wO 2014/120698 A1 I} I 0000 0O O O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

\

=

(10) International Publication Number

WO 2014/120698 A1

7 August 2014 (07.08.2014) WIPO I PCT

(51) International Patent Classification: Redmond, Washington 98052-6399 (US). RAMBERG,
GO6F 9/50 (2006.01) Mark John; ¢c/o Microsoft Corporation, LCA - Internation-

1 Patent Mi ft W R Washi
(21) International Application Number: 38052?é13sé9?8§) s % Redmond, Washington

PCT/US2014/013468 ’
(22) International Filing Date: (81) D.esignated' States (unle'ss othe'rwise 'indicated, for every
297 2014 (2901 2014 kind of national protection available): AE, AG, AL, AM,
anuary (29.01.2014) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(25) Filing Language: English BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
L . DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(26) Publication Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
(30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
13/758,613 4 February 2013 (04.02.2013) Us MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
(71) Applicant: MICROSOFT CORPORATION [US/US]; SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
One Microsoft Way, Redmond, Washington 98052-6399 TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
(US). ZW.

(72) Inventors: LEE, Brian; c/o Microsoft Corporation, LCA - (84) Designated States (unless otherwise indicated, for every

International Patents, One Microsoft Way, Redmond,
Washington 98052-6399 (US). TREMBLAY, Marc; c/o
Microsoft Corporation, LCA - International Patents, One
Microsoft Way, Redmond, Washington 98052-6399 (US).
BOND, Barry; c/o Microsoft Corporation, LCA - Interna-
tional Patents, One Microsoft Way, Redmond, Washington
98052-6399 (US). SADOVSKY, Vlad; c/o Microsoft Cor-
poration, LCA - International Patents, One Microsoft Way,

kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: DYNAMIC MANAGEMENT OF HETEROGENEOUS MEMORY

High Performance
Memory
102

A

102a

106

105 104a
Vi

y

Processor Core(s)
103

Memory
104

System on Chip
(SoC)

101 FIG. 1

(57) Abstract: A method of operating a computing
device includes dynamically managing at least two types
of memory based on workloads, or requests from differ-
ent types of applications. A first type of memory may be
high performance memory that may have a higher band-
width, lower memory latency and/or lower power con-
sumption than a second type of memory in the comput-
ing device. In an embodiment, the computing device in-
cludes a system on a chip (SoC) that includes Wide /O
DRAM positioned with one or more processor cores. A
Low Power Double Data Rate 3 dynamic random access
memory (LPDDR3 DRAM) memory is externally con-
nected to the SoC or is an embedded part of the SoC. In
embodiments, the computing device may be included in
at least a cell phone, mobile device, embedded system,
video game, media console, laptop computer, desktop
computer, server and/or datacenter.

WO 2014/120698 A1 I 00000000 O

Declarations under Rule 4.17: Published:

— as to applicant’s entitlement to apply for and be granted — with international search report (Art. 21(3))
a patent (Rule 4.17(ii))

— as to the applicant’s entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

DYNAMIC MANAGEMENT OF HETEROGENEOUS MEMORY

BACKGROUND

[0001] An operating system (OS) includes processor readable instructions that manages

computer hardware resources and provides common services for other computing programs
having processor readable instructions, such as application programs (applications).
Typically the OS acts as an intermediary between applications and computer hardware. An
OS typically schedules tasks for efficient use of computing resources. An OS typically
perform basic tasks, such as recognizing input from the keyboard, sending output to the
display screen, keeping track of files and directories, and controlling peripheral devices,
such as printers and disk drives.
SUMMARY

[0002] A method of operating a computing device includes dynamically managing at least
two types of memory (heterogeneous memory) based on workloads, or requests from
different types of applications. A first type of memory may be high performance memory
that may have a higher bandwidth, lower memory latency, higher number of writes before
wear-out and/or lower power consumption than a second type of memory in the computing
device. In an embodiment, the computing device includes a system on a chip (SoC) that
includes Wide I/0 DRAM (an example of higher performing memory) positioned adjacent
to one or more processor cores. A Low Power Double Data Rate 3 dynamic random access
memory (LPDDR3 DRAM) memory (an example of conventional memory) is either
internally or externally connected to the SoC. In embodiments, the computing device may
be included in at least a cell phone, mobile device, embedded system, video game console,
media console, laptop computer, desktop computer, server and/or datacenter.

[0003] In an embodiment, an OS allocates the higher performing memory to certain
applications having particular workloads or functions (for example, ray tracing, frame/video
buffering, NUI (natural user interface) data buffering). The OS may transfer data from a
higher performing memory when new data needs to occupy the higher performing memory.
The OS and one or more processors, along with the memory controller logic hardware
and/or software, also performs error correction to preserve data integrity. An online (web)
processor readable catalog of memory characteristics may be accessed by the OS, for the
purpose of determining capabilities and/or performance characteristics of different types of

memory.

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

[0004] In an embodiment, applications have an attribute flag or information in the
application manifest that indicates to the OS that the particular application benefits from
using the high performance memory. The OS may not allow access to the high performance
memory when the requesting application is not on the applications manifest, or when the
requesting application requires more amount of high performance memory than is available.
In an embodiment, the OS monitors the execution of the application and keeps track of the
memory location accesses and usage patterns. In embodiments, the OS may pass the
attribute flag or information to virtual or physical memory allocators, such as memory
controllers or memory managers.

[0005] In an embodiment, the high performance memory may be used as virtual cache
memory or cache memory.

[0006] The OS or the memory controller may also interrogate the different types of
memory to obtain memory operational details as well as periodically interrogate the
different types of memory for health and performance information in embodiments. The OS
or the memory controller may also manage the power consumption state of the different
types of memory.

[0007] A method embodiment allocates a type of memory to an application that is
processed by a computing device. The method includes determining the types of integrated
circuit memory available in the computing device. The types of integrated circuit memory
available include a first high performance type of memory and a second type of memory
that is not high performance memory. A request from the application to use the high
performance memory is received. The high performance memory is allocated to the
application in response to the request.

[0008] An apparatus embodiment includes one or more processors and a first processor
readable memory having a first performance characteristic. The apparatus also includes a
second processor readable memory having a second performance characteristic. The first
performance characteristic is better than the second performance characteristic. The one or
more processors execute processor readable instructions of an OS to determine whether one
or more software applications request usage of the first processor readable memory and an
amount of processor readable memory the one or more applications uses. The one or more
processors executes the processor readable instructions of the OS to allow at least one of the
one or more applications access to the first processor readable memory in response to the
request for usage of the first processor readable memory and the amount of processor

readable memory the one or more applications uses.

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

[0009] In another embodiment, one or more processor readable memory devices include
instructions which when executed cause one or more processors to perform a method that
allocates high performance memory to an application. A request from the application to use
the high performance memory and an amount of memory the application will use is
received. A determination is made as to the amount of high performance memory that is
available. The application is allocated the high performance memory in response to the
amount of memory the application will use and the amount of high performance memory
that is available.
[0010] This Summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not intended
to identify key features or essential features of the claimed subject matter, nor is it intended
to be used as an aid in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS
[0011] Figure I is a high-level block diagram of an exemplary hardware architecture of a
computing device.
[0012] Figure 2 is a high-level block diagram of an exemplary software architecture to
access different types of memory.
[0013] Figure 3A is a high-level block diagram of an exemplary OS architecture to access
different types of memory.
[0014] Figure 3B is a high-level block diagram of an exemplary dynamic management of
heterogeneous memory software.
[0015] Figure 4 is a flow chart of an exemplary method to allocate different types of
memory to one or more applications.
[0016] Figure SA is a flow chart of an exemplary method to use high performance
memory as virtual cache.
[0017] Figure 5B isa flow chart of an exemplary method to use high performance memory
as cache.
[0018] Figure 6A is a flow chart of an exemplary method to query different types of
memory to obtain memory information including configuration, performance and health.
[0019] Figure 6B is a flow chart of an exemplary method to manage different types of
memory power.
[0020] Figure 7 is an isometric view of an exemplary gaming and media system.
[0021] Figure 8 is an exemplary functional block diagram of components of the gaming

and media system shown in Fig. 10.

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

DETAILED DESCRIPTION
[0022] A SoC (ak.a. SOC) is an integrated circuit (IC) that integrates electronic
components and/or subsystems of a computing device or other electronic system into a
single semiconductor substrate and/or single chip housed within a single package. For
example, memory that was previously in a memory module subsystem in a personal
computer (PC) may now be included in a SoC. Similarly, memory control logic may be
included in a processor of a SoC rather than in a separately packaged memory controller.
[0023] One or more processors of a SoC may also have access to different types of
memory that have different types of memory characteristics. Memory characteristics or
performance parameters may include, but not limited to, bandwidth, memory latency, power
consumption, number of writes before wear-out and/or heat generation. High performance
memory, such as a memory that has higher bandwidth (or that may transmit or receive more
data per period of time than other memory), may be more costly and may not be as available
as memory that does not have a particular high performance characteristic.
[0024] Figure | is a high-level block diagram of an exemplary hardware architecture of a
computing device embodiment. In embodiments, computing device 100 may be included in
at least a cell phone, mobile device, embedded system, video game console, media console,
laptop computer, desktop computer, server and/or datacenter.
[0025] Computing device 100 includes a SoC 101 and memory 104 in an embodiment. A
SoC is an IC that integrates components of a computing device or other electronic system
into a single chip or semiconductor substrate. SoC 101 includes one or more processor
core(s) 103 and high performance memory 102. Processor core(s) 103 communicate with
high performance memory 102 by way of internal signal path 106. In an embodiment, high
performance memory 102 includes an interface 102a that is coupled to signal path 106.
Processor core(s) 103 also communicates with external memory 104 by way of external
signal path 105. In an embodiment, signal paths 106 and 105 are separate signal paths
controlled by the OS and an embedded memory controller within the SoC 101.
[0026] In an embodiment, memory 104 is external to SoC 101 and may be configured as
a memory module or solder-on component on a printed circuit board, such as a motherboard.
In an embodiment, memory 104 includes an interface that is coupled to signal path 105 that
includes at least a trace or signal line on a printed circuit board. In an embodiment SoC 101
is also coupled to the same printed circuit board that includes signal path 105.
[0027] As one of ordinary skill in the art would appreciate, other electronic components

may be included in SoC 101. A SoC 101 may include digital, analog, mixed-signal, and/or

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

radio frequency circuits—one or more on a single semiconductor substrate. A SoC 101 may
include oscillators, phase-locked loops, counter-timers, real-time timers, power-on reset
generators, external interfaces (for example, Universal Serial Bus (USB), IEEE 1394
interface (FireWire), Ethernet, Universal Asynchronous Receiver/Transmitter (USART)
and Serial Peripheral Bus (SPI)), analog interfaces, voltage regulators and/or power
management circuits.

[0028] In alternate embodiments, SoC 101 may be replaced with a system in package
(SiP) or package on package (PoP). In a SiP, multiple chips or semiconductor substrates are
housed in a single package. In a SiP embodiment, processor core(s) 103 would be on one
semiconductor substrate and high performance memory 102 would be on a second
semiconductor substrate, both housed in a single package. In an embodiment, the first
semiconductor substrate would be coupled to the second semiconductor substrate by wire
bonding.

[0029] In a PoP embodiment, processor core(s) 103 would be on one semiconductor die
housed in a first package and high performance memory 102 would be on a second
semiconductor die housed in a second different package. The first and second packages
could then be stacked with a standard interface to route signals between the packages, in
particular the semiconductor dies. The stacked packages then may be coupled to a printed
circuit board having memory 104 as a component in an embodiment.

[0030] In embodiments, processor core(s) 103 includes one or more processors that
executes (or reads) processor (or machine) readable instructions stored in memory. An
example of processor readable instructions may include an OS and/or an application
software program (application) for computing device 100 (such as OS 205 and applications
202-204 shown in Fig. 2). Processor core(s) 103 uses high performance memory 102 and
memory 104 in response executing processor readable instructions of an OS and application.
In an embodiment, processor core(s) 103 may include a processor and memory controller
or alternatively a processor that also performs memory management functions similarly
performed by a memory controller. Processor core(s) 103 may also include a controller,
central processing unit (CPU), graphics-processing unit (GPU), digital signal processor
(DSP) and/or a field programmable gate array (FPGA). In an embodiment, high
performance memory 102 is positioned on top of processor core(s) 103.

[0031] In an embodiment, high performance memory 102 has at least one or more
memory characteristic, such as bandwidth, memory latency, heat generation, number of

writes before wear-out and/or power consumption that is better in performance than memory

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

102. For example, high performance memory 102 may be a Wide I/O DRAM having a
higher bandwidth than memory 104. Memory 104 may be Low Power Double Data Rate 3
dynamic random access memory (LPDDR3 DRAM) memory (also known as Low Power
DDR, mobile DDR (MDDR) or mDDR). In an embodiment, memory interface 102a is a
Wide I/O DRAM interface transmitting and receiving signals on signal path 106; while
memory interface 104 is a LPDDR3 DRAM interface transmitting and receiving signals on
signal path 105.

[0032] In embodiments, high performance memory 102 and memory 104 include one or
more arrays of memory cells in an IC disposed on separate semiconductor substrates. In an
embodiment, high performance memory 102 and memory 104 are included in respective
integrated monolithic circuits housed in separately packaged devices. In embodiments, high
performance memory 102 and memory 104 may include volatile and/or non-volatile
memory.

[0033] Types of volatile memory include, but are not limited to, dynamic random access
memory (DRAM), molecular charge-based (ZettaCore) DRAM, floating-body DRAM and
static random access memory (“SRAM?”). Particular types of DRAM include double data
rate SDRAM (“DDR”), or later generation SDRAM (e.g., “DDRn”).

[0034] Types of non-volatile memory include, but are not limited to, types of electrically
erasable program read-only memory (“EEPROM”), FLASH (including NAND and NOR
FLASH), ONO FLASH, magneto resistive or magnetic RAM (“MRAM?”), ferroelectric
RAM (“FRAM?”), holographic media, Ovonic/phase change, Nano crystals, Nanotube RAM
(NRAM-Nantero), MEMS scanning probe systems, MEMS cantilever switch, polymer,
molecular, nano-floating gate and single electron.

[0035] In embodiments, signal paths 105/106 are media that transfers a signal, such as an
interconnect, conducting element, contact, pin, region in a semiconductor substrate, wire,
metal trace/signal line, or photoelectric conductor, singly or in combination. In an
embodiment, multiple signal paths may replace a single signal path illustrated in the figures
and a single signal path may replace multiple signal paths illustrated in the figures. In
embodiments, a signal path may include a bus and/or point-to-point connection. In an
embodiment, a signal path includes control and data signal lines. In an alternate
embodiment, a signal path includes data signal lines or control signal lines. In still other
embodiments, signal paths are unidirectional (signals that travel in one direction) or
bidirectional (signals that travel in two directions) or combinations of both unidirectional

signal lines and bidirectional signal lines.

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

[0036] Figure 2 is a high-level block diagram of an exemplary software architecture 200
to access different types of memory. OS 205, and in particular dynamic management of
heterogencous memory (DMHM) 308 determines, among other functions, which
application 202-204 are allocated high performance memory 208 and which application
202-204 are allocated memory 209. In embodiments, high performance memory 208
corresponds to high performance memory 102 and memory 209 corresponds to memory 104
described herein and shown in Figure 1. DMHM 308 determines which of applications 202-
204 will have access to high performance memory 208 based on at least whether one of
applications 202-204 request high performance memory by way of an attribute flag or
information. Once a determination that a particular application will be allocated a particular
memory type (either high performance memory 208 or memory 209), the appropriate device
drivers 206 is used with OS 205.

[0037] OS 205, in particular DMHM 308 also uses an advanced configuration and power
interface (ACPI) driver, register, basic input/output system (BIOS) and tables (collectively
ARBT) 207 to perform other functions, such as monitoring the health, power and
performance of high performance memory 208 and memory 209 as described in detail
herein. An ACPI driver discovers, configures, power manages and monitors hardware
components, such as memory. For example, OS 205 may use an ACPI driver to turn off a
peripheral device when not in use. BIOS is a set of computer instructions in firmware that
control input and output operations that is typical stored in non-volatile memory. In an
embodiment, a ACPI driver allows the OS 205 to communicate with BIOS and instruct the
BIOS to power down peripherals.

[0038] Figure 3A is a high-level block diagram of an OS architecture 300 to access
different types of memory. In an embodiment, OS 205 includes one or more of the software
components illustrated in Figure 3A. In an embodiment, a software component may include
a software program, software object, software function, software subroutine, software
method, software instance, script and/or a code fragment, singly or in combination. For
example, OS 205 includes one or more of process management 301, memory management
302, I/O device management 303, file management 304, network management 305, user
interface 306 and protection 307. One or more exemplary function that may be performed
by the various OS software components are described below. In alternate embodiment, more
or less software components and/or functions of the software components described below

may be used.

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

[0039] In embodiments, at least portions of OS 205 are stored in processor readable
memory devices. In an embodiment, at least portions of OS 205 are stored in high
performance memory 102 and/or in memory 104 illustrated in Figure 1.

[0040] Processes management 301 is responsible for creating and deleting user and
system processes. Process management 301 may also be responsible for suspension and
resumption of processes. Process management 301 is also responsible for synchronization
and communication of processes. Process management 301 is also responsible for deadlock
handling.

[0041] Memory management 302 is responsible for keeping track of which part of
memory in the different types of memory is currently being used by a particular software
component or application. Memory management 302 also decides which processes are
loaded into memory when memory space becomes available. Memory management also
allocates and deallocates memory space as needed.

[0042] In an embodiment, dynamic management of heterogeneous memory (DMHM) 308
is included in memory management 302. DMHM 308 is responsible for, but not limited to,
determining types of memory available, allocating particular types of memory to particular
applications, monitor memory usage of applications, perform error detection and correction,
determine cache available, use memory as actual or virtual cache, monitor performance,
health and configuration of memory and manage power of the different types of memory.
In an embodiment, software components to perform one or more of the functions of DMHM
308 are illustrated in Figure 3B.

[0043] In an embodiment, DMHM 308 includes one or more of the following software
components, as illustrated in Figure 3B: memory type 310, allocate 311, monitor usage 312,
detection and error correction 313, cache management 314, monitor performance, health
and configuration 315 and/or manage power 316.

[0044] Memory type 310 is responsible for determining what types of memory are
available in a computing environment. In an embodiment, memory type 310 queries the
computing environment to determine what types of memory are available. In an
embodiment, memory type 310 determines whether any high performance memory is
available. In an embodiment, memory type 310 accesses an online (web) catalog of
application characteristics via the Internet, for the purpose of determining capabilities and/or
performance characteristics for types of memory that are associated with the listed
applications, in a computing environment, such as computing device 100. When a particular

memory has certain capabilities and/or performance characteristics that are appropriate for

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

the applications, such as having a bandwidth higher than a predetermined threshold, memory
type 310 will assign a particular memory as high performance memory. When the memory
does not have a particular capability and/or performance characteristic that meets a
predetermined threshold, memory type 310 does not assign the memory as high
performance. In an embodiment, the online catalog of memory capabilities and/or
performance characteristics is updated/modified as new memory devices become available.
In an embodiment an OS tracks and measures performance characteristics of a memory, as
related to memory identification and uploads the measured performance characteristics into
the online catalog via the Internet. In an embodiment, a user may enter input to console 1002
by way of gesture, touch or voice. In an embodiment, optical I/O interface 1135 receives
and translates gestures of a user. In another embodiment, console 1002 includes a natural
user interface (NUI) to receive and translate voice and gesture inputs from a user. In an
alternate embodiment, front panel subassembly 1142 includes a touch surface and a
microphone for receiving and translating a touch or voice, such as a voice command, of a
user. In still a further embodiment, a catalog of memory capabilities and/or performance
characteristics is stored locally in persistent memory.

[0045] Allocate 311 is responsible for allocating a particular type of memory, such as high
performance memory, to a particular application that may have requested high performance
memory. In an embodiment, an application that may benefit from high performance memory
has an attribute flag or information that requests high performance memory. Allocate 311
checks the attribute information before assigning an application to a particular type of
memory. In an embodiment, allocate 311 includes a list of attribute information for
applications and compares the stored attribute information for the particular application in
the list to the attribute information that may be in the application’s manifest.

[0046] In an embodiment, allocate 311 may pass the attribute information to a virtual
memory allocator, which manages the allocation of memory pages to physical memory
areas. In another embodiment, allocate 311 may pass the attribute information to a physical
memory allocator via a memory controller.

[0047] In an embodiment, allocate 311 will determine the amount of memory a particular
application that is requesting high performance memory will use, and deny the request when
a sufficient amount of high performance memory is not available. In another embodiment
allocate 311 will compare run-time priorities of all running or executing applications and
deny the request when high performance memory is mapped to an application of higher

priority in an embodiment.

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

[0048] Inan embodiment, allocate 311 also compares the applications requesting the high
performance memory to lists to determine whether to allocate the application to the high
performance memory. In an embodiment, allocate 311 includes a list of blacklisted
applications for the purpose of preventing certain applications from accessing the higher
performing memory. Alternatively, allocate 311 includes a list of whitelisted applications
that can use the higher performing memory even if the application’s attribute information
does not request high performance memory. This list of applications may exist locally in
allocate 311, or in online accessible via the Internet, processor readable form elsewhere, and
may be updated. In an embodiment, an application that is not assigned high performance
memory because it does not have the appropriate attribute information or has been blocked
because the application is on a blacklist will be assigned memory that is not high
performance.

[0049] Since higher performing memory may be faster (greater bandwidth, lower memory
latency) as well as more power efficient, certain applications are allocated high performance
memory when high performance memory is available, even when the application does not
have the appropriate attribute information, so that the computing device may be more power
efficient.

[0050] Monitor usage 312 is responsible for monitoring the memory usage of an
application that has been assigned a particular type of memory. Monitor usage 312 monitors
the amount of memory being used, so it will not exceed the physically available memory
available in the computing environment. Monitor usage 312 also identifies when high
performance memory is available so that allocate 311 may allocate an application to the
high performance memory. In an embodiment, Monitor usage 312 uses a memory controller
or driver to manage and track the amount of high performance memory a particular
application uses. In an embodiment, monitor usage 312 may compile a summary of
application usage of accessed memory and store the summary of application usage in
persistent memory, occasionally uploading into the stored information to an online catalog
via the Internet.

[0051] Error detection and correction 313 is responsible for detecting and correcting
errors when a particular application uses an allocated type of memory. In various
embodiments, different types of detection and error correcting methods may be used. For
example, a hash function or checksum method may be used. In another embodiment, parity
bits method may be used in an error-correcting code (ECC) or forward error correction
(FEC) method.

10

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

[0052] Cache management 314 is responsible for using high performance memory as
cache for one or more processors. In an alternate embodiment, Cache management 315 uses
high performance memory as virtual cache.

[0053] Inan embodiment, high performing memory is used in order to create a virtualized
holding space or virtual cache for L1/L2/L3 cache memory. This enables cache memory to
be larger and allows L1/L2/L3 cache memory to pool available memory space for its own
purpose. In an embodiment, cache management 315 stores data likely to be used by
L1/L2/L3 cache memory in high performance memory (virtual cache) using speculative
fetching.

[0054] Cache management 315 takes into account that the virtual cache memory
bandwidth (speed) is slower than the typical L1/L2/L3 cache bandwidth. In an embodiment,
a mitigation method to speculatively read-ahead data into the higher performing memory is
used. Cache management 315 also identifies when high performance memory is drained of
data to be fed to L1/L2/L3 cache.

[0055] In an alternate embodiment, higher performance memory is used as higher-level
cache. For example, Wide I/O DRAM would play the role of a higher-level cache than L3
cache in the SoC 101, and as such perform tasks to boost performance.

[0056] Monitor performance, health and configuration (monitor performance) 315 is
responsible for monitoring the performance, such as bandwidth, health and configuration,
such as memory rank, of particular types of memory. In an embodiment, monitor
performance 315 queries each type of memory at power-up and/or periodically to obtain
memory details, such as bandwidth and/or heat. In an embodiment, monitor performance
315 would also query different types of memory for particular memory configurations at
power-up. In an embodiment, monitor performance 315 uses an ACPI driver as illustrated
in Figure 2 to monitor the performance, health and configuration of various memory types.
In an embodiment monitor performance 315 compiles a health profile of a particular
memory related to environmental parameters and periodically uploads such a health profile
into an online catalog via the Internet.

[0057] Manage power 316 is responsible for managing the power of different types of
memory. In an embodiment, manage power 316 manages power of memory types that have
manageable power. In an embodiment, manage power 316 would reduce and/or increase the
amount of power provided to different types of memory depending upon their status and/or
configuration. In an embodiment, an embedded memory controller in processor core(s) 103

would manage the power applied to high performance memory 102. In an embodiment,

11

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

manage power 316 uses an ACPI driver as illustrated in Figure 2 to manage power of various
memory types.

[0058] While DMHM 308 is described as being implemented in OS 205, in alternate
embodiments DMHM 308 may be encoded in firmware of computing device 100.

[0059] Returning to other software components of OS 205, I/O device management 303
is responsible for managing I/O devices. In an embodiment, the peculiarities of specific
hardware are hidden from users. In an embodiment, device drivers know the peculiarities of
the specific device. For example, I/O device management 303 may be responsible for disk
management functions such as free space management, memory allocation, fragmentation,
removal and head scheduling.

[0060] File management 304 is responsible for creating and deleting files and directories.
File management 304 may support a hierarchical file system. File management 304 may
also back up files onto secondary memory.

[0061] Network management 305 is responsible for communication with networks
including providing connection/routing methods. Network management 305 may also be
responsible for data/process migration to other computing devices.

[0062] User interface 306 provides a character and/or graphics user interface to a user and
is responsible for receiving input and providing output to a user.

[0063] Protection 307 is responsible for controlling access of programs, processes, and/or
users to resources of the computing device. For example, protection 307 is responsible for
controlling access to resources such as CPU cycles, memory, files, and/or 1/O devices.
Protection 307 is also responsible for user authentication and communication.

[0064] Figures 4-6B are flow charts illustrating exemplary methods of dynamically
managing heterogeneous memory. In embodiments, steps illustrated in Figures 4-6B
represent the operation of hardware (e.g., processor, memory, circuits), software (e.g., OS,
applications, drivers, machine/processor executable instructions), or a user, singly or in
combination. As one of ordinary skill in the art would understand, embodiments may
include less or more steps shown.

[0065] Figure 4 is a flow chart of an exemplary method to allocate different types of
memory to one or more software applications. Step 400 illustrates determining the types of
memory available in a computing device, such as computing device 100 shown in Figure 1.
In an embodiment, memory type 310 in DMHM 308 determines the types of memory

available in a computing device. In an embodiment, memory type 310 determines whether

12

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

there is a high performance memory available or a hierarchy of different types of performing
memory available.

[0066] Step 401 illustrates receiving a request from an application for service and type of
memory. In an embodiment, an application requests OS 205 for service and DMHM 308,
and in particular allocate 311, determines whether the application requesting service is also
requesting high performance memory. In an embodiment, allocate 311 reads an associated
application manifest to determine whether the requesting application also request high
performance memory. In an embodiment, a requesting application requests high
performance memory 102 as illustrated in Figure 1.

[0067] Step 402 illustrates obtaining and comparing attribute information associated with
the requesting application with attribute information from the application’s manifest. In an
embodiment, allocate 311 reads attributes associated with applications stored in ARBT 207
(in particular an application table) and compares the attribute information with the
information in the requesting application’s manifest.

[0068] Step 403 then determines whether the application is requesting high performance
memory in response to the comparison in step 402. When the attribute information in the
application manifest of the requesting application matches the attribute information in
ARBT 207, the requesting application will be allocated high performance memory when
high performance memory is available and when the application is not on a black list (black
list table included in ARBT 207) as illustrated in steps 404 and 405 as well as when the
requesting application does not request more memory than is available as illustrated in step
406 and described herein.

[0069] Step 404 illustrates determining how much memory a requesting application will
use. In an embodiment, monitor usage 312 monitors the usage of applications in memories
of a computing device.

[0070] Step 405 determines whether the requesting application is on a white or black list.
When the requesting application is on a white list, the application is allocated the high
performance memory even though the application’s attribute information does not indicate
such as long as high performance memory is available and the application does not need
more high performance memory than is available. When the application is on a black list,
the application is denied allocation of the high performance memory regardless of whether
the high performance memory is available in an embodiment. In an embodiment, black and
white lists are stored in tables of ARBT 207. In alternate embodiments, black and white lists

are not used.

13

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

[0071] Step 406 illustrates determining whether high performance memory is available.
In an embodiment, monitor usage 312 updates allocate 311 as to the availability of high
performance memory.

[0072] Step 407 illustrates allocating the requesting application high performance
memory when the requesting application has 1) the appropriate attribute information, 2) is
not on a black list (or is on a white list that overrides the lack of appropriate attribute
information in an embodiment), 3) high performance memory is available and 4) the amount
of high performance memory available is greater than the amount of memory that will be
used by the requesting application. In an embodiment, allocate 311 allocates the high
performance memory to the requesting application when the above condition are met. In an
embodiment, less than the above conditions may be meet to allocate the high performance
memory to the requesting application. Otherwise, allocate 311 allocates memory that is not
high performance (alternate memory) to the requesting application. In an embodiment,
memory 104 is allocated when high performance memory is not allocated.

[0073] In an embodiment, the task of allocating a request from an application for an
amount of memory consists of locating a block of unused memory of sufficient size.
Memory requests are satisfied by allocating portions from a large pool of memory known
as the “heap.” At any given time, some parts of the heap are in use, while some are "free"
(unused) and thus available for future allocations.

[0074] Step 408 illustrates DMHM 308 monitoring the usage of different types of memory
in a computing device. In particular, monitor usage 312 monitors the usage of high
performance memory that is being used by one or more applications and the usage of other
types of memory that are not high performance. Monitor usage 312 notifies allocate 311
when memory space becomes available in high performance memory as well as other types
of memory in an embodiment.

[0075] Step 409 illustrates performing error detection and correction while one or more
applications are using various types of memory. In an embodiment, error detection and
correction 313 in DMHM 308 performs this function.

[0076] Figure SA is a flow chart of an exemplary method to use high performance
memory as virtual cache memory. Step 500 illustrates determining the types of memory
available in a computing device. In an embodiment, step 500 is performed similar to step
400 as described herein. In an embodiment, memory types 310 and/or cache management

314 makes the determination.

14

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

[0077] Step 501 illustrates determining whether cache memory is available. In an
embodiment, cache management 314 determines whether cache memory is available and
the amount of cache memory that is available. Step 501 then determines whether high
performance memory as virtual cache memory will increase the performance of the
computing device. In an embodiment, cache management 314 compares the amount of
cache memory available to a predetermined threshold value. When the amount of cache
memory available is less than the predetermined threshold value, cache management 314
then assigns the high performance memory as virtual cache memory as illustrated in step
502. In an alternate embodiment, cache management 314 assigns high performance memory
as virtual cache memory when a particular application that may benefit from such
assignment requests service from OS 302.

[0078] Step 503 illustrates storing data in high performance memory that is used as virtual
cache memory that is likely to be used. In an embodiment, speculative fetching is used.
[0079] Step 504 illustrates mitigating the relatively slow speed of the high performance
memory used as virtual cache memory compared to actual cache memory. In an
embodiment, a mitigation method to speculatively read-ahead data into the higher
performing memory is used.

[0080] Figure 5B isa flow chart of an exemplary method to use high performance memory
as cache memory. Step 510 illustrates determining whether cache memory is available
similar to step 500. In an embodiment, cache management 314 determines whether cache
memory is available and the amount of cache memory that is available. Step 511 then
determines whether high performance memory as cache memory will increase the
performance of the computing device. In an embodiment, cache management 314 compares
the amount of cache memory available to a predetermined threshold value. When the
amount of cache memory available is less than the predetermined threshold value, cache
management 314 then assigns the high performance memory as cache memory as illustrated
in step 512. In an alternate embodiment, cache management 314 assigns high performance
memory as cache memory when a particular application that may benefit from such
assignment requests service from OS 302.

[0081] Steps 513 and 514 are performed similar to steps 503 and 504 except that high
performance memory is used a cache memory instead of virtual cache memory.

[0082] Figure 6A is a flow chart of an exemplary method to query different types of
memory to obtain memory information including configuration, performance and health.

Step 600 illustrates querying each of the different types of memory in a computing device

15

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

for memory configuration information. In embodiments, memory configuration may include
information relating to type, size, bandwidth, width, rank, latency, clock, timing parameters
and/or other memory configuration parameters. In an embodiment, a storage location having
configuration information that is not resident on the various different types of memory (such
as system or configuration memory) is queried instead of the actual memory themselves.
[0083] In an embodiment, one or more processors executes OS 205, and in particular
DMHM 308, to obtain memory configuration information. In an embodiment, monitor
performance 315 is responsible for obtaining configuration information for each type of
memory. In an embodiment, processor core(s) 103 executes OS 205 to generate control
signals on signal paths 106 and 105 to high performance memory 102 and memory 104.
Each memory than returns the configuration information in response to the control signals.
In an embodiment, the control signals may include separate commands output on signal
paths 105 and 106. In an embodiment, the control signals are output at start-up and/or
periodically.

[0084] Step 601 illustrates monitoring the performance of different types of memory in a
computing device. In an embodiment, processor core(s) 103 executes OS 205 similar to step
600 to obtain performance information, such as actual bandwidth and/or actual memory
latency. In an alternate embodiment, OS 205 and in particular monitor performance 315 in
DMHM 308, measures actual bandwidth and/or memory latency by writing to and reading
from different types of memory. A test pattern may be written to a memory and then read
out while measuring and/or timing performance characteristics of respective types of
memory.

[0085] Step 602 illustrates obtaining health or status information from different types of
memory in a computing device. In embodiment, processor core(s) 103 executes OS 205
similar to steps 600 and 601 to obtain health information, such as temperature (heat) and/or
power consumption of different types of memory. Respective memories may provide health
information including temperature and power consumed in a status information output by
the respective types of memory in response to a control signal output from processor core(s)
103 on signal paths 105 and 106. Similar to above, these control signal may be generated at
start-up or periodically. Also similar to above, a test pattern may be written to and read from
the different types of memory and compared to the test pattern that was sent in order to
determine whether the memory is correctly storing and outputting data (error detection).
[0086] Figure 6B is a flow chart of an exemplary method to manage power for different

types of memory in a computing device. Step 610 illustrates obtaining power management

16

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

information from different types of memory in a computing device. In an embodiment,
processor core(s) 103 executes OS 205 similar to steps above to obtain power information
regarding whether a particular type of memory device may have power that may be
managed. In an embodiment, power management information for respective types of
memory are stored in memory that is not resident on the respective types of memory, such
as system or configuration memory and may be retrieved as described above.

[0087] Step 611 illustrates managing power of different types of memory in a computing
device. When a determination is made that a particular memory may have manageable
power in step 610, power of the identified memory device is managed by manage power
316 in DMHM 308 in an embodiment. For example, processor core(s) 103 executing
manage power 316 output a control signal that would reduce the power to a power
manageable memory device when the memory device does not need the power, such as in a
sleep or hibernate mode.

[0088] In an embodiment, one or more of the computing devices 100 may be, but is not
limited to, a video game and/or media console. Figure 7 will now be used to describe an
exemplary video game and media console, or more generally, will be used to describe an
exemplary gaming and media system 1000 that includes a game and media console. The
following discussion of Figure 7 is intended to provide a brief, general description of a
suitable computing device with which concepts presented herein may be implemented. It is
understood that the system of Figure 7 is by way of example only. In further examples,
embodiments describe herein may be implemented using a variety of client computing
devices, either via a browser application or a software application resident on and executed
by the client computing device. As shown in Figure 7, a gaming and media system 1000
includes a game and media console (hereinafter “console”) 1002. In general, the console
1002 is one type of client computing device. The console 1002 is configured to
accommodate one or more wireless controllers, as represented by controllers 1004: and
10042. The console 1002 is equipped with an internal hard disk drive and a portable media
drive 1006 that support various forms of portable storage media, as represented by an optical
storage disc 1008. Examples of suitable portable storage media include DVD, CD-ROM,
game discs, and so forth. The console 1002 also includes two memory unit card receptacles
10251 and 10252, for receiving removable flash-type memory units 1040. A command
button 1035 on the console 1002 enables and disables wireless peripheral support.

[0089] As depicted in Figure 7, the console 1002 also includes an optical port 1030 for

communicating wirelessly with one or more devices and two USB ports 10101 and 10102 to

17

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

support a wired connection for additional controllers, or other peripherals. In some
implementations, the number and arrangement of additional ports may be modified. A
power button 1012 and an eject button 1014 are also positioned on the front face of the
console 1002. The power button 1012 is selected to apply power to the game console, and
can also provide access to other features and controls, and the eject button 1014 alternately
opens and closes the tray of a portable media drive 1006 to enable insertion and extraction
of an optical storage disc 1008.

[0090] The console 1002 connects to a television or other display (such as display 1050)
via A/V interfacing cables 1020. In one implementation, the console 1002 is equipped with
a dedicated A/V port configured for content-secured digital communication using A/V
cables 1020 (e.g., A/V cables suitable for coupling to a High Definition Multimedia
Interface “HDMI” port on a high definition display 1050 or other display device). A power
cable 1022 provides power to the game console. The console 1002 may be further
configured with broadband capabilities, as represented by a cable or modem connector 1024
to facilitate access to a network, such as the Internet. The broadband capabilities can also
be provided wirelessly, through a broadband network such as a wireless fidelity (Wi-Fi)
network.

[0091] Each controller 1004 is coupled to the console 1002 via a wired or wireless
interface. In the illustrated implementation, the controllers 1004 are USB-compatible and
are coupled to the console 1002 via a wireless or USB port 1010. The console 1002 may be
equipped with any of a wide variety of user interaction mechanisms. In an example
illustrated in Figure 7, each controller 1004 is equipped with two thumb sticks 10321 and
10322, a D-pad 1034, buttons 1036, and two triggers 1038. These controllers are merely
representative, and other known gaming controllers may be substituted for, or added to,
those shown in Figure 7. In an embodiment, a user may enter input to console 1002 by way
of gesture, touch or voice. In an embodiment, optical I/O interface 1135 receives and
translates gestures of a user. In another embodiment, console 1002 includes a natural user
interface (NUI) to receive and translate voice and gesture inputs from a user. In an alternate
embodiment, front panel subassembly 1142 includes a touch surface and a microphone for
receiving and translating a touch or voice, such as a voice command, of a user.

[0092] In one implementation, a memory unit (MU) 1040 may also be inserted into the
controller 1004 to provide additional and portable storage. Portable MUs enable users to

store game parameters for use when playing on other consoles. In this implementation, each

18

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

controller is configured to accommodate two MUs 1040, although more or less than two
MUs may also be employed.

[0093] The gaming and media system 1000 is generally configured for playing games
stored on a memory medium, as well as for downloading and playing games, and
reproducing pre-recorded music and videos, from both electronic and hard media sources.
With the different storage offerings, titles can be played from the hard disk drive, from an
optical storage disc media (e.g., 1008), from an online source, or from MU 1040. Samples
of the types of media that gaming and media system 1000 is capable of playing include:
[0094] Game titles played from CD, DVD or higher capacity discs, from the hard disk
drive, or from an online source.

[0095] Digital music played from a CD in portable media drive 1006, from a file on the
hard disk drive or solid state disk, (e.g., music in a media format), or from online streaming
sources.

[0096] Digital audio/video played from a DVD disc in portable media drive 1006, from a
file on the hard disk drive (e.g., Active Streaming Format), or from online streaming
sources.

[0097] During operation, the console 1002 is configured to receive input from controllers
1004 and display information on the display 1050. For example, the console 1002 can
display a user interface on the display 1050 to allow a user to select a game using the
controller 1004 and display state solvability information as discussed below.

[0098] Figure 8 is a functional block diagram of the gaming and media system 1000 and
shows functional components of the gaming and media system 1000 in more detail. The
console 1002 has a CPU 1100, and a memory controller 1102 that facilitates processor
access to various types of memory, including a flash ROM 1104, a RAM 1106, a hard disk
drive or solid state drive 1108, and the portable media drive 1006. In one implementation,
the CPU 1100 includes a level 1 cache 1110 and a level 2 cache 1112, to temporarily store
data and hence reduce the number of memory access cycles made to the hard drive 1108,
thereby improving processing speed and throughput.

[0099] The CPU 1100, the memory controller 1102, and various memory devices are
interconnected via one or more buses. The details of the bus that is used in this
implementation are not particularly relevant to understanding the subject matter of interest
being discussed herein. However, it will be understood that such a bus might include one or
more of serial and parallel buses, a memory bus, a peripheral bus, and a processor or local

bus, using any of a variety of bus architectures. By way of example, such architectures can

19

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

include an Industry Standard Architecture (ISA) bus, a Micro Channel Architecture (MCA)
bus, an Enhanced ISA (EISA) bus, a Video Electronics Standards Association (VESA) local
bus, and a Peripheral Component Interconnects (PCI) bus also known as a Mezzanine bus.

[00100] In one implementation, the CPU 1100, the memory controller 1102, the ROM
1104, and the RAM 1106 are integrated onto a common module 1114. In this
implementation, the ROM 1104 is configured as a flash ROM that is connected to the
memory controller 1102 via a PCI bus and a ROM bus (neither of which are shown). The
RAM 1106 is configured as multiple Double Data Rate Synchronous Dynamic RAM (DDR
SDRAM) or faster data rate DRAM modules that are independently controlled by the
memory controller 1102 via separate buses. The hard disk drive 1108 and the portable media
drive 1006 are shown connected to the memory controller 1102 via the PCI bus and an AT
Attachment (ATA) bus 1116. However, in other implementations, dedicated data bus
structures of different types can also be applied in the alternative.

[00101] In another embodiment, at least CPU 1100, level 1 cache 1110, level 2 cache 1112,
memory controller 1102 and RAM memory 1106 are included in a SoC, such as SoC 101
as described herein and shown in Figure 1. In an embodiment, RAM memory 1106 is
replaced with high performance memory, such as Wide /O DRAM and the function of
memory controller 1102 is performed by processor core(s) 103. Another type of memory
that in not high performance memory, such as LPDDR3 DRAM, would then be coupled to
SoC 101 as described herein. Similarly, OS 205 is used by SoC 101 in the console 1002 as
described herein.

[00102] A three-dimensional graphics processing unit 1120 and a video encoder 1122 form
a video processing pipeline for high speed and high resolution (e.g., High Definition)
graphics processing. Data are carried from the graphics processing unit 1120 to the video
encoder 1122 via a digital video bus. An audio processing unit 1124 and an audio codec
(coder/decoder) 1126 form a corresponding audio processing pipeline for multi-channel
audio processing of various digital audio formats. Audio data are carried between the audio
processing unit 1124 and the audio codec 1126 via a communication link. The video and
audio processing pipelines output data to an A/V (audio/video) port 1128 for transmission
to a television or other display. In the illustrated implementation, the video and audio
processing components 1120-1128 are mounted on the module 1114.

[00103] Figure 8 shows the module 1114 including a USB host controller 1130 and a
network interface 1132. The USB host controller 1130 is shown in communication with the

CPU 1100 and the memory controller 1102 via a bus (e.g., PCI bus) and serves as host for

20

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

the peripheral controllers 10041-10044. The network interface 1132 provides access to a
network (e.g., Internet, home network, etc.) and may be any of a wide variety of various
wire or wireless interface components including an Ethernet card, a modem, a wireless
access card, a Bluetooth module, a cable modem, and the like.

[00104] In the implementation depicted in Figure 8, the console 1002 includes a controller
support subassembly 1140 for supporting the four controllers 1004:-10044. The controller
support subassembly 1140 includes any hardware and software components to support
wired and wireless operation with an external control device, such as for example, a media
and game controller. A front panel I/O subassembly 1142 supports the multiple
functionalities of power button 1012, the eject button 1014, as well as any LEDs (light
emitting diodes) or other indicators exposed on the outer surface of console 1002.
Subassemblies 1140 and 1142 are in communication with the module 1114 via one or more
cable assemblies 1144. In other implementations, the console 1002 can include additional
controller subassemblies. The illustrated implementation also shows an optical I/O interface
1135 that is configured to send and receive signals that can be communicated to the module
1114.

[00105] The MUs 10401 and 10402 are illustrated as being connectable to MU ports “A”
10301 and “B” 10302 respectively. Additional MUs (e.g., MUs 10403-1040¢) are illustrated
as being connectable to the controllers 10041 and 10043, i.c., two MUs for each controller.
The controllers 10042 and 10044 can also be configured to receive MUs. Each MU 1040
offers additional storage on which games, game parameters, and other data may be stored.
In some implementations, the other data can include any of a digital game component, an
executable gaming application, an instruction set for expanding a gaming application, and a
media file. When inserted into the console 1002 or a controller, the MU 1040 can be
accessed by the memory controller 1102.

[00106] A system power supply module 1150 provides power to the components of the
gaming system 1000. A fan 1152 cools the circuitry within the console 1002.

[00107] An application 1160 comprising processor readable instructions is stored on the
hard disk drive 1108. When the console 1002 is powered on, various portions of the
application 1160 are loaded into RAM 1106, and/or caches 1110 and 1112, for execution
on the CPU 1100, wherein the application 1160 is one such example. Various applications
can be stored on the hard disk drive 1108 for execution on CPU 1100. In an embodiment,
application 1160 includes an attribute information requesting use of a particular type of

memory, such as high performance memory, as described herein.

21

10

15

20

25

30

WO 2014/120698 PCT/US2014/013468

[00108] The console 1002 is also shown as including a communication subsystem 1170
configured to communicatively couple the console 1002 with one or more other computing
devices (e.g., other consoles). The communication subsystem 1170 may include wired
and/or wireless communication devices compatible with one or more different
communication protocols. As non-limiting examples, the communication subsystem 1170
may be configured for communication via a wireless telephone network, or a wired or
wireless local- or wide-area network. In some embodiments, the communication subsystem
1170 may allow the console 1002 to send and/or receive messages to and/or from other
devices via a network such as the Internet. In specific embodiments, the communication
subsystem 1170 can be used to communicate with a coordinator and/or other computing
devices, for sending download requests, and for effecting downloading and uploading of
digital content. More generally, the communication subsystem 1170 can enable the console
1002 to participate on peer-to-peer communications.

[00109] The gaming and media system 1000 may be operated as a standalone system by
simply connecting the system to display 1050 (Figure 7), a television, a video projector, or
other display device. In this standalone mode, the gaming and media system 1000 enables
one or more players to play games, or enjoy digital media, e.g., by watching movies, or
listening to music. However, with the integration of broadband connectivity made available
through network interface 1132, or more generally the communication subsystem 1170, the
gaming and media system 1000 may further be operated as a participant in a larger network
gaming community, such as a peer-to-peer network.

[00110] The above described console 1002 is just one example of the computing devices
100 discussed above with reference to Figure 1 and various other Figures. As was explained
above, there are various other types of computing devices with which embodiments
described herein can be used.

[00111] The foregoing detailed description of the inventive system has been presented for
purposes of illustration and description. It is not intended to be exhaustive or to limit the
inventive system to the precise form disclosed. Many modifications and variations are
possible in light of the above teaching. The described embodiments were chosen in order to
best explain the principles of the inventive system and its practical application to thereby
enable others skilled in the art to best utilize the inventive system in various embodiments
and with various modifications as are suited to the particular use contemplated. It is intended

that the scope of the inventive system be defined by the claims appended hereto.

22

WO 2014/120698 PCT/US2014/013468

CLAIMS

1. A method to allocate a type of integrated circuit memory to an application
processed by a computing device, the method comprising:

determining types of integrated circuit memory available for the application in the
computing device, wherein the types of integrated circuit memory available include a first
type of integrated circuit memory and a second type of integrated circuit memory;

receiving a request from the application to use the first type of integrated circuit
memory; and

allocating the first type of integrated circuit memory to be used by the application in

response to the request from the application.

2. The method of claim 1, wherein the first type of integrated circuit memory has at
least one or more performance characteristics that is better than the second type of integrated

circuit memory.

3. The method of claim 1, wherein the first type of integrated circuit memory has at
least one of a higher bandwidth, lower memory latency or lower power consumption than

the second type of integrated circuit memory.

4. The method of claim 1, wherein the determining includes accessing performance
characteristics of the first and second types of integrated circuit memory from a list of

memory performance characteristics.

5. The method of claim 1, wherein the list of performance characteristics is obtained
via the Internet, and wherein the list of performance characteristics is stored in a processor

readable format.
6. The method of claim 1, wherein the receiving includes reading attribute information

on an application manifest that indicates the request from the application includes a request

to use the first type of integrated circuit memory.

23

WO 2014/120698 PCT/US2014/013468

7. The method of claim 1, wherein the allocating includes transferring the request to at
least one of a virtual memory allocator or physical memory allocator of a memory controller
that manages the allocation of memory pages to physical memory areas in the computing

device.

8. The method of claim 1, further comprising monitoring a memory location and usage

of the application at the first type of integrated circuit memory.

9. The method of claim 1, further comprising comparing the application with a stored
list of applications in the computing device, and allocating the first type of integrated circuit
memory is replaced with allocating the second type of integrated circuit memory to be used
by the application in response to the application being on the stored list, and

wherein the allocating the first type of integrated circuit memory is replaced with
allocating the second type of integrated circuit memory to be used by the application when
the application usage will exceed physical memory space of the first type of integrated

circuit memory.

10. The method of claim 1, further comprising allocating the first type of integrated

circuit memory as cache memory accessible by the application.

11. The method of claim 1, wherein the determining includes initiating a request to the
first and second types of integrated circuit memory for information regarding the integrated
circuit memory, wherein the information regarding the integrated circuit memory is selected

from one of memory configuration or power management.

12 An apparatus comprising;

one Or more processors;

a first processor readable memory having a first performance characteristics;

a second processor readable memory having a second performance characteristic,
wherein the first performance characteristic is better than the second performance
characteristic;

one or more software applications; and

an operating system including processor readable instructions, wherein the one or

more processors execute the processor readable instructions of the operating system to:

24

WO 2014/120698 PCT/US2014/013468

determine whether one or more software applications requests usage of the
first processor readable memory,

determine an amount of processor readable memory the one or more software
applications uses, and

allow at least one of the one or more software applications access to the first
processor readable memory in response to the request for usage of the first processor
readable memory and the amount of processor readable memory the one or more

software applications uses.

13. The apparatus of claim 12, wherein the first and second performance characteristics

are selected from one of bandwidth, memory latency or power consumption.

14. The apparatus of claim 12, wherein the one or more processors and first processor
readable memory are integrated into a single semiconductor die housed by a first package,
and wherein the second processor readable memory is included in a second semiconductor

die housed by a second package.

15. The apparatus of claim 12, wherein the one or more processors are included on a
first semiconductor die and the first processor readable memory is included on a second
semiconductor die, wherein the first and second dies are housed by a first package, and
wherein the second processor readable memory is included in a third semiconductor die

housed by a second package.

25

WO 2014/120698 PCT/US2014/013468

1/9

High Performance
Memory
102 |
< % 102a

A

106

105 104
Y e

Processor Core(s) > Memory
103 < 104

System on Chip
(SoC)
101

FIG. 1

WO 2014/120698

2/9

200
.

PCT/US2014/013468

Application
202

Application
203

Application
204

Dynamic Management
Of Heterogeneous
Memory(DMHM)
308

Operating System (OS) 205

Device Drivers

206

R

ACPI Driver, Register
BIOS, Tables
(ARBT) 207

'

High Performance Memory
208

Memory

209

FIG. 2

WO 2014/120698

PCT/US2014/013468

300

;{“"
Process Management Dynamic
301 Management
_ Of Heterogeneous
Memory
(DMHM)
/O Device 308
Management Memory Management
303 302

File Management
304

Network Management
305

User Interface
306

Protection
307

Operating System (OS) 205

FIG. 3A

WO 2014/120698

4/9

PCT/US2014/013468

Memory Type
310

Allocate
311

Monitor Usage
312

Error Detection and
Correction
313

Cache Management
314

Manage Power
316

DMHM
308

Monitor Performance,
Health and
Configuration
315

FIG. 3B

WO 2014/120698 PCT/US2014/013468

5/9

Determine types of memory available 400

v

Receive request from application for service and type of
memory

v

Compare attribute information of requesting application [_~402
with stored application attribute information

v

Determine whether requesting application requests |_~403
high performance memory

v

Determine amount of memory requesting application (~404
uses

v

Determine whether application on white or black lists 405

v

Determine whether high performance memory available M"406

v

Allocate high performance memory or alternate
memory to requesting application

v

Monitor memory usage of one or more applications f~408

v

Perform error detection and correction 409

~401

407

FIG. 4

WO 2014/120698 PCT/US2014/013468

6/9
Determine types of memory available ~~500
Determine cache memory available ~501

v

Assign high performance memory as virtual
cache memory 502

Store data in high performance memory used as
virtual cache that is likely to be used using ~_ 503
speculative fetching

v

Mitigate slower higher performance memory

used as virtual cache memory "\ 504
Determine types of memory available 510
Determine cache memory available 511

Assign high performance memory as cache
memory 512

Store data in high performance memory used as
cache memory that is likely to be used using ~_ 513
speculative fetching

Mitigate slower higher performance memory

used as virtual cache memory 514

FIG. 5B

WO 2014/120698 PCT/US2014/013468

7/9

Query memory regarding configuration 600

v

Monitor performance of memories (bandwidth,

~ 601
memory latency, etc.)
Monitor health of memories (heat, power
(heat, p _~602

consumption, etc.)

FIG. 6A

Query memory regarding whether memory has _/-61 0
manageable power

v

11
Manage power of memories s 6

FIG. 6B

PCT/US2014/013468

WO 2014/120698

8/9

020l

0001

PCT/US2014/013468

WO 2014/120698

9/9

8 "OIA

0501 LZ0V0L egpy 0611
[LNQCWAN | LINQ W3 [INA WAl ml_ JOYLNOD ILONTY
%(.....;movo_‘ ¥ ="0p0| v_‘o_‘
LINAL N3N w 5001 ¥3110YINOD %001 ¥311081NOD ¢ror
2040 , im j W o
TpOO eZp00)
oco°r o%o°T Oovll ZriT ST
’ A1gNISSVENS LHod chll sEll
«d, 140d «V» 180d Y3 TI0HLINOD A1gn3assvans JOV4HILNI
1INN AYOWIW 1INN AYOWIW SSITIYIM/ATHIM O/l TANVd LNO¥ O/l VOILdO
; : :
12445 So——— R
NI 001t ddv | 3007
q NV wO_‘ L EN-[q
IANQ MSIQ aYYH VIQ3apy 318V.LH0d
0slL1 Mw Mw
IINAON
A1ddNS ¥3IMOd WILSAS A 9L1L 319vO VLY v
¢ ¥
Zerr OET T Y¥3T1081NOD 9011 AHOWIN VY
4/l 1SOH SN 2001 oLl
MN 9z1T — H3T110HLINOD AHOW3N 011
03009 olany vcc 1INN AHOWIN INOY HSV14 45 WNALSASENS
8CIl ONISS3O0Hd oldny SNOLLYDINNINOD
140d 44%" [T OLLlL
AV Y3A0ONT 02TT LINN ONISS3008d IHOVD Z 13ATT 3HOVD | T3ATT
O3aIA SOIHAVYS d¢ 001 L LINN ©NISSI00dd WHINID

2001 310SNOD NV

N

0001

ey

