A 00O 0 0

0 01/22211 A1l

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 March 2001 (29.03.2001)

A1 0 00 O

(10) International Publication Number

WO 01/22211 A1l

(51) International Patent Classification’: GOG6F 3/06

(21) International Application Number: PCT/US00/26409

(22) International Filing Date:
20 September 2000 (20.09.2000)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/401,644 22 September 1999 (22.09.1999) US

(71) Applicant: STORAGE TECHNOLOGY CORPORA-
TION [US/US]; Bailey, Wayne, P., One StorageTek Drive,
MS-4309, Louisville, CO 80028-4309 (US).

(72) Inventors: DE MARTINE, Patrick, L.; 7070 West Polk
Place, Littleton, CO 80123 (US). HAMMETT, Scott,
C.; 15953 Highway 119, Black Hawk, CO 80403 (US).
ZANOWICK, Stephen, S.; 755 Bow Mountain Road,
Boulder, CO 80304 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY,BZ, CA, CH, CN, CR, CU, CZ,
DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR,
HU,ID,IL, IN, IS, JP, KE, KG, KP, KR, KZ,LC, LK, LR,
LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ,
NO,NZ,PL, PT,RO,RU, SD, SE, SG, S1, SK, SL, TJ, TM,
TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG,
ClI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments.

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: MAPPING VARIABLE SIZE DATA BLOCKS INTO A FIXED BLOCK STRUCTURE

DCR{0)=1-0-1 DCR[0]=0
[
SET CHR1)
r— DCR{0}= 1 DCA0] = 1-0-1 DCR{) = 1-0-1 S
SET CHAY1) :
SET CHR[1} SET CHR[f) SET CHRD]
Y CLRCHA1] —\ CLR CHRY1] —\ CLR CHA[1) — '/ \
10~ chumg s | cHunk o | chunks | crunks
121 cows cow?2 ccwa | cows CCW5 ccwe coW?7 ccws | cowo
t— SET CHR[3] SET CHR4| :}/‘
CLR CHR[3:4]
DTC END CONDITION: DTC END CONDITION:
DTCR DECREMENTS DTCR DECREMENTS DTC END CONDITION:
TO ZERO TOZERC DTCR DECREMENTS
TO ZERO

(57) Abstract: A virtual tape system and method for mapping variable sized data blocks from a host to a fixed sized data block
structure of a direct access storage device (DASD) utilizes a buffer between the cache and the host. The control logic operates to
access the storage device by transferring data between the cache and the buffer in fixed chunk sizes, and in parallel, transferring data

between the host and the buffer in data-chained blocks.

WO 01/22211 PCT/US00/26409

MAPPING VARIABLE SIZE DATA BLOCKS
INTO A FIXED BLOCK STRUCTURE

TECHNICAL FIELD

The present invention relates to the mapping of variable size data blocks into a

fixed block structure for emulating a tape device with a direct access storage device.

BACKGROUND ART

Emulation of a tape device necessitates the handling of large blocks of data
differently than that required for a direct access storage device (DASD) control unit. In a DASD
environment, a data-record never exceeds a total data count greater than some finite amount of
bytes such as, for example, 64 kilobytes. Tape blocks, on the other hand, may have lengths
longer than the finite length that is allowed in a DASD environment, and as such, may exceed
the capabilities of the DASD front-end data path counters. For example, for a finite block length
of 64 kilobytes, a 16 bit counter may be used. As such, tape blocks, which may be up to, for
example 256 kilobytes in length, exceed the capabilities of the 16 bit counter.

For the foregoing reasons, there is a need for a virtual tape system and method for

mapping variable size data blocks into a fixed block structure.

DISCLOSURE OF INVENTION

It is, therefore, an object of the present invention to provide a virtual tape system
and method for mapping variable sized data blocks from a host into a fixed sized data block

structure of a direct access storage device that utilizes a buffer between the cache and the host.

In carrying out the above object, a virtual tape system is provided. The system
comprises a cache, a buffer, and control logic. The cache for the direct access storage device is
configured to send and receive data in a group of associated (spanned) chunks having a fixed
size. The buffer is for transferring data between the cache and the host. The buffer has a size

that is greater than the fixed chunk size. The control logic is operative to access the storage

-1-

WO 01/22211 PCT/US00/26409

device by transferring data between the cache and the buffer in fixed size chunks, and in parallel,

transferring data between the host and the buffer in data-chained blocks having a variable size.

In one embodiment, the fixed chunk size is not greater than 64 kilobytes, and the
variable block size is not greater than 256 kilobytes. A 16 bit counter is used for counting data
transfers between the cache and the buffer. Further, it is preferred that the buffer size is twice

the sum of the fixed chunk size and the cyclic redundancy check (CRC) bytes.

In a preferred embodiment, each fixed size chunk has a count, and the control
logic is further operative to read from the direct access storage device by initiating a transfer of
a series of fixed size chunks from the cache to the buffer. Thereafter, the control logic initiates
a transfer of a series of variable size blocks from the buffer to the host while, in parallel,
continuing to transfer the series of fixed size chunks from the cache to the buffer. The last
chunk in the series of fixed size chunks may have a count less than the fixed chunk size, with the

other chunks all having a count equal to the fixed chunk size.

Further, in a preferred embodiment, the control logic is further operative to write
to the direct access storage device by initiating a transfer of a series of variable size blocks from
the host to the buffer. Thereafter, the control logic initiates a transfer of a series of fixed size
chunks from the buffer to the cache while, in parallel, continuing to transfer the series of variable
size blocks from the host to the buffer. The last chunk in the series of fixed size chunks may
have a count less than the fixed chunk size, with the other chunks having a count equal to the
fixed chunk size. Preferably, the buffer size is at least twice the fixed chunk size including room
for CRC bytes. Having the buffer at least twice the chunk size (plus room for CRC bytes) allows
the buffer to be primed with one full chunk of information before any information is removed
from the buffer. This size buffer advantageously allows simultaneous (parallel) transfers into

and out of the buffer in either direction (read or write).

Further, in carrying out the present invention, a virtual tape method
for mapping variable size data blocks from a host into a fixed data block structure of a direct
access storage device is provided. The direct access storage device has a cache configured to
send and receive data in a group of associated (spanned) chunks having a fixed size. The method
comprises establishing a buffer between the cache and the host for transferring data between the

cache and host. The buffer has a size that is greater than the fixed chunk size. The method

-

WO 01/22211 PCT/US00/26409

further comprises accessing the storage device by transferring data between the cache and the
buffer in fixed size chunks, and in parallel, transferring data between the host and the buffer in
data-chained blocks having a variable size. In one embodiment, the fixed chunk size is not

greater than 64 kilobytes and the variable chunk size is not greater than 256 kilobytes.

In a preferred embodiment, the method further comprises reading from the direct
access storage device by initiating a transfer of a series of fixed size chunks from the cache to
the buffer. Thereafter, a transfer of a series of variable size blocks from the buffer to the host is
initiated while, in parallel, the transferring of the series of fixed size chunks from the cache to
the buffer continues. The last chunk in the series of fixed size chunks may have a count less than
the fixed chunk size, with the other chunks all having a count equal to the fixed chunk size.
Further, in a preferred embodiment, the method further comprises writing to the direct access
storage device by initiating a transfer of a series of variable sized blocks from the host to the
buffer. Thereafter, a transfer of a series of fixed sized chunks from the buffer to the cache is
initiated while, in parallel, the transferring of the series of variable size blocks from the host to

the buffer continues.

The advantages associated with embodiments of the present invention
are numerous. For example, embodiments of the present invention employ a chunking algorithm
to map arbitrarily large data blocks of variable size into a fixed block structure. Two data
transfer modes, fixed chunk size and variable block size (data-chained), are used in parallel to
reconcile the count mismatch between the fixed size chunks and the variable size blocks. For
write transfers, commands with the data chaining bit set and any write command with a count
greater than the defined chunk size is processed by the chunking algorithm. Read transfers are

processed as chunks when instructed to do so by the control unit processor via messaging.

The above object and other objects, features, and advantages of the present
invention are readily apparent from the following detailed description of the best mode for

carrying out the invention when taken in connection with the accompanying drawings.

WO 01/22211 PCT/US00/26409

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a diagram illustrating a data chaining chunked read with a channel

command word count less than the fixed chunk size;

FIGURE 2 is a diagram illustrating a data chaining chunked read with a channel

command word count greater than the fixed chunk size;

FIGURE 3 is a diagram illustrating a data chaining chunked write with a channel

command word count less than the fixed chunk size;

FIGURE 4 is a diagram illustrating a data chaining chunked write with a channel

command word count greater than the fixed chunk size;

FIGURE 5 is a block diagram illustrating a channel interface processor virtual

tape data chaining processing method of the present invention;

FIGURES 6a-6¢ are a block diagram illustrating a channel interface processor
virtual tape data chaining read processing method of the present invention; and
FIGURES 7a-7b are a block diagram illustrating a channel interface processor

virtual tape data chaining write processing method of the present invention.

BEST MODE FOR CARRYING OUT THE INVENTION

With reference to Figure 1, a diagram illustrates data chaining chunked reading
when the channel command word count is less than the chunk size. The fixed size chunks, which
are being moved from the cache to the buffer, are indicated at 10. The channel command word
data/variable size blocks, which are being transferred from the buffer to the host, are indicated
at 12. Figure 2 illustrates data chaining chunked reading when the channel command word count
is greater than the chunk size. The fixed size chunks are indicated at 14, and the channel
command word count/variable size blocks are indicated at 16. The fixed size chunks are being
transferred from the cache to the buffer, and the variable size blocks are being transferred from

the buffer to the host.

WO 01/22211 PCT/US00/26409

In Figure 3, a diagram illustrates data chaining chunked writing with a channel
command word count less than the fixed chunk size. The fixed size chunks are indicated at 18,
while the channel command word count/variable size blocks are indicated at 20. During writing,
the fixed size chunks are being transferred from the buffer to the cache, while the variable size

blocks are being transferred from the host to the buffer.

In Figure 4, data chaining chunked writing with the channel command word
count greater than the fixed chunk size is illustrated. The fixed sized chunks are indicated at 22,
while the variable size blocks are indicated at 24. The fixed size chunks are being transferred,
during a write, from the buffer to the cache. And, the variable size blocks are being transferred

from the host to the buffer.

The diagrams of Figures 1-4 are best understood when viewed along side the
block diagrams of Figures 5-7. In Figure 5, a block diagram illustrating the data chaining process
is generally indicated at 30. At 31, the top level mapping code for read and write commands is
entered. At block 32, a valid command is received on the input/output (I/O) channel. At block
34, a command type is determined as indicated by the command field of the received command
frame (packet). At block 36, if the command is a write, chunk processing continues as illustrated
in Figure 7. At block 38, when the command is neither a read nor a write, no special mapping
is required. At block 40, if the command is a read (forward), mapping may be required and takes
place as shown in Figure 6. After either chunk processing of a virtual tape write (block 36),
normal command processing (block 38) or chunk processing of a virtual tape read (block 40),

the process ends at block 42.

In Figure 6, at block 52, read mapping is entered (from block 40 of Figure 5). At
block 54, command code and byte count are passed to the control processor. At block 56, if this
data block had been written using the mapping process, a message indicating so is received from
the control processor and the mapping code is entered. If the block was not mapped when
written, normal command processing indicators are received. At block 58, when mapping has

been used, the control processor passes the total byte count of the mapped block.

The total byte count of the mapped block is used to anticipate actions when de-

mapping the block. As an example, if the host computer does not need the full block, it will

-5

WO 01/22211 PCT/US00/26409

truncate the read (only read a portion of the total data block). If the truncation occurs in the
middle of a chunk, the remainder of the chunk must still be extracted from the cache so that error
checking can be performed. For example, cyclic redundancy checking (CRC) may be performed.
Another example where total byte count of the mapped block may be used is when the host
computer attempts to read more data than is in the data block. In this case, the channel interface

processor would detect this because it knows the data block bytes available.

At block 60, the channel interface processor sets up and starts the first chunk transfer
from the cache to the buffer. At block 62, once the cache to buffer data transfer is started, the
channel interface processor immediately sets up and starts transfer from the buffer to the host.
Of course, in a preferred embodiment, the buffer to host transfer is not started until one full fixed
sized chunk has been moved into the buffer, and the buffer preferably has a size that is at least
twice the size of the chunks including room for CRC bytes. Despite the standard chunks used
to write and read data from the cache, the channel interface processor will de-map the data and

present it in any way specified by the host computer.

The host computer has a number of mechanisms for breaking data into pieces. A data
block can be broken into a number of commands (referred to as data chaining). Each command
can be further divided by requesting a portion of the data specified in the command (referred to
as data request). For example, a 64 kilobyte block could be requested in the following ways:
One 64 kilobyte command and one 64 kilobyte data request per command, one 64 kilobyte
command and two 32 kilobyte data requests per command, two 32 kilobyte commands and one
32 kilobyte data request per command, two 32 kilobyte commands and two 16 kilobyte data
requests per command, 64 one kilobyte commands and 64 sixteen byte data requests per

command, and so on.

At block 64, status of the buffer to host transfer is checked. The status is determined by
a hardware indicator that activates when the buffer to host transfer set up in block 62 is
completed. If the buffer to host transfer is not complete, flow proceeds to block 66. At block
66, the cache to buffer transfer is checked for completion via a hardware indicator. If the cache
to buffer transfer is not complete, flow proceeds to block 68 where it is checked to see if any
errors have been detected with any of the transfers. Errors include, but are not limited to, channel
protocol errors, CRC errors, control processor detected errors, hardware malfunctions and so on.

If there are no errors, flow proceeds to block 70. At block 70, both data transfers are checked

-6-

WO 01/22211 PCT/US00/26409

to see if any terminating conditions have occurred. Terminating conditions do not necessarily
indicate an error, only that there is some condition which overrides the completion of the data
transfer. These conditions include, but are not limited to: cancel or reset requests from the host,

command retry from the control processor or the host, and so on.

If the buffer to host transfer had completed at block 64, flow proceeds to block 72. Flow
remains at block 72 until the cache to buffer transfer is complete, which is determined by a
hardware indicator that activates when a value set up in block 60 is satisfied. Thereafter, at block
74, it is checked to see if the control processor is stopping the data transfer. If the control
processor determines that there are problems with the data transfer or if it needs the command
reissued by the host computer, it will indicate this by writing specific values to specific hardware
registers. At block 76, which is proceeded to when the control processor stops the transfer, the
chunk data transfer is considered over and all control data is reset and counters are placed in a

quiescent state.

If the control processor did not stop the data transfer at block 74, flow proceeds to block
78 where it is checked to see if there is still more data available to send and if so, does the host
want them. This check is based on the total byte count of the data block received at block 58 and
the accumulated count of bytes sent successfully to the host computer. If the host does not want
any more bytes of data, flow proceeds to block 76. At block 76, arriving there from either block
74 or 78, data structures are updated and cleaned up as explained above. Flow then proceeds to
block 80, where the channel interface processor presents ending status for the data transfer to the
host computer. This status is supplied by the control processor. Thereafter, at block 82, the

mapping code is exited and processing returns to normal /O processing.

In the event that the host wants more bytes at block 78, flow proceeds to block 84. At
block 84, based on the total byte count of the data received at block 58, the accumulated counts
of bytes sent successfully to the host computer, and the defined chunk size, it is determined if
there is more than a chunk of data still available to send to the host computer. If there is more
than a chunk of data remaining, flow proceeds to block 86. At block 86, a message is sent to the
control processor indicating that another chunk of data is required for cache to buffer
transferring. Also, the host computer has not given any indication that the transfer is going to
complete early, so this is not the last chunk needed. Thereafter, at block 88, the channel interface

processor sets up, but does not start, the next chunk transfer from the cache to the buffer. If at

-7-

WO 01/22211 PCT/US00/26409

block 84, it was determined that there was not more than a chunk of data remaining, flow
proceeds to block 90. At block 90, a message is sent to the control processor indicating that
another chunk of data is required for cache to buffer transferring and that it is the last chunk for
this data block. The byte count for the last chunk may vary from one byte to the full chunk size.

This count is also passed to the control processor.

Eventually, flow proceeds to block 92. At block 92, if the buffer to host data transfer is
still in progress (flow had proceeded through block 66 as opposed to through block 72),
processing now waits for that transfer to complete. Thereafter, flow proceeds to block 94. At
block 94, the channel interface processor starts the next chunk transfer from the cache to the
buffer. And thereafter, at block 96, once the cache to buffer data transfer started, the channel
interface processor immediately sets up and starts transfer from the buffer to the host. Of course,
as mentioned previously, buffer to host transfer is preferably not started until there is at least one
fixed chunk size amount of data in the buffer. This amount of data may already be in the buffer,
if the buffer was primed at block 60. After block 96, flow proceeds to block 64 and the data

chaining read processing continues until eventually exit block 82 is reached.

Referring to Figure 7, virtual tape data chaining writing processing is entered at block
102, with flow proceeding to block 104. At block 104, it is checked to see if the host has the data
chaining indicator turned on. If the host indicates data chaining, flow proceeds to block 110,
otherwise, flow proceeds to block 112. At block 112, if the data chaining indicator is not
received from the host, but the number of bytes to be written is greater than the fixed chunk size,
then the write must be mapped and flow proceeds to block 110. Otherwise, flow proceeds to exit

block 138 which returns processing to Figure 5.

With continuing reference to Figure 7, at block 110, the channel interface processor
passes the data transfer command to the control processor with an indicator that specifies that
this write must be mapped into fixed size chunks. Flow proceeds to block 108 where at it is

checked to see if initial status has been received from the control processor.

Initial status is indicated by the control processor writing a value of zero to a specific
hardware register. If initial status is found, flow proceeds to block 106, where counters and
control information are set up and the first block transfer from host to buffer is started. Flow

then proceeds to block 120. At block 120, processing waits for the first host to buffer transfer

_8-

WO 01/22211 PCT/US00/26409

to complete (the buffer is primed). Thereafter, flow proceeds to block 122. If there is more data
to be transferred for this write command, flow proceeds to block 126, otherwise, flow proceeds
to block 124. This is determined by examining the data chaining bits in the current write
command. These bits will show the host’s intention to send another data chained command.

Also, more data is expected if there is still outstanding data for the current data chain command.

When there is more data from the host, at block 126, a message is sent from the channel
interface processor to the control processor indicating that the next, or the first if flow arrived
here from block 120 as opposed to from block 114, (but not the last) chunk for this data transfer
is ready for buffer to cache transferring. The byte counter for this transfer will be exactly a chunk
in size. At block 132, the transfer from buffer to cache is set up and started. At block 136,
counters and control information are set up, and the next chunk transfer from host to buffer is

started. Thereafter, flow proceeds to block 114.

At block 114, hardware signals that activate when the data transfers set up in blocks 132
and 136 are satisfied are checked to see if the host to buffer and buffer to cache transfers are
complete. If not, flow proceeds to block 116 where a check for errors is performed. Error
checking includes, but is not limited to: channel protocol errors, CRC errors, control processor
detected errors, hardware malfunctions, and so on. If there are not any errors, flow proceeds to

block 118.

At block 118, it is checked to see if there are any terminating conditions. Terminating
conditions do not necessarily indicate an error, only that there is some condition which overrides
the completion of the data transfer. These conditions include, are not limited to: cancel or reset
request from the host, command retry from the control processor or the host, and so on. If there
are no terminating conditions, flow returns to block 114. If errors were found at block 116 or
terminating conditions have occurred at block 118, flow proceeds to block 130 and the chunk
data transfer is considered over and all control data is reset and counters are placed in a quiescent

state.

If flow had returned to block 114, it is again checked to see if the host to buffer and
buffer to cache transfers are completed. Upon completion of both transfers, at block 122, it is
again checked to see if there is more data from the host (as checked previously). If so, flow again

proceeds to block 126, to block 132, and then to block 136 as described previously.

-9-

WO 01/22211 PCT/US00/26409

The writing processing cycle continues until at block 122, it is indicated that there is no
more data from the host, then flow proceeds to block 124 (assuming no errors or terminating
conditions occurred). At block 124, a message is sent from the channel interface processor to
the control processor indicating that the last chunk for this data transfer is ready for buffer to

cache transfer. The byte count for the last chunk can vary from one to the full chunk size.

Flow then proceeds to block 128, where the transfer from buffer to cache is set up and
started. Flow then proceeds to block 130, where the chunk data transfer is considered over and

all control data is reset and counters are placed in a quiescent state.

Thereafter, at block 134, the channel interface processor presents ending status for the
data transfer to the host computer. This status is supplied by the control processor. Thereafier,

flow proceeds to block 138, and then processing returns to Figure 5.

It is to be appreciated that embodiments of the present invention use a software method,
chunking, to map arbitrarily large data blocks of variable size to fixed chunks which can be
handled by the currently existing counters. To accomplish this, commands which require
chuncking are intercepted from the baseline channel interface processor code and processed by
the mapping function. For normal non-data-chained transfers, channel command word counts
(host to buffer and buffer to host) and cache transfer counts (cache to buffer and buffer to cache)
can be managed in unison. For data chaining, this is not the case. Because of the fixed nature
of the chunk and the unpredictable size of the channel command word counts, it must be
assumed that the boundaries of the two portions of the host to cache transfer will not coincide.
Two data transfer modes are used in parallel to reconcile this count mismatch in accordance with

the present invention.

In summary, during a read, chunks are moved from cache to the buffer, to get the buffer
primed. The buffer preferably is at least twice the chunk size including room for CRC bytes so
that the buffer can accommodate two chunk transfers in parallel. Data is moved from the buffer
to the host in block sizes based on the channel command word (variable or unpredictable), while
the hardware error correction is performed in accordance with the chunk size as the data moves
into the buffer. The last chunk may be a short chunk to match up with the final channel

command word count.

-10-

WO 01/22211 PCT/US00/26409

During a write, blocks are moved from the host to the buffer, to get the buffer primed.
Data is moved from the buffer to the cache in chunks of a fixed size, while blocks enter the
buffer in block sizes based on the channel command word count. It is to be appreciated that in
accordance with the present invention, there are two simultaneous direct transfers occurring (after
any latency for prefetch into the buffer). One of the transfers is the transfer between the cache
and the buffer, and the other transfer is a transfer between the buffer and the host.
Advantageously, manipulating control register values (as best shown in Figures 1-4) makes the

parallel dual transferring possible, and transparent, to the host.

In accordance with the present invention, hardware registers are controlled during the
transfer. The below listed description of registers and register changing commands, when taken

in connection with Figures 1-4, describes embodiments of the present invention in further detail.

DTC active = Enable/disables the Data Transfer Controller.

DTC Read/Write = Selects the direction of the data transfer.

New NDRC = Signals the hardware that a new data request count is available to add to the
current transfer in progress.

NDRC E bit - Signals to the hardware that this new data request count exactly satisfies the host
computer's final data request.

CKD mode = Tells the hardware that it must package multiple cache-to-buffer transfers into
a single buffer-to-host transfer.

Terminate CKD Mode = Used to inform the hardware of the last cache-to-buffer

transfer when in CKD mode.

Data Chaining Mode = Signals the hardware that multiple commands (multiple

buffer-host transfers) will be needed for the transfer of the data block.

Terminate Data Chaining = Used to inform the hardware of the last buffer-host transfer when

in data chaining mode.

"DCR[0] = 1" means to set bit 0 of the DCR register to a value of one. This starts

the data transfer.

"DCR[0] = 1-0-1" means to toggle DCR bit 0 from a value of one, to a value of zero,

and then back to one. This results in a momentary suspension of the data transfer.

-11-

WO 01/22211 PCT/US00/26409

"Set CHR[1]" tells the DTC hardware that the transfer is going to be data-chained.

"Set CHR[3]" tells the hardware that there will be more than one field of data (a group of bytes
with its associated CRC code) coming from the cache in order to satisfy this data transfer. This

is referred to as CKD mode.

"CLR CHR[3:4]" indicates that the "CKD Mode" and "Terminate CKD Mode" bits (respectively)

should be cleared (turned off). This is done as clean-up at end of the transfer.

"CLR CHR[0:1]" indicates that the "Terminate Data Chaining" and "Data Chaining" bits

(respectively) should be cleared (turned off). This is done as clean-up at end of the transfer.

"SET CHR[0]" indicates that the "Terminate Data Chaining" bit should be turned on.

"DCR[0]=0" indicates that the "DTC Active" bit should be turned off. This stops the DTC

hardware.

Of course, it is appreciated that embodiments of the present invention are suitable for
numerous applications where variable sized data blocks from a host are mapped into a fixed
sized data block structure of a direct access storage device (DASD). And accordingly, the above
specific description of hardware register operation, which is further illustrated in Figures 1-4, is
one specific example of an implementation of the present invention, and it is appreciated that the
flow diagrams of Figures 5-7, and the broader description given further above, encompass other
techniques than the specific implementation illustrated. Still further, in one implementation, the
buffer between the host and the cache is implemented as a first-in-first-out (FIFO) buffer. Of
course, many buffer types are suitable for embodiments of the present invention, with a FIFO

buffer being just one example.

While the best mode for carrying out the invention has been described in detail, those
familiar with the art to which this invention relates will recognize various alternative designs and

embodiments for practicing the invention defined by the following claims.

WO 01/22211 PCT/US00/26409

WHAT IS CLAIMED IS:

1. A virtual tape system for mapping variable sized data blocks from a host
into a fixed size data block structure of a direct access storage device, the system comprising:

a cache for the direct access storage device, the cache being configured to send
and receive data in fixed chunks having a fixed size;

a buffer between the cache and the host for transferring data between the cache
and the host, the buffer having a buffer size that is greater than the fixed chunk size; and

control logic operative to access the storage device by transferring data between
the cache and the buffer in fixed size chunks, and in parallel, transferring data between the host
and the buffer in data-chained blocks.

2. The system of claim 1 wherein the fixed chunk size is not greater than 64
kilobytes.

3. The system of claim 2 wherein the variable chunk size is not greater than
256 kilobytes.

4. The system of claim 2 wherein the control logic further comprises:

a 16 bit counter for counting data transfers between the cache and the buffer.

5. The system of claim 1 wherein each fixed size chunk has a count, and
wherein the control logic is further operative to:

read from the direct access storage device by initiating a transfer of a series of
fixed size chunks from th'e cache to the buffer, and thereafter, initiating a transfer of a series of
blocks from the buffer to the host while, in parallel, continuing to transfer the series of fixed size

chunks from the cache to the buffer.
6. The system of claim 5 wherein the last chunk in the series of fixed size
chunks has a count not more than the fixed chunk size, and the other chunks all have a count

equal to the fixed chunk size.

7. The system of claim 1 wherein the control logic is further operative to:

-13-

WO 01/22211 PCT/US00/26409

write to the direct access storage device by initiating a transfer of a series of
blocks from the host to the buffer, and thereafter, initiating a transfer of a series of fixed sized
chunks from the buffer to the cache while, in parallel, continuing to transfer the series of blocks

from the host to the buffer.

8. The system of claim 7 wherein the last chunk in the series of fixed size
chunks has a count not more than the fixed chunk size, and the other chunks all have a count

equal to the fixed chunk size.

9. The system of claim 1 wherein the buffer size is at least twice the fixed

chunk size including any error correction information.

10. A virtual tape method for mapping variable sized data blocks from a host
into a fixed size data block structure of a direct access storage device having a cache configured
to send and receive data in fixed chunks having a fixed size, the method comprising:

establishing a buffer between the cache and the host for transferring data between
the cache and the host, the buffer having a buffer size that is greater than the fixed chunk size;
and |

accessing the storage device by transferring data between the cache and the buffer
in fixed size chunks, and in parallel, transferring data between the host and the buffer in data-
chained blocks.

11. The method of claim 10 wherein the fixed chunk size is not greater than
64 kilobytes.

12. The method of claim 11 wherein the variable chunk size is not greater
than 256 kilobytes.

13. The method of claim 10 wherein accessing further comprises:

reading from the direct access storage device by initiating a transfer of a series of
fixed size chunks from the cache to the buffer, and thereafter, initiating a transfer of a series of
blocks from the buffer to the host while, in parallel, continuing to transfer the series of fixed size

chunks from the cache to the buffer.

-14-

WO 01/22211 PCT/US00/26409

14. The method of claim 13 wherein the last chunk in the series of fixed size
chunks has a count not more than the fixed chunk size, and the other chunks all have a count

equal to the fixed chunk size.

15. The method of claim 10 wherein accessing further comprises:

writing to the direct access storage device by initiating a transfer of a series of
blocks from the host to the buffer, and thereafter, initiating a transfer of a series of fixed size
chunks from the buffer to the cache while, in parallel, continuing to transfer the series of blocks

from the host to the buffer.

16. The method of claim 15 wherein the last chunk in the series of fixed size
chunks has a count not more than the fixed chunk size, and the other chunks all have a count

equal to the fixed chunk size.

17. The method of claim 10 wherein the buffer size is at least twice the fixed

chunk size including any error correction information.

-15-

PCT/US00/26409

WO 01/22211

¢’ 4
/4
0H3Z 0L
SINIWIHOIA HOLA 043z 0L 0H3Z 0L
‘NOILIONOD N3 01a SINIW3HO3A HOLQ SINIW3HOIA HOLA
‘NOILIONOD GN3 010 ‘NOILIGNOD aN3 210
[P:ElHHO WD
«l! (VluHO 138 lelyHD 138 —nr «
6 MOD 8 MO LMD 9 MO $ MDD ¥ MOD £ MDD 2 MO0 IMOD | 21
¥ YNNHD _ £ 3NNHD _ ZMNNHD _ DINHO |,
) \ N [14HO 410 " [l4HO 11 —— [114HO 410)
loliHo 135 (4O 138 [1HD 135 Bl L35
[1:0l4HD 11D
1-0- = [oluoa 1:0-1 = lolwoa = [olyng —
[1]4HD 138

0=lolda 1-01 =lolda

1/10

PCT/US00/26409

WO 01/22211

s s 4
/4
043z ol
SINIW3IHO3AQ HOLQ o43zZol 0437 01
‘NOILIANOD aN3 214 SINIWIYO3a HoLa SINIWIHOIA HOLA
'NOILIONOD aN3 21 'NOILIONOD aN3 210
fr:eldHO H10
j [bluHD L33 [eluHD 135 ?!J<
£ MDD 2 M2 IMOD | 9
b ¥NNHD _ € NNHD _ ZINNHO _ DINHO |
A \ | (114K 11D _ [1uHO W10 | W [HHO 41D
loksi0 135 [4]4HD 43S (1]4HD 138
[10lHO 10 [1hi0 135
1-0-1 = lol4oa 1-0-4 = [olyoa 1 =lolng —
L [1l4HD 138

0=1{oldda 1-0t =lolH0a

2/10

PCT/US00/26409

WO 01/22211

AHVANNOA 1S3N03H viva =

OH3zol

SIN3W3IHO3AQ HO1a
‘NOILIGNOD aN3 014

' 1y

' '

11 '

R

/ '

R

0=lolyda

6 MOD 8 MOD L MDD 9 MO § MOD MOD £JMOD 2 M99 PMOO o
b ¥NNHD € ¥NNHO 2 MNNHO DINNHO (o)
7/~_ \) wll_am:obwm >4//huwgemzohmw w|1_gmzohmm A
0l4HO 13S
(0] 5 [1:0l4HO H1D (1:0lHHO |10 [1:0l4HO H1D
HOIHO W1 [1HO 138 [14HO 138 [0 138
(14HO 135 » +
_ 1 =loldoa
104 = [oluoa

3/10

PCT/US00/26409

WO 01/22211

04y3zol
SIN3W3HO3Aa HO1Q

‘NOLLIONOD ON3 210

| 1

' | '

£M ZMDD § MDD
9 e 44
¥ ¥NNHD £ 3INNHO ZYNNHO POINAHO | 22
[0l4HO 13S 4 A loluHD 135 A
0=lol4oa [1:014HO 110 (14K 138 I =loldoa —
[1l4HD 135 [1:0l4HO H1D

[
1-0-1 ={olHoa

4/10

WO 01/22211 PCT/US00/26409

30 ‘

\ Y
! COM
MAND
RECEIVED FROM [¢
CHANNEL

WRITE READ

COMMAND TYPE?

36 40
Y 38
v~ -
CIP VTAPE WRITE IP VT,
CHUNK NORMAL © CQBEEEAD
PROCESSING COMMAND PROCESSING
(CIPVT_DC_WRT1) PROCESSING (CIPVT_DC_RDF1)

WO 01/22211

PCT/US00/26409

PASS COMMAND CODE AND CCW
COUNT TO CONTROL PROCESSOR

L~ 54

CONTROL
PROCESSOR INDICATES
CHUNKING

NO

50

Y
CONTROL PROCESSOR — 58
PROVIDES TOTAL BLOCK COUNT
. 0'}’
Y 7. oz
START FIRST CHUNK TRANSFER |, — 60
FROM CACHE TO BUFFER
Y
START FIRST BLOCK TRANSFER |— 62

FROM BUFFER TO HOST

BUFFER-TO-

HOST TRANSFER

COMPLETE
?

YES

CACHE -TO-

BUFFER TRANSFER

COMPLETE
?

NO

6/10

66

CACHE -TO-
BUFFER TRANSFER
COMPLETE

74

CONTROL
PROCESSOR STOPS

TRANSFER
?

WO 01/22211

MORE THAN
A CHUNK OF DATA

REMAINS
?

PCT/US00/26409

CACHE-TO-BUFFER TRANSFER

86 90
L~
| 88
SEND MESSAGE
10 IUP: SET UP CONTROL %",JBP“Z"ESSAGE
- INDICATE NOT .| PEGISTERS - INDICATE LAST
THE LAST CHUNK FOR NEXT CHUNK
- CCW COUNT CACHE-TO-BUFFER - CCW COUNT
(EXACTLY CHUNK TRANSFER (MAY BE LESS
SIZED) ‘ THAN A CHUNK)
Y 92
BUFFER-TO-
HOST TRANSFER
COMPLETE
?
‘YES
START NEXT L— 94

Y

START NEXT BUFFER-TO-HOST TRANSFER

USING DATA FROM PREVIOQUS
CACHE-TO BUFFER TRANSFER

L— 96

7/10

WO 01/22211 PCT/US00/26409

50

68 NO
70
Ve

TERMINATING

CONDITION
?

<:>_____.. UPDATE AND
CLEANUP

DATA

(:D______>- STRUCTURES

A

Y

READ
END-OF-TRANSFER | 80
PROCESSING

Y /82

EXIT ~—)

3/10

WO 01/22211 PCT/US00/26409

100 \
1 HOST
YES INDICATES DATA
CHAINING

?

104

y 10 112

OTHER 108 | INFORM CONTROL [OST COW
STATUS PROCESSOR OF | YES Lo NT GREATER
DESIAE TO THAN CHUNK
PERFORM WRITE SoE
CHUNKING 2
NO
START FIRST
BLOCK TRANSFER |~ 106
FROM
HOST TO BUFFER

DATA FROM
HOST

TRANSFER
COMPLETE

SEND MESSAGE TO CONTROL 126
PROCESSOR INDICATING CHUNK -
IS READY AND MORE WILL FOLLOW
(BYTE COUNT EXACTLY THE CHUNK SIZE.)

1

START CHUNK TRANSFER | — 132
FROM BUFFER TO CACHE

50y ot

Y

START NEXT BLOCK TRANSFER | —136
FROM HOST TO BUFFER

6

9/10

WO 01/22211 PCT/US00/26409

HOST-TO-BUFFER
AND BUFFER-TO-CACHE
TRANSFERS
COMPLETE

TERMINATING
CONDITION
?

YES

7. 70

124\

SEND MESSAGE TO
CONTROL PROCESSOR
INDICATING LAST
@+ CHUNK IS READY

(BYTE COUNT WILL
BE LESS THAN OR
EQUAL TO THE
CHUNK SIZE)

\

128 — TRANSFER CHUNK
FROM BUFFER TO CACHE

Y

UPDATEAND |-
CLEANUP DATA
STRUCTURES |

130 —

Y

— WRITE
134 END-OF-TRANSFER
PROCESSING

100

198 ™ EXIT ~—®

—®

10/10

INTERNATIONAL SEARCH REPORT

In* ~ational Application No

PCT/US 00/26409

A.
IPC

CLA?SIFICAT!ON OF SUBJECT MATTER

GO6F3/06

According to international Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

IPC 7

Minimum documentation searched (classification system foliowed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consuited during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data, IBM-TDB, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

11 February 1999 (1999-02-11)

page 3, line 14 - 1line 29

page 8, line 6 -page 13, line 19; figures
1-7

-/

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
Y EP 0 559 142 A (MITSUBISHI ELECTRIC CORP) 1,10
8 September 1993 (1993-09-08)
A column 13, line 11 -column 14, 1ine 7 2-9,
11-17
column 82, line 42 —column 83, line 57;
figures 1,32
Y US 5 297 124 A (GINSBURG DANIEL C ET AL) 1,10
22 March 1994 (1994-03-22)
column 1, Tine 44 - line 56
cotumn 3, line 4 - 1ine 29
column 5, line 3 - 1line 35; figure 1
A WO 99 06912 A (EXABYTE CORP) 1,10

m Further documents are fisted in the continuation of box C.

Patent family members are listed in annex.

° Speciai categories of cited documents :

"A* document defining the general state of the arn which is not

"L* document which may throw doubts on priority claim(s) or
which is cited to establish the publication date of another *v* document of particular relevance; the claimed invention
cannot be considered to involve an inventive step when the
document is combined with one or more other such docu-
ments, such combination being obvious to a person skilled

citation or other special reason (as specified)
*O" document referring to an oral disclosure, use, exhibition or

other means r
P document published prior to the international filing date but in the art.
later than the priority date claimed *&* document member of the same patent family

T later document published after the international fiing date
or priority date and not in conflict with the application but
cited to understand the principle or theory underlying the

considered to be of particular relevance invention
‘E* earlier document but published on or after the international *X* document of particular refevance; the claimed invention
filing date cannot be considered novel or cannot be considered to

involve an inventive step when the document is taken alone

Date of the actual completion of the international search

8 February 2001

15/02/2001

Date of mailing of the international search report

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Authorized officer

Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Moen s R
b

Fax: (+31-70) 340-3016

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2

INTERNATIONAL SEARCH REPORT

I~ 1ational Application No

PCT/US 00/26409

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELLEVANT

Category ° | Citation of document, with indication,where appropriate, of the relevant passages

Relevant to claim No.

A US 5 724 542 A (KIRIGAYA NOBUKAZU ET AL)
3 March 1998 (1998-03-03)

column 9, line 53 -column 10, line 50
column 16, Tine 43 - line 62; figures
11,17-20

A "HIGH PERFORMANCE COOPERATIVE COUNT KEY
DATA/FIXED BLOCK CONVERSION MECHANISM"
IBM TECHNICAL DISCLOSURE BULLETIN,US,IBM
CORP. NEW YORK,

vol. 38, no. 6, 1 June 1995 (1995-06-01),
pages 333-335, XP000520684

ISSN: 0018-8689

the whole document

1,10

1,10

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

In* ~ational Application No

PCT/US 00/26409

Patent document Publication Patent family Publication

cited in search report date member(s) date

EP 0559142 A 08-09-1993 us 5388013 A 07-02-1995
JP 5307440 A 19-11-1993

US 5297124 A 22-03-1994 NONE

W0 9906912 A 11-02-1999 us 6128698 A 03-10-2000
AU 8684198 A 22-02-1999

US 5724542 A 03-03-1998 JP 7141117 A 02-06-1995

Form PCT/ISA/210 (patent family annex) (July 1992)

	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

