Office de la Propriete Canadian CA 2390249 A1 2001/06/21

Intellectuell Intellectual P
du Canada Office o opery en 2 390 249
Fhdtiie Canads Indushy Ganada 12 DEMANDE DE BREVET CANADIEN
CANADIAN PATENT APPLICATION
(13) A1
(86) Date de depot PCT/PCT Filing Date: 2000/12/15 (51) Cl.Int.//Int.Cl.” GOBF 9/44

(87) Date publication PCT/PCT Publication Date: 2001/06/21| (71) Demandeur/Applicant: ‘
(85) Entree phase nationale/National Entry: 2002/05/06 INTERNATIONAL BUSINESS MACHINE

CORPORATION, US
(86) N° demande PCT/PCT Application No.: US 2000/034013
(72) Inventeur/Inventor:

(87) N° publication PCT/PCT Publication No.: 2001/045069 HENNUM, ERIK, US

(30) Priorités/Priorities: 1999/12/17 (60/172,134) US; (74) Agent: BARRETT. B.P.
2000/12/04 (09/728,073) US

(54) Titre : INSTRUCTION WEB
(54) Title: WEB-BASED INSTRUCTION

(57) Abrége/Abstract:

A method performed Iin a web-based environment on a computer system teaches a user to implement an application. The
method Includes providing predetermined applications and presenting an annotation page that includes one or more
annotations descriptive of a predetermined application. Each annotation includes keyword links, annotation links, and detall of
Implementation of the application. The method includes permitting the user to select a link in an annotation. If the user selects a
keyword link, reference documentation associated with that keyword is presented. If the user selects an annotation link, another
annotation descriptive of another source file of a predetermined application Is presented.

,
L
X
e
e . ViNENEE
L S S \
ity K
.' : - h.l‘s_‘.}:{\: .&. - A L~
.
A

A7 /7]
o~

C an a dg http:vopic.ge.ca - Ottawa-Hull K1A 0C9 - atp.//cipo.ge.ca OPIC

OPIC - CIPO 191

00 0 0 0O T

WO 01/45069 A2

CA 02390249 2002-07-09

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
21 June 2001 (21.06.2001)

G09B 7/00

(51) International Patent Classification’:
(21) International Application Number: PCT/US00/34013
(22) International Filing Date:
|5 December 2000 (15.12.2000)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

60/172.134 |7 December 1999 (17.12.1999) US

09/728.073 4 December 2000 (04.12.2000) US
(71) Applicant: INFORMIX SOFTWARE, INC. [US/US];

4100 Bohannon Drive, Menlo Park, CA 94025 (US).

(72) Inventor: HENNUM, Erik: 78 St. Mary's Avenue, San
Francisco, CA 94112 (US).

(74) Agents: DIBERARDINO, Diana: Fish & Richardson
P.C., 601 Thirteenth Street N.W.. Washington, DC 20005
et al. (US).

g

PCT

L 0 A O

(10) International Publication Number

WO 01/45069 A2

(81) Designated States (national): AU. BR, CA,JP, MX.

(84) Designated States (regional): European patent (AT, BE.
CH. CY. DE. DK. ES. FI. FR, GB. GR, IE. IT, LU, MC.
NL. PT, SE. TR).

Published:

without international search report and to be republished
upon receipt of that report

(48) Date of publication of this corrected version:
29 November 2001

(15) Information about Correction:

see PCT Gazette No. 48/2001 of 29 November 2001, Sec-
tion il

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations"” appearing at the begin-
ning of each regular issue of the PCT Gaczette.

(54) Title: WEB-BASED INSTRUCTION

(37) Abstract: A method performed in a web-based environment on a computer system teaches a user to implement an application.

The method includes providing predetermined applications and presenting an annotation page that includes one or more annotations
descriptive of a predetermined application. Each annotation includes keyword links, annotation links. and detail of implementation ot

the application. The method includes permitting the user to select a link in an annotation. If the user selects a keyword Iink, reterence

another source file of a predetermined application 18 presented.

documentation associated with that keyword is presented. If the user selects an annotation link, another annotation descriptive of

CA 02390249 2002-05-06
WO 01/45069 PCT/US00/34013

WEB-BASED INSTRUCTION

CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims benefit of U.S. Provisional Application No. 60/172,134, filed
December 17, 1999 and U.S. Senal No. 08/888,925, filed July 7, 1997, the entire disclosures

5 of which are incorporated herein by reference.

TECHNICAL FIELD

This application relates to web-based documentation and instruction.

BACKGROUND

A typical computer system as shown in Fig. 1 mclp’ges a computer 100 having a
10 central processing unit 105, an input/output unit 110 and",a memory 115 containing various
programs used by the computer 100 such as an operating system 120 and one or more
application programs 125. An end-user of the computer system communicates with the
computer 100 by means of various input devices (keyboard 130, mouse 135) which transfer
information to the computer 100 via input/output unit 110. The computer 100 replies to this
15 input data, among other ways, by providing responsive output to the end-user, for example, by
displaying approprate text and images on the screen of a display monitor 140.

The operating system 120 may include a graphical user interface (GUI) by which the
operating system and any applications it may be running (for example, a word-processing
program) can communicate with a user of the computer system. A commonly used GUI

20 1mplementation employs a desktop metaphor in which the screen of the monitor is regarded as
a virtual desktop. The desktop is an essentially two-dimensional working template area
supporting various graphical objects, including one or more display regions. As shown in
Fig. 2, information generated by application programs or the operating system can be
displayed on the desktop 200 within display regions 205 (for example, windows, dialog

25 boxes, pop-up menus, pull-down menus, drop-down lists, icons). The user can interact with

the operating system, and any applications it may be running, by manipulating the cursor 210

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

appropriately within the display regions and by entering information with the keyboard or
other input device.

The computer 100 also includes some sort of communications card or device 145 (for
example, a modem or network adapter) for exchanging data with a network 150 via a
communication link 155 (for example, a telephone line). The network 150 may be, for
example, a local area network (LAN), an intranet, or the Internet. A service provider provides
access to the network and may additionally provide various utilities or services (such as
electronic mail) associated with the network. Examples of service providers include Internet
service providers (ISPs) such as AT&T WorldNet or online service providers (OSPs) such as
America Online and CompuServe.

Developers need to know programming concepts to implement the application
program. Therefore, a description of the implementation of the application (and not only the
operation of the application) would be helpful.

Most computer applications provide an online help / documentation facility which aids
in the use of the application. A typical online help system such as shown in Fig. 3A 1s
accessed through a GUI in which screens of textual and graphical information are displayed to
the user in a help window 300. The user can then read the screens of help text to get a better
understanding of the application and its various features.

The user invokes the help system with a key sequence (for example, pressing the F1
key on the keyboard) or by clicking the mouse on an appropriate graphical icon or menu item.
In response, the help system may display a table of contents 305 listing the available help
topics and subtopics which can be accessed and viewed by the user as desired. The user can
browse through the table of contents 305 and click a help topic of interest to cause its
corresponding body of information to be displayed in a help window. In the help window 300
shown in Fig. 3A, the user has clicked the "Programming with Microsoft Word" topic 310 to
cause the corresponding help screen 315 to be displayed in window 300 as shown in Fig. 3B.

The "Programming with Microsoft Word" topic 310 shown 1n Fig. 3B includes several
subtopics 320, each represented by a separate "link." When the user clicks the mouse on one
of these links--for example, the "Error Messages" link 325--the text for the corresponding
help topic 1s displayed automatically in the help window 300, as shown 1n Fig. 3C. In this

example, the "Error Messages" topic 330 includes several links to further subtopics relating to

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

specific types of error messages. As shown in Fig. 3D, when the user clicks one of these
links, for example, the "Out of memory (stack space)" link 335, a new help window 340 is
spawned to display the corresponding help information ("Freeing up memory") for the
selected topic. The help information displayed in window 340 includes yet another link 345
for another subtopic, "active window," which when clicked by the user causes corresponding
help text to appear in a pop-up dialog box 350. Virtually any level of such nested help
displays is possible. The quantity and types of display regions (windows, dialog boxes, etc.)
used to display help information 1s largely a matter of design choice based on the preferences
of the help system developer.

A help system may provide "context-sensitive” help information, meaning that the
help system automatically displays help information specifically relevant to the application's
current task, rather than simply displaying all available help topics and forcing the user to
identify and call-up the appropriate help topic manually. A context-sensitive help system
decides which help information to display based on factors such as the current state of the
application (for example, the particular function being invoked by the user) and the current
Cursor position.

The information provided by most online help systems relates to the mechanics of
using features of an application. In Fig. 4, for example, the text 400 corresponding to the
chosen help topic 405, "Cancel printing," describes how to control the print feature provided
by the application 410 (Microsoft Word).

A help system also may provide substantive information on how to make use of the
application to achieve a desired goal. In Fig. SA, for example, the online help system
provides two types of substantive information: reference material S00 for the WordBasic
programming language and practical explanations 505 of how to use WordBasic to write
useful programs. The reference material 500 includes textual annotations describing the
syntax and meaning of various WordBasic statements, such as the AddAddIn statement, the
help text for which 1s shown in Fig. 5B. The practical explanations 505 can include static
examples of program code which the user can study to gain a better understanding of the
WordBasic programming language. Fig. 5C shows an example of a program code that makes

use of the GetCurValues WordBasic statement.

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

Online help systems typically are "built" (that is, processed into a form that facilitates
run-time operation) by compiling several different help source files containing help
information that has been composed by technical writers. In general, these help source files
are maintained as a separate body of information apart from the application to which the help
system corresponds. Consequently, when the application developers change or update the
functionality of the application, the technical writers must make corresponding changes to the
help source files to ensure that the online help system accurately describes the operation of the
application. In general, however, online help systems fail to describe the implementation of
the application.

A help system may be implemented in a network environment using a “browser”,
which enables users to access and view electronic content stored in the network environment.
A browser typically 1s used for displaying documents described in Hyper-Text Markup
Language (HTML) and stored on servers connected to a network such as the Internet. Fig. 6
1s a screen shot of a browser application 600 (in this case, Internet Explorer) displaying a
typical HTML document, or web page 605. A user instructs the browser 600 to access the
web page 605 by specitying a network address 610 -- or Uniform Resource Locator (URL) --
at which a desired document resides. In response, the browser 600 contacts the corresponding
server hosting the requested web page, retrieves the one or more files that make up the web
page, and then displays the web page in the computer display 140.

A single web page may be composed of several different files potentially of different
data types (for example, text 615, images 620, virtual worlds, sounds, or movies). In addition,
a web page can include links 625, or pointers, to other resources (for example, web pages,
individual files, or downloadable files) available on the network. Each link has an associated
URL pointing to a location on the network. When a user clicks on, or otherwise selects a
displayed link, the browser will retrieve the web page or other resource corresponding to the
link’s associated URL and display it to, or execute it for, the user.

Referring to Fig. 7, a web page 605 may provide, in addition to content 700, a site
gurde 705 that helps the user navigate through all the links associated with that web page.

The site guide 705 1s similar to a table of contents and typically resembles a tree structure.

Likewise, the web page 605 could include a search facility 710 that enables the user to search

- for particular key words that appear within the links associated with that web page. The web

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

page may provide a “Home” link 715 that sends the user back to a main web page from which
all content and links can be accessed. The web page may provide a download link 720 that,
when accessed, transmits a file from another web page or computer to the user’s computer.

According to one aspect of the invention, a method performed in a web-based
environment on a computer system teaches a user to implement an application. The method
includes providing predetermined applications and presenting an annotation page that
includes one or more annotations descriptive of a source file of a predetermined application.
Each annotation includes keyword links, annotation links, and detail of implementation of the
application. The method includes permitting the user to select a link in an annotation. If the
user selects a keyword link, retference documentation associated with that keyword is
presented. If the user selects an annotation link, another annotation descriptive of another
source file of a predetermined application is presented.

Embodiments may include one or more of the following features. For example, a
predetermined application may be performed and one or more annotations descriptive of the
performed application may be presented in coordination with performance of the
predetermined application. Performing the predetermined application may include receiving
input from the user. Another annotation page may be presented in coordination with
performance of the predetermined application based on input from the user.

Presenting the other annotation page may include automatically and simultaneously
calling an annotation request module including application, file, class and function names of a
program unit for which detail should be displayed. Presenting the other annotation page may
also 1include mapping the request to an annotation, and informing a browser window in the
web-based environment to display the other annotation page.

Another annotation page may be presented in coordination with performance of the
predetermined application. A global table of contents that includes links to annotations may
be automatically generated by parsing structured links in web pages including annotation
pages. Generation of links in the global table of contents may be synchronized with
presentation of annotations by highlighting links corresponding to a current annotation page.
The global table of contents may be presented in a first frame of a first browser window, the
annotation page may be presented in a second frame of the first browser window, and the

predetermined application may be performed in a second browser window.

10

15

20

25

30

CA 02390249 2002-05-06
WO 01/45069 PCT/US00/34013

Performing the predetermined application may include launching a Java applet or
application, which may include calling a Java application program interface to ask a web
browser to show the annotation page. Performing the predetermined application may include
downloading a hyper-text markup language page containing a Java applet.

Performing the predetermined application may include sending a common gateway
interface request to a web server that launches the application in a window in the web-based
environment. The application may return a hyper-text markup language page that includes
JavaScript to ask a web browser to display the one or more annotations.

The annotation page may be presented in a first browser window and the
predetermined application may be performed in a second browser window. The application
implementation detail may include text descriptive of the application, fragments of source
code from the application, or both. The source code fragments may be imported directly from
the source code file of the presented application.

The annotation page may be automatically generated. This generation may include
recerving a source code file that has embedded text marked up with instructions.
Additionally, the source code may be parsed to determine a structure of the predetermined
application, and one or more annotations may be generated based on the predetermined
application structure and instructions. Generation of the annotation page may include
generating one or more annotation links for navigating the annotations of the predetermined
application. Additionally, application implementation detail may be generated based on the
embedded information, and one or more keyword links may be generated for reference
documentation. (Generating the annotation page may also include highlighting the keyword
links and the annotation links 1n the annotation page. The annotation page may be
automatically updated when an updated source code file is received.

A global table of contents may be automatically generated by parsing the one or more
annotations for annotation links. The global table of contents may be provided, and may
include links to annotations. Alternatively, the global table of contents may be generated, and
may include links to web page including annotation pages relating to an application. The
local table of contents may be provided when a local link in the global table of contents is

selected.

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

The presented annotation page may be descriptive of the performed application, and
the annotation page may be presented in coordination with performance of the predetermined
application.

A source code file, which i1s stripped of annotation mark up and includes source code
of the application but does not include text from the annotations, may be generated. The
stripped source code file may be presented and the user may be permitted to edit the stripped
source code file.

According to another aspect of the invention, a method, performed in a web-based
environment on a computer system, of teaching a user to implement an application includes
providing a predetermined plurality of applications. A predetermined application is
performed, and an annotation page descriptive of the performed application is presented in
coordination with performance of the predetermined application. The annotation page
includes detail of application implementation and links to annotations and reference
documentation.

According to another aspect of the invention, a method, performed in a web-based
environment on a computer system, of teaching a user to implement an application includes
automatically assembling and providing a global table of contents based on content in the
environment. The global table of contents includes a plurality of links to content within the
environment. A local table of contents that includes links to content that orient the user
within a local topic, 1s generated. The user is permitted to select links from the local table of
contents to access local topics.

According to a further aspect of the invention, a method, performed in a web-based
environment on a computer system, of teaching a user to implement an application includes
providing a plurality of predefined interactive examples. One or more of the predefined
iteractive examples i1s performed in response to user selection, and one or more annotations
descriptive of the performed interactive example are presented in coordination with
performance of the predefined interactive example. The user is permitted to selectively
explore different aspects of the performed interactive example, the annotations, or both.

According to another aspect of the invention, a web-based computer system for
teaching a user to implement an application includes one or more predefined interactive

applications, and an annotation page including one or more annotations. A predefined

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

interactive application is selectively executable by the user of the web-based computer
system. The annotation page describes a predefined interactive application. The annotation
page also includes one or more links, and detail of implementation of the application.
Different annotations are automatically provided in the annotation page in response to
selective execution of a predefined interactive application.

According to a further aspect of the invention, a web-based computer system for
teaching a user to implement an application includes a web-browser window that includes a
content frame, a framework applet, and a table of contents frame that displays a global table
of contents hierarchy of links related to content in the content frame. The system also
includes one or more annotations displayed in the content frame, where each annotation
describes a predefined interactive application and includes links to other content. The system
includes a table of contents window that displays a local table of contents hierarchy of links
related to local content in the displayed annotation.

The details of one or more embodiments are set forth in the accompanying drawings
and the description below. Other features, objects and advantages will be apparent from the

description, the drawings, and the claims.

DESCRIPTION OF THE DRAWINGS

Fig. 1 1s a block diagram of a prior art computer system.

Fig. 2 shows display regions in a graphical user interface as used in the computer
system of Fig. 1.

Figs. 3A — 5C are screen shots from a prior art online help and documentation system.

Fig. 6 1s a screen shot of a browser application.

Fig. 7 shows a display region in a browser application.

Fig. 8 1s a flow diagram showing the options available to a user of the Informix®
byExample application.

Figs. 9A — 9P are screen shots from the Informix® byExample application and from
the NewEra™ developmeht environment.

Fig. 10 1s a block diagram of the NewEra™ architecture.

Fig. 11 is a block diagram showing how the Informix® byExample application is
built.

10

15

20

25

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

Fig. 12 1s a sample of NewEra™ source code.

Fig. 13 shows display regions in a web-based instruction system.

Figs. 14A — 15A, 15C, 17A-17D, 18A, 18B, 19A and 19C-19F are screen shots from
the Informix® byExample web-based application.

Figs. 15B, 15D and 19B show content in a display region of the Informix®
byExample web-based application.

Fig. 15E and 18C are source code files with embedded annotations.

Fig. 16A i1s a flow diagram showing steps taken by an author of annotation pages.

Fig. 16B 1s a flow diagram showing steps taken by a scripting program to
automatically generate links in the annotation pages.

Fig. 16C 1s a tlow diagram showing steps taken by an example program.

Fig. 20 1s a block diagram of a local table of contents model used in the web-based

application.

DETAILED DESCRIPTION

The help information provided by conventional online help systems has proven useful
in aiding users to make effective use of application programs. However, because these
conventional online help systems essentially are limited to providing static textual or
graphical information, their effectiveness is diminished considerably. Users of conventional
online help systems gain instruction by reading and carefully studying the textual and
graphical information provided by the help system and then applying its teachings to the
problem to be solved. As a result, learning to use applications of any complexity often is a
painstaking and time consuming process.

An online help and instruction system developed by Informix® Software, Inc., known
as NewEra™ byExample, dramatically enhances the ease with which users can absorb
information and learn to use new applications. NewEra™ byExample is an online
documentation facility for NewEra™, an object-oriented application development
environment from Informix® Software, Inc. which runs under the Windows 95/NT operating
systems. A copy of NewEra™ byExample's online description of its use and operation is

attached as Appendix A.

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

NewEra™ byExample (or more generally, Informix® byExample, which covers the
example-based instruction systems provided for the NewEra™, Visual Basic and Java
development environments) 1s a specific implementation of a more general concept referred to
as "documentation by example" in which users are provided with dynamic, interactive
examples demonstrating how to accomplish a given task. Annotations describing various
aspects of the examples accompany the examples as they are being executed. Documentation
by example 1s based 1n part on the premise that users learn best by doing something (for
example, participating 1n an activity and observing or influencing its outcome) rather than by
merely reading about the topic.

As 1llustrated 1n the flow diagram of Fig. 8, an Informix® byExample user has several
different options for obtaining information including selecting among various different topics
(step 800); running examples while the application for which help is sought remains active
(step 805); reading about the examples, either concurrently while running the example or
independent of the example (step 810); inspecting the examples' source code in different
editor utilities (step 815); and accessing online background reference materials that help the
user to understand the examples (step 820)--all without leaving the help environment. While
in step 815, the source code for the examples can be used as sample program code which can
be cut-and-pasted for use as a template in the NewEra™ development environment in creating
new applications. Moreover, Informix® byExample enables users to learn through
experimentation, for examplé,' by selectively changing the examples or their parameters and
observing how the changes affect the examples' outcomes.

Specific features of Informix® byExample are described in detail with reference to
Figs. 9A-9P, which are exemplary screen shots taken from the Informix® byExample
application.

When a user first launches Informix® byExample, the default screen configuration
shown 1n Fig. 9A 1s displayed. This initial screen includes two separate display windows, a
list (or "table-of-contents") window 900 showing the subtopics presently available to the user
under the current topic 902, and a text window 904 which displays the help information
corresponding to the topic or subtopic selected from the list window 900. As the user clicks
different ones of the eight subtopics 906 displayed in the list window 900, the information in

the text window 904 1s updated automatically to correspond to the chosen subtopic 906. The

- 10 -

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

user can move to different pages within the current topic by clicking the forward (">>")
button 908 or the backward ("<<") button 910 as desired.

In the example of Fig.9A, the subtopics shown in the list window 904 relate to the
topic "NewEra™ byExample Introductory Topics." To switch to another help topic, and
thereby make available a different subset of the online help documentation, the user clicks the
Help Topics button 912 which brings up a window containing the Help Topics menu 914 with
a list 916 of mine different help topics, as shown in Fig. 9B. At any point in the Informix®
byExample application, the user can jump to any other portion of the online help system by-
bringing up the Help Topics menu 914 and clicking the desired topic. The user can return to a
previous topic by pressing the Back button 916 an appropriate number of times.

Each of the help topics 1n the list 916 in Fig. 9B can be expanded to reveal a hierarchy
of multiple levels of subtopics. When the user clicks, for example, on topic 918 ("NewEra™
byExample™), it expands to reveal two additional levels of subtopics as shown in Fig. 9C--a
first level 920 including the subtopics "Introduction," "Common NewEra™ Programming
Techmques," and "The Examples," and a second level 922 under "The Examples" subtopic
which includes the 43 interactive examples.

When the user clicks one of the examples, for example, the "Enabling and Disabling
Buttons" example 924, the list window 900 is updated as shown in Fig. 9D to display the
annotation segments 926 ("Overview of Buttons2 Example," Graphical Object Summary,"
"Event Handler Summary," "Important Event Handlers," and "Enhancements and Variations")
associated with the selected example. The annotation segments 926 collectively describe the
corresponding example and include descriptions of the example's window, its graphical
objects, and its event handlers. In addition to the prose descriptions of the example, an
annotation segment usually also includes a source code fragment of particular interest which
has been imported directly from the source code of the example under consideration.

As shown 1n Fi1g. 9D, one of the annotation segments ("Important Event Handlers")
includes 13 topics 928-- a hist of the primary event handlers used in the BUTTONS?2 example.
Each event handler topic 928 includes source code fragments and prose explanations
describing the event handler to which the topic corresponds. For example, when the user

clicks event handler topic 930, the text window 904 displays source code fragments 932

-11 -

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

relating to the corresponding event handler (nextBT :: activate()) along with annotations 934
describing the code's operation, as shown in Fig. 9E.

The text window also may contain one or more links to related information, for
example, background reference material, which in turn may include still further links to
additional background information and so on in hierarchical fashion, each successive level in
the hierarchy providing information about the example in greater detail and at a lower level of
abstraction. By providing a hierarchy of links to increasingly detailed documentation in this
manner, Informix® byExample supplies context-appropriate information in a helpful and
efficient manner to all users, regardless of their varying levels of experience and
sophistication. A user can traverse down the hierarchical links of descriptive information
selectively until a level of understanding is reached that is commensurate with the user's needs
and background. This arrangement provides novice users with easy access to detailed
descriptive information while, at the same time, experienced users seeking help on a specific
point are protected from having to navigate through large volumes of unneeded information.

An example of hierarchical linking 1s shown in Fig. 9D in which text window 904
includes a link 936 (displayed as green, underlined text) to the MAIN() function, one of
functions 1n the BUTTONS2 example. When the user clicks the MAIN() function link 936,
the text window 904 displays the source code 940 for that function, as shown in Fig. 9F. The
source code 940 includes further links to related information such as an online language
reference manual containing descriptions of keywords and object classes. When the user
clicks one of these links--for example, the keyword link 942 for the LET statement--the text
window 904 changes to display the corresponding online language reference entry as shown
in Fig. 9G. Similarly, 1f the user had clicked the object class link 944, the text window 904
would have displayed information about the ixSOLConnect class. In Fig. 9G, the user can
follow links to still further background information, for example, by clicking the Object
Expression box 946 to cause the text window 904 to appear as in Fig. 9H. Subsequently, or
alternatively, the user can click the Glossary button 948 to bring up an online glossary in a
pair of windows--a glossary table of contents window 950 and a glossary text window 952--as
shown in Fig. 91. Clicking a term in the glossary table of contents window 950 causes its

definition to appear in the glossary text window 952.

- 12 -

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

After studying an example's annotation, its source code fragments, corresponding
language reference entries, the glossary, or a combination thereof, the user can jump
selectively to any other location in the help system by clicking the Contents button 954, which
brings up the Help Topics menu 914 shown in Fig. 9B (or the Index button 956, which
presents the available help topics 1n a searchable-indexed form), and then selecting the desired
topic 1n the manner described in connection with Figs. 9B and 9C.

Keyword links and class name links, such as the LET statement link 942 and the
ixSQLConnect class link 944, respectively, in Fig. 9F are represented in visually unique
manners (for example, blue uppercase text for keywords, blue upper and lowercase text for
class names) so that they may be distinguished easily from each other and from other types of
links such as the MAIN() function link 936 in Fig. 9D (green, underlined text). By using
different styles for different types of links, Informix® byExample provides the user with
intuitive and useful information concerning the nature of the online information available and
the interrelationships between the different components (annotations, source code fragments,
language references, etc.) of the examples. Virtually any number of different link types may
be represented by different styles according to the preferences of the system designer.

For each of the source code fragments included in an example's annotation, a user can
invoke an appropriate editing utility from within Informix® byExample to inspect, edit or
copy the example's source code. This allows users to view a source code fragment in the
context of the larger program from which it was taken.

Informix® byExample includes source code fragments from two different types of
source code--textual program code in the NewEra™ programming language (as indicated by a
4GL or 4GH file suffix), and windows interface definition files (files having the suffix WIF)
which define how the GUI will appear to, and interact with, the end-user of the application
undergoing development. To view either type of source code fragment, the user clicks a
short-cut arrow next to a code fragment, for example, one of the short-cut arrows 958 and 960
shown 1n Figs. 9D-9F, and Informix® byExample responds by launching an editor that
corresponds to the type of source code under consideration. When the user clicks a short-cut
arrow next to a 4GH or 4GL file, such as short-cut arrow 958 in Figs. 9D and 9F, Informix®
byExample automatically launches the appropriate editor--NewEra™ Codewright--to view

the source code file from which the code fragment was taken, as shown in Fig. 9J. Similarly,

-13 -

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

when the user clicks a short-cut arrow next to a WIF file, such as short-cut arrow 960 in Figs.
9D and 9E, Informix® byExample automatically launches the appropriate editor--NewEra™
Window Painter 3.0--to view the WIF file from which the code fragment was taken, as shown
in Fig. 9K.

Selectively launching an appropriate one of multiple different editors in this manner
retlects the standard editing behavior of the NewEra™ development environment. Both the
NewEra™ development environment and the Informix® byExample documentation system
make use of the same editors 1n the same manner. As a result, users gain familiarity with the
application for which help 1s sought (that 1s, the NewEra™ development environment)
through normal interaction with the online help system (that 1s, Informix® byExample).

Once the user has opened up the source code for an example, the user simply can
study the code or can cut-and-paste portions of the code, whether visual objects from a WIF
file or program statements in a 4GH or 4GL file, into the user's own source files.
Alternatively, the user can perform a "Save As..." operation and thereby save the source code
for the example under a new file name. The user then can edit or otherwise manipulate the
new file as desired. In this manner, the examples provided by Informix® byExample can
serve as templates for use 1n developing new applications in the NewEra™ development
environment.

Users also may execute any or all of the 43 interactive examples provided with
Informix® byExample to observe first hand how they operate. The examples are prebuilt and
can be launched directly from their corresponding Informix® byExample annotations. To do
s0, a user first selects an example of interest from the Help Topics window 914 shown in Fig.
9C and, when the corresponding annotation appears in the text window, clicks the Run button
appearing near the top of the text window. In response, the example executes and, based on
the input received trom the user, displays various screens to the user as if the example were a
standalone application. At the same time, the text window automatically updates to display
descriptive information that 1s pertinent to the portion of the example that was just executed
by the user. With each successive operation that the user performs on the running example,
the text window i1s updated simultaneously (or nearly so) to maintain synchronization with the
state of the interactive example by displaying corresponding sections of the annotations which

explain to the user what just happened in the example. By coordinating the help display with

_14 -

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

the current state of the examples, users consistently are provided with timely and useful
information (for example, the particular source code being executed by the example) that is
directly relevant to the user's current topic of interest. As a result, the user's ability to
comprehend and absorb information 1s enhanced dramatically. An example of Informix®
byExample's automatically coordinated help display is illustrated in Figs. 91L.-9P.

Fig. 9L shows the 1nitial list window 900 and text window 904 that are displayed
when the user selects the "Displaying an Edit Menu" example from the Help Topics menu.
To run this example, the user clicks the Run button 962 which, as shown in Fig. 9M, spawns
an example window 964 1llustrating the basics of an edit window. At the same time, the text
window 904 1s updated to display information on the MAIN() function for the "Displaying an
Edit Window" example.

As the user selectively manipulates the GUI controls in the example window 964, the
information displayed 1n the text window 904 1s updated automatically in a corresponding
manner. In Fig. 9N, the user has clicked 1n text box 966 which causes the text window 904 to
display information relating to editiTB :: focusln(). Similarly, when the user clicks text box
968, text window 904 displays information relating to edit2TB :: focusin() as shown in Fig.
90. When the user clicks the CheckBox 970, text window 904 displays information relating
to noneditCB :: focusin() as shown in Fig. 9P.

Users can experiment with an example by changing its source code or modifying its
parameters and observing how these changes affect the example. To do so, the user edits the
desired source code file, saves it a separate working directory so as not to disturb the
predefined examples, and then rebuilds the example using mechanisms provided with the
NewEra™ development environment. The number and types of such experiments that can be
created and performed are limited only by the imagination of the user.

Other options in running the examples are possible. For example, users can run an
example without concurrently viewing annotations. Additionally, the Debugger provided
with NewEra™ can be used to set breakpoints in the example source code before running the
example, thereby giving the user even further insight into how an example works.

A description of the Informix® byExample architecture, and the manner in which the
NewEra™ development environment and the Informix® byExample application are built, is

provided with reference to Figs. 10-12.

- 15 -

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

Informix® byExample builds upon the Online Help (OLH) facility provided with the
Windows 95/NT operating systems. As shown in Fig. 10, the Informix® byExample
application 1000 draws both upon resources created specifically for Informix® byExample as
well as resources that are native to the NewEra™ development environment 1005. The
components specific to the Informix® byExample application 1000 include the interactive
examples 1007, source code 1010 for the examples, and annotations 1015 describing the
examples. The annotations 1015 include several different subcomponents including
representative fragments 1020 of the examples' source code, short-cuts 1025 that launch an
appropriate editor (for example, NewEra™ Codewright or NewEra™ Window Painter) for
viewing the examples' source code, jumps 1030 to the interactive examples, and links 1035 to
descriptions of specified keywords and class names contained in the NewEra™ online
reference 1040.

As indicated 1n Fig. 10, the online reference 1040, the Codewright editor 1050 and the
Window Painter editor 1055--along with other components such as Application Builder 1060,
Debugger 1065 and Interprocess Communications (IPC) library 1070--exist as part of the
development environment 1005 and thus are logically separated from the Informix®
byExample application 1000. Consequently, when a user of the Informix® byExample
application 1000 requests a resource residing in the NewEra™ development environment--
either by clicking a link 1035 for a keyword or class name or by clicking a shortcut 1025 to
view source code--Informix® byExample 1000 first must communicate with the NewEra™
development environment 1005 via an interface dynamic linked library (DLL) 1080 to access
the requested resources. The interface DLL 1080 is a compiled library of routines that enable
the Informix® byExample application 1000 to communicate with other applications such as
the components of the development environment. Informix® byExample 1000 calls the
appropriate DLL routines to display the requested online reference information or to launch
the appropriate source code editor, depending on the nature of the request made by the user.

More specifically, when an Informix® byExample user clicks on a shortcut 1025 to a
location 1n an example's source code 1010, the Informix® byExample application 1000 calls a
function in the DLL, which in turn calls a function in the IPC library 1070 which launches the
appropriate editor. As part of this function call (which 1s generated automatically by

processing source code fragments during the build of Informix® byExample, discussed

- 16 -

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

below), the Informix® byExample application 1000 passes parameters that designate the
editor to be launched (Codewright 1050 or Window Painter 1055), and that identify the line
number at which the examples' source code 1010 1s to be opened by the designated editor.
When an Informix® byExample user clicks on a link 1025 for a keyword or class name, the
Informix® byExample application 1000 calls a function in the DLL, which in turn uses the
Windows OLH facility to display the corresponding definition in the online reference 1040.

Other functions provided by the interface DLL 1080 control execution of the
interactive examples 1007 and coordinate the list window and the text window displays to
ensure that they maintain correspondence. Further details on the interface DLL 1080 and the
runtime operation of the Inforrmx® byExample application 1000 are set forth in Appendix B.

The manner in which the Informix® byExample application 1000 and its components
(for example, examples 1007, examples' source code 1010 and annotations 1015) are
generated realizes a high degree of code "maintainability"--a measure of the efficiency and
ease with which an application can be modified. The high degree of code maintainability is
achieved by incorporating all of the information used to generate both the interactive
examples and the corresponding annotative components of Informix® byExample into a
unified logical entity--namely, the source code for the interactive examples themselves. As a
result, only one central source of information need be maintained. Any changes or updates
made to that central information source will be incorporated automatically both into the
examples and 1nto the documentation / instruction / help facility (Informix® byExample) for
the examples. This automated build procedure ensures that the examples and the
corresponding Informix® byExample annotations are kept in synchronization regardless of
the number and frequency of modifications made to the underlying source code.

As shown 1n Fig. 11, the NewEra™ byExample source code 1100 can be thought of as
a single logical entity, although physically it i1s formed of a collection of interdependent files.
The source code 1100 contains three basic types of text--program instructions 1105, program
comments 1110 and annotations 1115--intermixed throughout the source.code. The different
text types are distinguished from each other by programming conventions and by strategically
placing various different markup symbols 1120 throughout the source code.

Some of the text in the source code 1100 can serve multiple purposes. For example,

the program instructions 1105 in the source code 1100 are compiled into the examples' binary

_17 -

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

executable files 1125. These program instructions include calls to the OLH facility to display
the corresponding annotation at the appropriate point during execution of the example. When
an example 1s run by the end-user, these OLH calls cause the text window to display the
appropriate annotation automatically to describe what just happened in the example.

Portions of these same program instructions 1105 also will be extracted to serve as a
clean copy of the examples' source code, which can be displayed to the user in an editing
environment. Similarly, descriptive text that serves as program comments 1110 (unprocessed
programming explanations directed at the Informix® byExample project developers) also can
serve as annotations 1115 (programming explanations displayed to end-users of Informix®
byExample at runtime).

The markup symbols 1120 delineate the various types of text in the source code and
specify how they are to be handled when the interactive examples and the Informix®
byExample annotations are built. Fig. 12 shows a sample of NewEra™ source code which
includes several markup symbols including two instances of the "normal" symbol 1200 and
1205, an "[edit" symbol 1210 and a "] file" symbol 1215. Each of these markup symbols,
along with their respective arguments, are bounded by a pair of brackets ("{ ... }") indicating
that they reside in comment fields and are not to be treated as NewEra™ program
instructions. Programming languages other than NewEra™ may use different conventions to
delineate comment fields. In the Java programming language, for example, a start of a
comment field 1s designated by a "/*" symbol and terminated by a "*/" symbol. In any event,
the corresponding programming language compiler will ignore any text that has been
designated as residing in a comment field.

The ".normal" markup symbol indicates that the text following that symbol (for
example, "Since objects,," following symbol 1200) 1s to be treated as explanatory

comments, and thus to be displayed to the end-user 1n a text window as part of the annotation

text at an appropriate point during execution of a corresponding interactive example. Other
markup symbols specify the name of output files, portions of the source code that are to serve
as representative fragments of the examples' source code, hotspots and destinations for jumps
and links, or GUI-related information concerning display characteristics and objects
(windows, popups, buttons, etc.). A detailed description of the markup language is set forth
in Appendix C.

-]18 -

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

Once the source code 1100 has been modified as desired, it 1s used to build the
interactive examples and the descriptive content of the Informix® byExample application
through a number of ditferent steps. First, the source code 1100 is processed by two different
scripts 1130--a PERL script (Practical Extraction and Report Language, a general purpose
interpreted language often used for parsing text) and a WordBasic script. The scripts 1130
generate two basic types of output: source code files 1135 for the interactive examples, and
RTF files 1140 (Rich Text Format, the format expected by the OLH compiler) which
represent the descriptive and visual content (for example, annotations, source code fragments,
shortcuts to source code editors, links to online reference, jumps to executable examples) of
the Informix® byExample application.

The PERL script parses the source code 1100 searching for markup symbols and, .
based on the particular markup symbols encountered, produces several RTF file fragments
and several source code files 1135, which represent various subsets of the overall source code
1100. The WordBasic Script then merges the RTF file fragments into complete RTF files
1140 which are processed by the Windows OLH compiler 1145 to produce OLH files 1150
containing the descriptive and visual content for the Informix® byExample application. At
the same time, the examples' source code 1135 1s compiled by the NewEra™ compiler 1155
to generate the binary executable corresponding to the interactive examples 1125.

The RTF file fragments generated by PERL script contain several different
components 1n addition to the annotations 1115 appearing in the source code 1100. The
PERL script identi’ﬁes each instance of a keyword or a class name appearing in the source
code extracted for the examples. For each keyword and class name detected, the PERL script
creates a link 1in the RTF file to the corresponding entry in the online reference materials.

The PERL script also extracts fragments of representative source code for inclusion in
the RTF files as text that appears along with the explanatory comments. The source code
fragments are formatted as monospace unwrapped text delineated by leading and trailing
blank lines whereas the explanatory comments are formatted as proportionally spaced
wrapped text. For each source code fragment included in the RTF file, the PERL script also
inserts in the RTF file a corresponding short-cut button which enables the end-user to launch
the source code editors and view the source code at the line where the fragment starts. The

PERL script also strips all of the markup symbols 1120 from the source code extracted for the

- 19 -

10

15

20

235

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

examples. This provides end-users with a clean version of the source code for viewing in the

associated editor.

Other functions performed by the PERL script include automatically guaranteeing that
the identifier for an annotation topic 1s the same in an interactive example as it 1s in the
Windows OLH facility. That is, the PERL script reads the help topic 1dentifiers for the
Windows OLH facility and generates corresponding NewEra™ constants. The PERL script
also generates modified versions of the NewEra™ makefiles (files that include computer-
readable instructions for building an application) which are used to build the examples.
Further details of the PERL script and its operation are set forth in Appendix B.

Although the PERL and WordBasic scripts described above operate on source code
written in the NewEra™ programming language, different scripts can be used to parse other
types of source code, for example, Java or Visual Basic. Generally, appropriate PERL and
WordBasic scripts can be written to process virtually any type of programming language
provided the programming language utilizes ASCII source code (required by PERL) and
provides some sort of source code comment mechanism. Other programming language
attributes that facilitate use of the Informix® byExample techniques include a mechanism for
invoking the Windows OLH {facility with a topic identifier (so the example can display its
annotations), a mechanism for invoking the editing functions of the development environment
(so the annotation can open source code files, assuming the programming language under
consideration provides or requires a development environment), and an online reference in
Windows OLH format (so keywords in the source code can have jumps to the online
reference). Many of the Informix® byExample features described above can be implemented
even if the underlying programming language lacks one or more of these other attributes,
however.

PERL scripts can be modified to output files in formats other than RTF. For example,
a modified PERL script can output hypertext markup language (HTML) files, which can be
viewed using any available web browser (for example, Netscape Navigator).

Other variations of documentation by example are possible. For example, the
annotations describing the interactive examples could be presented in a manner other than
textual. Sounds, graphical symbols, pictures, movies or any other means of communication

could be used as desired. Further, the selection of which interactive examples to perform

- 20 -

10

15

20

25

30

CA 02390249 2002-05-06

WO 01/45069 PCT/US00/34013

could be based on factors other than, or 1in addition to, designation by the user. For example,
an interactive example could be launched automatically at certain points during execution of
the underlying application, or at certain execution points in the help system. When the user
clicks a keyword, class name or other link, an example could be launched automatically either
in addition to, or instead of, displaying the textual reference information pointed to by the
link.

The documentation by example methods and techniques described above are not
limited to aiding users of software development systems but rather may find application as a
general training and education tool for any computer-based application or utility. Moreover,
the techniques described here may be implemented in hardware or software, or a combination
of the two. Preferably, the techniques are implemented in computer programs executing on
programmable computers that each includes a processor, a storage medium readable by the
processor (including volatile and non-volatile memory and/or storage elements), and suitable
input and output devices. Program code 1s applied to data entered using an input device to
perform the functions described and to generate output information. The output information
is applied to one or more output devices.

Each program 1s preferably implemented in a high level procedural or object-oriented
programming language to communicate with a computer system. However, the programs can
be implemented in assembly or machine language, if desired. In any case, the language may
be a compiled or interpreted language.

Each such computer program 1s preferably stored on a storage medium or device (for
example, CD-ROM, hard disk or magnetic diskette) that is readable by a general or special
purpose programmable computer for configuring and operating the computer when the
storage medium or device 1s read by the computer to perform the procedures described. The
system also may be implemented as a computer-readable storage medium, configured with a
computer program, where the storage medium so configured causes a computer to operate in a
specific and predefined manner.

Other embodiments are within the scope of the following claims.

For example, the documentation by examp<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>