる。

図6には、端末20—21間にサケットpの損失が発生した場合に端末20、21、23、27の間に行われる再送処理の時間推移を示している。
図6を参照して、端末20から送信されたパケットpは、1000ms後の時刻t1に端末21に、さらにその500ms後の時刻t2に端末23に、さらにその500ms後の時刻t3に端末27に到達する予定である。しかしながら、端末20と端末21との間の区間でパケットpの損失が発生しているので、端末21、23、27は、予定時刻になってもパケットpを受信することことができない。

そこで、端末21は時刻t1に端末20に対して再送要求を送信する。この再送要求は、端末21の送信から1000ms後の時刻t3に端末20に到達する。同様に、端末23は時刻t2に端末23に対して再送要求を送信し、端末27は時刻t3に端末23に対して再送要求を送信する。そして、端末23から送信された再送要求は500ms後の時刻t3に端末21に到達し、端末27から送信された再送要求は500ms後の時刻t4に端末23に到達する。

次に、時刻t3に端末21からの再送要求を受信した端末20は、即座に再送パケット P'を端末21に送信する。この再送パケット p' は、端末20の送信から1000ms後の時刻t5に端末21に到達する。

一方、時刻t3に端末23からの再送要求を受信した端末21は、自らもパケット P を保持していないので、そのまま待機する。そして、端末21は、時刻t6に端末20から再送パケット P' を受信したタイミングで、先の再送要求に対する応答として、再送パケット P' を端末23に送信する。この再送パケット P' は、端末21の送信から500ms後の時刻t6に端末23に到達する。

同様に、時刻t4に端末27からの再送要求を受信した端末23は、自らもパケット P を保持していないので、そのまま待機する。そして、端末23は、時刻t7に端末21から再送パケット P' を受信したタイミングで、先の再送要求に対する応答として、再送パケット P' を端末27に送信する。この再送パケット P' は、端末23の送信から500ms後の時刻t7に端末27に到達する。

このように、各端末21、23、27の再生遅延時間を再送データが通る
経路上の最大RTTである端末20 - 21間の$RTT (= 200 ms)$に設定しているため、各端末21, 23, 27に到着する再送データが再生に間に合うことが図6で分かる。なお、これは最大RTT区間である端末20 - 21間にデータ損失が発生した場合であるが、他の区間（例えば、端末21 - 23の間の区間）でデータ損失が発生した場合は、再送データ到着に要する時間がもっと短いので、その場合でも再送データが必ず各端末23, 27の再生に間に合うように到着する。

手法2, 3は、再送データをより確実に各端末で受信できるように工夫されたものである。より具体的には、再送データそのものが途中で損失した場合に、それを再び再送できる程の時間の余裕を各端末に設けるものである。例えば、再送要求を送信してから手法1で算出される再生遅延時間を待っても再送データが到着しない場合に、再送データが途中で損失したと見なし、再送要求を再度送信することができる。そして、手法2, 3では、この2度目の再送要求に対する応答として受信した再送パケットが再生に間に合うように、各端末の再生遅延時間を設定する。以降、これらを順に説明する。

手法2は、自端末の再生遅延時間を上流RTTの最大値の整数倍に設定する。例えば、回5に示されるように、各端末21 - 34の再生遅延時間を、上流RTTの最大値（すなわち、手法1における再生遅延時間）の2倍に設定する。この場合、各端末21 - 34が、手法1の最大RTTの間隔で再送要求を送信し続けば、再送データの1回の損失に耐えることができる。

図7は、再送パケットp'が損失した場合の処理の時間的推移を示している。なお、図6に示される手法1と共通する処理については詳しく説明を省略し、手法2特有の部分を中心に説明する。

図7の例では、図6の例に加えて、時刻t_5と時刻t_6との間に端末21 - 23間で再送パケットp'が損失する。また、端末23, 27は、上流の最大RTTである200msの間隔で、再送要求を再送し続ける。つまり、端末23は、パケットpの最初の到着予定時刻である時刻t_2の200ms後である時刻とし、端末21に対して2度目の再送要求を送信する。同様に、端末
27は、パケットpの最初の到着予定時刻である時刻t3の200ms後にあら時刻iに、端末23に対して2度目の再送要求を送信する。

端末21は、時刻t7に端末23から2度目の再送要求を受信し、再度、再送パケットP'を端末23に送信する。そして、端末21から送信された再送パケットP'は、最初の到着予定時刻t2の300ms後に端末23に到達する。同様に、端末23は、時刻t8に端末27から2度目の再送要求を受信し、再度、再送パケットp'を端末27に送信する。そして、端末23から送信された再送パケットP'は、最初の到着予定時刻t3の300ms後に端末27に到達する。

このように、端末23、27に再送パケットp'が到着するのは、それら端末23、27の再生遅延時間である400ms以内である。すなわち、この再送パケットP'は、端末23、27での再生に間に合う。

ここで、図7の例では、再送パケットp'の損失が発生したのは、最大RTTリンク（最大RTTの区間）以外のリンクであるため、このように再生遅延時間よりも早く再送パケットP'が到着したが、最大RTTリンク上で損失が発生した場合には、400ms後に再送パケットp'が到着する。これがあれば再生遅延時間に等しいため再生に間に合うのである。

上記の例では、手法1で算出された再生遅延時間（最大RTT）を2倍したが、これを3倍、4倍、・・・、x倍と増やすことによって、再送パケットp'損失回数が多くなるような不安定な通信環境に耐えることができる。具体的には、指定する（倍数－1）回の再送データ損失に耐えることができる。

なお、再生遅延時間が長くなるのに伴って、ストリームデータを一時的に格納するバッファの容量を大きくする必要がある。そこで、ストリームデータのリアルタイム性、通信ネットワークの安定性等を考慮して、最大RTTに乗じるxの値を決定すればよい。

なお、ここでの再送要求の送信し続ける間隔は、最大RTTに限らず、上流のいずれかのRTTであってもよい。例えば、親端末との間のRTT（端
末23の場合は端末21_23の間のRTT、端末27の場合は端末23_
27の間の丁丁)の間隔で、再送要求を送信し続けてもよい。

[0079] 上記の手法2は最大RTTの整数倍を再遅延時間として用いることで、
最大RTTリンクで再送データの損失が発生した場合であっても対応できる
ようにしている。これに対して手法3は、各端末nに対しても再送を実行した
い回数σを個別に設定できるようにするものである。具体的には、下記式1
又は式2を用いて、各端末nの再生遅延時間x(n)を決定すればよい。

[0080] [数3]

\[x(n) \sim \lambda \times q(n) \] ①

[0081] [数4]

\[x(n) = (\sigma_n - 1) \times r/n(n) \times x(\text{parent}) \] ②

[0082] なお、上の式1において、端末ηの再生遅延時間をx(η)、端末ηの
親端末の再生遅延時間をx(\text{parent})、端末nとその親端末との間の
RTTをrtt(n)、端末n毎に設定される正の整数をσnと定義する。そ
して、条件1:rtt(n) ≥ x(\text{parent})を満たす場合は式1を用
い、条件2:rtt(n) < x(\text{parent})を満たす場合は式2を用い
て再生遅延時間x(n)を決定する。

[0083] 具体的には、端末22については、RTT(22) = 100ms、x(\text{parent}) = x(20) = 0msであり、条件1を満たす。そこで、RTT
(22) = 100ms、σ22 = 2を用いて、端末22の再生遅延時間x(22)
= 200msとなる。なお、端末22の親端末はルート端末である端末
20であり、データの損失を考慮する必要がないので、再生遅延時間x(22)
= 0msとなる。

[0084] また、端末25については、RTT(25) = 300ms、x(\text{parent}) = x(22) = 200msであり、条件1を満たす。そこで、RTT
(25) = 300ms、σ25 = 1を用いて、端末25の再生遅延時間x(25)
= 300msとなる。

[0085] さらに、端末31については、RTT(31) = 100ms、x(\text{par
ent) = x (25) = 300 ms であり、条件2 を満たす。そこで、RT
T (31) = 100 ms、x (parent) = 300 ms、η31 = 2を用い
て、端末31の再生遅延時間x (31) = 400 ms となる。

なお、手法3の式1及び式2における正の整数ηnは、端末n とその親端末
との間でηn回再送を試行したいことを表しており、この値を端末n毎に個別
に設定できる。その結果、端末毎に再送試行回数が異なってくる。図5の手
法3の欄に、各端末の再送試行回数αnの値 (親端末からの再送試行回数 を
と、ηnを用いたときに式1及び式2から導かれる各端末の再生遅延時間とを
示している。

図8は、手法3の場合における端末20、22、25、31の処理の時間
的推移を示している。なお、図8に示される端末22、25、31は、それ
ぞれ再送データの経路上の最大RTTの間隔、つまり、端末22は1000 ms間隔で、端末25、31は300 ms間隔で再送要求を送信し続けるもの
とする。

まず、端末22は、図8に示されるように、パケットpの到達予定時刻t11
と、その1000 ms後の時刻t13とに端末20に対して再送要求を送信する。
そして、端末22は、2度目の再送要求に対する応答として、当初の到達予
定時刻t11の2000 ms後の時刻t15に、端末20から再送パケットp'を受
信している。ここで、端末22の再生遅延時間x (22) = 200 ms、再
送試行回数η22 = 2であるので、2度目の再送要求に対して、時刻t15に再送
パケットp'を受信すれば、再生に間に合うことになる。

また、端末25は、パケットpの到達予定時刻t14に端末22に対して再送
要求を送信する。そして、端末25は、1度目の再送要求に対する応答とし
て、当初の到達予定時刻t14の3000 ms後の時刻t25に、端末22から再送
パケットp'を受信している。ここで、端末25の再生遅延時間x (25)
= 3000 ms、再送試行回数η25 = 1であるので、1度目の再送要求に対して
、時刻t25に再送パケットp'を受信すれば、再生に間に合うことになる。

さらに、端末31は、パケットpの到達予定時刻t15と、その3000 ms後
の時刻t_{21}に端末25に対して再送要求を送信する。そして、端末31は、
2度目の再送要求に対する応答として、当初の到達予定時刻t_{15}の400ms
後の時刻t_{23}に、端末25から再送パケットp'を受信している。ここで、端
末31の再生遅延時間$x(31)=400ms$、再送試行回数$m_{1}=2$である
ので、2度目の再送要求に対して、時刻t_{23}に再送パケットp'を受信すれば
、再生に間に合うことになる。

このように、各端末に指定したm_{n}に等しい回数だけ再送を試行した場合で
も、すなわち、その再送回数で回復できる回数だけのパケットp及び再送パ
ケットp'の損失が発生しても、各端末の再生時刻に間に合うように再送パ
ケットp'が到着していることが分かる。

なお、ここでの再送要求の送信し続ける間隔は、最大RTTに限らず、上
流のいずれかのRTTであってもよい。例えば、親端末との間のRTT（端
末22の場合は端末20_22の間のRTT、端末25の場合は端末22_2
5の間のRTT、端末31の場合は端末25_31の間のRTT）の間隔
で、再送要求を送信し続けてもよい。

また、手法1、2、3では、各端末が再送データの経路上の各RTTを取
得して、自端末の再生遅延時間を自律的に計算するが、ルート端末等の特定
の端末が集中的に計算して、各端末に配布してもよい。

次に、上記の再生遅延時間の計算に必要なRTTの収集方法を図9及び図
10を用いて説明する。ここでも簡単のために第2の再送方式を想定する。
このとき、各端末は、ALM配信木上の自端末より上流の端末間のRTTの
みが必要なRTTとなる。

まず、ルート端末である端末20は、図9の左側の図に示されるように、
端末21に対してRTT通知メッセージm_{1}を、端末22に対してRTT通
知メッセージm_{2}を送信する。このとき、端末20は親端末を持たないため
、実際にはRTT情報を含めていないRTT通知メッセージm_{1}、m_{2}を送
信することになる。

次に、RTT通知メッセージm_{1}を受信した端末21は、図9の中央の図
及び図10に示されるように、自端末—親端末（端末20）間のRTTを含めた新たなRTT通知メッセージm3、m4を端末23、24に向けて送信する。なお、自端末—親端末間のRTTは、図1のRTT測定部501によって測定される。同様に、RTT通知メッセージm2を受信した端末22は、自端末—親端末（端末20）間のRTTを含めた新たなRTT通知メッセージm5、m6を端末25、26に向けて送信する。

これらを受信する端末23～26も同様に振る舞い、図9の右側の図に示されるように、端末27～34がメッセージm7～m14を受信することになる。これらの各RTT通知メッセージの内容（含まれるRTT）を図10に示している。各端末は、親端末から受信するRTT通知メッセージの内容と、各端末が自ら測定する親端末との間にRTTとを用いて、再生遅延時間を算出することができる。ここで、親端末とのRTTを測定する具体的な方法としては、例えば、RTP (Real-Time Transport Protocol) で用いられている手法等の既存RTT測定手法を用いることができる。

なお、RTT通知メッセージには、さらに他の情報を付加してもよい。例えば、各端末で決定した再生遅延時間（手法3で必要となる）をさらに含めたRTT通知メッセージを、子端末に送信するようにしてもよい。

なお、ここでは、図8に示しているようなトップダウン的な手法（処理が上流から下流に流れする方法）で必要なRTTを取得しているが、各端末が自端末に接続されている各端末（以降、隣接端末と記す）とのRTTを測定し、それら情報を全端末間に配布し合う等の手法でもよい。

又は、各端末が親端末とのRTT、又は隣接端末とのRTTを測定し、それをルート端末に個別に、又はボトムアップ的な手法（処理が下流から上流に流れする手法）で通知し、ルート端末が各端末に必要なRTTを個別に、又は配信木上のマルチキャストによって通知してもよい。又は、これら以外の収集方法を用いてもよい。

なお、上記の再生遅延時間決定処理は、ストリームデータの配信開始時に
1度だけ実行し、当該ストリームデータの配信中は再生遅延時間を固定してもよい。又は、所定の時間間隔毎に再生遅延時間決定処理を繰り返し実行し、ストリームデータ配信中に再生遅延時間を更新するようにしてもよい。

具体的には、R T T管理部4 0 2は、所定の時間間隔毎にR T T通知メッセージを受信する。R T T測定部5 0 1は、R T T管理部4 0 2でR T T通知メッセージを受信する度に、自端末一親端末間のR T Tを測定する。そして、再生遅延時間決定部4 0 1は、R T T通知メッセージを受信する度に、当該R T T通知メッセージに含まれるR T Tと、R T T測定部5 0 1で新たに測定されたR T Tを用いて、再生遅延時間決定処理を実行してもよい。

ただし、ストリームデータの配信中に再生遅延時間が短くなると、既にパッファに保持されているストリームデータを早送りしたり、スキップしたりする必要がある。また、ストリームデータの配信中に再生遅延時間が長くなると、既にパッファに保持されているストリームデータの再生を一時中断したり、スロー再生したりする必要がある。

このように、ストリームデータの配信中に再生遅延時間を変更すると、再生されている映像又は音声に瞬間的に乱れが生じる。しかしながら、再生遅延時間を常に最適な値に更新することにより、全体としての映像又は音声の乱れは軽減されるので、所定の時間間隔毎に再生遅延時間を更新するのが望ましい。

なお、再生遅延時間の更新間隔は、通信ネットワークの環境に応じて変更すればよい。例えば、通信環境が不安定な場合には更新間隔を短くし、通信環境が安定している場合には更新間隔を長くしてもよい。

また、ストリームデータの特性に応じて再生遅延時間の更新に制限を設けてもよい。例えば、高度なリアルタイム性が要求されるストリームデータ（例えば、テレビ配信等）の場合には、再生遅延時間が短くなる場合のみ更新を許可し、中断が許されないストリームデータ（例えば、音楽等）の場合には、再生遅延時間が長くなる場合のみ更新を許可してもよい。

(実施の形態2)
次に、実施の形態 2 に係る通信端末の構成及び動作を説明する。なお、実施の形態 1 との共通点の説明は省略し、相違点を中心に説明する。実施の形態 2 に係る通信端末は、図 3 に示される通信端末 100 に加えて、損失率管理部と、損失率測定部とを備える。また、再生遅延時間決定部 401 による再生遅延時間の具体的な決定方法が異なる。

[0108] 損失率測定部は、自端末とその親端末との間のストリームデータの損失率を測定する。具体的には、TCPヘッダのシーケンス番号等を参照して、受信したストリームデータのPER(Packet Error Rate)等を算出すればよい。

[0109] 損失率管理部は、ALM配信木上のルーテ端末から親端末までの各区間の損失率を含む損失率通知を親端末から受信し、当該損失率通知に損失率定部で測定された損失率を含めて子端末に送信する。

[0110] なお、損失率通知は、RTT通知メッセージと同様の方法で、RTT通知メッセージとは別のメッセージとして送受信してもよい。この場合、具体的な処理方法は、RTT管理部 402 の RTT通知メッセージと共通する。又は、RTT通知メッセージに上記の損失率の情報を含めてもよい。

[0111] そして、実施の形態 2 に係る再生遅延時間決定部は、RTTに加えて、損失率管理部で受信した損失率通知に含まれる損失率と、損失率測定部で測定された損失率とを用いて、再生遅延時間を決定する。具体的には、ルート端末から自端末までの各区間のうちのストリームデータの損失率が最も大きい区間のRTTを用いて再生遅延時間を決定する。

[0112] 上記のように、再送データの経路上のRTTの情報に加えて、各区間の損失率を考慮して再生遅延時間を決定することにより、ALM制御部 301 で再生されるストリームデータの品質がさらに向上する。

[0113] （実施の形態 3）

また、本発明は、実施の形態 1、2 のように、通信端末及び通信方法によって実現できるだけではなく、実施の形態 1、2 の通信方法コンピュータに実行させるためのプログラムとして実現してもよい。
図11A〜図11Cは、上記実施の形態1、2の通信方法を格納したフレキシブルディスクFDを用いて、コンピュータシステムにより実施する場合の説明図である。

図11Aは、記録媒体本体である磁気ディスクMDの物理フォーマットの一例を示す。図11Bは、磁気ディスクMDを保持するケースFの正面図、断面図、及び磁気ディスクMDを示す。図11Cは、フレキシブルディスクFDに上記プログラムの記録再生を行うための構成を示す。

フレキシブルディスクFDは、記録媒体本体である磁気ディスクMDと、磁気ディスクMDを保持するケースFで構成される。磁気ディスクMDの表面には、同心円状に外周から内周に向かって複数のトラックTrが形成され、各トラックTrは角度方向に16のセクタScに分割されている。従って、上記プログラムを格納したフレキシブルディスクFDは、磁気ディスクMD上に割り当てられた領域に、上記プログラムとしての通信方法が記録されている。

また、上記プログラムをフレキシブルディスクFDに記録する場合は、コンピュータシステムCsから上記プログラムとしての通信方法をフレキシブルディスクドライブFDに介して書き込む。また、フレキシブルディスクFD内のプログラムにより通信方法をコンピュータシステムCs中に構築する場合は、フレキシブルディスクドライブFDによりプログラムをフレキシブルディスクFDから読み出し、コンピュータシステムCsに転送する。

なお、上記説明では、記録媒体としてフレキシブルディスクFDを用いて説明を行ったが、光ディスクも用いて同様に行うことができる。また、記録媒体はこれらの限らず、ICカード、ROMカセット等、プログラムを記録できるものであれば同様に実施することができる。

また、本発明は、通信装置を構成する構成要素の一部又は全部を、1個のIntegrated Circuit (Large Scale Integration) 25から構成してもよい。システムLSIは、複数の構成部を1個のチップ上に集積して製造された超多機能LSIである。
以上、図面を参照してこの発明の実施形態を説明したが、この発明は、図示した実施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲内において、あるいは均等の範囲内において、種々の修正や変形を加えることが可能である。

産業上の利用可能性

本発明は、A L M 配信木による映像配信又は遠隔講義システム等で利用可能である。

符号の説明

10 通信ネットワーク
11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32 端末
100 通信端末
101 再送要求送信部
201 再送データ送信部
301 A L M 制御部
401, 1010 再生遅延時間決定部
402 R T T 管理部
501 R T T 測定部
1020 再生制御部
請求の範囲

[請求項1] ル−ト端末から配信されるストリームデータを受信して再生する複数の通信端末のうちの一の通信端末であって、
前記複数の通信端末は、それぞれに１つの親端末と、0以上の子端末が割り当てられることによって、前記ストリームデータの再生データを前記親端末から前記子端末に順次送信するＡＬＭ（Ａｐｐｌｉｃａｔｉｏｎ Ｌａｙｅｒ Ｍｕｌｔｉｃａｓｔ）配信木を構成し、
該一の通信端末は、
前記ＡＬＭ配信木上の隣接する２つの端末の間の区間にデータを送受信するのに必要な往復遅延時間であって、前記ル−ト端末から該一の通信端末までの各区間の往復遅延時間のうちの最大値を用いて再生遅延時間を決定する再生遅延時間決定部と、
前記ル−ト端末から受信した前記ストリームデータを、前記再生遅延時間決定部で決定された前記再生遅延時間だけ遅延させて再生する再生制御部とを備える
通信端末。

[請求項2] 前記再生遅延時間決定部は、前記往復遅延時間の最大値の整数倍を、前記再生遅延時間と決定する
請求項1に記載の通信端末。

[請求項3] 該一の通信端末とその親端末との間の往復遅延時間をrtt (self) と、該一の通信端末の前記再生遅延時間をx (self) と、
前記親端末の前記再生遅延時間をx (parent) と、正の整数をひselfと定義したとき、
前記再生遅延時間決定部は、
rtt (self) ≥ x (parent) を満たす場合には、式1を用いて前記再生遅延時間 x (self) を決定し、
rtt (self) < x (parent) を満たす場合には、式2を用いて前記再生遅延時間 x (self) を決定する
[数1]
\[x(self) = a_{self} \times \text{trn}(self) \] （式1）

[数2]
\[x(\text{par}) = (a_{self} - 1) \times \text{trn}(self) \times \text{trn}(\text{parent}) \] （式2）

請求項1又は2に記載の通信端末。

[請求項4]
該一の通信端末は、さらに、前記ルート端末から受信したストリームデータの一部に損失が生じた場合に、前記親端末に対して、当該損失に対応する再送データの送信を要求する再送要求部を備え、

前記再送要求部は、該一の通信端末とその親端末との間の往復遅延時間以上で、且つ前記往復遅延時間の最大値以下の間隔で、再送データの送信を繰り返し要求する

請求項1〜3のいずれか1項に記載の通信端末。

[請求項5]
該一の通信端末は、さらに、

該一の通信端末とその親端末との間の前記往復遅延時間を測定する往復遅延時間測定部と、

前記ALM配信端末の前記ルート端末から前記親端末までの1以上の前記往復遅延時間を含む往復遅延時間通知を前記親端末から受信し、前記往復遅延時間測定部で測定された前記往復遅延時間を含めて前記子端末に送信する往復遅延時間管理部とを備える

請求項1〜4のいずれか1項に記載の通信端末。

[請求項6]
前記往復遅延時間管理部は、所定の時間間隔毎に前記往復遅延時間通知を受信し、

前記往復遅延時間測定部は、前記往復遅延時間通知を受信する度に、該一の通信端末とその親端末との間の前記往復遅延時間を測定し、

前記再生遅延時間決定部は、前記往復遅延時間通知を受信する度に、前記往復遅延時間通知に含まれる1以上の前記往復遅延時間と、前記往復遅延時間測定部で測定された前記往復遅延時間とを用いて、前記再生遅延時間を決定する
請求項5に記載の通信端末。

[請求項7]
ルート端末から配信されるストリームデータを受信して再生する複数の通信端末のうちの一の通信端末であって、
前記複数の通信端末は、それぞれ1つの親端末と、0以上の子端末とが割り当てられることによって、前記ストリームデータの再生データを前記親端末から前記子端末に順次送信するALM（Application Layer Multicast）配信木を構成し、

該一の通信端末は、
前記ALM配信木上の隣接する2つの端末の間の区間でデータを送受信するのに必要な往復遅延時間であって、前記ルート端末から該一の通信端末までの各区間のうちの前記ストリームデータの損失率が最も大きい区間の前記往復遅延時間の間で再生遅延時間を決定する再生遅延時間決定部と、

前記ストリームデータを受信してから、前記再生遅延時間決定部で決定された前記再生遅延時間だけ遅延させて再生する再生制御部とを備える
通信端末。

[請求項8]
該一の通信端末は、さらに、
該一の通信端末とその親端末との間の前記損失率を測定する損失率測定部と、
前記ALM配信木上の前記ルート端末から前記親端末までの1以上の前記損失率を含む損失率通知を前記親端末から受信し、前記損失率測定部で測定された前記損失率を含めて前記子端末に送信する損失率管理部とを備える

請求項7に記載の通信端末。

[請求項9]
前記損失率管理部は、所定の時間間隔毎に前記損失率通知を受信し、
前記損失率測定部は、前記損失率通知を受信する度に、該一の通信
端末とその親端末との間の前記損失率を測定し、
前記再生遅延時間決定部は、前記損失率通知を受信する度に、前記
損失率通知に含まれる1以上の前記損失率と、前記損失率測定部で測
定された前記損失率とを用いて、前記再生遅延時間を決定する

請求項8に記載の通信端末。

[請求項10]ルート端末から配信されるストリームデータを受信して再生する複
数の通信端末のうちの一の通信端末により実行される通信方法であつ
て、

前記複数の通信端末は、それぞれに1つの親端末と、0以上の子端
末とが割り当てられることによって、前記ストリームデータの再送デ
ータを前記親端末から前記子端末に順次送信するALM（Application Layer
Multicastノ配信木の構成で、

該通信方法は、

前記ALM配信木上の隣接する2つの端末の間の区間でデータを送
受信するのに必要な往復遅延時間をあて、前記ルート端末から該一
の通信端末までの各区間の往復遅延時間のうちの最大値を用いて再生
遅延時間を決定する再生遅延時間決定ステップと、

前記ルート端末から受信した前記ストリームデータを、前記再生遅
延時間決定ステップで決定された前記再生遅延時間だけ遅延させて再
生する再生制御ステップとを含む

通信方法。

[請求項11]ルート端末から配信されるストリームデータを受信して再生する複
数の通信端末のうちの一の通信端末により実行されるプログラムであ
って、

前記複数の通信端末は、それぞれに1つの親端末と、0以上の子端
末とが割り当てられることによって、前記ストリームデータの再送デ
ータを前記親端末から前記子端末に順次送信するALM（Application Layer
Multicastノ配信木の構成で、
該プログラムは、
前記A L M配信木上の隣接する2つの端末の間の区間でデータを送受信するのに必要な往復遅延時間であって、前記ルート端末から該一の通信端末までの各区間の往復遅延時間内のうちの最大値を用いて再生遅延時間を決定する再生遅延時間決定ステップと、

前記ルート端末から受信した前記ストリームデータを、前記再生遅延時間決定ステップで決定された前記再生遅延時間だけ遅延させて再生する再生制御ステップとを、該一の通信端末に実行させるプログラム。

[請求項12]
ルート端末から配信されるストリームデータを受信して再生する複数の通信端末のうちの一の通信端末に搭載される集積回路であって、

前記複数の通信端末は、それぞれに1つの親端末と、0以上の子端末とが割り当てられることによって、前記ストリームデータの再送データを前記親端末から前記子端末に順次送信するA L M（Application Layer Multicastノ配信木）構成し、

該集積回路は、

前記A L M配信木上の隣接する2つの端末の間の区間でデータを送受信するのに必要な往復遅延時間であって、前記ルート端末から該一の通信端末までの各区間の往復遅延時間内のうちの最大値を用いて再生遅延時間を決定する再生遅延時間決定部と、

前記ストリームデータを受信してから、前記再生遅延時間決定部で決定された前記再生遅延時間だけ遅延させて再生する再生制御部を備える

集積回路。
再生遅延時間
決定処理開始

ルート端末から自端末までの各区間の
往復遅延時間の最大値を用いて、
再生遅延時間を決定する。

S11

受信したストリームデータを、
再生遅延時間だけ遅延させて、再生する。

S12

再生遅延時間
決定処理終了
図5

<table>
<thead>
<tr>
<th>端末番号</th>
<th>親端末との間のRTT</th>
<th> </th>
<th>手法2</th>
<th> </th>
<th>手法3</th>
<th> </th>
<th>αn</th>
<th> </th>
<th>設定値</th>
<th> </th>
<th>再生遅延時間の設定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>200ms</td>
<td></td>
<td>400ms</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400ms</td>
</tr>
<tr>
<td>21</td>
<td>200ms</td>
<td></td>
<td>400ms</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200ms</td>
</tr>
<tr>
<td>22</td>
<td>100ms</td>
<td></td>
<td>200ms</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>650ms</td>
</tr>
<tr>
<td>23</td>
<td>100ms</td>
<td></td>
<td>200ms</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400ms</td>
</tr>
<tr>
<td>24</td>
<td>125ms</td>
<td></td>
<td>400ms</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>650ms</td>
</tr>
<tr>
<td>25</td>
<td>300ms</td>
<td></td>
<td>600ms</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>300ms</td>
</tr>
<tr>
<td>26</td>
<td>150ms</td>
<td></td>
<td>300ms</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200ms</td>
</tr>
<tr>
<td>27</td>
<td>100ms</td>
<td></td>
<td>400ms</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500ms</td>
</tr>
<tr>
<td>28</td>
<td>180ms</td>
<td></td>
<td>400ms</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400ms</td>
</tr>
<tr>
<td>29</td>
<td>100ms</td>
<td></td>
<td>200ms</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>650ms</td>
</tr>
<tr>
<td>30</td>
<td>125ms</td>
<td></td>
<td>400ms</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400ms</td>
</tr>
<tr>
<td>31</td>
<td>100ms</td>
<td></td>
<td>400ms</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>400ms</td>
</tr>
<tr>
<td>32</td>
<td>100ms</td>
<td></td>
<td>600ms</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>500ms</td>
</tr>
<tr>
<td>33</td>
<td>150ms</td>
<td></td>
<td>300ms</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>375ms</td>
</tr>
<tr>
<td>34</td>
<td>175ms</td>
<td></td>
<td>150ms</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350ms</td>
</tr>
<tr>
<td>端末番号</td>
<td>RTT通知メッセージのメッセージID</td>
<td>RTT通知メッセージに含まれるRTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------------------------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>m1, m2</td>
<td>該当なし</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>m3, m4</td>
<td>R(20,21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>m5, m6</td>
<td>R(20,22)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>m7, m8</td>
<td>R(20,21), R(21,23)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>m9, m10</td>
<td>R(20,21), R(21,24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>m11, m12</td>
<td>R(20,22), R(22,25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>m13, m14</td>
<td>R(20,22), R(22,26)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>≡</td>
<td>R(20,21), R(21,23), R(23,27)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>≡</td>
<td>R(20,21), R(21,23), R(23,28)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>≡</td>
<td>R(20,21), R(21,24), R(24,29)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>≡</td>
<td>R(20,21), R(21,24), R(24,30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>≡</td>
<td>R(20,22), R(22,25), R(25,30)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>≡</td>
<td>R(20,22), R(22,25), R(25,32)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>≡</td>
<td>R(20,22), R(22,25), R(25,33)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>≡</td>
<td>R(20,22), R(22,25), R(25,34)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

R(x,y):端間x,y間のRTT
図13

p2の再送を要求

受信バッファ
[図21]
<table>
<thead>
<tr>
<th>端末番号</th>
<th>ネットワーク遅延</th>
<th>再生遅延時間</th>
<th>該当なし</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>100ms</td>
<td>200ms</td>
<td>該当なし</td>
</tr>
<tr>
<td>21</td>
<td>100ms</td>
<td>200ms</td>
<td>該当なし</td>
</tr>
<tr>
<td>23</td>
<td>100ms</td>
<td>200ms</td>
<td>該当なし</td>
</tr>
<tr>
<td>27</td>
<td>100ms</td>
<td>200ms</td>
<td>該当なし</td>
</tr>
</tbody>
</table>
INTERNATIONAL SEARCH REPORT

International application No. PCT/JP2011/002727

A. CLASSIFICATION OF SUBJECT MATTER
H04L12/56(2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H04L 12/56

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Jitsuyo Shinan Koho 1922-1 996 Jitsuyo Shinan Toroku Koho 1996-2011

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

Further documents are listed in the continuation of Box C. See patent family annex.

Special categories of cited documents:

“A” document defining the general state of the art which is not considered to be of particular relevance

“E” earlier application or patent but published on or after the international filing date

“L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

“O” document referring to an oral disclosure, use exhibition or other means

“P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search
05 Augst, 2011 (05.08.11)

Date of mailing of the international search report
16 Augst, 2011 (16.08.11)

Name and mailing address of the ISA/
Japanese Patent Office

Authorized officer

Facsimile No.

Telephone No.
国際調査報告

国際出願番号 PCT／JP 2011/002727

A. 発明の属する分野の分類（国際特許分類（IPC））
Int.Cl. H04L12/56 (2006.01)

B. 調査を行った分野
調査を行った最小限資料（国際特許分類（IPC））
Int.Cl. H04L12/56

最小限資料以外の資料で調査を行った分野に含まれるもの
日本国実用新案公報 1922－
日本国公開実用新案公報 1971－2
日本国実用新案登録公報 1996－
日本国登録実用新案公報 1994－2

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C. 関連すると認められる文献
引用文献のカテゴリー• 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 関連する請求項の番号

A 村 岳他、ビアツービア型ストリーミングにおける映像再生制、電子情報通信学会技術研究報告，2005.02.25，第104巻，第692，p·307～312 1-12

＊引用文献のカテゴリー
IA 特に関連のある文献ではなく、一般的な技術水準を示すもの
IE 国際出願 日前の出願または特許であるが、国際出願 日以後に公表されたもの
E 優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特别な理由を確立するために引用する文献（理由を付す）
I0 口頭による開示、使用、展示等に言及する文献
IP 国際出願 日前に、かつ優先権の主張の基礎となる出願

国際調査を完了した日 05.08.2011 国際調査報告の発送日 16.08.2011

国際調査機関の名称及びあて先 日本国特許庁（ISA／JP）
郵便番号 100－8915 東京都千代田区霞が関三丁目4番3号

特許庁査定官（権限のある職員）
衣縮 文彦
電話番号 03-3581-1101 内線 3596

様式 PCT／ISA／210（第2ページ）（2009年7月）