PORTABLE REUSABLE FORM FOR CONCRETE FOUNDATIONS

Inventor: Elliott C. Loy, 400 Woodfin, Houston, Tex. 77025

Filed: June 2, 1971

App. No.: 149,198

U.S. Cl. 249/13, 249/34, 249/157, 249/188, 249/207, 254/13

Int. Cl. B28b 7/22

Field of Search 249/13, 2, 3, 207, 208, 249/188, 137, 33, 34, 50, 4, 189, 157; 425/63, 213, 432, 470, 254/13, 14

References Cited

UNITED STATES PATENTS
2,741,821 4/1956 Findley............... 249/189
2,887,756 5/1959 Brechtel................ 249/13
1,268,734 6/1918 Lay...................... 81/177.8 UX
1,202,269 10/1916 Cramer................ 249/4 X
98,295 12/1869 Phillips................. 254/13

Primary Examiner—J. Spencer Overholser
Assistant Examiner—DeWalden W. Jones
Attorney, Agent, or Firm—William E. Ford

ABSTRACT

A portable form for concrete foundations and the like according to the present invention comprises a plurality of form sections each being provided with a substantially planar vertical wall defining the outer wall portion of such foundations. Each wall section includes a separable horizontal wall disposed substantially normal to the vertical wall and a vertical flange cooperating with the horizontal wall to define a brick ledge in the outer periphery of the foundation. The form is provided with interfitting corner sections that cooperate to define brick ledges at the corners of the foundation. The form is supported in place by plurality of adjustable support devices that are secured to the form sections at various positions thereon. Each of the support devices comprises a base that is secured to the ground in any desirable manner and includes an adjustable support that is manipulatable to adjust the height and position of the form sections as desired to achieve proper form configuration. The support devices may be employed to extract the concrete forms subsequent to hardening of the concrete material defining the foundation.

12 Claims, 18 Drawing Figures
PORTABLE REUSABLE FORM FOR CONCRETE FOUNDATIONS

SUMMARY OF THE PROBLEMS RAISED TO BE SOLVED BY THE INVENTION

This invention relates generally to forms for concrete foundations and more specifically to reusable portable foundation forms having various sections enabling the use of standard sections to define forms of various configurations.

Generally it is the practice in the home building industry to construct forms for concrete foundations by utilizing wood materials or a combination of wood and metal materials from which the foundation forms are fabricated. It has been obvious that there is a need for form sections of reusable nature, but no reusable foundation forms have been developed that satisfy the present needs of the home building industry.

Wood forms or foundation forms utilizing combinations of wood and metal are quite expensive because these forms must be fabricated from the wood or metal materials utilized and labor for installation of the form foundations is extremely expensive. Moreover, subsequent to hardening of the concrete the fabricated foundation forms must be removed and labor costs for the removal operation is quite expensive. The material from which the fabricated forms are constructed is also quite expensive primarily because a major portion of the material is frequently unsuitable for other use after having been used as concrete form material. It is quite difficult to employ used concrete form materials even when constructing other foundation forms because the materials are frequently damaged during the removal operation or the materials are coated with sufficient amounts of concrete that fabrication equipment such as saws are frequently dulled or damaged by the abrasive effect of the concrete coating on the form material.

SUMMARY OF THE INVENTION

The present invention therefore has for an important object the overcoming of the above mentioned undesirable characteristics of fabricated foundation forms in the provision of a portable reusable foundation form.

It is also an object of the present invention to provide a novel reusable foundation form that is readily installed prior to pouring of the concrete foundation and is readily removable from a cured foundation with a minimum of effort and labor costs.

It is another object of the present invention to provide a novel reusable foundation form that may be installed or removed without any necessity of providing special tools or equipment to be employed therewith.

Among the several objects of the present invention is noted the contemplation of a novel reusable foundation form that employs standard straight sections and standard interfitting corner sections which may be employed to define a concrete foundation form of any desirable configuration.

It is a further object of the present invention to provide a novel concrete foundation form structure including a plurality of support devices that rest on the ground and support the form sections in the properly oriented positions thereof.

It is an even further object of the present invention to provide a novel portable reusable concrete form foundation employing support devices that adjustably support the foundation form sections in any desired position.

It is also among the several objects of the present invention to provide a portable reusable foundation form wherein transverse reinforcing bars that provide structural support for the concrete material also serve to maintain stability of the foundation form.

It is also within the spirit and scope of the present invention to provide a novel portable reusable concrete foundation form that is simple in nature, reliable in use, and low in cost.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings forming a part of this specification and wherein like reference numerals are employed to designate like parts:

FIG. 1 is a plan view of a concrete slab foundation for a dwelling having a brick ledge and illustrating transverse support beams in broken line.

FIG. 2 is a sectional view of the foundation taken along line 2—2 in FIG. 1.

FIG. 3 is a fragmentary sectional view of a concrete foundation illustrating fabrication of the foundation from wood materials.

FIG. 4 is a fragmentary isometric view of interfitting reusable form sections constructed in accordance with the present invention.

FIG. 5 is a sectional view of a reusable concrete form constructed in accordance with the present invention and an adjustable support mechanism for properly positioning and restraining the form sections.

FIG. 6 is a sectional view taken along line 6—6 in FIG. 5 and illustrating the adjustment mechanism thereof in detail.

FIG. 7 is a fragmentary sectional view of a concrete form section representing a modified embodiment of the present invention.

FIG. 8 is a fragmentary sectional view of a concrete form section also representing a further modified embodiment of the present invention.

FIG. 9 is a sectional view of a reusable concrete foundation form section illustrating a form positioning mechanism representing a modified embodiment of the present invention.

FIG. 10 is an elevational view illustrating a form positioning mechanism representing a further modified embodiment of the present invention.

FIG. 11 is a fragmentary plan view of interfitting reusable concrete foundation form sections illustrating the interfitting relationship between the various sections.

FIG. 12 is an isometric view illustrating an exterior corner section of a foundation form of the present invention.

FIG. 13 is an isometric view of an interior corner section of the foundation form of the present invention.

FIG. 14 is an isometric view illustrating a corner unit for the portable foundation form of the present invention.

FIG. 15 is an isometric view with parts broken away and showing a modified portable foundation form structure having a removable brick ledge structure and utilizing reinforcing bars to maintain stability of the upper portion of the foundation.
FIG. 15A is a fragmentary plan view of a modified portable foundation form structure as used in FIG. 15.

FIG. 16 is a fragmentary sectional view of a portable reusable concrete foundation form for slab foundations such as sidewalks and walkways.

FIG. 17 is a fragmentary plan view of a foundation form according to the present invention illustrating use of horizontal reinforcing rods as guides for forming foundation beam ditches.

BRIEF DESCRIPTION OF THE INVENTION

Briefly, the invention concerns the provision of a portable concrete foundation form including a plurality of interfitting sections formed of any suitable material, such as metal or plastic. Various straight sections, interior corner sections, exterior corner sections, and the like are interfitted to define a foundation of suitable size and configuration. The forms include a substantially planar vertical wall defining the peripheral surfaces of the concrete foundation. A substantially planar horizontal wall is disposed in normal relation to the vertical wall and cooperates with a vertical flange to define a brick ledge in the peripheral portion of the concrete foundation. The portable reusable form is supported by a plurality of adjustable supporting devices that fit within form support structures fixed to the form sections. The supporting devices are adjustable to allow proper positioning of the form sections as desired, and may be locked in any desirable position to assure retention of the form sections during pouring of concrete within the foundation form. Horizontal concrete reinforcing bars are utilized as guides before the concrete is formed for ditching machines that dig foundation beams to the proper depth and level the foundation sand providing proper slab thickness and insuring against waste of concrete. Subsequent to curing of the concrete the form support devices may be utilized to extract the form sections.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

With reference now to the drawings for a better understanding of the present invention, in FIG. 1 is illustrated a concrete foundation generally at 10 that includes a peripheral brick ledge 12 such as is utilized to support the masonry of a brick veneer type architectural building structure. The foundation is provided with outer reinforcing beams 14 and inner reinforcing beams 16. A network of structural steel 18 shown best in FIG. 2 is employed to strengthen the concrete from which the foundation is composed. Trenches for the inner and outer reinforcing beams are typically formed by digging trenches in the earth of a size and configuration to form the lower portion of the reinforcing beam structure. A layer of absorbent material such as dry sand 18 is placed on top of the raised earth structure 20 defined by the spoil from the reinforcing beam trenches. Frequently a liner of impervious material such as plastic 22 is placed within the foundation form to establish an impermeable barrier to prevent transfer of water from the soil to the concrete structure. The reinforcing beam trenches and the slab thickness are frequently of incorrect size, shape or thickness as the case may be, because of inaccuracies in the thickness of the absorbent material or undulations in the terrain. For example, a four inch slab may be 6 to 8 inches thick in places resulting in waste of concrete and uneven settling of the foundation.

As illustrated in FIG. 3 the peripheral portions of conventional brick veneer type concrete foundations are formed by driving a plurality of locating stakes 24 into the soil. Wood material such as the vertically oriented boards 26 and 28 are nailed or otherwise secured to the locator stakes 24. The impervious barrier is then lapped over the top edge of the upper board 28 and a horizontal board 30 is nailed through the impervious barrier to the upper board 28 in such manner as to be disposed substantially normal to the upper board. The horizontal board 30 is of sufficient size and thickness to define the brick ledge 12 of proper size and configuration. The concrete material is then poured within the form and is leveled coplanar with the top surface of the form board 30. Subsequent to curing of the foundation the concrete form is disassembled by prying the boards away from the concrete structure and removing the locator stakes from the earth surrounding the foundation. When wood foundation forms are disassembled quite frequently the wood material will be damaged to the point that further use of the material is rendered impractical.

With reference now to FIGS. 4 and 11 a portable concrete foundation according to the present invention comprises a plurality of form sections illustrated generally at 32 that include a substantially planar vertical wall 34. At the upper extremity of the vertical wall is disposed a substantially planar horizontal wall 36 that may be formed integrally with the vertical wall or may be affixed to the vertical in any desirable manner. The horizontal wall 36 is disposed in normal relation to the vertical wall 34 and to a vertical flange 38 that extends upwardly in substantially normal relation to the horizontal wall 36. The horizontal wall 36 and vertical flange 38 cooperate to define a brick ledge in the foundation as illustrated at 12 in FIG. 2.

The foundation sections 36 are each provided with a plurality of support bracket apertures that are single apertures as illustrated at 40 in FIG. 4 or may be spaced plural bracket apertures as illustrated at 42 in FIG. 4 that cooperate with removable support brackets 43 not only to provide support for the form sections but also to provide means for properly orienting the form sections during support thereof. The removable support brackets 43 may be integral with the supporting arm of form support and orienting devices such as illustrated in FIGS. 5, 9, and 10.

As illustrated in FIG. 5, the form section, when in place, will extend from a position above the ground level 44 to a position below ground level within a trench which has been prepared to define the outermost support beam 14 of the concrete foundation. An impervious liner 46 extends within the trench and passes under the form section 32 and extends upwardly along the trench wall to ground level. The concrete foundation is prepared with structural steel 48 in essentially the same manner as described above regarding conventional foundation structures.

The adjustable support mechanism illustrated generally at 50 in FIGS. 4, 5 and 6 includes a support base 52 having apertures 54 and 56 formed therein. A pair of support pins 58 and 60 extend through the apertures to the earth below the base 50 in order to positively secure the base relative to the periphery of the foundation to be poured. A rotary locking mechanism 62 is se-
cured to one extremity of the base 52 and includes a pair of locking plates 64 and 66 that are rotatably mounted about a common axis 68. The plate 64 is disposed in fixed relation relative to the base 52 while the plate 66 is rotatable about the axis 68 relative to the plate 64. The axis 68 is formed by a bolt member having a wing nut 70 received thereon. Each of the plates is provided with internal radiating grooves that are adapted to interfit when the plates are biased together by the wing nut 70 in order to lock the plates in non-rotatable relation. The eventually rotatable plate 66 relative to the plate 64 is simply necessary to unthread the wing nut 70 sufficiently to disengage the interfitting radiating grooves at which time the plate 66 will be free to rotate relative to the restrained locking plate 64.

A support arm 72 is secured to the rotatably locking plate 66 and is provided with a second adjustable locking mechanism 74 carried at the other extremity thereof. The locking mechanism 74 is essentially identical to the adjustable locking mechanism 62 and includes a locking plate 74 non-rotatably secured at the opposite extremity thereof. A second rotatable locking plate 76 is rotatably supported about a common pivot 78 and is thusly secured in a non-rotatable position relative to the plate 74 by a wing nut 80. A support bracket 82 is fixed to or formed integrally with the rotatable plate 76 and is receivable within one of the support bracket apertures 40 or 42 in order to retain a section 32 of the reusable foundation form in proper position during the pouring operation. The bracket apertures 40 and bracket 82 are of sufficient length and fit that the support arm and rotatable plate 76 will have limited movement with respect to the foundation section. The bracket apertures 40 and 42 are sufficiently small that concrete will bridge and seal without substantial lose thereof through the apertures.

In the event it is desired to alter the vertical alignment of the form section, it will be necessary to loosen the wing nut 80 and disengage the interfitting locking plate 74 and 76. After this has been accomplished, the plate 76 may be rotated to a desired position, thereby moving the support bracket 82 and altering the position of the form section. After proper positioning of the form section, the wing nut 80 may be retightened thereby bringing the rotatable locking plates 74 and 76 into locked nonrotatable engagement. Likewise, if it is desired to raise or lower the form section, the wing nut 70 may be loosened, thereby disengaging the locking plates 64 and 66 at which time the plate 66 may be rotated relative to the plate 64 until the desired position of the form section has been obtained. The wing nut 72 may then be retightened to reengage the interlocking grooves to establish locking engagement between the plates 64 and 66.

In the alternative, as illustrated in FIG. 9, a support mechanism employing the jacking principle may be utilized to adjust the vertical positioning of the form sections 32. The jacking support, illustrated generally at 86, includes a base member 86 provided with appropriate apertures to receive a pair of pins 88 and 90 for positively securing the base member 86 relative to the earth surrounding the foundation to be poured. A jack housing 92 is secured to the base 86 and includes a ratchet mechanism of conventional nature adapted to engage the supporting teeth 94 of a support bar 96 secured at the lower extremity thereof to the base member 86. At least one and preferably a pair of support arms 98 and 100 are received within the plural support brackets 42 of the form section 32. A jack lever 102 is raised and lowered to manipulate the ratchet mechanism in order to raise the jack housing 92 relative to the immovable support bar 96. As the jack housing 92 is raised the connection thereof through arms 98 and 100, with the plural support brackets 42, will raise the form section 32 to its proper position. Minute adjustment of the jack housing 92 may be selectively accomplished in order to achieve proper positioning of the form section.

As illustrated in FIG. 10, a further modification of the mechanism for proper positioning the form section may include a rotary actuated jack illustrated generally at 104 in FIG. 10. The jack 104 includes a base element 106 provided with apertures to receive a pair of pins 108 and 110 that are utilized to secure the base firmly to the ground outside the outer periphery of the foundation form. The jack includes a threaded support shaft non-rotatably secured to the support base 106 and about which is located a movable support collar 114. The support collar 114 is provided with at least one and preferably a pair of support arms 116 and 118 that are receivable within the plural support brackets 42 in the manner indicated hereinabove. A rotary drive nut 120 is received by the threaded shaft 112 and is rotated by a common wrench or in any other suitable manner to impart vertical movement to the support collar 114 that is supported by the drive nut.

As illustrated in FIG. 7, the portable foundation form sections may be provided by deforming a single sheet member 122 of metal or any other suitable substance to provide the general configuration of the brick ledge in the foundation. A channel member 124 may be secured by spot welding or the like to the horizontal wall 126 and vertical flange 128 defined by the deformed sheet 122. A substantially planar plate 130 is then secured by spot welding or the like to the planar vertical wall portion of the sheet 122 and to one vertical flange of the channel 124 as illustrated in FIG. 7. This particular construction utilizes simple construction elements in order to define a portable foundation section of considerable strength and durability.

As illustrated in FIG. 8 a modified embodiment of the form section includes a vertical substantially planar sheet 132 to which is welded a vertical plate 134 having an upper transverse wall 36. An angle element is secured by welding to the element 136 and in turn support a plate 140 secured to the upper horizontal surface thereof. Smaller angle elements 142 and 144 are secured respectively to the angle element 138, the vertical plate 132, and to the horizontal element 140. This particular structural arrangement of parts developed a form section of considerable strength and durability in addition to making use of materials that are commercially available conventional items.

With reference now to FIG. 11, the arrangement of both straight and corner sections is illustrated in plan view. The exterior corner sections also illustrated in FIG. 12 include a first section having the vertical side wall shown in broken line at 148 extending beyond the planar wall 150 and vertical flange 152 a distance equal to the width of the underside of the horizontal wall of a straight form section 154. The inner fitting corner section and straight section defines a foundation corner including the appropriate brick ledge configuration.
3,797,800

Straight sections of the foundation form are defined simply by overlapping straight sections of foundation form and securing them in proper oriented position with a suitable form support mechanism as described above.

With regard to FIG. 13, interior corner sections are defined by one form section 156 having a vertical wall 158 with a planar horizontal wall 160 and vertical flange 162 extending beyond the wall 158 a distance equal to the width of the upper surface of a horizontal wall 164 forming part of a second interior corner section 166. The vertical flange 160 of the second interior corner section 166 extends beyond the horizontal and vertical walls 164 and 170 respectively a distance equal to the width of the upper surface of the horizontal wall 160. The interior corner sections 156 and 166 interfit in such manner as to define an interior corner section of the foundation with a brick ledge properly formed therein.

With regard to FIG. 14 it should be recognized that an integral corner section illustrated generally at 72 may include vertical walls 174 and 176 with a horizontal corner wall 178 and vertical flanges 180 and 182. Straight sections of the foundation form may be disposed in overlapping relation with the corner section in order to achieve proper development of the form configuration. The integral corner section may be supported by one or more adjustable support devices in order to properly orient the corner section relative to the grade to which the foundation is to be poured.

In the event it is desired to pour a concrete slab such as a walkway or driveway, the foundation form need not be provided with a brick ledge configuration. In this case a foundation form illustrated generally at 184 includes a vertical substantially planar wall 186 having a transverse flange 188 located at the upper extremity thereof. The transverse or horizontal flange 188 is provided with an aperture 190 through which a support and orienting pin 192 extends. The pin 192 is driven through the aperture and into the earth in order to fix the foundation form 184 in substantially immovable position relative to the earth. The outer surface 194 of the vertical wall 186 is contacted by the pin 192 in order to vertically orient the foundation form thereby eliminating angular misalignment of the foundation form with respect to the vertical. Vertical positioning of the foundation form is determined by a vertical adjustment rod 196 that is driven into the earth surrounding the foundation form. Vertical height of the foundation form is positively established by positioning the flange 188 on top of the rod 196 after the vertical adjustment rod has been driven substantially to the desired height. It is then simply necessary to strike the horizontal flange 188 with a sledge hammer or wooden mallet in order to drive the adjustment rod further into the earth until the upper extremity of the form 184 is located at the precise desired height with respect to ground level. After the concrete slab has cured it is simply necessary to place a pry bar beneath the horizontal flange 188 in order to pry the reusable form section 184 upwardly causing simultaneous removal of the pin 192 from the earth. The vertical adjustment rod 196 then may be removed to complete the form disassembly operation.

FIG. 15 is a fragmentary isometric view of a modified portable reusable concrete form having a portion thereof broken away and shown in section. A vertical foundation wall forming plate 200 is disposed within an appropriate outer reinforcing beam trench 200 and is retained in vertically oriented position by supporting mechanisms 50 such as described hereinabove. The lower portion of the plate 200 is supported by the trench wall 202 against outward movement which might by the pressure of uncurt concrete. A plurality of horizontal reinforcing bars 204 extend through recess 206 formed in the upper extremity of plate 200 and through apertures 200 formed in the outer vertical flange 210 of a removable brick ledge cap illustrated at 212. A plurality of locking devices 214 are received by the extremities of the reinforcing bars 204 and serve to secure the bars 204 in assembly with the brick ledge cap 212 and vertical wall plate 200. The locking devices may include internal dogs having teeth that engage the reinforcing bars 204 with sufficient gripping force to positively retain the structure in assembly.

In addition to providing a reinforcing function for the concrete, the reinforcing bars 204 also serve as guides for the machine excavation of internal reinforcing beam trenches and serve as orienting structure for leveling the foundation sand to assure accuracy foundation dimension to prevent waste of concrete and to insure against uneven settling of the foundation subsequent to curing.

An appropriate ditching machine is guided by the reinforcing bars 204 in order to dig accurately dimensioned and properly oriented reinforcing beam trenches. A leveling machine or mechanism is also utilized within the foundation form and is guided by the reinforcing bars 204 in order to provide for accurate leveling to insure even slab dimension that prevents heavy slab portions that can cause uneven settling and prevents waste of concrete.

In view of the foregoing it is apparent that I have provided a novel reusable concrete foundation form that is easily installed with a minimum of labor costs and at a nominal cost for providing the foundation form structure. It is possible to utilize standard straight form sections with initially immovable position relative to the earth. The outer surface 194 of the vertical wall 186 is contacted by the pin 192 in order to vertically orient the foundation form thereby eliminating angular misalignment of the foundation form with respect to the vertical. Vertical positioning of the foundation form is determined by a vertical adjustment rod 196 that is driven into the earth surrounding the foundation form. Vertical height of the foundation form is positively established by positioning the flange 188 on top of the rod 196 after the vertical adjustment rod has been driven substantially to the desired height. It is then simply necessary to strike the horizontal flange 188 with a sledge hammer or wooden mallet in order to drive the adjustment rod further into the earth until the upper extremity of the form 184 is located at the precise desired height with respect to ground level. After the concrete slab has cured it is simply necessary to place a pry bar beneath the horizontal flange 188 in order to pry the reusable form section 184 upwardly causing simultaneous removal of the pin 192 from the earth. The vertical adjustment rod 196 then may be removed to complete the form disassembly operation.

I claim:
1. A portable form for concrete foundations comprising a plurality of form sections configured to form a concrete foundation having a horizontally extending brick ledge and a vertically extending portion from a
level below ground to a level above ground, with selectively spaced means provided therein for above ground selective supporting connection thereto, said form sections interfitting or abutting longitudinally to define forms for foundations of various size and configuration, a plurality of support means each comprising a base means and means for securing said base to the surface of the ground, a diagonally extending support element of predetermined, fixed length, with lower end pivotally connected by a pivotal connection comprising the only pivotal connection to said base, and with upper end pivotally connected to an upper connection means that is selectively adapted for cooperation with said selectively spaced means to secure said support element to a vertically extending portion, said support means, as base secured to ground, maintaining said form in a substantially predetermined vertical condition.

2. A portable form as recited in claim 1; said support element comprising an angular support, upper and lower adjustment means disposed at the extremity of said angular support, said lower adjustment means being secured to said base plate and controlling the angularity of said angular support relative to said base plate, said upper adjustment means having connecting means engaging said form sections and controlling the angular position of said form section relative to said angular support, said upper and lower adjustment means cooperating to control both vertical and angular positioning of said form sections.

3. A portable form as recited in claim 2; said upper and lower adjustment means each comprising a pair of plates movably connected by a common pivot, one of said plates being fixed to said angular support, the other of said plates being fixed respectively to said base plate and said means securing said support element to said form sections, said plates having opposed interengaging teeth, means for adjustably retaining said plates in interengagement.

4. A portable form for concrete foundations for buildings, said form comprising a plurality of form sections configured to form a concrete foundation having a brick ledge and extending from a level below the ground to a level above the ground, said form sections interfitting to define forms for foundations of various size and configuration, a plurality of support means connectable to said form sections, each of said support means comprising a base, means securing said base to the surface of the ground, a support element movably carried by said base, means adapted to secure each of said support elements to said form sections, means for adjustably securing said support element relative to said base to properly locate the respective form sections, said support element maintaining said form in a substantially vertical condition, said form including first and second corner sections each having a vertical wall defining a portion of the exterior wall of said foundation, each of said corner sections having a horizontal wall disposed at the upper extremity of said vertical wall, a vertical flange provided on said horizontal wall and cooperating therewith to define said brick ledge, said vertical flange of said first corner section extending beyond the horizontal flange and vertical wall thereof a distance equal to the width of said horizontal flange, said horizontal flange and vertical flange of said second corner section extending beyond the vertical wall thereof a distance equal to the width of said horizontal flange, said first and second corner sections interfitting to define an interior corner of said foundation.

5. A portable form as recited in claim 1; said form comprising interior and exterior corner sections, a plurality of straight form sections engaging said corner sections and cooperating therewith to define a complete foundation form.

6. A portable form for concrete foundations for buildings, said form comprising a plurality of form sections configured to form a concrete foundation having a brick ledge and extending from a level below the ground to a level above the ground, said form sections interfitting to define forms for foundations of various size and configuration, a plurality of support means connectable to said form sections, each of said support means comprising a base, means securing said base to the surface of the ground, a support element movably carried by said base, means adapted to secure each of said support elements to said form sections, means for adjustably securing said support element relative to said base to properly locate the respective form sections, said support element maintaining said form in a substantially vertical condition, said form including first and second corner sections each having a vertical wall defining a portion of the exterior wall of said foundation, each of said corner sections having a horizontal wall disposed at the upper extremity of said vertical wall, a vertical flange provided on said horizontal wall and cooperating therewith to define said brick ledge, said vertical flange of said first corner section extending beyond the horizontal flange and vertical wall thereof a distance equal to the width of said horizontal flange, said horizontal flange and vertical flange of said second corner section extending beyond the vertical wall thereof a distance equal to the width of said horizontal flange, said first and second corner sections interfitting to define an interior corner of said foundation.

7. A portable form as recited in claim 1; a plurality of interior and exterior corner sections having surfaces forming a brick ledge and cooperating to define interior and exterior corners of said foundation, said corner sections interfitting with said form sections to define the exterior walls of a complete foundation.

8. A portable foundation form for the concrete foundation of a building, said foundation form comprising a plurality of form sections, each of said sections having a planar substantially vertical wall for forming the exterior periphery of said foundation, said vertical wall adapted to extend from a level above ground to a level below the ground, said sections each having a substantially horizontal upper wall extending inwardly from said vertical wall and having a substantially vertical flange extending upwardly from said horizontal upper wall, said horizontal upper wall and said vertical flange cooperating to form a brick ledge in the periphery of said foundation, a plurality of supports for suspending the foundation form in proper position, each of said supports having an elongated element, means securing said elongated element to the earth surface outside of said foundation form, an angular support bar extending from each of said supports and adapted for connection to said sections, adjustment devices disposed adjacent each extremity of said angular support bar whereby vertical positioning of said form may be adjusted without altering the vertical positioning of said vertical walls.
9. A portable form as recited in claim 8; said upper and lower adjustment means each comprising a pair of pivotally connected plates secured to respective parts of said base said support element, each of said plates having mating teeth, means to secure said plates in interlocked non-rotatable assembly to maintain said adjustment means in locked condition.

10. A portable foundation form as recited in claim 8; said horizontal upper wall and said vertical flange being removable from said vertical wall and defining a brick ledge cap, said vertical wall having a plurality of recesses formed therein, horizontal reinforcing bars being received within said recesses, locking means received by said reinforcing bars and engaging said brick ledge cap, said locking means securing said brick ledge cap and said vertical wall in assembly and preventing movement of said foundation form as said form is filled with concrete.

11. A portable foundation form as recited in claim 1; said adjustable securing means comprising a support shaft, jack means received about said support shaft and carrying said support element, said jack means being operative to accurately position said form section.

12. A portable foundation form as recited in claim 11; said jack means including a jack housing having a threaded drive nut rotatively secured thereto, said support shaft being externally threaded and being received by said drive nut.

* * * * *