

(12) PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 199959284 B2
(10) Patent No. 740302

(54) Title
Electrocatalytic method and device for removing carbon monoxide from hydrogen-rich gas

(51)⁶ International Patent Classification(s)
B01D 053/32 C10K 003/04
C01B 003/50 H01M 008/06
C01B 003/58

(21) Application No: **199959284** (22) Application Date: **1999.09.17**

(87) WIPO No: **W000/16880**

(30) Priority Data

(31) Number	(32) Date	(33) Country
60/100990	1998.09.18	US
09/393103	1999.09.09	US

(43) Publication Date : **2000.04.10**
(43) Publication Journal Date : **2000.06.01**
(44) Accepted Journal Date : **2001.11.01**

(71) Applicant(s)
AlliedSignal Inc.

(72) Inventor(s)
Timothy J. Rehg; Di-Jia Liu; James C. Williams; Mark Kaiser

(74) Agent/Attorney
BALDWIN SHELSTON WATERS, Level 21, 60 Margaret Street, SYDNEY NSW 2000

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

59284/99

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : B01D 53/32, H01M 8/06, C01B 3/50, 3/58, C10K 3/04		A1	(11) International Publication Number: WO 00/16880 (43) International Publication Date: 30 March 2000 (30.03.00)		
(21) International Application Number: PCT/US99/21634		(81) Designated States: AU, CA, CN, IN, JP, KR, MX, NO, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).			
(22) International Filing Date: 17 September 1999 (17.09.99)					
(30) Priority Data: 60/100,990 18 September 1998 (18.09.98) US 09/393,103 9 September 1999 (09.09.99) US		Published <i>With international search report.</i>			
(71) Applicant: ALLIEDSIGNAL INC. [US/US]; 101 Columbia Road, P.O. Box 2245, Morristown, NJ 07962-2245 (US).					
(72) Inventors: REHG, Timothy, J.; 26756 Basswood Road, Rancho Palos Verdes, CA 90275 (US). LIU, Di-Jia; 475 Arlington Avenue, Naperville, IL 60540 (US). WILLIAMS, James, C.; 1108 W. Hawthorne Street, Arlington Heights, IL 60005 (US). KAISER, Mark; 323 South Phelps Avenue, Arlington Heights, IL 60004 (US).					
(74) Agents: CRISS, Roger, H. et al.; AlliedSignal Inc. (Law Dept., Attn: A. Olinger), 101 Columbia Road, P.O. Box 2245, Morristown, NJ 07962-2245 (US).					
(54) Title: ELECTROCATALYTIC METHOD AND DEVICE FOR REMOVING CARBON MONOXIDE FROM HYDROGEN-RICH GAS					
(57) Abstract					
<p>A method and apparatus removes carbon monoxide from hydrogen rich fuel by means of a catalytic material that preferentially adsorbs carbon monoxide. The catalytic material is regenerated by an oxidizing agent that reacts with the carbon monoxide absorbed by the catalytic material. The reaction is initiated by an electrical current is generated either galvanically or electrolytically through the catalytic material. The carbon monoxide free gas thus produced may then be passed into a fuel cell in order to provide D.C. power.</p>					

ABSTRACT

A method and apparatus 10 removes carbon monoxide from hydrogen rich fuel by means of a catalytic material that preferentially adsorbs carbon monoxide. The 5 catalytic material is regenerated by an oxidizing agent 26 that reacts with the carbon monoxide absorbed by the catalytic material. The reaction is initiated by an electrical current which is generated either galvanically or electrolytically through the catalytic material. The carbon monoxide free gas 32 thus produced may then be passed into a fuel cell 33 in order to provide D.C. power 34.

卷之三

ELECTROCATALYTIC METHOD AND DEVICE FOR REMOVING CARBON MONOXIDE FROM HYDROGEN-RICH GAS

CROSS-REFERENCE TO RELATED APPLICATIONS

5

This application is based upon U.S. Provisional patent application no. 60/100,990, filed September 18, 1998.

BACKGROUND OF THE INVENTION

10

This invention relates to carbon monoxide removal from a hydrocarbon reformate fuel. More specifically, it relates to apparatus and methods that use a catalytic material to adsorb carbon monoxide and an electrical current to initiate a chemical reaction between an oxidizing agent and carbon 15 monoxide that has been adsorbed by the catalytic material, thereby regenerating the material.

The internal combustion engine found in most cars and trucks burns a hydrocarbon fuel such as diesel or gasoline to drive pistons or rotary mechanisms by the force of the expanding gas. Many electrical power plants 20 burn fossil fuel to produce electrical energy through combustion turbines. These processes suffer from a number of limitations. They are inefficient because of the intrinsic limit of the thermodynamic principles involved. Burning of fossil fuel is oftentimes incomplete and produces harmful byproducts such as carbon monoxide, nitrogen oxides and various 25 hydrocarbons in the emissions, which have resulted in environmental pollution. In addition, there is a growing awareness that we are rapidly depleting the non-renewable energy resources on this planet. This, in turn, has led to concerns about the reduction of energy consumption by increasing efficiency and utilizing renewable energy resources.

30 Fuel cells convert the chemical energy in the fuel directly into electrical energy through an electro-chemical reaction. Because they do not operate

on the principle of gas expansion through combustion, they do not suffer the same limitations of thermodynamic efficiency commonly found in automobile engines and steam turbines. Accordingly, it is possible for fuel cells to achieve a level of efficiency far greater than that seen in most traditional 5 industrial processes. Additionally, fuel cells make it possible for fuel processors to use renewable forms of energy such as methanol and ethanol, thereby conserving the limited fossil fuel resources of the planet. Moreover, because of the operating environment of a fuel processor and fuel cell, hydrocarbon, nitrogen oxide and carbon monoxide emissions are negligible, 10 approaching a zero emission state.

While there are several types of fuel cells existing in practice, this invention is targeted mainly for applications in polymer electrolyte fuel cells (PEFCs) which are also known as proton exchange membrane fuel cells (PEMFCs). A very efficient PEFC uses pure hydrogen for fuel and oxygen for 15 an oxidant. Pure hydrogen, however, has traditionally been difficult to handle and relatively expensive to store and distribute. Consequently, attempts have been made to use hydrogen rich gas mixtures obtained from reforming of various hydrocarbon fuels. To obtain a convenient and safe source of hydrogen for the fuel cells, on-board reforming of hydrocarbon based fuels, 20 such as gasoline and methanol, is expected to be utilized. However, these fuels usually contain nitrogen, carbon dioxide, and low levels of carbon monoxide in the range from 100's of ppm to a few percent. While the presence of carbon dioxide generally has little effect on the efficient operation of a fuel cell, even relatively low concentrations of carbon monoxide can 25 degrade fuel cell performance. The degradation results from the carbon monoxide chemically adsorbing over the active sites in the electrode of the fuel cell. Thus, the removal of carbon monoxide from fuel has become a major concern in the advancement of PEFC technology.

Prior attempts to remove carbon monoxide from a gas mixture include 30 a pressure swing adsorption method disclosed in Nishida et al., U.S. Patent no. 4,743,276. They disclose a method for selectively absorbing carbon monoxide by means of Cu(I) disposed on a zeolite support, including the step

of adiabatically compressing a gas mixture in the pressure range of 0.5 kg/cm² to 7 kg/cm². Golden et al., U.S. Patent no. 5,531,809 disclose a vacuum swing method as a variation of the pressure swing method disclosed in Nishida. A solid absorbent is selected which physically absorbs carbon 5 monoxide under pressure. When the pressure is reduced to the range of approximately 20 to 100 torr, the carbon monoxide is released from the solid absorbent. By cyclically repeating this process, carbon monoxide may be removed from a gas.

There are, however, multiple limitations to applying the pressure swing 10 adsorption method to fuel cell applications. Firstly, bulky and expensive pressure resistant tanks, as well as pressure and vacuum pump apparatus, are required to carry out the process. The parasitic weight and volume of these devices make it extremely difficult to apply the pressure swing adsorption method for transportation applications such as a fuel cell power 15 plant for an automobile. A second disadvantage of this approach is the significant power expenditure necessary to cycle the pressurization and depressurization steps. This additional power consumption will result in the reduction of overall efficiency of the fuel cell system. Yet another disadvantage of this process is that the toxic carbon monoxide released from 20 desorption has to be converted to carbon dioxide with additional process steps and equipment.

Another prior art process has been referred to as preferential catalytic oxidation (PROX) of carbon monoxide which was documented in U. S. Patent 25 no. 5,271,916 by Vanderborgh et. al. In the PROX process, a small amount of pure oxygen or air is mixed into the reformate fuel before it enters a one - or multiple stage catalytic reactor. The catalyst in the reactor, which usually contains dispersed precious metals such as platinum, ruthenium, iridium, etc., preferentially reacts with carbon monoxide and oxygen to convert them to carbon dioxide. Due to the limited selectivity, however, more than a 30 stoichiometric amount of oxygen is needed to reduce carbon monoxide to an acceptable level. Also, the excess oxygen will oxidize the hydrogen in the reformate fuel. Even with the PROX process, the concentration of CO in the

reformate stream is often still significantly higher than the desirable level for sustainable PEFC operation. Furthermore, the carbon dioxide in the reformate may be converted to carbon monoxide through a reversed water-gas shift reaction inside of the fuel cell.

5 To further eliminate residual carbon monoxide that escapes from the pretreatment or forms from the reversed water-gas-shift reaction inside of the fuel cell, a direct oxygen injection to fuel cell method was developed. For example, Gottesfeld, U.S. Patent no. 4, 910,099 discloses a method of injecting a stream of oxygen or air into the hydrogen fuel so as to oxidize the

10 carbon monoxide. Pow et al., U.S. Patent no. 5,316,747 disclose a similar means of eliminating carbon monoxide directly by introducing pure oxygen or an oxygen containing gas along the latter portion of a reaction chamber in an isothermal reactor in the presence of a catalyst that enhances the oxidation of the carbon monoxide. Wilkinson et al., U.S. Patent no. 5,482,680 disclose

15 the removal of carbon monoxide from a hydrogen fuel for a fuel cell by means of introducing a hydrogen rich reactant stream into a passageway having an inlet, an outlet and a catalyst that enhances the oxidation of carbon monoxide; introducing a first oxygen containing gas stream into the hydrogen rich reactant stream through a first port along the passage way, thereby

20 oxidizing some of the carbon monoxide within the reactant stream; and introducing a second oxygen containing gas at a subsequent point, further oxidizing the remaining carbon monoxide. Wilkinson et al., U.S. Patent no. 5,432,021 similarly oxidize carbon monoxide to carbon dioxide by means of an oxygen containing gas introduced into a hydrogen rich reactant stream in

25 the presence of an unspecified catalyst.

There are several significant limitations for the PROX process and oxygen injection process. One of these limitations is the parasitic consumption of hydrogen. Due to the limited selectivity, the oxidant injected into a hydrogen rich fuel is always higher than the stoichiometric amount necessary for oxidizing the carbon monoxide. The unreacted oxygen will consume hydrogen in the stream to therefore reduce the overall fuel efficiency. Another significant limitation of these methods is their poor

tolerance towards the variation of CO input level in the reformate. To minimize the parasitic hydrogen loss, the oxygen to CO ratio has to be kept at a relatively low level in both approaches. Yet, the CO input level often varies as the result of change of the fuel cell power output and, thus, the reformate 5 throughput. It is difficult to constantly match the CO input level with the oxygen level in a dynamic environment. Consequently, unreacted CO will exceed the fuel cell tolerance level, leading to poor performance. Yet another limitation of these two approaches is the concern over safety. The oxygen to hydrogen ratio in the mixture has to be strictly controlled below the explosion 10 threshold.

Another prior art process for removing carbon monoxide involves membrane separation, whereby the hydrogen in the reformate can be separated by a metallic membrane. For example, R. E. Buxbaum, U.S. Patent no. 5,215,729 discloses a palladium based metallic membrane which 15 provides the selectivity for hydrogen separation up to 100%. Therefore, it could remove carbon monoxide and other components from hydrogen which is the fuel for the PEFC. Although highly selective, the process has several disadvantages. Since it uses precious metal as membrane material, it is expensive. Furthermore, the reformate has to be pressurized to facilitate the 20 separation process which results in parasitic power loss and equipment complexity.

Methanization is another prior art process to remove carbon monoxide through the catalytic reaction of carbon monoxide with hydrogen to form methane. An example of this method is given by Fleming et. al., U. S. Patent 25 no. 3,884,838. Methane does not have a detrimental impact and is regarded as non-reactive in the fuel cell. The methanation reaction, however, requires hydrogen as a reactant and, therefore, increases the parasitic consumption of the fuel for the fuel cell. Furthermore, under the methanation condition, not only carbon monoxide but also carbon dioxide participates in the reactions. 30 The reaction of carbon dioxide with hydrogen generates carbon monoxide through chemical equilibrium. It is therefore difficult to reduce the carbon monoxide level to the desirable limit for PEFC operation.

Because of the sensitive nature of fuel cells, it is vital that carbon monoxide removal approaches 100% efficiency. In addition to the process limitations, such as cost, excess volume and weight, system complexity and high parasitic hydrogen consumption for the above mentioned methods, there is another common shortcoming, 5 i.e., slow response during the cold start of the fuel cell power plant. Most of these approaches need the system to reach a certain temperature before they are operable, which often represents an undesirable delay between start-up and normal operation.

Therefore, there is a need for a method of removing carbon monoxide from a hydrocarbon reformate that is highly efficient, displays enhanced tolerance to carbon 10 monoxide concentration swings, reduces parasitic hydrogen consumption, eliminates venting of carbon monoxide into the atmosphere, can be operated simply and economically, and can operate at the temperature and pressures of a fuel cell, as well as during the start-up mode.

Any discussion of the prior art throughout the specification should in no way be 15 considered as an admission that such prior art is widely known or forms part of common general knowledge in the field.

SUMMARY OF THE INVENTION

It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.

20 According to the invention, there is provided a method of removing carbon monoxide from a hydrocarbon reformate in an electro-catalytic oxidation processor having an anode with a first catalyst disposed therein, a cathode with a second catalyst disposed therein and a proton exchange membrane mounted between the anode and the cathode, said method including the steps of:

25 a) moving the reformate across the anode so that the first catalyst adsorbs the carbon monoxide which reduces its carbon monoxide adsorption capacity;

b) moving an oxidant across the cathode to generate a transient potential between the anode and the cathode; and

c) electrically connecting the anode and cathode to produce an electric 30 current through the anode and the first catalyst mounted therein, whereby the adsorbed carbon monoxide carbon is converted to carbon dioxide and the carbon monoxide adsorption capacity of the first catalyst increases.

In the preferred embodiment of the present invention, an electrocatalytic oxidation (ECO) processor for removing carbon monoxide from a hydrocarbon reformate comprises a cell containing an electrode catalytic material that preferentially adsorbs and reacts with carbon monoxide. Preferably, an oxidizing agent that reacts with the carbon monoxide absorbed by the catalytic material, typically converting the carbon monoxide to carbon dioxide, regenerates an adsorption capacity of that catalytic material. Preferably, electrical leads disposed on opposite sides of a proton permeable membrane electrode assembly form a circuit capable of discharging a current through the catalytic material, thereby triggering the regeneration process. The circuit may be galvanic in nature, or comprised of a separate D.C. power supply.

A carbon monoxide removal system according to a preferred embodiment of the present invention comprises a fuel processor that processes a hydrocarbon fuel containing carbon monoxide; an electrocatalytic oxidation processor downstream of the fuel processor which is capable of removing carbon monoxide from the fuel by means of a catalytic material that preferentially adsorbs carbon monoxide; and an electrical circuit that produces an electrical current through the catalytic material, thereby converting the carbon monoxide to carbon dioxide through electro-catalytic oxidation and regenerating the catalytic material.

A preferred method for removing carbon monoxide from a hydrocarbon reformate according to this invention comprises the steps of humidifying the reformate; moving the humidified reformate across an electrode catalytic material that preferentially adsorbs carbon monoxide; and producing an electrical current through the catalytic material which triggers a reaction between the adsorbed water as well as the oxidizing species formed from water during the electro-chemical process with the carbon monoxide, thereby converting the carbon monoxide to carbon dioxide and regenerating the catalytic material.

These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.

Figure 1 discloses a block diagram of a method and apparatus for removing carbon monoxide from a fuel according to one embodiment of the present invention;

Figure 2a depicts a membrane electrode assembly (MEA) of an electro-catalytic oxidation (ECO) processor according to one embodiment of the present invention;

Figure 2b depicts a bipolar plate that can be used on anode and cathode sides of the MEA shown in Figure 2a;

Figure 3 is a graph of carbon monoxide and carbon dioxide concentrations at the exit of an ECO device versus time according to a first galvanic embodiment of a method of the present invention wherein carbon

2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
266610
266611
266612
266613
266614
266615
266616
266617
266618
266619
266620
266621
266622
266623
266624
266625
266626
266627
266628
266629
266630
266631
266632
266633
266634
266635
266636
266637
266638
266639
266640
266641
266642
266643
266644
266645
266646
266647
266648
266649
266650
266651
266652
266653
266654
266655
266656
266657
266658
266659
266660
266661
266662
266663
266664
266665
266666
266667
266668
266669
2666610
2666611
2666612
2666613
2666614
2666615
2666616
2666617
2666618
2666619
2666620
2666621
2666622
2666623
2666624
2666625
2666626
2666627
2666628
2666629
2666630
2666631
2666632
2666633
2666634
2666635
2666636
2666637
2666638
2666639
2666640
2666641
2666642
2666643
2666644
2666645
2666646
2666647
2666648
2666649
2666650
2666651
2666652
2666653
2666654
2666655
2666656
2666657
2666658
2666659
2666660
2666661
2666662
2666663
2666664
2666665
2666666
2666667
2666668
2666669
26666610
26666611
26666612
26666613
26666614
26666615
26666616
26666617
26666618
26666619
26666620
26666621
26666622
26666623
26666624
26666625
26666626
26666627
26666628
26666629
26666630
26666631
26666632
26666633
26666634
26666635
26666636
26666637
26666638
26666639
26666640
26666641
26666642
26666643
26666644
26666645
26666646
26666647
26666648
26666649
26666650
26666651
26666652
26666653
26666654
26666655
26666656
26666657
26666658
26666659
26666660
26666661
26666662
26666663
26666664
26666665
26666666
26666667
26666668
26666669
266666610
266666611
266666612
266666613
266666614
266666615
266666616
266666617
266666618
266666619
266666620
266666621
266666622
266666623
266666624
266666625
266666626
266666627
266666628
266666629
266666630
266666631
266666632
266666633
266666634
266666635
266666636
266666637
266666638
266666639
266666640
266666641
266666642
266666643
266666644
266666645
266666646
266666647
266666648
266666649
266666650
266666651
266666652
266666653
266666654
266666655
266666656
266666657
266666658
266666659
266666660
266666661
266666662
266666663
266666664
266666665
266666666
266666667
266666668
266666669
2666666610
2666666611
2666666612
2666666613
2666666614
2666666615
2666666616
2666666617
2666666618
2666666619
2666666620
2666666621
2666666622
2666666623
2666666624
2666666625
2666666626
2666666627
2666666628
2666666629
2666666630
2666666631
2666666632
2666666633
2666666634
2666666635
2666666636
2666666637
2666666638
2666666639
2666666640
2666666641
2666666642
2666666643
2666666644
2666666645
2666666646
2666666647
2666666648
2666666649
2666666650
2666666651
2666666652
2666666653
2666666654
2666666655
2666666656
2666666657
2666666658
2666666659
2666666660
2666666661
2666666662
2666666663
2666666664
2666666665
2666666666
2666666667
2666666668
2666666669
26666666610
26666666611
26666666612
26666666613
26666666614
26666666615
26666666616
26666666617
26666666618
26666666619
26666666620
26666666621
26666666622
26666666623
26666666624
26666666625
26666666626
26666666627
26666666628
26666666629
26666666630
26666666631
26666666632
26666666633
26666666634
26666666635
26666666636
26666666637
26666666638
26666666639
26666666640
26666666641
26666666642
26666666643
26666666644
26666666645
26666666646
26666666647
26666666648
26666666649
26666666650
26666666651
26666666652
26666666653
26666666654
26666666655
26666666656
26666666657
26666666658
26666666659
26666666660
26666666661
26666666662
26666666663
26666666664
26666666665
26666666666
26666666667
26666666668
26666666669
266666666610
266666666611
266666666612
266666666613
266666666614
266666666615
266666666616
266666666617
266666666618
266666666619
266666666620
266666666621
266666666622
266666666623
266666666624
266666666625
266666666626
266666666627
266666666628
266666666629
266666666630
266666666631
266666666632
266666666633
266666666634
266666666635
266666666636
266666666637
266666666638
266666666639
266666666640
266666666641
266666666642
266666666643
266666666644
266666666645
266666666646
266666666647
266666666648
266666666649
266666666650
266666666651
266666666652
266666666653
266666666654
266666666655
266666666656
266666666657
266666666658
266666666659
266666666660
266666666661
266666666662
266666666663
266666666664
266666666665
266666666666
266666666667
266666666668
266666666669
2666666666610
2666666666611
2666666666612
2666666666613
2666666666614
2666666666615
2666666666616
2666666666617
2666666666618
2666666666619
2666666666620
2666666666621
2666666666622
2666666666623
2666666666624
2666666666625
2666666666626
2666666666627
2666666666628
2666666666629
2666666666630
2666666666631
2666666666632
2666666666633
2666666666634
2666666666635
2666666666636
2666666666637
2666666666638
2666666666639
2666666666640
2666666666641
2666666666642
2666666666643
2666666666644
2666666666645
2666666666646
2666666666647
2666666666648
2666666666649
2666666666650
2666666666651
2666666666652
2666666666653
2666666666654
2666666666655
2666666666656
2666666666657
2666666666658
2666666666659
2666666666660
2666666666661
2666666666662
2666666666663
2666666666664
2666666666665
2666666666666
2666666666667
2666666666668
2666666666669
26666666666610
26666666666611
26666666666612
26666666666613
26666666666614
26666666666615
26666666666616
26666666666617
26666666666618
26666666666619
26666666666620
26666666666621
26666666666622
26666666666623
26666666666624
26666666666625
26666666666626
26666666666627
26666666666628
26666666666629
26666666666630
26666666666631
26666666666632
26666666666633
26666666666634
26666666666635
26666666666636
26666666666637
26666666666638
26666666666639
26666666666640
26666666666641
26666666666642
26666666666643
26666666666644
26666666666645
26666666666646
26666666666647
26666666666648
26666666666649
26666666666650
26666666666651
26666666666652
26666666666653
26666666666654
26666666666655
26666666666656
26666666666657
26666666666658
26666666666659
26666666666660
26666666666661
26666666666662
26666666666663
26666666666664
26666666666665
26666666666666
26666666666667
26666666666668
2666666666

monoxide is present at about 1014 ppm at the inlet and the ECO processor utilizes platinum-ruthenium (Pt-Ru) as a catalyst;

Figure 4 is a graph of carbon monoxide concentration at the exit of an ECO device versus time according to a first electrolytic embodiment of a 5 method of the present invention wherein carbon monoxide is present at about 120 ppm at the inlet and the ECO processor utilizes a rhodium (Rh) electrode catalyst;

Figure 5 is a graph of carbon monoxide and carbon dioxide concentrations at the exit of an ECO device versus time according to a 10 second galvanic embodiment of a method of the present invention wherein the ECO processor utilizes ruthenium (Ru) as a catalyst;

Figure 6 is a graph of carbon monoxide and carbon dioxide concentrations at the exit of an ECO device versus time according to a first 15 electrolytic embodiment of a method of the present invention wherein the ECO processor utilizes Ru as a catalyst.

DETAILED DESCRIPTION OF THE INVENTION

Figure 1 is a block diagram disclosing the various component parts of 20 one embodiment of a method and a power generation system 10 for removing carbon monoxide from a hydrocarbon fuel and producing D.C. power according to the present invention. In general, a hydrocarbon fuel source 26, such as gasoline, natural gas or methanol, is introduced into a fuel processor 27. In the fuel processor 27, the hydrocarbons can react with air or 25 water through partial oxidation or steam reforming to form a reformate mixture containing hydrogen, carbon monoxide, carbon dioxide, water and other minor components. The reformate mixture usually undergoes additional steps of catalytic reactions, such as a water-gas-shift reaction, to further promote the reaction between steam and CO to form hydrogen and CO₂.

30 Upon exiting the fuel processor 27, a hydrogen rich reformate 28 containing a small amount of carbon monoxide (usually less than a few percent) enters an electro-catalytic oxidation (ECO) cell or processor 29

where carbon monoxide is removed from the reformate 28. A carbon monoxide free reformate 32 exits from the ECO processor 29 and enters a fuel cell assembly or stack 33 where the hydrogen in reformate 32 is electrochemically oxidized at an anode by air or oxygen at a cathode to 5 produce a D.C. power output 34. The operation of the fuel processor 27, the ECO processor 29 and the fuel cell stack 33 can be controlled by a central subsystem 11 which manages the necessary air, water and heat, as well as the operation commands for each stage or step in Figure 1.

More specifically, the fuel processor 27 converts the hydrocarbon fuel 10 26 to the reformate 28 through multiple steps. These steps consist of fuel reforming which includes steam reforming or partial oxidation, high temperature water-gas-shift reaction, low temperature water-gas-shift reaction, as well as reformate conditioning such as humidification and temperature control through a heat transfer process.

15 In the steam reforming stage, the hydrocarbon fuel 26 reacts with a water steam 12 over a reforming catalyst at an elevated temperature to form a mixture containing mainly hydrogen, carbon monoxide, carbon dioxide and others. This process is endothermic but energy efficient. In place of the steam reforming, a partial oxidation process can be used in which the 20 hydrocarbon fuel 26 reacts with a small amount of oxygen or air 13 to form a mixture of hydrogen, carbon monoxide, carbon dioxide and others. This process is exothermic and self-sustaining but nonetheless less energy efficient.

Following the steam reforming or partial oxidation stage, the gas 25 mixture undergoes high temperature (i.e., about 350 to 550°C) and low temperature (i.e., about 200 to 300 °C) water-gas shift reactions in which the carbon monoxide reacts further with additional steam 12 to form hydrogen and carbon dioxide over the water-gas shift catalysts. In the present invention, the water-gas-shift reactions not only improve the overall yield of 30 hydrogen in the fuel processor 27, it also reduces the carbon monoxide concentration to typically less than a few percent in the reformate output 28.

The above fuel reforming and water-gas shift reaction are well known in the art and described, for example, in "Heterogeneous Catalysis in Industrial Practice" by Charles N. Satterfield, Chapter 10, page 419-465, McGraw-Hill, New York, 1991, which is incorporated herein by reference.

5 Following the water-gas shift reaction, the reformate undergoes a conditioning process during which the humidity and temperature of the reformate output 28 is adjusted to be suitable for PEFC application. The humidity adjustment is accomplished by mixing water steam and the temperature adjustment is accomplished by thermal transfer through a heat
10 exchanger. In a preferred operating condition, the temperature of the reformate output 28 should be in the range of about 70 to 100 °C and the humidity should be close to 100% relative humidity (RH) at the corresponding temperature.

The fuel processor 27 is preferably controlled by the central
15 management subsystem 11 as a result of operational data 14 being transmitted therebetween. The central management subsystem 11 may control any number of operational parameters, such as a water vapor flow 12, an air flow 13, and a coolant flow 15 to the fuel processor 27. In a preferred embodiment, a single integrated electronic management subsystem 11
20 controls not only the fuel processor 27, but also the ECO processor 29 and the fuel cell (or fuel cell stack) 33, both of which are further described below. It is, however, envisioned to control these components with separate management subsystems.

Sensing devices (not pictured) well known in the art can be installed in
25 the fuel processor 27, the ECO processor 29, as well as the fuel cell stack 33. These sensors monitor the overall system 10 performance by measuring the parameters which include, but are not limited to, the pressure, temperature, carbon monoxide concentration, output voltage/current, etc. This data will be part of the operational data 14, 16, 19 which will be directed to the
30 management subsystem 11 and receive feedback from the management subsystem 11 for the control of each operation of the unit. Particularly relevant to this invention is the carbon monoxide data collected as part of

each operation data 14, 16, 19. To generate the operational data with respect to carbon monoxide levels, the sensing device according to one embodiment of the present invention is a broad-band infrared absorption-detector, although other similar devices can also be used.

5 The humidified reformate 28 enters an anode side 36 of the ECO cell 29 (FIG. 2a) through a flow field 50 of a bipolar plate 48 (described below). It passes across an electrode catalytic material 47 which includes a catalyst metal component 41 and a catalyst support 42 further described below. Thereby, the catalytic metal component 41 chemisorbs the carbon monoxide 10 in the reformate 28. The reference to "chemisorbs" herein is intended to refer to chemical adsorption where the electronic interaction between CO and the active site in the catalytic metal 41 occurs to form a quasi-chemical bond. Subsequent references herein to "adsorb" and "chemisorb" are used interchangeably unless otherwise specified, such as "physi-adsorption." The 15 chemisorption of carbon monoxide occurs preferentially over hydrogen. This preferential adsorption is due to a significant difference in the Gibbs energies of adsorption between carbon monoxide and hydrogen with the catalytic sites. Consequently, the catalytic metal component 41 preferentially absorbs carbon monoxide despite the composition of the hydrocarbon reformate typically 20 comprising far greater percentages of hydrogen.

Over time and in the process of adsorbing carbon monoxide, the catalytic metal component 41 eventually approaches a point of carbon monoxide saturation, thereby reducing or altogether eliminating its adsorption capacity to adsorb more carbon monoxide from the reformate 28. To 25 maintain an efficient removal of carbon monoxide from the reformate 28, the catalytic metal component 41, and specifically its adsorption capacity, should be regenerated. The regeneration preferably occurs prior to the time the catalytic metal component 41 reaches carbon monoxide saturation and, more preferably, before there is any substantial degradation of the ability of the 30 catalytic metal component 41 to adsorb carbon monoxide.

Regeneration can occur by removing the carbon monoxide from the catalytic metal component 41 via an oxidizing agent such as water vapor 12.

Specifically, the water vapor 12 provides transient species such as a hydroxyl radical, a hydrogen peroxide radical, etc. formed during an electrochemical process (described below) when the water 12 is adsorbed over the surface of the catalytic metal 41. Thus, when an oxidizing agent from the activated

5 water vapor 12 chemically reacts with the carbon monoxide that had been adsorbed by the catalytic metal component 41, carbon monoxide is converted to carbon dioxide that is generally not harmful to the performance of the fuel cell 33. The carbon dioxide produced from the oxidation reaction has only weak physi-adsorption (i.e., adsorption due to van der Waals interaction).

10 Therefore, it is easily released by the catalytic metal component 41 and swept away by the continuing flow of reformate 28. With the adsorbed carbon monoxide now removed, the catalytic metal component 41 is again able to adsorb additional carbon monoxide. Accordingly, the adsorption capacity of the catalytic metal component 41 has been regenerated.

15 To initiate the catalytic oxidation reaction between the oxidizing agent 12 and the carbon monoxide, a current is discharged through the area containing the electrode catalytic material 47 and, specifically, the catalytic metal component 41. The current will initiate an electrochemical process which transforms the water vapor 12 adsorbed on the surface of the catalytic

20 metal 41 to highly reactive oxidizing species. Such current discharge can occur in one of two manners. As further described below, the two manners of current discharge are referred to herein as galvanic and electrolytic. Irrespective of the manner of current discharge, during the regeneration period, the catalyzed oxidation reaction produces the carbon dioxide

25 described above.

The present invention also includes an adsorption cycle which is distinguished from the regeneration cycle by an absence of electrical current flow and thus an absence of catalytic oxidation reactions. Preferably, a regeneration period or cycle alternates with an adsorption period or cycle as

30 the level of carbon monoxide adsorbed to the catalyst metal component 41 rises and falls. In other words, and for example, during the adsorption cycle, the amount of adsorbed carbon monoxide rises towards the maximum

adsorption capacity of the catalytic metal component 41. Before or upon the catalytic metal component 41 reaching saturation, the adsorption cycle stops and the regeneration cycle commences, during which time the amount of adsorbed carbon monoxide falls. As can be appreciated, the alternation of 5 regeneration and adsorption can theoretically continue indefinitely.

Thus, for example, the adsorption cycle is initiated by precluding an electrical current from being developed across the area of catalytic metal component 41. But upon partial or full carbon monoxide saturation of the catalytic metal component 41, an electric current can be discharged through 10 the area of the catalytic metal component 41 to initiate the regeneration cycle. Consequently, during the adsorption cycle, essentially no protons flow across a proton permeable membrane 35 of the ECO processor 29, as further described below. But such proton flow does occur during the regeneration cycle.

15 Accordingly, no hydrogen consumption takes place during the adsorption period. During the regeneration process, however, a residual amount of hydrogen chemisorbed on the surface of an anode 36 (further described below) of the ECO processor 29, as well as in the gas phase in the ECO processor 29, will participate in electrochemical oxidation reactions on 20 the anode 36. The electrochemical oxidation of hydrogen competes with the electrochemical oxidation of carbon monoxide and water, which are adsorbed on the catalytic metal 41. The electro-oxidation of hydrogen results in the formation of protons. The protons migrate across the proton permeable membrane 35 to cathode 37 of the ECO processor 29 and react with reduced 25 oxygen to form water. Since the electro-chemical process occurring during the regeneration period is usually much faster than the cumulative adsorption process, the adsorption period generally comprises a major portion of the overall ECO operation cycle.

During both the regeneration and adsorption cycles, a substantial 30 amount of carbon monoxide is removed from the reformate 32 exiting the ECO processor 29. However, it can be appreciated that during the adsorption cycle, the amount of carbon monoxide in the exit reformate 32 will be rising as

the adsorption capacity of the catalytic metal component 41 decreases. To prevent the leakage of carbon monoxide in the exit reformat 32, the ECO processor 29 is preferably regenerated so that the adsorption capacity of catalytic metal component 41 can be restored in a timely fashion. In any 5 event, the carbon monoxide-free reformat 32 can then enter the fuel cell stack 33, which can be of any well known design in the art. In the fuel cell stack 33, the reformat 32 can react with an oxidant, such as air 17, through an electrochemical process which produces a D.C. electrical power 34. The fuel cell byproducts that include an oxygen-depleted air 21 and a hydrogen-depleted reformat 22 can then be exhausted by the management subsystem 10 11 in the form of an exhaust 23.

As mentioned above, Figure 2a depicts the internal structure of a membrane electrode assembly of an ECO processor 29. Figure 2b depicts a bipolar plate 48 that is used on both sides of the membrane electrode 15 assembly of Figure 2a. Thereby, the ECO processor 29 is generally constructed in a fashion similar to well known proton exchange membrane (PEM) fuel cells. Such PEM cells, including the construction of bipolar plates and membrane electrode assemblies, are described in the article "Polymer Electrolyte Fuel Cells" by S. Gottesfeld and T. A. Zawodzinsk in ADVANCES 20 IN ELECTROCHEMICAL SCIENCE AND ENGINEERING, R. C. Alkire, H Gerischer, D. M Kolb and C. W. Tobias eds., Volume 5, page 195-302, Wiley-VCH, Weinheim, Germany, 1997 and incorporated herein by reference. The ECO processor 29 will be typically operated between ambient temperature to about 180°C and at about 1 to 5 atmospheres of pressure. The ECO cell 29 25 includes a first portion and a second portion – namely, the anode 36 and the cathode 37 – together with the proton exchange membrane 35 therebetween. Various proton permeable membrane materials which are well known in the art can be used as the proton exchange membrane 35, such as perflourinated polymers like NAFION®.

30 The carbon monoxide adsorption and electrochemical oxidation occurs on the anode side of the ECO device 29. The anode side consists of the anode 36 and the bipolar plate 48 with the conducting flow field 50. As shown

in Figure. 2a, the electrode catalytic material 47 includes the catalyst metal component 41 dispersed over a conductive high surface area support 42. On one side of the electrode catalytic material 47, and in close contact therewith, is the proton exchange membrane 35. On the other side of the electrode 5 catalytic material 47 is a porous conductive gas diffusion backing material 44. The backing material 44 provides reformate 28 supply to the anode 36 and can be made of conductive materials with a gas diffusion property such as carbon cloths or porous carbon papers. An example of a commercial backing material 44 is ELAT™ made by E-TEK, Inc. The side of the gas diffusion 10 backing material 44 opposite the catalytic material 47 is in close contact with the bipolar plate 48 which is connected to a first conductive lead 24 (not shown). Through the bipolar plate 48 and the first conductive lead 24, electrons are transferred between the anode 36 and an external circuit 40. The backing material 44 can be coated with a hydrophobic coating 45 to 15 prevent local flooding by water from the electrochemical process and from the humidified reformate 28. An example of the hydrophobic material is fluorinated ethylene propylene (FEP).

In operation, the reformate 28 containing carbon monoxide enters the ECO device 29 through an inlet 49 of the bipolar plate 48. The reformate 28 20 follows the flow path or feed channel 50 across a conductive surface 51 and to an outlet or exhaust 52. During the process, the reformate 28 will also pass through the gas diffusion backing material 44 and interact with the catalyst metal component 41. As it was mentioned earlier, the carbon monoxide in the reformate 28 will be selectively chemisorbed over the catalyst metal 25 component 41. The majority of the carbon monoxide at the outlet 49 of the bipolar plate 48 is therefore being removed from the reformate 28.

To facilitate the proton transfer process during the regeneration cycle, the catalyst metal material 41 and support 42 are bound to the proton exchange membrane 35 in a matrix of proton conductive ionomer composite 30 43. The ionomer composite 43 is generally recasted from the perfluorinated sulfonic acid polymer particles. An example would be NAFION® particles. Alternatively, the catalyst metal material 41 and support 42 can be bound to

the backing material 44 through the matrix of proton conductive ionomer composite 43 and collectively pressed against the proton exchange membrane 35 upon assembling of the ECO processor 29.

The cathode 37 is preferably of design similar to the anode 36 to
5 insure that an oxidant such as oxygen is channeled to interact with the protons traversing the membrane 35.

The catalytic metal component 41 comprises noble and/or transition metals in a highly dispersed form upon the support 42. The support 42 is generally characterized as being electrically conductive, chemically inert, and
10 having a high surface area. The conductivity of the support 42 may vary, but is generally comparable to that of carbon. The need for the support 42 to be chemically inert is to avoid reactions between the reformate 28 and the support 42 during both adsorption and regeneration cycles and to maintain the structural stability of the anode 36 during long term ECO process
15 operation. In this embodiment, the surface area of support 42 may range from about 5 to 1500 m²/g and, more preferably, range from about 150 to 300 m²/g. Some examples of suitable materials for the support 42 include carbon black, metal nitride and metal carbide such as titanium nitride, tungsten carbide, etc.

20 In another embodiment of this invention, the catalytic metal component 41 can be small metal crystallite powder without a supporting material 42. These metal crystallites are generally highly dispersed with particle dimensions ranging from 10 nm to > 1000 nm. The benefit of using an unsupported metal crystallite is eliminating the requirement and limitation of
25 the support 42. The unsupported metal crystallite, however, generally provides less available surface area than that of supported catalytic metal component 41.

The noble metals that are suitable for use as the catalyst metal component 41 include, but are not limited to, ruthenium, platinum, palladium,
30 rhodium, iridium, gold, silver, etc. The useful transition metals include, but are not limited to, molybdenum, copper, nickel, manganese, cobalt, chromium, tin, tungsten, etc. The present invention contemplates that two

and three noble or transition metals can be used in any combination as the catalytic metal component 41 in the form of a multiple metallic alloy. However, it is preferred that one or two noble metals and/or one or two transition metals be utilized in any form of combinations as a bimetallic alloy, 5 which are demonstrated by the examples below.

Although the catalyst metal component 41 in the anode 36 and the cathode 37 can be the same, catalyst metal component 41 at the cathode 37 is preferably different from that at the anode 36. The preferred catalyst metal component 41 at the cathode 37 include platinum and platinum-transition 10 metal alloys such as Pt-Co, Pt-Cr. The preferred catalyst metal component 41 at the anode 36 is ruthenium, rhodium, iridium, palladium, platinum and their corresponding transition metal alloys.

The performance of ECO processor 29 depends on the amount of catalyst metal component 41 used in the membrane electrode assembly 15 which is normally represented by the weight of the catalyst metal per unit MEA surface area. In this invention, the preferred amount of catalyst metal component 41 for the anode 36 ranges from about 0.1 to 5 mg/cm². The preferred amount of catalyst metal component 41 for the cathode 37 ranges from about 0.1 to 5 mg/cm².

20 For the catalyst material 47, the amount of catalyst metal component 41 loading in the support 42 can also affect the performance of the ECO processor 29. For a noble metal based catalytic metal component 41, the metal loading over the support 42 preferably ranges from about 2 to 70 wt.%. More preferably, the loading is from about 20 to 50 wt.%. Below about 2 25 wt.%, the net amount of catalyst needed for constructing the anode 36 maybe too high to fully utilize the metal in an electrochemical process where the proton transfer needs to be connected throughout the anode 36. Above 70 wt.%, it is difficult to achieve high metal dispersion which results in lower metal utilization because of the relatively lower surface metal atom to overall 30 metal atom ratio. It is generally believed that the surface metal atoms of the catalyst metal component 41 are the active sites during a catalytic or an electro-catalytic reaction. For a transition metal based catalyst metal

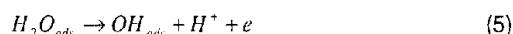
component 41, the metal loading preferably ranges from about 0 to 40 wt.% and, more preferably, from about 3 to 30 wt.%. Loading outside such range tends to result in similar types of performance degradation described above for noble metals.

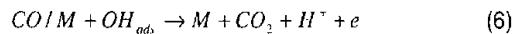
5 As noted above, the catalyst metal component 41 is dispersed on the substrate 42 with a high dispersion coefficient. The dispersion coefficient is defined as the ratio of the number of surface atoms of an active catalyst metal to the total number of atoms of the metal particles in the catalyst. In this embodiment, it is preferred that the catalyst metal component 41 be
10 characterized by a dispersion coefficient between about 5 to 100% and, more preferably between about 30 to 90 %. If below about 15%, the catalyst surface area provided by the catalyst metal component 41 can be too low to utilize the catalyst metal efficiently. The low utilization of the catalyst metal can result in a higher amount of the catalyst metal needed for the anode 36, 15 hence leading to a higher cost of the ECO processor 29.

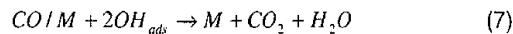
As mentioned above, the regeneration cycle is initiated by a discharge of electrical current through the anode 36 or cathode 37 of the ECO processor 29. Without intending to be limited by any electro-catalysis theory, it is believed that the following chemical and electro-chemical processes
20 occur during the adsorption and the regeneration cycles. During the adsorption stage, the carbon monoxide in the gas phase will chemisorb over the active site of catalyst metal component 41, designated as *M*, to form a chemisorbed *CO* species, *CO/M*, through the reaction:

25 Meanwhile, the hydrogen in the gas phase will also participate in a dissociative adsorption over the active site *M* through the reaction:

Due to the significant difference in the heat of adsorption, the surface concentration of *CO/M* is higher than that of *H/M* through the cumulative
30 adsorption of *CO*. The water vapor in the humidified reformate 28 will also be adsorbed over the surface of the anode 36 to form H_2O_{ads} . The surface on


which the water adsorbs includes, but is not limited to, the surface of active site *M* through the following equation:


During the regeneration stage, the following electro-oxidation reactions occur
5 on the surface of the anode 36:


and

OH_{ads} is the hydroxyl group chemisorbed over the surface of the anode 36
10 and which is highly reactive and can oxidize the chemisorbed *CO/M* through
the following electro-catalytic reaction:

or through the direct catalytic reaction:

15 Another way to express the electro-catalytic oxidation of chemisorbed carbon monoxide by water is by the following equation:

The carbon dioxide formed through the equations (6) to (8) has a weak interaction with the anode 36 surface and, therefore, will be swept out of the
20 anode 36 after the regeneration.

Two approaches can be used during the regeneration cycle. They are galvanic and electrolytic methods. The manner of regeneration is controlled by the management subsystem 11. For the galvanic approach, the management subsystem 11 sends a control signal which momentarily closes
25 a double-throw switch 30 between conductive leads 24, 25, as shown in Figure 1. For the electrolytic approach, the management subsystem 11 sends a control signal which momentarily closes the switch 30 between conductive leads 24, 25 and a D. C. power supply 31. The leads 24, 25 are affixed (not shown) to the bipolar plates 48 at both the anode 36 and cathode
30 37 sides of the ECO cell 29. The conductive leads 24, 25 are preferably

connected with the bipolar plates 48 which have an evenly distributed flow field configuration. One such configuration is a serpentine pattern, as is shown in Figure 2b. The bipolar plates have uniform and close contact with the conductive backing material 44 and, therefore, with the anode 36 and 5 cathode 37. The uniform and close contact results in an even flow of electrical current across the catalytic material 47, thereby achieving the most efficient degree of regeneration. Although a timed cycle may be used for the frequency needed for regeneration, the preferred embodiment utilizes measurements or calculations of carbon monoxide levels at the exit of fuel 10 processor 27 and ECO processor 29 to initiate the regeneration cycle.

In the galvanic embodiment, the current is produced exclusively from a galvanic reaction owing to the transient potential difference between the anode 36 and cathode 37 side of the ECO processor 29. The circuit 40 established between the anode 36 and the cathode 37 has a very small or 15 zero resistance. The low impedance allows an instantaneous current to pass between the anode 36 and cathode 37 when the switch 30 closes the circuit. Under such a condition, the carbon monoxide electro-oxidation reaction with water at the anode 36 to form carbon dioxide is accelerated according to the equation (8) listed above. As described above, since the carbon dioxide has 20 a relatively weak adhesion to the anode 36 surface, it can be swept away by the reformatte 28 that continues to pass through the ECO cell 29.

In the electrolytic embodiment, the above circuit 40 further comprises a separate power supply or D.C. cell 31, with voltage ranges typically from about 0.1 to 2.0 volts, which applies the external potential and current over 25 the initial discharge of electrical current. When the switch means 30 is closed, the first conductive lead 24 from the anode 36 is operatively connected to a positive terminal of the D.C. cell 31 and the second conductive lead 25 from the cathode 37 is operatively connected to a negative terminal of the DC cell 31. Upon receiving a "reversed" potential from the power 30 supply 31, oxidizing species will be produced as a result of reactions similar to that given in equation (5) above. The oxidizing species include but are not limited to hydroxyl groups, hydro-peroxide groups, etc. These oxidizing

species can be formed over the surface of catalyst metal component 41 or other parts of the anode 36 and migrate to the catalyst metal component 41. The oxidizing species can then react with the adsorbed carbon monoxide to form carbon dioxide. Like in the galvanic embodiment above, the weakly 5 adsorbed carbon dioxide will be stripped by the flow of reformate 28, leaving the anode 36 surface "clean."

In both galvanic and electrolytic approaches, the duration of the regeneration is also controlled by the management system 11. The regeneration duration can be greater than 0 to about 100 seconds. The 10 preferred embodiment of the present invention is from about 0.01 second to 10 seconds.

While the above description deals with a single ECO cell 29, multiple ECO cells 29 can be used to enhance the overall CO removal capacity. These multiple ECO cells 29 can be electrically connected in a series or in a 15 parallel pattern, similar to such well known patterns used in fuel cell stacks. Additionally, and like with fuel cells, the ECO cells 29 can be stacked in a module wherein the individual cells 29 are electrically connected in series; a plurality of modules can then be flow connected in parallel. The regeneration of multiple ECO cells 29 can occur simultaneously or in a sequential manner. 20 However, the sequential manner is preferred. Further, the manner in which the reformate 28 flows into multiple ECO cells 29 can also be in parallel or in series, which is also similar to such flows for fuel cell stacks. The series flow pattern is preferred for more complete carbon monoxide removal.

25

EXAMPLES

Figure 3 graphically discloses test data wherein an ECO cell was constructed with a similar configuration as a typical proton-exchange membrane (PEM) fuel cell. At the anode side of the membrane electrode 30 assembly (MEA), a carbon supported Pt-Ru bimetallic electrode catalyst with loading of 0.299 mg/cm² was attached by the hot-pressed method described in U.S. Patent no. 5,211,984 and incorporated herein by reference. Similarly,

a Pt/C electrode catalyst with Pt loading of 0.303 mg/cm² was attached on the cathode side. The MEA had electrode surface area of 5 cm² and the ECO device was operated at 80°C. The anode gas mixture was fully humidified nitrogen containing 1014 ppm carbon monoxide. The gas mixture was 5 introduced through the anode side of the ECO cell at a flow rate of 128 sccm. The cathode gas was fully humidified air at a flow rate of 180 sccm. Separate broad-band IR absorption-detectors were used to monitor carbon monoxide and carbon dioxide levels at the exit of the ECO cell. Figure 3 shows that, at the beginning of the experiment, the carbon monoxide concentration within 10 the gas mixture at the exit decreased significantly as carbon dioxide concentration increased, indicating the selective carbon monoxide adsorption and catalytic oxidation occurring over the electrode catalyst surface. Upon the saturation of carbon monoxide over the anode, gas phase carbon monoxide concentration returned to the original level. At this point, the 15 galvanic regeneration was initiated by electrically shorting the circuit between the anode and cathode for one second to allow the electrocatalytic oxidation to occur at the anode surface. Following the short-circuiting, the carbon monoxide levels in the gas mixture decreased and the carbon dioxide increased, indicating that adsorbed carbon monoxide was oxidized to carbon 20 dioxide and the electrode surface was cleaned for another adsorption cycle. The process was highly repeatable, as seen in Figure 3.

Figure 4 graphically discloses test data in an ECO device similar to that used in Figure 3 and at an operating temperature of 80°C. At the anode side of the membrane electrode assembly, a carbon supported rhodium electrode 25 catalyst with Rh loading of 0.270 mg/cm² was attached by the hot-pressed method. Similarly, a Pt/C electrode catalyst with Pt loading of 0.330 mg/cm² was attached on the cathode side. During the experiment, a mixture of synthetic reformate mixture containing 120 ppm CO, 19.9% CO₂, 37.0% H₂, balanced by N₂ was fully humidified and passed through the anode side of the 30 ECO cell with a flow rate of 128 sccm while air at essentially 100% relative humidity was passed through the cathode side at a flow rate of 180 sccm. A broad band IR absorption detector monitored the concentration of carbon

monoxide at the exit. At the beginning of the experiment, there was a significant decrease of carbon monoxide concentration in the reformate flow at the exit of the ECO cell, indicating a selective carbon monoxide absorption by the catalytic material within the anode. Upon carbon monoxide saturation 5 of the catalytic material, gas phase carbon monoxide was observed to rise closely to its original level. At this point, the two electrodes of the ECO cell were connected to an external DC power supply with 0.4 volts, with the positive lead of the power supply attached to the anode of the ECO cell and the negative lead attached to the cathode of the ECO cell, thus producing a 10 "reverse voltage potential." The connection lasted a short period of 1 second to initiate the electrocatalytic oxidation at the anode surface. As seen in Figure 4, over repeated cycles, the carbon monoxide levels in the reformate were reduced through the electrocatalytic oxidation process in a manner consistent with what would be expected by the regeneration of the catalytic 15 material absorbing the carbon monoxide.

Figure 5 graphically discloses the test results of an experiment with an ECO cell similar in construction to that used in connection with Figure 3. The anode electrode catalyst was Ru/C with the ruthenium loading at 0.3 mg/cm². The operating temperature was again 80°C. A fully humidified gas mixture 20 containing 492 ppm carbon monoxide and the balance hydrogen was introduced into the anode side at a flow rate of 128 sccm. At the same time, 100%-humidified air was passed through the cathode side with a flow rate of 180 sccm. Separate broad band IR absorption detectors monitored carbon monoxide and carbon dioxide levels at the ECO exit. As shown in Figure 5, at 25 the beginning of the experiment, the carbon monoxide concentration at the exit decreased while the carbon dioxide concentration increased, indicating the selective carbon monoxide adsorption and catalytic oxidation occurred over the electrode catalyst surface. Upon the saturation of the carbon monoxide over the anode, gas phase carbon monoxide concentration 30 returned to the original level. At this point, the two electrodes of the ECO cell were connected for one second to allow the electrocatalytic oxidation to occur at the anode surface. Following this short circuiting, depletion of carbon

monoxide and enhancement of carbon dioxide in the reformate was observed, indicating that adsorbed carbon monoxide was oxidized to carbon dioxide and the electrode surface was cleaned for another adsorption cycle. The process was highly repeatable, as shown in Figure 5. With an increase 5 of regeneration frequency, such as one second of short circuiting for every 15 seconds of carbon monoxide adsorption, the carbon monoxide level at the exit can be maintained at a constant level, as shown in Figure 5.

Figure 6 graphically discloses the test results with an ECO cell of similar construction and identical chemical concentrations, temperature and 10 humidity as that used to obtain the test results disclosed in Figure 5. The only distinction in the equipment producing the results in Figures 5 and 6 is the addition of an external DC power supply having a potential of 0.4 volts in the tests represented by Figure 6. Upon the saturation of carbon monoxide over the anode, gas phase carbon monoxide concentration returned to the original 15 level. At this point, the two electrodes of the ECO cell were connected to the power supply, with the positive lead of the power supply attached to the anode of the ECO cell and the negative lead attached to the cathode of the ECO cell, thus producing a "reverse voltage potential." Figure 6 illustrates that, when the reverse voltage was applied for approximately one second, the 20 adsorbed carbon monoxide was electrochemically oxidized to carbon dioxide, as indicated by the depletion of carbon monoxide and increase of carbon dioxide at the exit of the ECO device. This process was highly repeatable, as shown in Figure 6. With an increase of the regeneration frequency, such as one second of applying a "reversed voltage" for every 20 seconds of carbon 25 monoxide adsorption, the carbon monoxide level at the exit can be maintained at a constant level, as shown in Figure 6.

As can be appreciated by those skilled in the art, the present invention provides an approach to improve fuel cell operation efficiency by removing carbon monoxide from the hydrogen fuel externally. The present invention 30 provides advantages of a high degree of carbon monoxide removal, simple system configuration, low parasitic hydrogen consumption, increased tolerance to the dynamics of carbon monoxide output from the reformer, and

ease of operation. Although a primary application of the invention is to reduce the concentration of carbon monoxide with the hydrogen fuel for fuel cell operation, the present invention can have other applications where carbon monoxide removal is necessary.

5 It should be understood, of course, that the foregoing relates to preferred embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:-

1. A method of removing carbon monoxide from a hydrocarbon reformate in an electro-catalytic oxidation processor having an anode with a first catalyst disposed therein, a cathode with a second catalyst disposed therein and a proton exchange membrane mounted between the anode and the cathode, said method including the steps of:
 - a) moving the reformate across the anode so that the first catalyst adsorbs the carbon monoxide which reduces its carbon monoxide adsorption capacity;
 - b) moving an oxidant across the cathode to generate a transient potential between the anode and the cathode; and
 - c) electrically connecting the anode and cathode to produce an electric current through the anode and the first catalyst mounted therein, whereby the adsorbed carbon monoxide carbon is converted to carbon dioxide and the carbon monoxide adsorption capacity of the first catalyst increases.
2. The method of Claim 1 further including the step of humidifying the reformate before step (a).
- 20 3. The method of Claims 1-2 further including the step of humidifying the oxidant before step (b).
4. The method of any one or more of Claims 1-3, wherein the electric current is produced galvanically.
- 25 5. The method of any one or more of Claims 1-3, wherein the electric current is produced electrolytically.
6. The method of Claims 1-6 wherein the step of electrically connecting further includes the step of electrically disconnecting and then repeating these steps to produce an intermitted electric current.

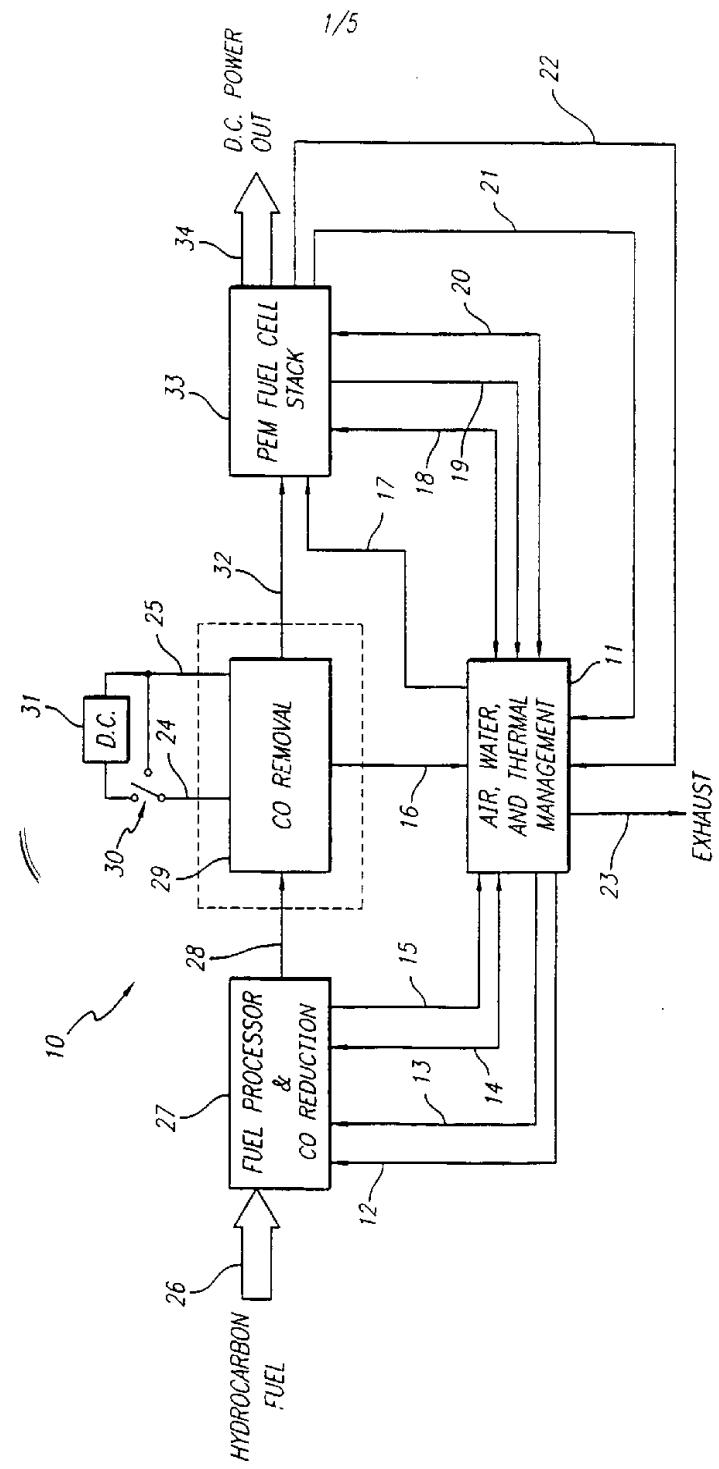
7. The method of Claims 1-6 further including the step of augmenting the electric current with a DC power source.

8. The method of Claims 1-7 wherein said first catalyst is a noble or
5 transition metal and is mounted on a support having a surface area in the range of 5 to
1500 m²/g.

9. The method of Claims 1-8 wherein said first catalyst is a noble or
transition metal and is mounted on a support having a surface area in the range of 150 to
10 300 m²/g.

10. The method of Claims 1-9 wherein said first and second catalysts are the
same noble or transition metal.

15 11. A method of removing carbon monoxide substantially as herein
described with reference to any one of the embodiments of the invention illustrated in
the accompanying drawings and/or examples.


20 DATED this 21st Day of June 2001
AlliedSignal Inc.

Attorney: PHILLIP D. PLUCK
Fellow Institute of Patent and Trade Mark Attorneys of Australia
of BALDWIN SHELSTON WATERS

25

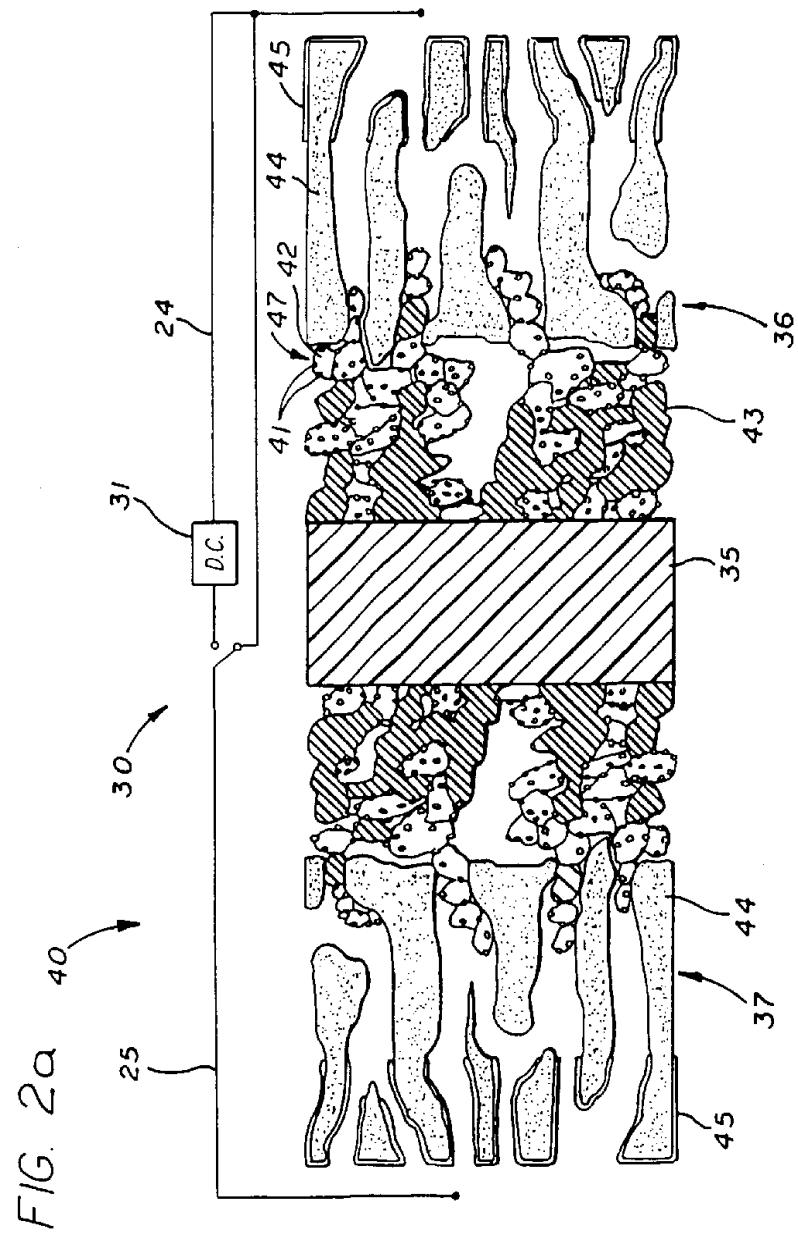


FIG. 1

SUBSTITUTE SHEET (RULE 26)

2/5

SUBSTITUTE SHEET (RULE 26)

3/5

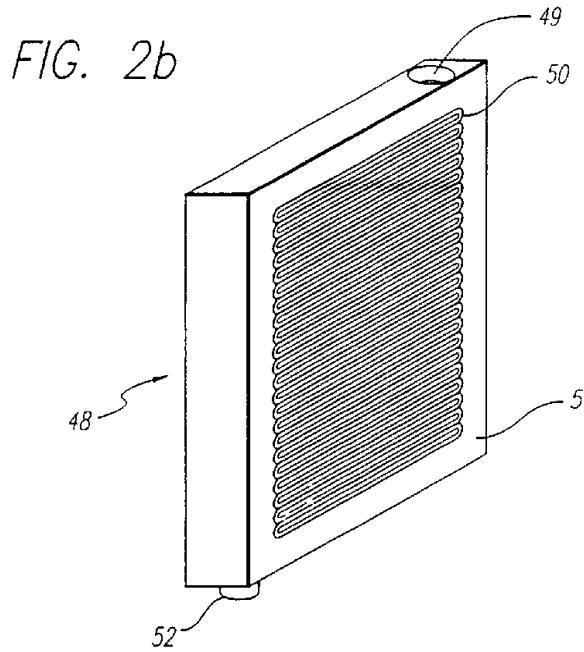
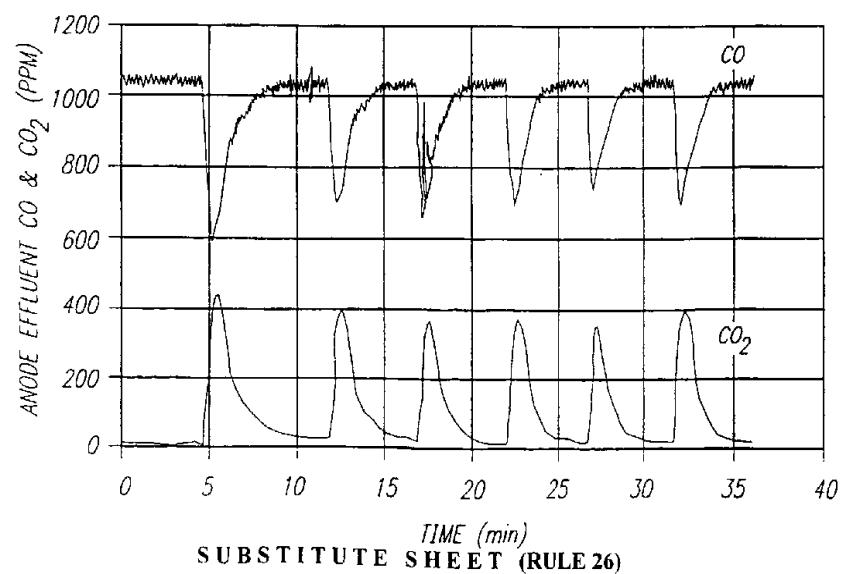
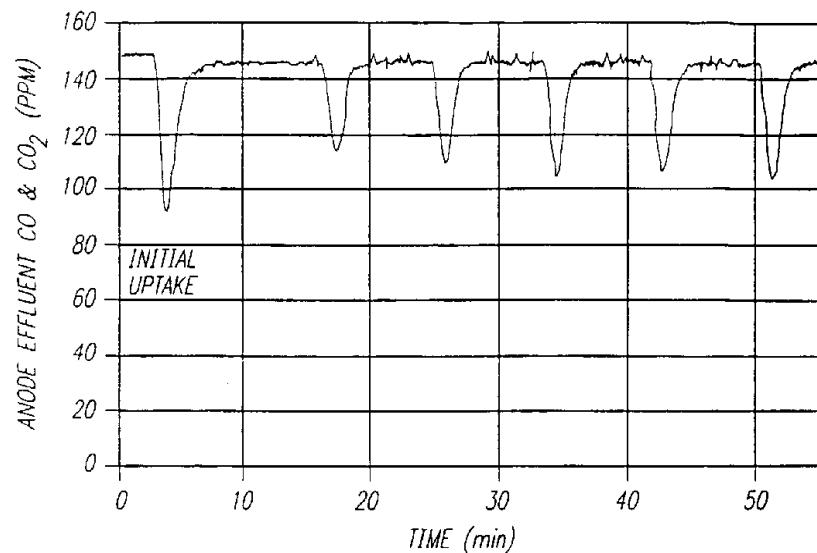
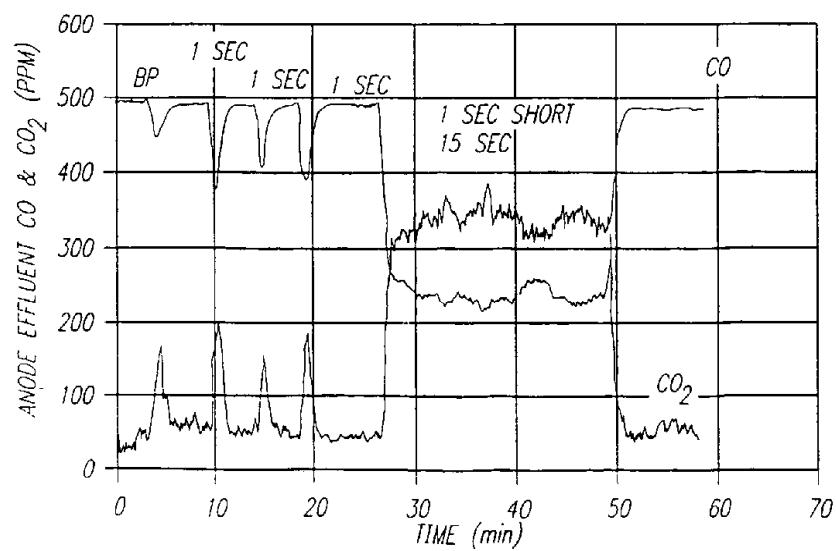
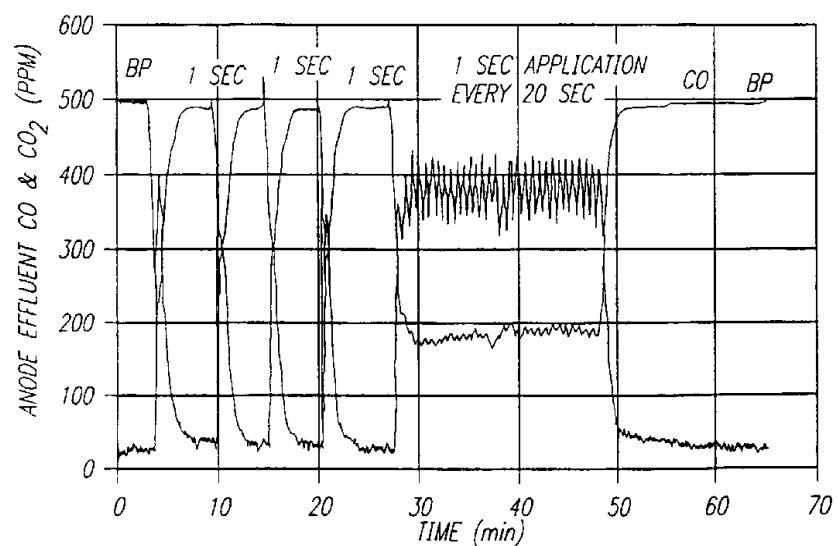



FIG. 3

4/5

FIG. 4


FIG. 5

SUBSTITUTE SHEET (RULE 26)

5/5

FIG. 6

SUBSTITUTE SHEET (RULE 26)