
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)
(19) World Intellectual Property 

Organization
International Bureau

(43) International Publication Date 
7 August 2014 (07.08.2014)

(10) International Publication Number

WIPOIPCT
WO 2014/120698 Al

(51) International Patent Classification:
G06F9/50 (2006.01)

(21) International Application Number:
PCT/US2014/013468

(22) International Filing Date:
29 January 2014 (29.01.2014)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
13/758,613 4 February 2013 (04.02.2013) US

(71) Applicant: MICROSOFT CORPORATION [US/US]; 
One Microsoft Way, Redmond, Washington 98052-6399 
(US).

(72) Inventors: LEE, Brian; c/o Microsoft Corporation, LCA - 
International Patents, One Microsoft Way, Redmond, 
Washington 98052-6399 (US). TREMBLAY, Marc; c/o 
Microsoft Corporation, LCA - International Patents, One 
Microsoft Way, Redmond, Washington 98052-6399 (US). 
BOND, Barry; c/o Microsoft Corporation, LCA - Interna­
tional Patents, One Microsoft Way, Redmond, Washington 
98052-6399 (US). SADOVSKY, Vlad; c/o Microsoft Cor­
poration, LCA - International Patents, One Microsoft Way,

Redmond, Washington 98052-6399 (US). RAMBERG, 
Mark John; c/o Microsoft Corporation, LCA - Internation­
al Patents, One Microsoft Way, Redmond, Washington 
98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every 
kind of national protection available)·. AE, AG, AL, AM, 
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 
ZW.

(84) Designated States (unless otherwise indicated, for every 
kind of regional protection available)·. ARIPO (BW, GH, 
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, 
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, LV, 
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, 
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, 
KM, ML, MR, NE, SN, TD, TG).

[Continued on next page]

— (54) Title: DYNAMIC MANAGEMENT OF HETEROGENEOUS MEMORY

(57) Abstract: A method of operating a computing 
device includes dynamically managing at least two types 
of memory based on workloads, or requests from differ­
ent types of applications. A first type of memory may be 
high performance memory that may have a higher band­
width, lower memory latency and/or lower power con­
sumption than a second type of memory in the comput­
ing device. In an embodiment, the computing device in­
cludes a system on a chip (SoC) that includes Wide EO 
DRAM positioned with one or more processor cores. A 
Low Power Double Data Rate 3 dynamic random access 
memory (LPDDR3 DRAM) memory is externally con­
nected to the SoC or is an embedded part of the SoC. In 
embodiments, the computing device may be included in 
at least a cell phone, mobile device, embedded system, 
video game, media console, laptop computer, desktop 
computer, server and/or datacenter.

W
O

 20
14

/1
20

69
8 A

l



wo 2014/120698 Al lllllllllllllllllllllllllllllllllllll^
Declarations under Rule 4.17: Published:

— as to applicant's entitlement to apply for and be granted — with international search report (Art. 21(3)) 
a patent (Rule 4.17(H))

— as to the applicant's entitlement to claim the priority of 
the earlier application (Rule 4.17(iii))



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

DYNAMIC MANAGEMENT OF HETEROGENEOUS MEMORY

BACKGROUND

[0001] An operating system (OS) includes processor readable instructions that manages 

computer hardware resources and provides common services for other computing programs 

having processor readable instructions, such as application programs (applications). 

Typically the OS acts as an intermediary between applications and computer hardware. An 

OS typically schedules tasks for efficient use of computing resources. An OS typically 

perform basic tasks, such as recognizing input from the keyboard, sending output to the 

display screen, keeping track of files and directories, and controlling peripheral devices, 

such as printers and disk drives.

SUMMARY

[0002] A method of operating a computing device includes dynamically managing at least 

two types of memory (heterogeneous memory) based on workloads, or requests from 

different types of applications. A first type of memory may be high performance memory 

that may have a higher bandwidth, lower memory latency, higher number of writes before 

wear-out and/or lower power consumption than a second type of memory in the computing 

device. In an embodiment, the computing device includes a system on a chip (SoC) that 

includes Wide I/O DRAM (an example of higher performing memory) positioned adjacent 

to one or more processor cores. A Low Power Double Data Rate 3 dynamic random access 

memory (LPDDR3 DRAM) memory (an example of conventional memory) is either 

internally or externally connected to the SoC. In embodiments, the computing device may 

be included in at least a cell phone, mobile device, embedded system, video game console, 

media console, laptop computer, desktop computer, server and/or datacenter.

[0003] In an embodiment, an OS allocates the higher performing memory to certain 

applications having particular workloads or functions (for example, ray tracing, frame/video 

buffering, NUI (natural user interface) data buffering). The OS may transfer data from a 

higher performing memory when new data needs to occupy the higher performing memory. 

The OS and one or more processors, along with the memory controller logic hardware 

and/or software, also performs error correction to preserve data integrity. An online (web) 

processor readable catalog of memory characteristics may be accessed by the OS, for the 

purpose of determining capabilities and/or performance characteristics of different types of 

memory.

1



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

[0004] In an embodiment, applications have an attribute flag or information in the 

application manifest that indicates to the OS that the particular application benefits from 

using the high performance memory. The OS may not allow access to the high performance 

memory when the requesting application is not on the applications manifest, or when the 

requesting application requires more amount of high performance memory than is available. 

In an embodiment, the OS monitors the execution of the application and keeps track of the 

memory location accesses and usage patterns. In embodiments, the OS may pass the 

attribute flag or information to virtual or physical memory allocators, such as memory 

controllers or memory managers.

[0005] In an embodiment, the high performance memory may be used as virtual cache 

memory or cache memory.

[0006] The OS or the memory controller may also interrogate the different types of 

memory to obtain memory operational details as well as periodically interrogate the 

different types of memory for health and performance information in embodiments. The OS 

or the memory controller may also manage the power consumption state of the different 

types of memory.

[0007] A method embodiment allocates a type of memory to an application that is 

processed by a computing device. The method includes determining the types of integrated 

circuit memory available in the computing device. The types of integrated circuit memory 

available include a first high performance type of memory and a second type of memory 

that is not high performance memory. A request from the application to use the high 

performance memory is received. The high performance memory is allocated to the 

application in response to the request.

[0008] An apparatus embodiment includes one or more processors and a first processor 

readable memory having a first performance characteristic. The apparatus also includes a 

second processor readable memory having a second performance characteristic. The first 

performance characteristic is better than the second performance characteristic. The one or 

more processors execute processor readable instructions of an OS to determine whether one 

or more software applications request usage of the first processor readable memory and an 

amount of processor readable memory the one or more applications uses. The one or more 

processors executes the processor readable instructions of the OS to allow at least one of the 

one or more applications access to the first processor readable memory in response to the 

request for usage of the first processor readable memory and the amount of processor 

readable memory the one or more applications uses.

2



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

[0009] In another embodiment, one or more processor readable memory devices include 

instructions which when executed cause one or more processors to perform a method that 

allocates high performance memory to an application. A request from the application to use 

the high performance memory and an amount of memory the application will use is 

received. A determination is made as to the amount of high performance memory that is 

available. The application is allocated the high performance memory in response to the 

amount of memory the application will use and the amount of high performance memory 

that is available.

[0010] This Summary is provided to introduce a selection of concepts in a simplified form 

that are further described below in the Detailed Description. This Summary is not intended 

to identify key features or essential features of the claimed subject matter, nor is it intended 

to be used as an aid in determining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS 

[0011] Figure 1 is a high-level block diagram of an exemplary hardware architecture of a 

computing device.

[0012] Figure 2 is a high-level block diagram of an exemplary software architecture to 

access different types of memory.

[0013] Figure 3A is a high-level block diagram of an exemplary OS architecture to access 

different types of memory.

[0014] Figure 3B is a high-level block diagram of an exemplary dynamic management of 

heterogeneous memory software.

[0015] Figure 4 is a flow chart of an exemplary method to allocate different types of 

memory to one or more applications.

[0016] Figure 5A is a flow chart of an exemplary method to use high performance 

memory as virtual cache.

[0017] Figure 5B is a flow chart of an exemplary method to use high performance memory 

as cache.

[0018] Figure 6A is a flow chart of an exemplary method to query different types of 

memory to obtain memory information including configuration, performance and health. 

[0019] Figure 6B is a flow chart of an exemplary method to manage different types of 

memory power.

[0020] Figure 7 is an isometric view of an exemplary gaming and media system.

[0021] Figure 8 is an exemplary functional block diagram of components of the gaming 

and media system shown in Fig. 10.

3



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

DETAILED DESCRIPTION

[0022] A SoC (a.k.a. SOC) is an integrated circuit (IC) that integrates electronic 

components and/or subsystems of a computing device or other electronic system into a 

single semiconductor substrate and/or single chip housed within a single package. For 

example, memory that was previously in a memory module subsystem in a personal 

computer (PC) may now be included in a SoC. Similarly, memory control logic may be 

included in a processor of a SoC rather than in a separately packaged memory controller. 

[0023] One or more processors of a SoC may also have access to different types of 

memory that have different types of memory characteristics. Memory characteristics or 

performance parameters may include, but not limited to, bandwidth, memory latency, power 

consumption, number of writes before wear-out and/or heat generation. High performance 

memory, such as a memory that has higher bandwidth (or that may transmit or receive more 

data per period of time than other memory), may be more costly and may not be as available 

as memory that does not have a particular high performance characteristic.

[0024] Figure 1 is a high-level block diagram of an exemplary hardware architecture of a 

computing device embodiment. In embodiments, computing device 100 may be included in 

at least a cell phone, mobile device, embedded system, video game console, media console, 

laptop computer, desktop computer, server and/or datacenter.

[0025] Computing device 100 includes a SoC 101 and memory 104 in an embodiment. A 

SoC is an IC that integrates components of a computing device or other electronic system 

into a single chip or semiconductor substrate. SoC 101 includes one or more processor 

core(s) 103 and high performance memory 102. Processor core(s) 103 communicate with 

high performance memory 102 by way of internal signal path 106. In an embodiment, high 

performance memory 102 includes an interface 102a that is coupled to signal path 106. 

Processor core(s) 103 also communicates with external memory 104 by way of external 

signal path 105. In an embodiment, signal paths 106 and 105 are separate signal paths 

controlled by the OS and an embedded memory controller within the SoC 101.

[0026] In an embodiment, memory 104 is external to SoC 101 and may be configured as 

a memory module or solder-on component on a printed circuit board, such as a motherboard. 

In an embodiment, memory 104 includes an interface that is coupled to signal path 105 that 

includes at least a trace or signal line on a printed circuit board. In an embodiment SoC 101 

is also coupled to the same printed circuit board that includes signal path 105.

[0027] As one of ordinary skill in the art would appreciate, other electronic components 

may be included in SoC 101. A SoC 101 may include digital, analog, mixed-signal, and/or

4



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

radio frequency circuits—one or more on a single semiconductor substrate. A SoC 101 may 

include oscillators, phase-locked loops, counter-timers, real-time timers, power-on reset 

generators, external interfaces (for example, Universal Serial Bus (USB), IEEE 1394 

interface (FireWire), Ethernet, Universal Asynchronous Receiver/Transmitter (USART) 

and Serial Peripheral Bus (SPI)), analog interfaces, voltage regulators and/or power 

management circuits.

[0028] In alternate embodiments, SoC 101 may be replaced with a system in package 

(SiP) or package on package (PoP). In a SiP, multiple chips or semiconductor substrates are 

housed in a single package. In a SiP embodiment, processor core(s) 103 would be on one 

semiconductor substrate and high performance memory 102 would be on a second 

semiconductor substrate, both housed in a single package. In an embodiment, the first 

semiconductor substrate would be coupled to the second semiconductor substrate by wire 

bonding.

[0029] In a PoP embodiment, processor core(s) 103 would be on one semiconductor die 

housed in a first package and high performance memory 102 would be on a second 

semiconductor die housed in a second different package. The first and second packages 

could then be stacked with a standard interface to route signals between the packages, in 

particular the semiconductor dies. The stacked packages then may be coupled to a printed 

circuit board having memory 104 as a component in an embodiment.

[0030] In embodiments, processor core(s) 103 includes one or more processors that 

executes (or reads) processor (or machine) readable instructions stored in memory. An 

example of processor readable instructions may include an OS and/or an application 

software program (application) for computing device 100 (such as OS 205 and applications 

202-204 shown in Fig. 2). Processor core(s) 103 uses high performance memory 102 and 

memory 104 in response executing processor readable instructions of an OS and application. 

In an embodiment, processor core(s) 103 may include a processor and memory controller 

or alternatively a processor that also performs memory management functions similarly 

performed by a memory controller. Processor core(s) 103 may also include a controller, 

central processing unit (CPU), graphics-processing unit (GPU), digital signal processor 

(DSP) and/or a field programmable gate array (FPGA). In an embodiment, high 

performance memory 102 is positioned on top of processor core(s) 103.

[0031] In an embodiment, high performance memory 102 has at least one or more 

memory characteristic, such as bandwidth, memory latency, heat generation, number of 

writes before wear-out and/or power consumption that is better in performance than memory

5



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

102. For example, high performance memory 102 may be a Wide I/O DRAM having a 

higher bandwidth than memory 104. Memory 104 may be Low Power Double Data Rate 3 

dynamic random access memory (LPDDR3 DRAM) memory (also known as Low Power 

DDR, mobile DDR (MDDR) or mDDR). In an embodiment, memory interface 102a is a 

Wide I/O DRAM interface transmitting and receiving signals on signal path 106; while 

memory interface 104 is a LPDDR3 DRAM interface transmitting and receiving signals on 

signal path 105.

[0032] In embodiments, high performance memory 102 and memory 104 include one or 

more arrays of memory cells in an IC disposed on separate semiconductor substrates. In an 

embodiment, high performance memory 102 and memory 104 are included in respective 

integrated monolithic circuits housed in separately packaged devices. In embodiments, high 

performance memory 102 and memory 104 may include volatile and/or non-volatile 

memory.

[0033] Types of volatile memory include, but are not limited to, dynamic random access 

memory (DRAM), molecular charge-based (ZettaCore) DRAM, floating-body DRAM and 

static random access memory (“SRAM”). Particular types of DRAM include double data 

rate SDRAM (“DDR”), or later generation SDRAM (e.g., “DDRn”).

[0034] Types of non-volatile memory include, but are not limited to, types of electrically 

erasable program read-only memory (“EEPROM”), FLASH (including NAND and NOR 

FLASH), ONO FLASH, magneto resistive or magnetic RAM (“MRAM”), ferroelectric 

RAM (“FRAM”), holographic media, Ovonic/phase change, Nano crystals, Nanotube RAM 

(NRAM-Nantero), MEMS scanning probe systems, MEMS cantilever switch, polymer, 

molecular, nano-floating gate and single electron.

[0035] In embodiments, signal paths 105/106 are media that transfers a signal, such as an 

interconnect, conducting element, contact, pin, region in a semiconductor substrate, wire, 

metal trace/signal line, or photoelectric conductor, singly or in combination. In an 

embodiment, multiple signal paths may replace a single signal path illustrated in the figures 

and a single signal path may replace multiple signal paths illustrated in the figures. In 

embodiments, a signal path may include a bus and/or point-to-point connection. In an 

embodiment, a signal path includes control and data signal lines. In an alternate 

embodiment, a signal path includes data signal lines or control signal lines. In still other 

embodiments, signal paths are unidirectional (signals that travel in one direction) or 

bidirectional (signals that travel in two directions) or combinations of both unidirectional 

signal lines and bidirectional signal lines.

6



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

[0036] Figure 2 is a high-level block diagram of an exemplary software architecture 200 

to access different types of memory. OS 205, and in particular dynamic management of 

heterogeneous memory (DMHM) 308 determines, among other functions, which 

application 202-204 are allocated high performance memory 208 and which application 

202-204 are allocated memory 209. In embodiments, high performance memory 208 

corresponds to high performance memory 102 and memory 209 corresponds to memory 104 

described herein and shown in Figure 1. DMHM 308 determines which of applications 202­

204 will have access to high performance memory 208 based on at least whether one of 

applications 202-204 request high performance memory by way of an attribute flag or 

information. Once a determination that a particular application will be allocated a particular 

memory type (either high performance memory 208 or memory 209), the appropriate device 

drivers 206 is used with OS 205.

[0037] OS 205, in particular DMHM 308 also uses an advanced configuration and power 

interface (ACPI) driver, register, basic input/output system (BIOS) and tables (collectively 

ARBT) 207 to perform other functions, such as monitoring the health, power and 

performance of high performance memory 208 and memory 209 as described in detail 

herein. An ACPI driver discovers, configures, power manages and monitors hardware 

components, such as memory. For example, OS 205 may use an ACPI driver to turn off a 

peripheral device when not in use. BIOS is a set of computer instructions in firmware that 

control input and output operations that is typical stored in non-volatile memory. In an 

embodiment, a ACPI driver allows the OS 205 to communicate with BIOS and instruct the 

BIOS to power down peripherals.

[0038] Figure 3A is a high-level block diagram of an OS architecture 300 to access 

different types of memory. In an embodiment, OS 205 includes one or more of the software 

components illustrated in Figure 3 A. In an embodiment, a software component may include 

a software program, software object, software function, software subroutine, software 

method, software instance, script and/or a code fragment, singly or in combination. For 

example, OS 205 includes one or more of process management 301, memory management 

302, I/O device management 303, file management 304, network management 305, user 

interface 306 and protection 307. One or more exemplary function that may be performed 

by the various OS software components are described below. In alternate embodiment, more 

or less software components and/or functions of the software components described below 

may be used.

7



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

[0039] In embodiments, at least portions of OS 205 are stored in processor readable

memory devices. In an embodiment, at least portions of OS 205 are stored in high

performance memory 102 and/or in memory 104 illustrated in Figure 1.

[0040] Processes management 301 is responsible for creating and deleting user and 

system processes. Process management 301 may also be responsible for suspension and 

resumption of processes. Process management 301 is also responsible for synchronization 

and communication of processes. Process management 301 is also responsible for deadlock 

handling.

[0041] Memory management 302 is responsible for keeping track of which part of 

memory in the different types of memory is currently being used by a particular software 

component or application. Memory management 302 also decides which processes are 

loaded into memory when memory space becomes available. Memory management also 

allocates and deallocates memory space as needed.

[0042] In an embodiment, dynamic management of heterogeneous memory (DMHM) 308 

is included in memory management 302. DMHM 308 is responsible for, but not limited to, 

determining types of memory available, allocating particular types of memory to particular 

applications, monitor memory usage of applications, perform error detection and correction, 

determine cache available, use memory as actual or virtual cache, monitor performance, 

health and configuration of memory and manage power of the different types of memory. 

In an embodiment, software components to perform one or more of the functions of DMHM 

308 are illustrated in Figure 3B.

[0043] In an embodiment, DMHM 308 includes one or more of the following software 

components, as illustrated in Figure 3B: memory type 310, allocate 311, monitor usage 312, 

detection and error correction 313, cache management 314, monitor performance, health 

and configuration 315 and/or manage power 316.

[0044] Memory type 310 is responsible for determining what types of memory are 

available in a computing environment. In an embodiment, memory type 310 queries the 

computing environment to determine what types of memory are available. In an 

embodiment, memory type 310 determines whether any high performance memory is 

available. In an embodiment, memory type 310 accesses an online (web) catalog of 

application characteristics via the Internet, for the purpose of determining capabilities and/or 

performance characteristics for types of memory that are associated with the listed 

applications, in a computing environment, such as computing device 100. When a particular 

memory has certain capabilities and/or performance characteristics that are appropriate for

8



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

the applications, such as having a bandwidth higher than a predetermined threshold, memory 

type 310 will assign a particular memory as high performance memory. When the memory 

does not have a particular capability and/or performance characteristic that meets a 

predetermined threshold, memory type 310 does not assign the memory as high 

performance. In an embodiment, the online catalog of memory capabilities and/or 

performance characteristics is updated/modified as new memory devices become available. 

In an embodiment an OS tracks and measures performance characteristics of a memory, as 

related to memory identification and uploads the measured performance characteristics into 

the online catalog via the Internet. In an embodiment, a user may enter input to console 1002 

by way of gesture, touch or voice. In an embodiment, optical I/O interface 1135 receives 

and translates gestures of a user. In another embodiment, console 1002 includes a natural 

user interface (NUI) to receive and translate voice and gesture inputs from a user. In an 

alternate embodiment, front panel subassembly 1142 includes a touch surface and a 

microphone for receiving and translating a touch or voice, such as a voice command, of a 

user. In still a further embodiment, a catalog of memory capabilities and/or performance 

characteristics is stored locally in persistent memory.

[0045] Allocate 311 is responsible for allocating a particular type of memory, such as high 

performance memory, to a particular application that may have requested high performance 

memory. In an embodiment, an application that may benefit from high performance memory 

has an attribute flag or information that requests high performance memory. Allocate 311 

checks the attribute information before assigning an application to a particular type of 

memory. In an embodiment, allocate 311 includes a list of attribute information for 

applications and compares the stored attribute information for the particular application in 

the list to the attribute information that may be in the application’s manifest.

[0046] In an embodiment, allocate 311 may pass the attribute information to a virtual 

memory allocator, which manages the allocation of memory pages to physical memory 

areas. In another embodiment, allocate 311 may pass the attribute information to a physical 

memory allocator via a memory controller.

[0047] In an embodiment, allocate 311 will determine the amount of memory a particular 

application that is requesting high performance memory will use, and deny the request when 

a sufficient amount of high performance memory is not available. In another embodiment 

allocate 311 will compare run-time priorities of all running or executing applications and 

deny the request when high performance memory is mapped to an application of higher 

priority in an embodiment.

9



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

[0048] In an embodiment, allocate 311 also compares the applications requesting the high 

performance memory to lists to determine whether to allocate the application to the high 

performance memory. In an embodiment, allocate 311 includes a list of blacklisted 

applications for the purpose of preventing certain applications from accessing the higher 

performing memory. Alternatively, allocate 311 includes a list of whitelisted applications 

that can use the higher performing memory even if the application’s attribute information 

does not request high performance memory. This list of applications may exist locally in 

allocate 311, or in online accessible via the Internet, processor readable form elsewhere, and 

may be updated. In an embodiment, an application that is not assigned high performance 

memory because it does not have the appropriate attribute information or has been blocked 

because the application is on a blacklist will be assigned memory that is not high 

performance.

[0049] Since higher performing memory may be faster (greater bandwidth, lower memory 

latency) as well as more power efficient, certain applications are allocated high performance 

memory when high performance memory is available, even when the application does not 

have the appropriate attribute information, so that the computing device may be more power 

efficient.

[0050] Monitor usage 312 is responsible for monitoring the memory usage of an 

application that has been assigned a particular type of memory. Monitor usage 312 monitors 

the amount of memory being used, so it will not exceed the physically available memory 

available in the computing environment. Monitor usage 312 also identifies when high 

performance memory is available so that allocate 311 may allocate an application to the 

high performance memory. In an embodiment, Monitor usage 312 uses a memory controller 

or driver to manage and track the amount of high performance memory a particular 

application uses. In an embodiment, monitor usage 312 may compile a summary of 

application usage of accessed memory and store the summary of application usage in 

persistent memory, occasionally uploading into the stored information to an online catalog 

via the Internet.

[0051] Error detection and correction 313 is responsible for detecting and correcting 

errors when a particular application uses an allocated type of memory. In various 

embodiments, different types of detection and error correcting methods may be used. For 

example, a hash function or checksum method may be used. In another embodiment, parity 

bits method may be used in an error-correcting code (ECC) or forward error correction 

(FEC) method.

10



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

[0052] Cache management 314 is responsible for using high performance memory as

cache for one or more processors. In an alternate embodiment, Cache management 315 uses

high performance memory as virtual cache.

[0053] In an embodiment, high performing memory is used in order to create a virtualized 

holding space or virtual cache for L1/L2/L3 cache memory. This enables cache memory to 

be larger and allows L1/L2/L3 cache memory to pool available memory space for its own 

purpose. In an embodiment, cache management 315 stores data likely to be used by 

L1/L2/L3 cache memory in high performance memory (virtual cache) using speculative 

fetching.

[0054] Cache management 315 takes into account that the virtual cache memory 

bandwidth (speed) is slower than the typical L1/L2/L3 cache bandwidth. In an embodiment, 

a mitigation method to speculatively read-ahead data into the higher performing memory is 

used. Cache management 315 also identifies when high performance memory is drained of 

data to be fed to L1/L2/L3 cache.

[0055] In an alternate embodiment, higher performance memory is used as higher-level 

cache. For example, Wide I/O DRAM would play the role of a higher-level cache than L3 

cache in the SoC 101, and as such perform tasks to boost performance.

[0056] Monitor performance, health and configuration (monitor performance) 315 is 

responsible for monitoring the performance, such as bandwidth, health and configuration, 

such as memory rank, of particular types of memory. In an embodiment, monitor 

performance 315 queries each type of memory at power-up and/or periodically to obtain 

memory details, such as bandwidth and/or heat. In an embodiment, monitor performance 

315 would also query different types of memory for particular memory configurations at 

power-up. In an embodiment, monitor performance 315 uses an ACPI driver as illustrated 

in Figure 2 to monitor the performance, health and configuration of various memory types. 

In an embodiment monitor performance 315 compiles a health profile of a particular 

memory related to environmental parameters and periodically uploads such a health profile 

into an online catalog via the Internet.

[0057] Manage power 316 is responsible for managing the power of different types of 

memory. In an embodiment, manage power 316 manages power of memory types that have 

manageable power. In an embodiment, manage power 316 would reduce and/or increase the 

amount of power provided to different types of memory depending upon their status and/or 

configuration. In an embodiment, an embedded memory controller in processor core(s) 103 

would manage the power applied to high performance memory 102. In an embodiment,

11



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

manage power 316 uses an ACPI driver as illustrated in Figure 2 to manage power of various 

memory types.

[0058] While DMHM 308 is described as being implemented in OS 205, in alternate 

embodiments DMHM 308 may be encoded in firmware of computing device 100.

[0059] Returning to other software components of OS 205, I/O device management 303 

is responsible for managing I/O devices. In an embodiment, the peculiarities of specific 

hardware are hidden from users. In an embodiment, device drivers know the peculiarities of 

the specific device. For example, I/O device management 303 may be responsible for disk 

management functions such as free space management, memory allocation, fragmentation, 

removal and head scheduling.

[0060] File management 304 is responsible for creating and deleting files and directories. 

File management 304 may support a hierarchical file system. File management 304 may 

also back up files onto secondary memory.

[0061] Network management 305 is responsible for communication with networks 

including providing connection/routing methods. Network management 305 may also be 

responsible for data/process migration to other computing devices.

[0062] User interface 306 provides a character and/or graphics user interface to a user and 

is responsible for receiving input and providing output to a user.

[0063] Protection 307 is responsible for controlling access of programs, processes, and/or 

users to resources of the computing device. For example, protection 307 is responsible for 

controlling access to resources such as CPU cycles, memory, files, and/or I/O devices. 

Protection 307 is also responsible for user authentication and communication.

[0064] Figures 4-6B are flow charts illustrating exemplary methods of dynamically 

managing heterogeneous memory. In embodiments, steps illustrated in Figures 4-6B 

represent the operation of hardware (e.g., processor, memory, circuits), software (e.g., OS, 

applications, drivers, machine/processor executable instructions), or a user, singly or in 

combination. As one of ordinary skill in the art would understand, embodiments may 

include less or more steps shown.

[0065] Figure 4 is a flow chart of an exemplary method to allocate different types of 

memory to one or more software applications. Step 400 illustrates determining the types of 

memory available in a computing device, such as computing device 100 shown in Figure 1. 

In an embodiment, memory type 310 in DMHM 308 determines the types of memory 

available in a computing device. In an embodiment, memory type 310 determines whether

12



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

there is a high performance memory available or a hierarchy of different types of performing

memory available.

[0066] Step 401 illustrates receiving a request from an application for service and type of 

memory. In an embodiment, an application requests OS 205 for service and DMHM 308, 

and in particular allocate 311, determines whether the application requesting service is also 

requesting high performance memory. In an embodiment, allocate 311 reads an associated 

application manifest to determine whether the requesting application also request high 

performance memory. In an embodiment, a requesting application requests high 

performance memory 102 as illustrated in Figure 1.

[0067] Step 402 illustrates obtaining and comparing attribute information associated with 

the requesting application with attribute information from the application’s manifest. In an 

embodiment, allocate 311 reads attributes associated with applications stored in ARBT 207 

(in particular an application table) and compares the attribute information with the 

information in the requesting application’s manifest.

[0068] Step 403 then determines whether the application is requesting high performance 

memory in response to the comparison in step 402. When the attribute information in the 

application manifest of the requesting application matches the attribute information in 

ARBT 207, the requesting application will be allocated high performance memory when 

high performance memory is available and when the application is not on a black list (black 

list table included in ARBT 207) as illustrated in steps 404 and 405 as well as when the 

requesting application does not request more memory than is available as illustrated in step 

406 and described herein.

[0069] Step 404 illustrates determining how much memory a requesting application will 

use. In an embodiment, monitor usage 312 monitors the usage of applications in memories 

of a computing device.

[0070] Step 405 determines whether the requesting application is on a white or black list. 

When the requesting application is on a white list, the application is allocated the high 

performance memory even though the application’s attribute information does not indicate 

such as long as high performance memory is available and the application does not need 

more high performance memory than is available. When the application is on a black list, 

the application is denied allocation of the high performance memory regardless of whether 

the high performance memory is available in an embodiment. In an embodiment, black and 

white lists are stored in tables of ARBT 207. In alternate embodiments, black and white lists 

are not used.

13



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

[0071] Step 406 illustrates determining whether high performance memory is available.

In an embodiment, monitor usage 312 updates allocate 311 as to the availability of high

performance memory.

[0072] Step 407 illustrates allocating the requesting application high performance 

memory when the requesting application has 1) the appropriate attribute information, 2) is 

not on a black list (or is on a white list that overrides the lack of appropriate attribute 

information in an embodiment), 3) high performance memory is available and 4) the amount 

of high performance memory available is greater than the amount of memory that will be 

used by the requesting application. In an embodiment, allocate 311 allocates the high 

performance memory to the requesting application when the above condition are met. In an 

embodiment, less than the above conditions may be meet to allocate the high performance 

memory to the requesting application. Otherwise, allocate 311 allocates memory that is not 

high performance (alternate memory) to the requesting application. In an embodiment, 

memory 104 is allocated when high performance memory is not allocated.

[0073] In an embodiment, the task of allocating a request from an application for an 

amount of memory consists of locating a block of unused memory of sufficient size. 

Memory requests are satisfied by allocating portions from a large pool of memory known 

as the “heap.” At any given time, some parts of the heap are in use, while some are "free" 

(unused) and thus available for future allocations.

[0074] Step 408 illustrates DMHM 308 monitoring the usage of different types of memory 

in a computing device. In particular, monitor usage 312 monitors the usage of high 

performance memory that is being used by one or more applications and the usage of other 

types of memory that are not high performance. Monitor usage 312 notifies allocate 311 

when memory space becomes available in high performance memory as well as other types 

of memory in an embodiment.

[0075] Step 409 illustrates performing error detection and correction while one or more 

applications are using various types of memory. In an embodiment, error detection and 

correction 313 in DMHM 308 performs this function.

[0076] Figure 5A is a flow chart of an exemplary method to use high performance 

memory as virtual cache memory. Step 500 illustrates determining the types of memory 

available in a computing device. In an embodiment, step 500 is performed similar to step 

400 as described herein. In an embodiment, memory types 310 and/or cache management 

314 makes the determination.

14



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

[0077] Step 501 illustrates determining whether cache memory is available. In an 

embodiment, cache management 314 determines whether cache memory is available and 

the amount of cache memory that is available. Step 501 then determines whether high 

performance memory as virtual cache memory will increase the performance of the 

computing device. In an embodiment, cache management 314 compares the amount of 

cache memory available to a predetermined threshold value. When the amount of cache 

memory available is less than the predetermined threshold value, cache management 314 

then assigns the high performance memory as virtual cache memory as illustrated in step 

502. In an alternate embodiment, cache management 314 assigns high performance memory 

as virtual cache memory when a particular application that may benefit from such 

assignment requests service from OS 302.

[0078] Step 503 illustrates storing data in high performance memory that is used as virtual 

cache memory that is likely to be used. In an embodiment, speculative fetching is used. 

[0079] Step 504 illustrates mitigating the relatively slow speed of the high performance 

memory used as virtual cache memory compared to actual cache memory. In an 

embodiment, a mitigation method to speculatively read-ahead data into the higher 

performing memory is used.

[0080] Figure 5B is a flow chart of an exemplary method to use high performance memory 

as cache memory. Step 510 illustrates determining whether cache memory is available 

similar to step 500. In an embodiment, cache management 314 determines whether cache 

memory is available and the amount of cache memory that is available. Step 511 then 

determines whether high performance memory as cache memory will increase the 

performance of the computing device. In an embodiment, cache management 314 compares 

the amount of cache memory available to a predetermined threshold value. When the 

amount of cache memory available is less than the predetermined threshold value, cache 

management 314 then assigns the high performance memory as cache memory as illustrated 

in step 512. In an alternate embodiment, cache management 314 assigns high performance 

memory as cache memory when a particular application that may benefit from such 

assignment requests service from OS 302.

[0081] Steps 513 and 514 are performed similar to steps 503 and 504 except that high 

performance memory is used a cache memory instead of virtual cache memory.

[0082] Figure 6A is a flow chart of an exemplary method to query different types of 

memory to obtain memory information including configuration, performance and health. 

Step 600 illustrates querying each of the different types of memory in a computing device

15



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

for memory configuration information. In embodiments, memory configuration may include 

information relating to type, size, bandwidth, width, rank, latency, clock, timing parameters 

and/or other memory configuration parameters. In an embodiment, a storage location having 

configuration information that is not resident on the various different types of memory (such 

as system or configuration memory) is queried instead of the actual memory themselves. 

[0083] In an embodiment, one or more processors executes OS 205, and in particular 

DMHM 308, to obtain memory configuration information. In an embodiment, monitor 

performance 315 is responsible for obtaining configuration information for each type of 

memory. In an embodiment, processor core(s) 103 executes OS 205 to generate control 

signals on signal paths 106 and 105 to high performance memory 102 and memory 104. 

Each memory than returns the configuration information in response to the control signals. 

In an embodiment, the control signals may include separate commands output on signal 

paths 105 and 106. In an embodiment, the control signals are output at start-up and/or 

periodically.

[0084] Step 601 illustrates monitoring the performance of different types of memory in a 

computing device. In an embodiment, processor core(s) 103 executes OS 205 similar to step 

600 to obtain performance information, such as actual bandwidth and/or actual memory 

latency. In an alternate embodiment, OS 205 and in particular monitor performance 315 in 

DMHM 308, measures actual bandwidth and/or memory latency by writing to and reading 

from different types of memory. A test pattern may be written to a memory and then read 

out while measuring and/or timing performance characteristics of respective types of 

memory.

[0085] Step 602 illustrates obtaining health or status information from different types of 

memory in a computing device. In embodiment, processor core(s) 103 executes OS 205 

similar to steps 600 and 601 to obtain health information, such as temperature (heat) and/or 

power consumption of different types of memory. Respective memories may provide health 

information including temperature and power consumed in a status information output by 

the respective types of memory in response to a control signal output from processor core(s) 

103 on signal paths 105 and 106. Similar to above, these control signal may be generated at 

start-up or periodically. Also similar to above, a test pattern may be written to and read from 

the different types of memory and compared to the test pattern that was sent in order to 

determine whether the memory is correctly storing and outputting data (error detection). 

[0086] Figure 6B is a flow chart of an exemplary method to manage power for different 

types of memory in a computing device. Step 610 illustrates obtaining power management

16



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

information from different types of memory in a computing device. In an embodiment, 

processor core(s) 103 executes OS 205 similar to steps above to obtain power information 

regarding whether a particular type of memory device may have power that may be 

managed. In an embodiment, power management information for respective types of 

memory are stored in memory that is not resident on the respective types of memory, such 

as system or configuration memory and may be retrieved as described above.

[0087] Step 611 illustrates managing power of different types of memory in a computing 

device. When a determination is made that a particular memory may have manageable 

power in step 610, power of the identified memory device is managed by manage power 

316 in DMHM 308 in an embodiment. For example, processor core(s) 103 executing 

manage power 316 output a control signal that would reduce the power to a power 

manageable memory device when the memory device does not need the power, such as in a 

sleep or hibernate mode.

[0088] In an embodiment, one or more of the computing devices 100 may be, but is not 

limited to, a video game and/or media console. Figure 7 will now be used to describe an 

exemplary video game and media console, or more generally, will be used to describe an 

exemplary gaming and media system 1000 that includes a game and media console. The 

following discussion of Figure 7 is intended to provide a brief, general description of a 

suitable computing device with which concepts presented herein may be implemented. It is 

understood that the system of Figure 7 is by way of example only. In further examples, 

embodiments describe herein may be implemented using a variety of client computing 

devices, either via a browser application or a software application resident on and executed 

by the client computing device. As shown in Figure 7, a gaming and media system 1000 

includes a game and media console (hereinafter “console”) 1002. In general, the console 

1002 is one type of client computing device. The console 1002 is configured to 

accommodate one or more wireless controllers, as represented by controllers 1004i and 

10042. The console 1002 is equipped with an internal hard disk drive and a portable media 

drive 1006 that support various forms of portable storage media, as represented by an optical 

storage disc 1008. Examples of suitable portable storage media include DVD, CD-ROM, 

game discs, and so forth. The console 1002 also includes two memory unit card receptacles 

1025i and 10252, for receiving removable flash-type memory units 1040. A command 

button 1035 on the console 1002 enables and disables wireless peripheral support.

[0089] As depicted in Figure 7, the console 1002 also includes an optical port 1030 for 

communicating wirelessly with one or more devices and two USB ports lOlOi and IOIO2 to

17



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

support a wired connection for additional controllers, or other peripherals. In some 

implementations, the number and arrangement of additional ports may be modified. A 

power button 1012 and an eject button 1014 are also positioned on the front face of the 

console 1002. The power button 1012 is selected to apply power to the game console, and 

can also provide access to other features and controls, and the eject button 1014 alternately 

opens and closes the tray of a portable media drive 1006 to enable insertion and extraction 

of an optical storage disc 1008.

[0090] The console 1002 connects to a television or other display (such as display 1050) 

via A/V interfacing cables 1020. In one implementation, the console 1002 is equipped with 

a dedicated A/V port configured for content-secured digital communication using A/V 

cables 1020 (e.g., A/V cables suitable for coupling to a High Definition Multimedia 

Interface “HDMI” port on a high definition display 1050 or other display device). A power 

cable 1022 provides power to the game console. The console 1002 may be further 

configured with broadband capabilities, as represented by a cable or modem connector 1024 

to facilitate access to a network, such as the Internet. The broadband capabilities can also 

be provided wirelessly, through a broadband network such as a wireless fidelity (Wi-Fi) 

network.

[0091] Each controller 1004 is coupled to the console 1002 via a wired or wireless 

interface. In the illustrated implementation, the controllers 1004 are USB-compatible and 

are coupled to the console 1002 via a wireless or USB port 1010. The console 1002 may be 

equipped with any of a wide variety of user interaction mechanisms. In an example 

illustrated in Figure 7, each controller 1004 is equipped with two thumb sticks 1032i and 

10322, a D-pad 1034, buttons 1036, and two triggers 1038. These controllers are merely 

representative, and other known gaming controllers may be substituted for, or added to, 

those shown in Figure 7. In an embodiment, a user may enter input to console 1002 by way 

of gesture, touch or voice. In an embodiment, optical I/O interface 1135 receives and 

translates gestures of a user. In another embodiment, console 1002 includes a natural user 

interface (NUI) to receive and translate voice and gesture inputs from a user. In an alternate 

embodiment, front panel subassembly 1142 includes a touch surface and a microphone for 

receiving and translating a touch or voice, such as a voice command, of a user.

[0092] In one implementation, a memory unit (MU) 1040 may also be inserted into the 

controller 1004 to provide additional and portable storage. Portable MUs enable users to 

store game parameters for use when playing on other consoles. In this implementation, each

18



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

controller is configured to accommodate two MUs 1040, although more or less than two

MUs may also be employed.

[0093] The gaming and media system 1000 is generally configured for playing games 

stored on a memory medium, as well as for downloading and playing games, and 

reproducing pre-recorded music and videos, from both electronic and hard media sources. 

With the different storage offerings, titles can be played from the hard disk drive, from an 

optical storage disc media (e.g., 1008), from an online source, or from MU 1040. Samples 

of the types of media that gaming and media system 1000 is capable of playing include: 

[0094] Game titles played from CD, DVD or higher capacity discs, from the hard disk 

drive, or from an online source.

[0095] Digital music played from a CD in portable media drive 1006, from a file on the 

hard disk drive or solid state disk, (e.g., music in a media format), or from online streaming

sources.

[0096] Digital audio/video played from a DVD disc in portable media drive 1006, from a 

file on the hard disk drive (e.g., Active Streaming Format), or from online streaming 

sources.

[0097] During operation, the console 1002 is configured to receive input from controllers 

1004 and display information on the display 1050. For example, the console 1002 can 

display a user interface on the display 1050 to allow a user to select a game using the 

controller 1004 and display state solvability information as discussed below.

[0098] Figure 8 is a functional block diagram of the gaming and media system 1000 and 

shows functional components of the gaming and media system 1000 in more detail. The 

console 1002 has a CPU 1100, and a memory controller 1102 that facilitates processor 

access to various types of memory, including a flash ROM 1104, a RAM 1106, a hard disk 

drive or solid state drive 1108, and the portable media drive 1006. In one implementation, 

the CPU 1100 includes a level 1 cache 1110 and a level 2 cache 1112, to temporarily store 

data and hence reduce the number of memory access cycles made to the hard drive 1108, 

thereby improving processing speed and throughput.

[0099] The CPU 1100, the memory controller 1102, and various memory devices are 

interconnected via one or more buses. The details of the bus that is used in this 

implementation are not particularly relevant to understanding the subject matter of interest 

being discussed herein. However, it will be understood that such a bus might include one or 

more of serial and parallel buses, a memory bus, a peripheral bus, and a processor or local 

bus, using any of a variety of bus architectures. By way of example, such architectures can

19



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

include an Industry Standard Architecture (ISA) bus, a Micro Channel Architecture (MCA) 

bus, an Enhanced ISA (EISA) bus, a Video Electronics Standards Association (VESA) local 

bus, and a Peripheral Component Interconnects (PCI) bus also known as a Mezzanine bus. 

[00100] In one implementation, the CPU 1100, the memory controller 1102, the ROM 

1104, and the RAM 1106 are integrated onto a common module 1114. In this 

implementation, the ROM 1104 is configured as a flash ROM that is connected to the 

memory controller 1102 via a PCI bus and a ROM bus (neither of which are shown). The 

RAM 1106 is configured as multiple Double Data Rate Synchronous Dynamic RAM (DDR 

SDRAM) or faster data rate DRAM modules that are independently controlled by the 

memory controller 1102 via separate buses. The hard disk drive 1108 and the portable media 

drive 1006 are shown connected to the memory controller 1102 via the PCI bus and an AT 

Attachment (ATA) bus 1116. However, in other implementations, dedicated data bus 

structures of different types can also be applied in the alternative.

[00101] In another embodiment, at least CPU 1100, level 1 cache 1110, level 2 cache 1112, 

memory controller 1102 and RAM memory 1106 are included in a SoC, such as SoC 101 

as described herein and shown in Figure 1. In an embodiment, RAM memory 1106 is 

replaced with high performance memory, such as Wide I/O DRAM and the function of 

memory controller 1102 is performed by processor core(s) 103. Another type of memory 

that in not high performance memory, such as LPDDR3 DRAM, would then be coupled to 

SoC 101 as described herein. Similarly, OS 205 is used by SoC 101 in the console 1002 as 

described herein.

[00102] A three-dimensional graphics processing unit 1120 and a video encoder 1122 form 

a video processing pipeline for high speed and high resolution (e.g., High Definition) 

graphics processing. Data are carried from the graphics processing unit 1120 to the video 

encoder 1122 via a digital video bus. An audio processing unit 1124 and an audio codec 

(coder/decoder) 1126 form a corresponding audio processing pipeline for multi-channel 

audio processing of various digital audio formats. Audio data are carried between the audio 

processing unit 1124 and the audio codec 1126 via a communication link. The video and 

audio processing pipelines output data to an A/V (audio/video) port 1128 for transmission 

to a television or other display. In the illustrated implementation, the video and audio 

processing components 1120-1128 are mounted on the module 1114.

[00103] Figure 8 shows the module 1114 including a USB host controller 1130 and a 

network interface 1132. The USB host controller 1130 is shown in communication with the 

CPU 1100 and the memory controller 1102 via a bus (e.g., PCI bus) and serves as host for

20



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

the peripheral controllers 1004i-10044. The network interface 1132 provides access to a 

network (e.g., Internet, home network, etc.) and may be any of a wide variety of various 

wire or wireless interface components including an Ethernet card, a modem, a wireless 

access card, a Bluetooth module, a cable modem, and the like.

[00104] In the implementation depicted in Figure 8, the console 1002 includes a controller 

support subassembly 1140 for supporting the four controllers 1004i-10044. The controller 

support subassembly 1140 includes any hardware and software components to support 

wired and wireless operation with an external control device, such as for example, a media 

and game controller. A front panel I/O subassembly 1142 supports the multiple 

functionalities of power button 1012, the eject button 1014, as well as any LEDs (light 

emitting diodes) or other indicators exposed on the outer surface of console 1002. 

Subassemblies 1140 and 1142 are in communication with the module 1114 via one or more 

cable assemblies 1144. In other implementations, the console 1002 can include additional 

controller subassemblies. The illustrated implementation also shows an optical I/O interface 

1135 that is configured to send and receive signals that can be communicated to the module 

1114.

[00105] The MUs 1040i and 10402 are illustrated as being connectable to MU ports “A” 

1030i and “B” 10302 respectively. Additional MUs (e.g., MUs 10403-10406) are illustrated 

as being connectable to the controllers 1004i and 10043, i.e., two MUs for each controller. 

The controllers 10042 and 10044 can also be configured to receive MUs. Each MU 1040 

offers additional storage on which games, game parameters, and other data may be stored. 

In some implementations, the other data can include any of a digital game component, an 

executable gaming application, an instruction set for expanding a gaming application, and a 

media file. When inserted into the console 1002 or a controller, the MU 1040 can be 

accessed by the memory controller 1102.

[00106] A system power supply module 1150 provides power to the components of the 

gaming system 1000. A fan 1152 cools the circuitry within the console 1002.

[00107] An application 1160 comprising processor readable instructions is stored on the 

hard disk drive 1108. When the console 1002 is powered on, various portions of the 

application 1160 are loaded into RAM 1106, and/or caches 1110 and 1112, for execution 

on the CPU 1100, wherein the application 1160 is one such example. Various applications 

can be stored on the hard disk drive 1108 for execution on CPU 1100. In an embodiment, 

application 1160 includes an attribute information requesting use of a particular type of 

memory, such as high performance memory, as described herein.

21



WO 2014/120698 PCT/US2014/013468

5

10

15

20

25

30

[00108] The console 1002 is also shown as including a communication subsystem 1170 

configured to communicatively couple the console 1002 with one or more other computing 

devices (e.g., other consoles). The communication subsystem 1170 may include wired 

and/or wireless communication devices compatible with one or more different 

communication protocols. As non-limiting examples, the communication subsystem 1170 

may be configured for communication via a wireless telephone network, or a wired or 

wireless local- or wide-area network. In some embodiments, the communication subsystem 

1170 may allow the console 1002 to send and/or receive messages to and/or from other 

devices via a network such as the Internet. In specific embodiments, the communication 

subsystem 1170 can be used to communicate with a coordinator and/or other computing 

devices, for sending download requests, and for effecting downloading and uploading of 

digital content. More generally, the communication subsystem 1170 can enable the console 

1002 to participate on peer-to-peer communications.

[00109] The gaming and media system 1000 may be operated as a standalone system by 

simply connecting the system to display 1050 (Figure 7), a television, a video projector, or 

other display device. In this standalone mode, the gaming and media system 1000 enables 

one or more players to play games, or enjoy digital media, e.g., by watching movies, or 

listening to music. However, with the integration of broadband connectivity made available 

through network interface 1132, or more generally the communication subsystem 1170, the 

gaming and media system 1000 may further be operated as a participant in a larger network 

gaming community, such as a peer-to-peer network.

[00110] The above described console 1002 is just one example of the computing devices 

100 discussed above with reference to Figure 1 and various other Figures. As was explained 

above, there are various other types of computing devices with which embodiments 

described herein can be used.

[00111] The foregoing detailed description of the inventive system has been presented for 

purposes of illustration and description. It is not intended to be exhaustive or to limit the 

inventive system to the precise form disclosed. Many modifications and variations are 

possible in light of the above teaching. The described embodiments were chosen in order to 

best explain the principles of the inventive system and its practical application to thereby 

enable others skilled in the art to best utilize the inventive system in various embodiments 

and with various modifications as are suited to the particular use contemplated. It is intended 

that the scope of the inventive system be defined by the claims appended hereto.

22



WO 2014/120698 PCT/US2014/013468

CLAIMS

1. A method to allocate a type of integrated circuit memory to an application 

processed by a computing device, the method comprising:

determining types of integrated circuit memory available for the application in the 

computing device, wherein the types of integrated circuit memory available include a first 

type of integrated circuit memory and a second type of integrated circuit memory;

receiving a request from the application to use the first type of integrated circuit 

memory; and

allocating the first type of integrated circuit memory to be used by the application in 

response to the request from the application.

2. The method of claim 1, wherein the first type of integrated circuit memory has at 

least one or more performance characteristics that is better than the second type of integrated 

circuit memory.

3. The method of claim 1, wherein the first type of integrated circuit memory has at 

least one of a higher bandwidth, lower memory latency or lower power consumption than 

the second type of integrated circuit memory.

4. The method of claim 1, wherein the determining includes accessing performance 

characteristics of the first and second types of integrated circuit memory from a list of 

memory performance characteristics.

5. The method of claim 1, wherein the list of performance characteristics is obtained 

via the Internet, and wherein the list of performance characteristics is stored in a processor 

readable format.

6. The method of claim 1, wherein the receiving includes reading attribute information 

on an application manifest that indicates the request from the application includes a request 

to use the first type of integrated circuit memory.

23



WO 2014/120698 PCT/US2014/013468

7. The method of claim 1, wherein the allocating includes transferring the request to at 

least one of a virtual memory allocator or physical memory allocator of a memory controller 

that manages the allocation of memory pages to physical memory areas in the computing 

device.

8. The method of claim 1, further comprising monitoring a memory location and usage 

of the application at the first type of integrated circuit memory.

9. The method of claim 1, further comprising comparing the application with a stored 

list of applications in the computing device, and allocating the first type of integrated circuit 

memory is replaced with allocating the second type of integrated circuit memory to be used 

by the application in response to the application being on the stored list, and

wherein the allocating the first type of integrated circuit memory is replaced with 

allocating the second type of integrated circuit memory to be used by the application when 

the application usage will exceed physical memory space of the first type of integrated 

circuit memory.

10. The method of claim 1, further comprising allocating the first type of integrated 

circuit memory as cache memory accessible by the application.

11. The method of claim 1, wherein the determining includes initiating a request to the 

first and second types of integrated circuit memory for information regarding the integrated 

circuit memory, wherein the information regarding the integrated circuit memory is selected 

from one of memory configuration or power management.

12. An apparatus comprising; 

one or more processors;

a first processor readable memory having a first performance characteristics; 

a second processor readable memory having a second performance characteristic,

wherein the first performance characteristic is better than the second performance 

characteristic;

one or more software applications; and

an operating system including processor readable instructions, wherein the one or 

more processors execute the processor readable instructions of the operating system to:

24



WO 2014/120698 PCT/US2014/013468

determine whether one or more software applications requests usage of the 

first processor readable memory,

determine an amount of processor readable memory the one or more software 

applications uses, and

allow at least one of the one or more software applications access to the first 

processor readable memory in response to the request for usage of the first processor 

readable memory and the amount of processor readable memory the one or more 

software applications uses.

13. The apparatus of claim 12, wherein the first and second performance characteristics 

are selected from one of bandwidth, memory latency or power consumption.

14. The apparatus of claim 12, wherein the one or more processors and first processor 

readable memory are integrated into a single semiconductor die housed by a first package, 

and wherein the second processor readable memory is included in a second semiconductor 

die housed by a second package.

15. The apparatus of claim 12, wherein the one or more processors are included on a 

first semiconductor die and the first processor readable memory is included on a second 

semiconductor die, wherein the first and second dies are housed by a first package, and 

wherein the second processor readable memory is included in a third semiconductor die 

housed by a second package.

25



WO 2014/120698 PCT/US2014/013468

100

1/9

FIG. 1



WO 2014/120698 PCT/US2014/013468

2/9

200

Application
202

Application
203

Application
204

Dynamic Management 
Of Heterogeneous 
Memory(DMHM) 

308

Operating System (OS) 205

Device Drivers 
206

ACPI Driver, Register 
BIOS, Tables 
(ARBT) 207

High Performance Memory 
208

Memory
209

FIG. 2



WO 2014/120698 PCT/US2014/013468

3/9

300

Process Management 
301

I/O Device 
Management 

303

Dynamic
Management

Of Heterogeneous
Memory
(DMHM)

308

Memory Management 
302

File Management 
304

Network Management 
305

User Interface 
306

Protection
307

Operating System (OS) 205

FIG. 3A



WO 2014/120698 PCT/US2014/013468

4/9

Memory Type Allocate
310 311

Monitor Usage 
312

Cache Management 
314

Error Detection and 
Correction 

313

Monitor Performance, 
Health and 

Configuration 
315

Manage Power 
316

DMHM
308

FIG. 3B



WO 2014/120698 PCT/US2014/013468

5/9

FIG. 4



WO 2014/120698 PCT/US2014/013468

6/9

500

501

502

503

504

FIG. 5A

FIG. 5B



WO 2014/120698 PCT/US2014/013468

7/9

•600

601

•602

FIG. 6A

610

611

FIG. 6B



WO 2014/120698 PCT/US2014/013468

8/9

10
00

 
10

50

10
04

^ 
^1

03
8



WO 2014/120698 PCT/US2014/013468

9/9


