(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
08 March 2018 (08.03.2018)

(10) International Publication Number

WO 2018/044604 A1

WIPO I PCT

(51) International Patent Classification:
GO6F 21/41 (2013.01) GO6F 21/60(2013.01)

(21) International Application Number:
PCT/US2017/047726

(22) International Filing Date:
21 August 2017 (21.08.2017)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
62/381,866 31 August 2016 (31.08.2016) Us
15/680,362 18 August 2017 (18.08.2017) US

(71) Applicant: ORACLE INTERNATIONAL CORPO-
RATION [US/US]; 500 Oracle Parkway, Redwood Shores,
California 94065 (US).

(72) Imventors: WILSON, Gregg; 3917 Walnut Clay Drive,
Austin, Texas 78731 (US). MEDAM, Venkateswara Red-
dy; 4205 Noah Court, Modesto, California 95356 (US).

(74) Agent: GOLDSMITH, Barry S.; Miles & Stockbridge
P.C., 1751 Pinnacle Drive, Suite 1500, Tysons Corner, Vit-
ginia 22102 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

(54) Title: DATA MANAGEMENT FOR A MULTI-TENANT IDENTITY CLOUD SERVICE

e
ettt ettt

37 Party Cloud Anps Customer Apns

b

Fig. 1

126 e 128
| / 20 1z
L } }
A /7 e Nf\
2 Reports / Dashboards [/
PR S— B W
{ Lagin ! 530 Servise {Dpenil Connecl)
| Federation Serviee (S 130
| AP Token Senvice (Qhufhy 132
My |1 Identity | Ure
Apps|iPlatformi) Dirsclory Service (SCIM) 134 mptcne

| Provisioning Servive SO/ ATOM 13

i Event Senvice (REST) 138

}
)
| o
} Admin
J
}
}

E RBAC Sarvics (SCHY

| AP |

Dradle ldentity Cloud Service W s
/

142

wo 2018/044604 A1 | 0E 0000 0 0 0

(57) Abstract: Cloud based identity management is provided by receiving a request from an application by a web gate for a resource,
where the request includes an operation on a resource type out of a plurality of resource types and the request specifies a tenant out of a
plurality of tenants. Embodiments access a microservice based on the request, resolve the resource type, and validate that the operation
is supported by the resource type based on metadata. Embodiments get a data provider associated with the tenant, call the data provider
to perform the operation, and then return the resource.

[Continued on next page]

WO 2018/044604 A1 {10000 AR 0N 0TI

MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2018/044604 PCT/US2017/047726

DATA MANAGEMENT FOR A MULTI-TENANT IDENTITY CLOUD SERVICE

CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority of U.S. Provisional Patent Application
Serial No. 62/381,866, filed on August 31, 2016, the disclosure of which is hereby

incorporated by reference.

FIELD
[0002] One embodiment is directed generally to identity management, and in

particular, to identity management in a cloud system.

BACKGROUND INFORMATION

[0003] Generally, the use of cloud-based applications (e.g., enterprise public
cloud applications, third-party cloud applications, etc.) is soaring, with access coming
from a variety of devices (e.g., desktop and mobile devices) and a variety of users (e.g.,
employees, partners, customers, etc.). The abundant diversity and accessibility of
cloud-based applications has led identity management and access security to become a
central concern. Typical security concerns in a cloud environment are unauthorized
access, account hijacking, malicious insiders, etc. Accordingly, there is a need for
secure access to cloud-based applications, or applications located anywhere,

regardless of from what device type or by what user type the applications are accessed.

-1 -

WO 2018/044604 PCT/US2017/047726

SUMMARY

[0004] Embodiments provide cloud based identity management by receiving a
request from an application by a web gate for a resource, where the request includes an
operation on a resource type out of a plurality of resource types and the request
specifies a tenant out of a plurality of tenants. Embodiments access a microservice
based on the request, resolve the resource type, and validate that the operation is
supported by the resource type based on metadata. Embodiments get a data provider
associated with the tenant, call the data provider to perform the operation, and then

return the resource.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Figs. 1-5 are block diagrams of example embodiments that provide cloud-
based identity management.

[0006] Fig. 6 is a block diagram providing a system view of an embodiment.

[0007] Fig. 6A is a block diagram providing a functional view of an embodiment.

[0008] Fig. 7 is a block diagram of an embodiment that implements Cloud Gate.

[0009] Fig. 8 illustrates an example system that implements multiple tenancies in
one embodiment.

[0010] Fig. 9 is a block diagram of a network view of an embodiment.

[0011] Fig. 10 is a block diagram of a system architecture view of single sign on

(“SSO”) functionality in one embodiment.

WO 2018/044604 PCT/US2017/047726

[0012] Fig. 11 is a message sequence flow of SSO functionality in one
embodiment.

[0013] Fig. 12 illustrates an example of a distributed data grid in one
embodiment.

[0014] Fig. 13 illustrates a data manager architecture for an Identity Cloud
Service (“IDCS”) or an Identity as a Service (“IDaaS”) in accordance with one
embodiment.

[0015] Fig. 14 illustrates the functional flow of embodiments of the invention
implemented by the resource data manager of Fig. 13.

[0016] Fig. 15 illustrates automatic schema versioning in accordance with one

embodiment.

DETAILED DESCRIPTION

[0017] Embodiments implement metadata that defines a resource type and
associated schemas. A request for performing an operation on a resource in a multi-
tenant system is resolved using the metadata to determine the data provider associated
with the tenant that performs the operation.

[0018] Embodiments provide an identity cloud service that implements a
microservices based architecture and provides multi-tenant identity and data security
management and secure access to cloud-based applications. Embodiments support
secure access for hybrid cloud deployments (i.e., cloud deployments which include a

combination of a public cloud and a private cloud). Embodiments protect applications

-3-

WO 2018/044604 PCT/US2017/047726

and data both in the cloud and on-premise. Embodiments support multi-channel access
via web, mobile, and application programming interfaces (“APIs”). Embodiments
manage access for different users, such as customers, partners, and employees.
Embodiments manage, control, and audit access across the cloud as well as on-
premise. Embodiments integrate with new and existing applications and identities.
Embodiments are horizontally scalable.

[0019] One embodiment is a system that implements a number of microservices
in a stateless middle tier environment to provide cloud-based multi-tenant identity and
access management services. In one embodiment, each requested identity
management service is broken into real-time and near-real-time tasks. The real-time
tasks are handled by a microservice in the middle tier, while the near-real-time tasks are
offloaded to a message queue. Embodiments implement access tokens that are
consumed by a routing tier and a middle tier to enforce a security model for accessing
the microservices. Accordingly, embodiments provide a cloud-scale ldentity and
Access Management (“IAM”) platform based on a multi-tenant, microservices
architecture.

[0020] One embodiment provides an identity cloud service that enables
organizations to rapidly develop fast, reliable, and secure services for their new
business initiatives. In one embodiment, the identity cloud service provides a number of
core services, each of which solving a unique challenge faced by many enterprises. In
one embodiment, the identity cloud service supports administrators in, for example,

initial on-boarding/importing of users, importing groups with user members,

-4 -

WO 2018/044604 PCT/US2017/047726

creating/updating/disabling/enabling/deleting users, assigning/un-assigning users
into/from groups, creating/updating/deleting groups, resetting passwords, managing
policies, sending activation, etc. The identity cloud service also supports end users in,
for example, modifying profiles, setting primary/recovery emails, verifying emails,
unlocking their accounts, changing passwords, recovering passwords in case of
forgotten password, etc.

Unified Security of Access

[0021] One embodiment protects applications and data in a cloud environment
as well as in an on-premise environment. The embodiment secures access to any
application from any device by anyone. The embodiment provides protection across
both environments since inconsistencies in security between the two environments may
result in higher risks. For example, such inconsistencies may cause a sales person to
continue having access to their Customer Relationship Management (“CRM”) account
even after they have defected to the competition. Accordingly, embodiments extend the
security controls provisioned in the on-premise environment into the cloud environment.
For example, if a person leaves a company, embodiments ensure that their accounts
are disabled both on-premise and in the cloud.

[0022] Generally, users may access applications and/or data through many
different channels such as web browsers, desktops, mobile phones, tablets, smart
watches, other wearables, etc. Accordingly, one embodiment provides secured access
across all these channels. For example, a user may use their mobile phone to complete

a transaction they started on their desktop.

-5-

WO 2018/044604 PCT/US2017/047726

[0023] One embodiment further manages access for various users such as
customers, partners, employees, etc. Generally, applications and/or data may be
accessed not just by employees but by customers or third parties. Although many
known systems take security measures when onboarding employees, they generally do
not take the same level of security measures when giving access to customers, third
parties, partners, etc., resulting in the possibility of security breaches by parties that are
not properly managed. However, embodiments ensure that sufficient security measures
are provided for access of each type of user and not just employees.

Identity Cloud Service

[0024] Embodiments provide an Identity Cloud Service (“IDCS”) that is a multi-
tenant, cloud-scale, IAM platform. IDCS provides authentication, authorization,
auditing, and federation. IDCS manages access to custom applications and services
running on the public cloud, and on-premise systems. In an alternative or additional
embodiment, IDCS may also manage access to public cloud services. For example,
IDCS can be used to provide Single Sign On (“SSO”) functionality across such variety of
services/applications/systems.

[0025] Embodiments are based on a multi-tenant, microservices architecture for
designing, building, and delivering cloud-scale software services. Multi-tenancy refers
to having one physical implementation of a service securely supporting multiple
customers buying that service. A service is a software functionality or a set of software
functionalities (such as the retrieval of specified information or the execution of a set of

operations) that can be reused by different clients for different purposes, together with

-6 -

WO 2018/044604 PCT/US2017/047726

the policies that control its usage (e.g., based on the identity of the client requesting the
service). In one embodiment, a service is a mechanism to enable access to one or
more capabilities, where the access is provided using a prescribed interface and is
exercised consistent with constraints and policies as specified by the service
description.

[0026] In one embodiment, a microservice is an independently deployable
service. In one embodiment, the term microservice contemplates a software
architecture design pattern in which complex applications are composed of small,
independent processes communicating with each other using language-agnostic APIs.
In one embodiment, microservices are small, highly decoupled services and each may
focus on doing a small task. In one embodiment, the microservice architectural style is
an approach to developing a single application as a suite of small services, each
running in its own process and communicating with lightweight mechanisms (e.g., an
HTTP resource API). In one embodiment, microservices are easier to replace relative
to a monolithic service that performs all or many of the same functions. Moreover, each
of the microservices may be updated without adversely affecting the other
microservices. In contrast, updates to one portion of a monolithic service may
undesirably or unintentionally negatively affect the other portions of the monolithic
service. In one embodiment, microservices may be beneficially organized around their
capabilities. In one embodiment, the startup time for each of a collection of
microservices is much less than the startup time for a single application that collectively

performs all the services of those microservices. In some embodiments, the startup

-7 -

WO 2018/044604 PCT/US2017/047726

time for each of such microservices is about one second or less, while the startup time
of such single application may be about a minute, several minutes, or longer.

[0027] In one embodiment, microservices architecture refers to a specialization
(i.e., separation of tasks within a system) and implementation approach for service
oriented architectures (“SOAs”) to build flexible, independently deployable software
systems. Services in a microservices architecture are processes that communicate with
each other over a network in order to fulfill a goal. In one embodiment, these services
use technology-agnostic protocols. In one embodiment, the services have a small
granularity and use lightweight protocols. In one embodiment, the services are
independently deployable. By distributing functionalities of a system into different small
services, the cohesion of the system is enhanced and the coupling of the system is
decreased. This makes it easier to change the system and add functions and qualities
to the system at any time. It also allows the architecture of an individual service to
emerge through continuous refactoring, and hence reduces the need for a big up-front
design and allows for releasing software early and continuously.

[0028] In one embodiment, in the microservices architecture, an application is
developed as a collection of services, and each service runs a respective process and
uses a lightweight protocol to communicate (e.g., a unique API for each microservice).
In the microservices architecture, decomposition of a software into individual
services/capabilities can be performed at different levels of granularity depending on the
service to be provided. A service is a runtime component/process. Each microservice

is a self-contained module that can talk to other modules/microservices. Each

-8-

WO 2018/044604 PCT/US2017/047726

microservice has an unnamed universal port that can be contacted by others. In one
embodiment, the unnamed universal port of a microservice is a standard
communication channel that the microservice exposes by convention (e.g., as a
conventional Hypertext Transfer Protocol (“HTTP”) port) and that allows any other
module/microservice within the same service to talk to it. A microservice or any other
self-contained functional module can be generically referred to as a “service”.

[0029] Embodiments provide multi-tenant identity management services.
Embodiments are based on open standards to ensure ease of integration with various
applications, delivering IAM capabilities through standards-based services.

[0030] Embodiments manage the lifecycle of user identities which entails the
determination and enforcement of what an identity can access, who can be given such
access, who can manage such access, etc. Embodiments run the identity management
workload in the cloud and support security functionality for applications that are not
necessarily in the cloud. The identity management services provided by the
embodiments may be purchased from the cloud. For example, an enterprise may
purchase such services from the cloud to manage their employees’ access to their
applications.

[0031] Embodiments provide system security, massive scalability, end user
usability, and application interoperability. Embodiments address the growth of the cloud
and the use of identity services by customers. The microservices based foundation
addresses horizontal scalability requirements, while careful orchestration of the services

addresses the functional requirements. Achieving both goals requires decomposition

-9-

WO 2018/044604 PCT/US2017/047726

(wherever possible) of the business logic to achieve statelessness with eventual
consistency, while much of the operational logic not subject to real-time processing is
shifted to near-real-time by offloading to a highly scalable asynchronous event
management system with guaranteed delivery and processing. Embodiments are fully
multi-tenant from the web tier to the data tier in order to realize cost efficiencies and
ease of system administration.

[0032] Embodiments are based on industry standards (e.g., OpenlD Connect,
OAuth2, Security Assertion Markup Language 2 ("SAMLZ2”), System for Cross-domain
Identity Management (“SCIM”), Representational State Transfer (“REST”), etc.) for ease
of integration with various applications. One embodiment provides a cloud-scale API
platform and implements horizontally scalable microservices for elastic scalability. The
embodiment leverages cloud principles and provides a multi-tenant architecture with
per-tenant data separation. The embodiment further provides per-tenant customization
via tenant self-service. The embodiment is available via APIs for on-demand integration
with other identity services, and provides continuous feature release.

[0033] One embodiment provides interoperability and leverages investments in
identity management (“IDM”) functionality in the cloud and on-premise. The
embodiment provides automated identity synchronization from on-premise Lightweight
Directory Access Protocol (“LDAP”) data to cloud data and vice versa. The embodiment
provides a SCIM identity bus between the cloud and the enterprise, and allows for
different options for hybrid cloud deployments (e.g., identity federation and/or

synchronization, SSO agents, user provisioning connectors, etc.).

-10 -

WO 2018/044604 PCT/US2017/047726

[0034] Accordingly, one embodiment is a system that implements a number of
microservices in a stateless middle tier to provide cloud-based multi-tenant identity and
access management services. In one embodiment, each requested identity
management service is broken into real-time and near-real-time tasks. The real-time
tasks are handled by a microservice in the middle tier, while the near-real-time tasks are
offloaded to a message queue. Embodiments implement tokens that are consumed by
a routing tier to enforce a security model for accessing the microservices. Accordingly,
embodiments provide a cloud-scale 1AM platform based on a multi-tenant,
microservices architecture.

[0035] Generally, known systems provide siloed access to applications provided
by different environments, e.g., enterprise cloud applications, partner cloud applications,
third-party cloud applications, and customer applications. Such siloed access may
require multiple passwords, different password policies, different account provisioning
and de-provisioning schemes, disparate audit, etc. However, one embodiment
implements IDCS to provide unified IAM functionality over such applications. Fig. 1is a
block diagram 100 of an example embodiment with IDCS 118, providing a unified
identity platform 126 for onboarding users and applications. The embodiment provides
seamless user experience across various applications such as enterprise cloud
applications 102, partner cloud applications 104, third-party cloud applications 110, and
customer applications 112. Applications 102, 104, 110, 112 may be accessed through
different channels, for example, by a mobile phone user 108 via a mobile phone 106, by

a desktop computer user 116 via a browser 114, etc. A web browser (commonly

-11 -

WO 2018/044604 PCT/US2017/047726

referred to as a browser) is a software application for retrieving, presenting, and
traversing information resources on the World Wide Web. Examples of web browsers
are Mozilla Firefox®, Google Chrome®, Microsoft Internet Explorer®, and Apple
Safari®.

[0036] IDCS 118 provides a unified view 124 of a user’s applications, a unified
secure credential across devices and applications (via identity platform 126), and a
unified way of administration (via an admin console 122). IDCS services may be
obtained by calling IDCS APIs 142. Such services may include, for example, login/SSO
services 128 (e.g., OpenlD Connect), federation services 130 (e.g., SAML), token
services 132 (e.g., OAuth), directory services 134 (e.g., SCIM), provisioning services
136 (e.g., SCIM or Any Transport over Multiprotocol (“AToM”)), event services 138 (e.g.,
REST), and authorization services 140 (e.g., SCIM). IDCS 118 may further provide
reports and dashboards 120 related to the offered services.

Integration Tools

[0037] Generally, it is common for large corporations to have an IAM system in
place to secure access to their on-premise applications. Business practices are usually
matured and standardized around an in-house IAM system such as “Oracle IAM Suite”
from Oracle Corp. Even small to medium organizations usually have their business
processes designed around managing user access through a simple directory solution
such as Microsoft Active Directory (“AD”). To enable on-premise integration,
embodiments provide tools that allow customers to integrate their applications with

IDCS.

-12-

WO 2018/044604 PCT/US2017/047726

[0038] Fig. 2 is a block diagram 200 of an example embodiment with IDCS 202
in a cloud environment 208, providing integration with an AD 204 that is on-premise
206. The embodiment provides seamless user experience across all applications
including on-premise and third-party applications, for example, on-premise applications
218 and various applications/services in cloud 208 such as cloud services 210, cloud
applications 212, partner applications 214, and customer applications 216. Cloud
applications 212 may include, for example, Human Capital Management (“HCM”), CRM,
talent acquisition (e.g., Oracle Taleo cloud service from Oracle Corp.), Configure Price
and Quote (“CPQ”), etc. Cloud services 210 may include, for example, Platform as a
Service (“PaaS”), Java, database, business intelligence (“Bl”), documents, etc.

[0039] Applications 210, 212, 214, 216, 218, may be accessed through different
channels, for example, by a mobile phone user 220 via a mobile phone 222, by a
desktop computer user 224 via a browser 226, etc. The embodiment provides
automated identity synchronization from on-premise AD data to cloud data via a SCIM
identity bus 234 between cloud 208 and the enterprise 206. The embodiment further
provides a SAML bus 228 for federating authentication from cloud 208 to on-premise
AD 204 (e.g., using passwords 232).

[0040] Generally, an identity bus is a service bus for identity related services. A
service bus provides a platform for communicating messages from one system to
another system. ltis a controlled mechanism for exchanging information between
trusted systems, for example, in a service oriented architecture (“SOA”). An identity bus

is a logical bus built according to standard HT TP based mechanisms such as web

-13 -

WO 2018/044604 PCT/US2017/047726

service, web server proxies, etc. The communication in an identity bus may be
performed according to a respective protocol (e.g., SCIM, SAML, OpenID Connect,
etc.). For example, a SAML bus is an HTTP based connection between two systems
for communicating messages for SAML services. Similarly, a SCIM bus is used to
communicate SCIM messages according to the SCIM protocol.

[0041] The embodiment of Fig. 2 implements an identity (“ID”) bridge 230 that is
a small binary (e.g., 1 MB in size) that can be downloaded and installed on-premise 206
alongside a customer’s AD 204. ID Bridge 230 listens to users and groups (e.g., groups
of users) from the organizational units (“OUs”) chosen by the customer and
synchronizes those users to cloud 208. In one embodiment, users’ passwords 232 are
not synchronized to cloud 208. Customers can manage application access for users by
mapping IDCS users’ groups to cloud applications managed in IDCS 208. Whenever
the users' group membership is changed on-premise 206, their corresponding cloud
application access changes automatically.

[0042] For example, an employee moving from engineering to sales can get near
instantaneous access to the sales cloud and lose access to the developer cloud. When
this change is reflected in on-premise AD 204, cloud application access change is
accomplished in near-real-time. Similarly, access to cloud applications managed in
IDCS 208 is revoked for users leaving the company. For full automation, customers
may set up SSO between on-premise AD 204 and IDCS 208 through, e.g., AD
federation service (“AD/FS”, or some other mechanism that implements SAML

federation) so that end users can get access to cloud applications 210, 212, 214, 216,

-14 -

WO 2018/044604 PCT/US2017/047726

and on-premise applications 218 with a single corporate password 332.

[0043] Fig. 3 is a block diagram 300 of an example embodiment that includes the
same components 202, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 228,
234 as in Fig. 2. However, in the embodiment of Fig. 3, IDCS 202 provides integration
with an on-premise IDM 304 such as Oracle IDM. Oracle IDM 304 is a software suite
from Oracle Corp. for providing IAM functionality. The embodiment provides seamless
user experience across all applications including on-premise and third-party
applications. The embodiment provisions user identities from on-premise IDM 304 to
IDCS 208 via SCIM identity bus 234 between cloud 202 and enterprise 206. The
embodiment further provides SAML bus 228 (or an OpenlD Connect bus) for federating
authentication from cloud 208 to on-premise 206.

[0044] In the embodiment of Fig. 3, an Oracle Identity Manager (“OIM”)
Connector 302 from Oracle Corp., and an Oracle Access Manager (“OAM”) federation
module 306 from Oracle Corp., are implemented as extension modules of Oracle IDM
304. A connector is a module that has physical awareness about how to talk to a
system. OIM is an application configured to manage user identities (e.g., manage user
accounts in different systems based on what a user should and should not have access
to). OAM is a security application that provides access management functionality such
as web SSO; identity context, authentication and authorization; policy administration;
testing; logging; auditing; etc. OAM has built-in support for SAML. If a user has an
account in IDCS 202, OIM connector 302 and OAM federation 306 can be used with

Oracle IDM 304 to create/delete that account and manage access from that account.

-15 -

WO 2018/044604 PCT/US2017/047726

[0045] Fig. 4 is a block diagram 400 of an example embodiment that includes the
same components 202, 206, 208, 210, 212, 214, 216, 218, 220, 222, 224, 226, 234 as
in Figs. 2 and 3. However, in the embodiment of Fig. 3, IDCS 202 provides functionality
to extend cloud identities to on-premise applications 218. The embodiment provides
seamless view of the identity across all applications including on-premise and third-
party applications. In the embodiment of Fig. 4, SCIM identity bus 234 is used to
synchronize data in IDCS 202 with on-premise LDAP data called “Cloud Cache” 402.
Cloud Cache 402 is disclosed in more detail below.

[0046] Generally, an application that is configured to communicate based on
LDAP needs an LDAP connection. An LDAP connection may not be established by
such application through a URL (unlike, e.g., “www.google.com” that makes a
connection to Google) since the LDAP needs to be on a local network. In the
embodiment of Fig. 4, an LDAP-based application 218 makes a connection to Cloud
Cache 402, and Cloud Cache 402 establishes a connection to IDCS 202 and then pulls
data from IDCS 202 as it is being requested. The communication between IDCS 202
and Cloud Cache 402 may be implemented according to the SCIM protocol. For
example, Cloud Cache 402 may use SCIM bus 234 to send a SCIM request to IDCS
202 and receive corresponding data in return.

[0047] Generally, fully implementing an application includes building a consumer
portal, running marketing campaigns on the external user population, supporting web
and mobile channels, and dealing with user authentication, sessions, user profiles, user

groups, application roles, password policies, self-service/registration, social integration,

-16 -

WO 2018/044604 PCT/US2017/047726

identity federation, etc. Generally, application developers are not identity/security
experts. Therefore, on-demand identity management services are desired.

[0048] Fig. 5 is a block diagram 500 of an example embodiment that includes the
same components 202, 220, 222, 224, 226, 234, 402, as in Figs. 2-4. However, in the
embodiment of Fig. 5, IDCS 202 provides secure identity management on demand.

The embodiment provides on demand integration with identity services of IDCS 202
(e.g., based on standards such as OpenlID Connect, OAuth2, SAML2, or SCIM).
Applications 505 (which may be on-premise, in a public cloud, or in a private cloud) may
call identity service APIs 504 in IDCS 202. The services provided by IDCS 202 may
include, for example, self-service registration 506, password management 508, user
profile management 510, user authentication 512, token management 514, social
integration 516, etc.

[0049] In this embodiment, SCIM identity bus 234 is used to synchronize data in
IDCS 202 with data in on-premise LDAP Cloud Cache 402. Further, a “Cloud Gate” 502
running on a web server/proxy (e.g., NGINX, Apache, etc.) may be used by applications
505 to obtain user web SSO and REST API security from IDCS 202. Cloud Gate 502 is
a component that secures access to multi-tenant IDCS microservices by ensuring that
client applications provide valid access tokens, and/or users successfully authenticate in
order to establish SSO sessions. Cloud Gate 502 is further disclosed below. Cloud
Gate 502 (enforcement point similar to webgate/webagent) enables applications running
behind supported web servers to participate in SSO.

[0050] One embodiment provides SSO and cloud SSO functionality. A general

-17 -

WO 2018/044604 PCT/US2017/047726

point of entry for both on-premise 1AM and IDCS in many organizations is SSO. Cloud
SSO enables users to access multiple cloud resources with a single user sign-in. Often,
organizations will want to federate their on-premise identities. Accordingly,
embodiments utilize open standards to allow for integration with existing SSO to
preserve and extend investment (e.g., until a complete, eventual transition to an identity
cloud service approach is made).

[0051] One embodiment may provide the following functionalities:
o maintain an identity store to track user accounts, ownership, access, and
permissions that have been authorized,
o integrate with workflow to facilitate various approvals (e.g., management, IT,
human resources, legal, and compliance) needed for applications access,
o provision SaaS user accounts for selective devices (e.g., mobile and personal
computer (“PC”)) with access to user portal containing many private and public cloud
resources, and
o facilitate periodic management attestation review for compliance with regulations
and current job responsibilities.

[0052] In addition to these functions, embodiments may further provide:

cloud account provisioning to manage account life cycle in cloud applications,

o more robust multifactor authentication (“MFA”) integration,
o extensive mobile security capabilities, and
o dynamic authentication options.

[0053] One embodiment provides adaptive authentication and MFA. Generally,

-18 -

WO 2018/044604 PCT/US2017/047726

passwords and challenge questions have been seen as inadequate and susceptible to
common attacks such as phishing. Most business entities today are looking at some
form of MFA to reduce risk. To be successfully deployed, however, solutions need to
be easily provisioned, maintained, and understood by the end user, as end users
usually resist anything that interferes with their digital experience. Companies are
looking for ways to securely incorporate bring your own device (“BYOD?), social
identities, remote users, customers, and contractors, while making MFA an almost
transparent component of a seamless user access experience. Within an MFA
deployment, industry standards such as OAuth and OpenlID Connect are essential to
ensure integration of existing multifactor solutions and the incorporation of newer,
adaptive authentication technology. Accordingly, embodiments define dynamic (or
adaptive) authentication as the evaluation of available information (i.e., IP address,
location, time of day, and biometrics) to prove an identity after a user session has been
initiated. With the appropriate standards (e.g., open authentication (“OATH”) and fast
identity online (“FIDO”)) integration and extensible identity management framework,
embodiments provide MFA solutions that can be adopted, upgraded, and integrated
easily within an IT organization as part of an end-to-end secure IAM deployment. When
considering MFA and adaptive policies, organizations must implement consistent
policies across on-premise and cloud resources, which in a hybrid IDCS and on-
premise |IAM environment requires integration between systems.

[0054] One embodiment provides user provisioning and certification. Generally,

the fundamental function of an IAM solution is to enable and support the entire user

-19-

WO 2018/044604 PCT/US2017/047726

provisioning life cycle. This includes providing users with the application access
appropriate for their identity and role within the organization, certifying that they have
the correct ongoing access permissions (e.g., as their role or the tasks or applications
used within their role change over time), and promptly de-provisioning them as their
departure from the organization may require. This is important not only for meeting
various compliance requirements but also because inappropriate insider access is a
major source of security breaches and attacks. An automated user provisioning
capability within an identity cloud solution can be important not only in its own right but
also as part of a hybrid IAM solution whereby IDCS provisioning may provide greater
flexibility than an on-premise solution for transitions as a company downsizes, upsizes,
merges, or looks to integrate existing systems with laaS/PaaS/SaaS environments. An
IDCS approach can save time and effort in one-off upgrades and ensure appropriate
integration among necessary departments, divisions, and systems. The need to scale
this technology often sneaks up on corporations, and the ability to deliver a scalable
IDCS capability immediately across the enterprise can provide benefits in flexibility,
cost, and control.

[0055] Generally, an employee is granted additional privileges (i.e., "privilege
creep") over the years as her/his job changes. Companies that are lightly regulated
generally lack an "attestation" process that requires managers to regularly audit their
employees' privileges (e.g., access to networks, servers, applications, and data) to halt
or slow the privilege creep that results in over-privileged accounts. Accordingly, one

embodiment may provide a regularly conducted (at least once a year) attestation

-20 -

WO 2018/044604 PCT/US2017/047726

process. Further, with mergers and acquisitions, the need for these tools and services
increases exponentially as users are on SaaS systems, on-premise, span different
departments, and/or are being de-provisioned or re-allocated. The move to cloud can
further complicate this situation, and the process can quickly escalate beyond existing,
often manually managed, certification methods. Accordingly, one embodiment
automates these functions and applies sophisticated analytics to user profiles, access
history, provisioning/de-provisioning, and fine-grained entitlements.

[0056] One embodiment provides identity analytics. Generally, the ability to
integrate identity analytics with the |AM engine for comprehensive certification and
attestation can be critical to securing an organization's risk profile. Properly deployed
identity analytics can demand total internal policy enforcement. ldentity analytics that
provide a unified single management view across cloud and on-premise are much
needed in a proactive governance, risk, and compliance (“GRC”) enterprise
environment, and can aid in providing a closed-loop process for reducing risk and
meeting compliance regulations. Accordingly, one embodiment provides identity
analytics that are easily customizable by the client to accommodate specific industry
demands and government regulations for reports and analysis required by managers,
executives, and auditors.

[0057] One embodiment provides self-service and access request functionality to
improve the experience and efficiency of the end user and to reduce costs from help
desk calls. Generally, while a number of companies deploy on-premise self-service

access request for their employees, many have not extended these systems adequately

.29 -

WO 2018/044604 PCT/US2017/047726

outside the formal corporate walls. Beyond employee use, a positive digital customer
experience increases business credibility and ultimately contributes to revenue
increase, and companies not only save on customer help desk calls and costs but also
improve customer satisfaction. Accordingly, one embodiment provides an identity cloud
service environment that is based on open standards and seamlessly integrates with
existing access control software and MFA mechanisms when necessary. The SaaS
delivery model saves time and effort formerly devoted to systems upgrades and
maintenance, freeing professional IT staff to focus on more core business applications.
[0058] One embodiment provides privileged account management (“PAM”).
Generally, every organization, whether using SaaS, Paas$, laaS, or on-premise
applications, is vulnerable to unauthorized privileged account abuse by insiders with
super-user access credentials such as system administrators, executives, HR officers,
contractors, systems integrators, etc. Moreover, outside threats typically first breach a
low-level user account to eventually reach and exploit privileged user access controls
within the enterprise system. Accordingly, one embodiment provides PAM to prevent
such unauthorized insider account use. The main component of a PAM solution is a
password vault which may be delivered in various ways, e.g., as software to be installed
on an enterprise server, as a virtual appliance also on an enterprise server, as a
packaged hardware/software appliance, or as part of a cloud service. PAM functionality
is similar to a physical safe used to store passwords kept in an envelope and changed
periodically, with a manifest for signing them in and out. One embodiment allows for a

password checkout as well as setting time limits, forcing periodic changes, automatically

-99.

WO 2018/044604 PCT/US2017/047726

tracking checkout, and reporting on all activities. One embodiment provides a way to
connect directly through to a requested resource without the user ever knowing the
password. This capability also paves the way for session management and additional
functionality.

[0059] Generally, most cloud services utilize APls and administrative interfaces,
which provide opportunities for infiltrators to circumvent security. Accordingly, one
embodiment accounts for these holes in PAM practices as the move to the cloud
presents new challenges for PAM. Many small to medium sized businesses now
administer their own Saa$S systems (e.g., Office 365), while larger companies
increasingly have individual business units spinning up their own SaaS and laaS
services. These customers find themselves with PAM capabilities within the identity
cloud service solutions or from their laaS/Paa$S provider but with little experience in
handling this responsibility. Moreover, in some cases, many different geographically
dispersed business units are trying to segregate administrative responsibilities for the
same SaaS applications. Accordingly, one embodiment allows customers in these
situations to link existing PAM into the overall identity framework of the identity cloud
service and move toward greater security and compliance with the assurance of scaling
to cloud load requirements as business needs dictate.

API Platform

[0060] Embodiments provide an API platform that exposes a collection of
capabilities as services. The APIls are aggregated into microservices and each

microservice exposes one or more of the APIs. That is, each microservice may expose

-23-

WO 2018/044604 PCT/US2017/047726

different types of APIs. In one embodiment, each microservice communicates only
through its APIs. In one embodiment, each APl may be a microservice. In one
embodiment, multiple APls are aggregated into a service based on a target capability to
be provided by that service (e.g., OAuth, SAML, Admin, etc.). As a result, similar APIs
are not exposed as separate runtime processes. The APls are what is made available
to a service consumer to use the services provided by IDCS.

[0061] Generally, in the web environment of IDCS, a URL includes three parts: a
host, a microservice, and a resource (e.g., host/microservice/resource). In one
embodiment, the microservice is characterized by having a specific URL prefix, e.g.,
“host/oauth/v1” where the actual microservice is “oauth/v1”, and under “oauth/v1” there
are multiple APls, e.g., an API to request tokens: “host/oauth/v1/token”, an API to
authenticate a user: “host/oauth/v1/authorize”, etc. That is, the URL implements a
microservice, and the resource portion of the URL implements an APIl. Accordingly,
multiple APls are aggregated under the same microservice. In one embodiment, the
host portion of the URL identifies a tenant (e.g.,
https://tenant3.identity.oraclecloud.com:/oauth/v1/token”).

[0062] Configuring applications that integrate with external services with the
necessary endpoints and keeping that configuration up to date is typically a challenge.
To meet this challenge, embodiments expose a public discovery API at a well-known
location from where applications can discover the information about IDCS they need in
order to consume IDCS APls. In one embodiment, two discovery documents are

supported: IDCS Configuration (which includes IDCS, SAML, SCIM, OAuth, and

-24 -

WO 2018/044604 PCT/US2017/047726

OpenlD Connect configuration, at e.g., <IDCS-URL>/.well-known/idcs-configuration),
and Industry-standard OpenID Connect Configuration (at, e.g., <IDCS-URL>/.well-
known/openid-configuration). Applications can retrieve discovery documents by being
configured with a single IDCS URL.

[0063] Fig. 6 is a block diagram providing a system view 600 of IDCS in one
embodiment. In Fig. 6, any one of a variety of applications/services 602 may make
HTTP calls to IDCS APIs to use IDCS services. Examples of such applications/services
602 are web applications, native applications (e.g., applications that are built to run on a
specific operating system, such as Windows applications, iOS applications, Android
applications, etc.), web services, customer applications, partner applications, or any
services provided by a public cloud, such as Software as a Service (“SaaS”), PaaS, and
Infrastructure as a Service (“laaS”).

[0064] In one embodiment, the HTTP requests of applications/services 602 that
require IDCS services go through an Oracle Public Cloud BIG-IP appliance 604 and an
IDCS BIG-IP appliance 606 (or similar technologies such as a Load Balancer, or a
component called a Cloud Load Balancer as a Service (“LBaaS”) that implements
appropriate security rules to protect the traffic). However, the requests can be received
in any manner. At IDCS BIG-IP appliance 606 (or, as applicable, a similar technology
such as a Load Balancer or a Cloud LBaaS), a cloud provisioning engine 608 performs
tenant and service orchestration. In one embodiment, cloud provisioning engine 608
manages internal security artifacts associated with a new tenant being on-boarded into

the cloud or a new service instance purchased by a customer.

-925-

WO 2018/044604 PCT/US2017/047726

[0065] The HTTP requests are then received by an IDCS web routing tier 610
that implements a security gate (i.e., Cloud Gate) and provides service routing and
microservices registration and discovery 612. Depending on the service requested, the
HTTP request is forwarded to an IDCS microservice in the IDCS middle tier 614. IDCS
microservices process external and internal HTTP requests. IDCS microservices
implement platform services and infrastructure services. IDCS platform services are
separately deployed Java-based runtime services implementing the business of IDCS.
IDCS infrastructure services are separately deployed runtime services providing
infrastructure support for IDCS. IDCS further includes infrastructure libraries that are
common code packaged as shared libraries used by IDCS services and shared
libraries. Infrastructure services and libraries provide supporting capabilities as required
by platform services for implementing their functionality.

Platform Services

[0066] In one embodiment, IDCS supports standard authentication protocols,
hence IDCS microservices include platform services such as OpenlID Connect, OAuth,
SAML2, System for Cross-domain Identity Management++ (“SCIM++7), etc.

[0067] The OpenID Connect platform service implements standard OpeniD
Connect Login/Logout flows. Interactive web-based and native applications leverage
standard browser-based OpenlD Connect flow to request user authentication, receiving
standard identity tokens that are JavaScript Object Notation (“JSON”) Web Tokens
(“dWTs”) conveying the user’s authenticated identity. Internally, the runtime

authentication model is stateless, maintaining the user’s authentication/session state in

- 26 -

WO 2018/044604 PCT/US2017/047726

the form of a host HTTP cookie (including the JWT identity token). The authentication
interaction initiated via the OpenlD Connect protocol is delegated to a trusted SSO
service that implements the user login/logout ceremonies for local and federated logins.
Further details of this functionality are disclosed below with reference to Figs. 10 and
11. In one embodiment, OpenlID Connect functionality is implemented according to, for
example, OpenlID Foundation standards.

[0068] The OAuth2 platform service provides token authorization services. It
provides a rich APl infrastructure for creating and validating access tokens conveying
user rights to make API calls. It supports a range of useful token grant types, enabling
customers to securely connect clients to their services. It implements standard 2-
legged and 3-legged OAuth2 token grant types. Support for OpenlID Connect (“OIDC”)
enables compliant applications (OIDC relaying parties (“RP”s)) to integrate with IDCS as
the identity provider (OIDC OpenlID provider (“OP”)). Similarly, the integration of IDCS
as OIDC RP with social OIDC OP (e.g., Facebook, Google, etc.) enables customers to
allow social identities policy-based access to applications. In one embodiment, OAuth
functionality is implemented according to, for example, Internet Engineering Task Force
(“IETF”), Request for Comments (“RFC”) 6749.

[0069] The SAML2 platform service provides identity federation services. It
enables customers to set up federation agreements with their partners based on SAML
identity provider (“IDP”) and SAML service provider (“SP”) relationship models. In one
embodiment, the SAML2 platform service implements standard SAML2 Browser POST

Login and Logout Profiles. In one embodiment, SAML functionality is implemented

-97-

WO 2018/044604 PCT/US2017/047726

according to, for example, IETF, RFC 7522.

[0070] SCIM is an open standard for automating the exchange of user identity
information between identity domains or information technology (“IT”) systems, as
provided by, e.g., IETF, RFCs 7642, 7643, 7644. The SCIM++ platform service
provides identity administration services and enables customers to access IDP features
of IDCS. The administration services expose a set of stateless REST interfaces (i.e.,
APIls) that cover identity lifecycle, password management, group management, etc.,
exposing such artifacts as web-accessible resources.

[0071] All IDCS configuration artifacts are resources, and the APIs of the
administration services allow for managing IDCS resources (e.g., users, roles,
password policies, applications, SAML/OIDC identity providers, SAML service
providers, keys, certifications, notification templates, etc.). Administration services
leverage and extend the SCIM standard to implement schema-based REST APIs for
Create, Read, Update, Delete, and Query (“CRUDQ”) operations on all IDCS resources.
Additionally, all internal resources of IDCS used for administration and configuration of
IDCS itself are exposed as SCIM-based REST APIs. Access to the identity store 618 is
isolated to the SCIM++ API.

[0072] In one embodiment, for example, the SCIM standard is implemented to
manage the users and groups resources as defined by the SCIM specifications, while
SCIM++ is configured to support additional IDCS internal resources (e.g., password
policies, roles, settings, etc.) using the language defined by the SCIM standard.

[0073] The Administration service supports the SCIM 2.0 standard endpoints

-28-

WO 2018/044604 PCT/US2017/047726

with the standard SCIM 2.0 core schemas and schema extensions where needed. In
addition, the Administration service supports several SCIM 2.0 compliant endpoint
extensions to manage other IDCS resources, for example, Users, Groups, Applications,
Settings, etc. The Administration service also supports a set of remote procedure call-
style (“RPC-style”) REST interfaces that do not perform CRUDQ operations but instead
provide a functional service, for example, “UserPasswordGenerator,”
“UserPasswordValidator,” etc.

[0074] IDCS Administration APIs use the OAuth2 protocol for authentication and
authorization. IDCS supports common OAuth2 scenarios such as scenarios for web
server, mobile, and JavaScript applications. Access to IDCS APls is protected by
access tokens. To access IDCS Administration APls, an application needs to be
registered as an OAuth2 client or an IDCS Application (in which case the OAuth2 client
is created automatically) through the IDCS Administration console and be granted
desired IDCS Administration Roles. When making IDCS Administration API calls, the
application first requests an access token from the IDCS OAuth2 Service. After
acquiring the token, the application sends the access token to the IDCS API by
including it in the HTTP authorization header. Applications can use IDCS
Administration REST APIs directly, or use an IDCS Java Client API Library.

Infrastructure Services

[0075] The IDCS infrastructure services support the functionality of IDCS
platform services. These runtime services include an event processing service (for

asynchronously processing user notifications, application subscriptions, and auditing to

-29.-

WO 2018/044604 PCT/US2017/047726

database); a job scheduler service (for scheduling and executing jobs, e.g., executing
immediately or at a configured time long-running tasks that do not require user
intervention); a cache management service; a storage management service (for
integrating with a public cloud storage service); a reports service (for generating reports
and dashboards); an SSO service (for managing internal user authentication and SSO);
a user interface (“UI”) service (for hosting different types of Ul clients); and a service
manager service. Service manager is an internal interface between the Oracle Public
Cloud and IDCS. Service manager manages commands issued by the Oracle Public
Cloud, where the commands need to be implemented by IDCS. For example, when a
customer signs up for an account in a cloud store before they can buy something, the
cloud sends a request to IDCS asking to create a tenant. In this case, service manager
implements the cloud specific operations that the cloud expects IDCS to support.

[0076] An IDCS microservice may call another IDCS microservice through a
network interface (i.e., an HTTP request).

[0077] In one embodiment, IDCS may also provide a schema service (or a
persistence service) that allows for using a database schema. A schema service allows
for delegating the responsibility of managing database schemas to IDCS. Accordingly,
a user of IDCS does not need to manage a database since there is an IDCS service
that provides that functionality. For example, the user may use the database to persist
schemas on a per tenant basis, and when there is no more space in the database, the
schema service will manage the functionality of obtaining another database and growing

the space so that the users do not have to manage the database themselves.

-30 -

WO 2018/044604 PCT/US2017/047726

[0078] IDCS further includes data stores which are data repositories
required/generated by IDCS, including an identity store 618 (storing users, groups, etc.),
a global database 620 (storing configuration data used by IDCS to configure itself), an
operational schema 622 (providing per tenant schema separation and storing customer
data on a per customer basis), an audit schema 624 (storing audit data), a caching
cluster 626 (storing cached objects to speed up performance), etc. All internal and
external IDCS consumers integrate with the identity services over standards-based
protocols. This enables use of a domain name system (“DNS”) to resolve where to
route requests, and decouples consuming applications from understanding the internal
implementation of identity services.

Real-Time and Near-Real-Time Tasks

[0079] IDCS separates the tasks of a requested service into synchronous real-
time and asynchronous near-real-time tasks, where real-time tasks include only the
operations that are needed for the user to proceed. In one embodiment, a real-time
task is a task that is performed with minimal delay, and a near-real-time task is a task
that is performed in the background without the user having to wait for it. In one
embodiment, a real-time task is a task that is performed with substantially no delay or
with negligible delay, and appears to a user as being performed almost instantaneously.

[0080] The real-time tasks perform the main business functionality of a specific
identity service. For example, when requesting a login service, an application sends a
message to authenticate a user’s credentials and get a session cookie in return. What

the user experiences is logging into the system. However, several other tasks may be

-31 -

WO 2018/044604 PCT/US2017/047726

performed in connection with the user’s logging in, such as validating who the user is,
auditing, sending notifications, etc. Accordingly, validating the credentials is a task that
is performed in real-time so that the user is given an HTTP cookie to start a session, but
the tasks related to notifications (e.g., sending an email to notify the creation of an
account), audits (e.g., tracking/recording), etc., are near-real-time tasks that can be
performed asynchronously so that the user can proceed with least delay.

[0081] When an HTTP request for a microservice is received, the corresponding
real-time tasks are performed by the microservice in the middle tier, and the remaining
near-real-time tasks such as operational logic/events that are not necessarily subject to
real-time processing are offloaded to message queues 628 that support a highly
scalable asynchronous event management system 630 with guaranteed delivery and
processing. Accordingly, certain behaviors are pushed from the front end to the
backend to enable IDCS to provide high level service to the customers by reducing
latencies in response times. For example, a login process may include validation of
credentials, submission of a log report, updating of the last login time, etc., but these
tasks can be offloaded to a message queue and performed in near-real-time as
opposed to real-time.

[0082] In one example, a system may need to register or create a new user. The
system calls an IDCS SCIM API to create a user. The end result is that when the user
is created in identity store 618, the user gets a notification emalil including a link to reset
their password. When IDCS receives a request to register or create a new user, the

corresponding microservice looks at configuration data in the operational database

-32-

WO 2018/044604 PCT/US2017/047726

(located in global database 620 in Fig. 6) and determines that the “create user”
operation is marked with a “create user” event which is identified in the configuration
data as an asynchronous operation. The microservice returns to the client and
indicates that the creation of the user is done successfully, but the actual sending of the
notification email is postponed and pushed to the backend. In order to do so, the
microservice uses a messaging API 616 to queue the message in queue 628 which is a
store.

[0083] In order to dequeue queue 628, a messaging microservice, which is an
infrastructure microservice, continually runs in the background and scans queue 628
looking for events in queue 628. The events in queue 628 are processed by event
subscribers 630 such as audit, user notification, application subscriptions, data
analytics, etc. Depending on the task indicated by an event, event subscribers 630 may
communicate with, for example, audit schema 624, a user notification service 634, an
identity event subscriber 632, etc. For example, when the messaging microservice
finds the “create user” event in queue 628, it executes the corresponding notification
logic and sends the corresponding email to the user.

[0084] In one embodiment, queue 628 queues operational events published by
microservices 614 as well as resource events published by APIs 616 that manage IDCS
resources.

[0085] IDCS uses a real-time caching structure to enhance system performance
and user experience. The cache itself may also be provided as a microservice. IDCS

implements an elastic cache cluster 626 that grows as the number of customers

-33-

WO 2018/044604 PCT/US2017/047726

supported by IDCS scales. Cache cluster 626 may be implemented with a distributed
data grid which is disclosed in more detail below. In one embodiment, write-only
resources bypass cache.

[0086] In one embodiment, IDCS runtime components publish health and
operational metrics to a public cloud monitoring module 636 that collects such metrics of
a public cloud such as Oracle Public Cloud from Oracle Corp.

[0087] In one embodiment, IDCS may be used to create a user. For example, a
client application 602 may issue a REST API call to create a user. Admin service (a
platform service in 614) delegates the call to a user manager (an infrastructure
library/service in 614), which in turn creates the user in the tenant-specific ID store
stripe in ID store 618. On “User Create Success”, the user manager audits the
operation to the audit table in audit schema 624, and publishes an
“identity.user.create.success” event to message queue 628. Identity subscriber 632
picks up the event and sends a “Welcome” email to the newly created user, including
newly created login detalils.

[0088] In one embodiment, IDCS may be used to grant a role to a user, resulting
in a user provisioning action. For example, a client application 602 may issue a REST
API call to grant a user a role. Admin service (a platform service in 614) delegates the
call to a role manager (an infrastructure library/service in 614), who grants the user a
role in the tenant-specific ID store stripe in ID store 618. On “Role Grant Success”, the
role manager audits the operations to the audit table in audit schema 624, and

publishes an “identity.user.role.grant.success” event to message queue 628. Identity

-34 -

WO 2018/044604 PCT/US2017/047726

subscriber 632 picks up the event and evaluates the provisioning grant policy. If there
is an active application grant on the role being granted, a provisioning subscriber
performs some validation, initiates account creation, calls out the target system, creates
an account on the target system, and marks the account creation as successful. Each
of these functionalities may result in publishing of corresponding events, such as

“prov.account.create.initiate”, “prov.target.create.initiate

, “prov.target.create.success”,
or “prov.account.create.success”. These events may have their own business metrics
aggregating number of accounts created in the target system over the last N days.

[0089] In one embodiment, IDCS may be used for a user to log in. For example,
a client application 602 may use one of the supported authentication flows to request a
login for a user. IDCS authenticates the user, and upon success, audits the operation
to the audit table in audit schema 624. Upon failure, IDCS audits the failure in audit
schema 624, and publishes “login.user.login.failure” event in message queue 628. A
login subscriber picks up the event, updates its metrics for the user, and determines if
additional analytics on the user’s access history need to be performed.

[0090] Accordingly, by implementing “inversion of control” functionality (e.g.,
changing the flow of execution to schedule the execution of an operation at a later time
so that the operation is under the control of another system), embodiments enable
additional event queues and subscribers to be added dynamically to test new features
on a small user sample before deploying to broader user base, or to process specific
events for specific internal or external customers.

Stateless Functionality

-35 -

WO 2018/044604 PCT/US2017/047726

[0091] IDCS microservices are stateless, meaning the microservices themselves
do not maintain state. “State” refers to the data that an application uses in order to
perform its capabilities. IDCS provides multi-tenant functionality by persisting all state
into tenant specific repositories in the IDCS data tier. The middle tier (i.e., the code that
processes the requests) does not have data stored in the same location as the
application code. Accordingly, IDCS is highly scalable, both horizontally and vertically.

[0092] To scale vertically (or scale up/down) means to add resources to (or
remove resources from) a single node in a system, typically involving the addition of
CPUs or memory to a single computer. Vertical scalability allows an application to scale
up to the limits of its hardware. To scale horizontally (or scale out/in) means to add
more nodes to (or remove nodes from) a system, such as adding a new computer to a
distributed software application. Horizontal scalability allows an application to scale
almost infinitely, bound only by the amount of bandwidth provided by the network.

[0093] Stateless-ness of the middle tier of IDCS makes it horizontally scalable
just by adding more CPUs, and the IDCS components that perform the work of the
application do not need to have a designated physical infrastructure where a particular
application is running. Stateless-ness of the IDCS middle tier makes IDCS highly
available, even when providing identity services to a very large number of
customers/tenants. Each pass through an IDCS application/service is focused on CPU
usage only to perform the application transaction itself but not use hardware to store
data. Scaling is accomplished by adding more slices when the application is running,

while data for the transaction is stored at a persistence layer where more copies can be

-36 -

WO 2018/044604 PCT/US2017/047726

added when needed.

[0094] The IDCS web tier, middle tier, and data tier can each scale
independently and separately. The web tier can be scaled to handle more HTTP
requests. The middle tier can be scaled to support more service functionality. The data
tier can be scaled to support more tenants.

IDCS Functional View

[0095] Fig. 6A is an example block diagram 600b of a functional view of IDCS in
one embodiment. In block diagram 600b, the IDCS functional stack includes services,
shared libraries, and data stores. The services include IDCS platform services 640D,
IDCS premium services 650b, and IDCS infrastructure services 662b. In one
embodiment, IDCS platform services 640b and IDCS premium services 650b are
separately deployed Java-based runtime services implementing the business of IDCS,
and IDCS infrastructure services 662b are separately deployed runtime services
providing infrastructure support for IDCS. The shared libraries include IDCS
infrastructure libraries 680b which are common code packaged as shared libraries used
by IDCS services and shared libraries. The data stores are data repositories
required/generated by IDCS, including identity store 698b, global configuration 700b,
message store 702b, global tenant 704b, personalization settings 706b, resources
708b, user transient data 710b, system transient data 712b, per-tenant schemas
(managed ExaData) 714b, operational store (not shown), caching store (not shown),
etc.

[0096] In one embodiment, IDCS platform services 640b include, for example,

-37-

WO 2018/044604 PCT/US2017/047726

OpenlD Connect service 642b, OAuth2 service 644b, SAML2 service 646b, and
SCIM++ service 648b. In one embodiment, IDCS premium services include, for
example, cloud SSO and governance 652b, enterprise governance 654b, AuthN broker
656b, federation broker 658b, and private account management 660b.

[0097] IDCS infrastructure services 662b and IDCS infrastructure libraries 680b
provide supporting capabilities as required by IDCS platform services 640b to do their
work. In one embodiment, IDCS infrastructure services 662b include job scheduler
664b, Ul 666b, SSO 668b, reports 670b, cache 672b, storage 674b, service manager
676b (public cloud control), and event processor 678b (user notifications, app
subscriptions, auditing, data analytics). In one embodiment, IDCS infrastructure
libraries 680b include data manager APls 682b, event APIs 684b, storage APIs 686b,
authentication APls 688b, authorization APIs 690b, cookie APls 692b, keys APIs 694b,
and credentials APls 696b. In one embodiment, cloud compute service 602b (internal
Nimbula) supports the function of IDCS infrastructure services 662b and IDCS
infrastructure libraries 680b.

[0098] In one embodiment, IDCS provides various Uls 602b for a consumer of
IDCS services, such as customer end user Ul 604b, customer admin Ul 606b, DevOps
admin Ul 608b, and login Ul 610b. In one embodiment, IDCS allows for integration
612b of applications (e.g., customer apps 614b, partner apps 616b, and cloud apps
618b) and firmware integration 620b. In one embodiment, various environments may
integrate with IDCS to support their access control needs. Such integration may be

provided by, for example, identity bridge 622b (providing AD integration, WNA, and

-38 -

WO 2018/044604 PCT/US2017/047726

SCIM connector), Apache agent 624b, or MSFT agent 626b.

[0099] In one embodiment, internal and external IDCS consumers integrate with
the identity services of IDCS over standards-based protocols 628b, such as OpenID
Connect 630b, OAuth2 632b, SAML2 634b, SCIM 636b, and REST/HTTP 638b. This
enables use of a domain name system (“DNS”) to resolve where to route requests, and
decouples the consuming applications from understanding internal implementation of
the identity services.

[00100] The IDCS functional view in Fig. 6A further includes public cloud
infrastructure services that provide common functionality that IDCS depends on for user
notifications (cloud notification service 718b), file storage (cloud storage service 716b),
and metrics/alerting for DevOps (cloud monitoring service (EM) 722b and cloud metrics
service (Graphite) 720b).

Cloud Gate

[00101] In one embodiment, IDCS implements a “Cloud Gate” in the web tier.
Cloud Gate is a web server plugin that enables web applications to externalize user
SSO to an identity management system (e.g., IDCS), similar to WebGate or WebAgent
technologies that work with enterprise IDM stacks. Cloud Gate acts as a security
gatekeeper that secures access to IDCS APIs. In one embodiment, Cloud Gate is
implemented by a web/proxy server plugin that provides a web Policy Enforcement
Point (“PEP”) for protecting HTTP resources based on OAuth.

[00102] Fig. 7 is a block diagram 700 of an embodiment that implements a Cloud

Gate 702 running in a web server 712 and acting as a Policy Enforcement Point (“PEP”)

-39-

WO 2018/044604 PCT/US2017/047726

configured to integrate with IDCS Policy Decision Point (“PDP”) using open standards
(e.g., OAuth2, OpenlID Connect, etc.) while securing access to web browser and REST
API resources 714 of an application. In some embodiments, the PDP is implemented at
OAuth and/or OpenlID Connect microservices 704. For example, when a user browser
706 sends a request to IDCS for a login of a user 710, a corresponding IDCS PDP
validates the credentials and then decides whether the credentials are sufficient (e.g.,
whether to request for further credentials such as a second password). In the
embodiment of Fig. 7, Cloud Gate 702 may act both as the PEP and as the PDP since it
has a local policy.

[00103] As part of one-time deployment, Cloud Gate 702 is registered with IDCS
as an OAuth2 client, enabling it to request OIDC and OAuth2 operations against IDCS.
Thereatfter, it maintains configuration information about an application’s protected and
unprotected resources, subject to request matching rules (how to match URLs, e.g.,
with wild cards, regular expressions, etc.). Cloud Gate 702 can be deployed to protect
different applications having different security policies, and the protected applications
can be multi-tenant.

[00104] During web browser-based user access, Cloud Gate 702 acts as an
OIDC RP 718 initiating a user authentication flow. If user 710 has no valid local user
session, Cloud Gate 702 re-directs the user to the SSO microservice and participates in
the OIDC “Authorization Code” flow with the SSO microservice. The flow concludes
with the delivery of a JWT as an identity token. Cloud Gate 708 validates the JWT (e.g.,

looks at signature, expiration, destination/audience, etc.) and issues a local session

-40 -

WO 2018/044604 PCT/US2017/047726

cookie for user 710. It acts as a session manager 716 securing web browser access to
protected resources and issuing, updating, and validating the local session cookie. It
also provides a logout URL for removal of its local session cookie.

[00105] Cloud Gate 702 also acts as an HTTP Basic Auth authenticator,
validating HTTP Basic Auth credentials against IDCS. This behavior is supported in
both session-less and session-based (local session cookie) modes. No server-side
IDCS session is created in this case.

[00106] During programmatic access by REST API clients 708, Cloud Gate 702
may act as an OAuth2 resource server/ilter 720 for an application’s protected REST
APIs 714. It checks for the presence of a request with an authorization header and an
access token. When client 708 (e.g., mobile, web apps, JavaScript, etc.) presents an
access token (issued by IDCS) to use with a protected REST APl 714, Cloud Gate 702
validates the access token before allowing access to the API (e.g., signature, expiration,
audience, etc.). The original access token is passed along unmodified.

[00107] Generally, OAuth is used to generate either a client identity propagation
token (e.g., indicating who the client is) or a user identity propagation token (e.g.,
indicating who the user is). In the embodiments, the implementation of OAuth in Cloud
Gate is based on a JWT which defines a format for web tokens, as provided by, e.g.,
IETF, RFC 7519.

[00108] When a user logs in, a JWT is issued. The JWT is signed by IDCS and
supports multi-tenant functionality in IDCS. Cloud Gate validates the JWT issued by

IDCS to allow for multi-tenant functionality in IDCS. Accordingly, IDCS provides multi-

-41 -

WO 2018/044604 PCT/US2017/047726

tenancy in the physical structure as well as in the logical business process that
underpins the security model.

Tenancy Types

[00109] IDCS specifies three types of tenancies: customer tenancy, client
tenancy, and user tenancy. Customer or resource tenancy specifies who the customer
of IDCS is (i.e., for whom is the work being performed). Client tenancy specifies which
client application is trying to access data (i.e., what application is doing the work). User
tenancy specifies which user is using the application to access data (i.e., by whom is
the work being performed). For example, when a professional services company
provides system integration functionality for a warehouse club and uses IDCS for
providing identity management for the warehouse club systems, user tenancy
corresponds to the professional services company, client tenancy is the application that
is used to provide system integration functionality, and customer tenancy is the
warehouse club.

[00110] Separation and identification of these three tenancies enables multi-
tenant functionality in a cloud-based service. Generally, for on-premise software that is
installed on a physical machine on-premise, there is no need to specify three different
tenancies since a user needs to be physically on the machine to log in. However, in a
cloud-based service structure, embodiments use tokens to determine who is using what
application to access which resources. The three tenancies are codified by tokens,
enforced by Cloud Gate, and used by the business services in the middle tier. In one

embodiment, an OAuth server generates the tokens. In various embodiments, the

-42 -

WO 2018/044604 PCT/US2017/047726

tokens may be used in conjunction with any security protocol other than OAuth.

[00111] Decoupling user, client, and resource tenancies provides substantial
business advantages for the users of the services provided by IDCS. For example, it
allows a service provider that understands the needs of a business (e.g., a healthcare
business) and their identity management problems to buy services provided by IDCS,
develop their own backend application that consumes the services of IDCS, and provide
the backend applications to the target businesses. Accordingly, the service provider
may extend the services of IDCS to provide their desired capabilities and offer those to
certain target businesses. The service provider does not have to build and run software
to provide identity services but can instead extend and customize the services of IDCS
to suit the needs of the target businesses.

[00112] Some known systems only account for a single tenancy which is
customer tenancy. However, such systems are inadequate when dealing with access
by a combination of users such as customer users, customer’s partners, customer’s
clients, clients themselves, or clients that customer has delegated access to. Defining
and enforcing multiple tenancies in the embodiments facilitates the identity
management functionality over such variety of users.

[00113] In one embodiment, one entity of IDCS does not belong to multiple
tenants at the same time; it belongs to only one tenant, and a “tenancy” is where
artifacts live. Generally, there are multiple components that implement certain
functions, and these components can belong to tenants or they can belong to

infrastructure. When infrastructure needs to act on behalf of tenants, it interacts with an

-43 -

WO 2018/044604 PCT/US2017/047726

entity service on behalf of the tenant. In that case, infrastructure itself has its own
tenancy and customer has its own tenancy. When a request is submitted, there can be
multiple tenancies involved in the request.

[00114] For example, a client that belongs to “tenant 1” may execute a request to
get a token for “tenant 2” specifying a user in “tenant 3.” As another example, a user
living in “tenant 1” may need to perform an action in an application owned by “tenant 2”.
Thus, the user needs to go to the resource namespace of “tenant 2” and request a
token for themselves. Accordingly, delegation of authority is accomplished by
identifying “who” can do “what” to “whom.” As yet another example, a first user working
for a first organization (“tenant 1”) may allow a second user working for a second
organization (“tenant 2”) to have access to a document hosted by a third organization
(“tenant 37).

[00115] In one example, a client in “tenant 1” may request an access token for a
user in “tenant 2” to access an application in “tenant 3”. The client may do so by
invoking an OAuth request for the token by going to “http://tenant3/oauth/token”. The
client identifies itself as a client that lives in “tenant 1” by including a “client assertion” in
the request. The client assertion includes a client ID (e.g., “client 1”) and the client
tenancy “tenant 1”. As “client 1” in “tenant 17, the client has the right to invoke a request
for a token on “tenant 3”, and the client wants the token for a user in “tenant 2”.
Accordingly, a “user assertion” is also passed as part of the same HTTP request. The
access token that is generated will be issued in the context of the target tenancy which

is the application tenancy (“tenant 3”) and will include the user tenancy (“tenant 27).

-44 -

WO 2018/044604 PCT/US2017/047726

[00116] In one embodiment, in the data tier, each tenant is implemented as a
separate stripe. From a data management perspective, artifacts live in a tenant. From
a service perspective, a service knows how to work with different tenants, and the
multiple tenancies are different dimensions in the business function of a service. Fig. 8
illustrates an example system 800 implementing multiple tenancies in an embodiment.
System 800 includes a client 802 that requests a service provided by a microservice
804 that understands how to work with data in a database 806. The database includes
multiple tenants 808 and each tenant includes the artifacts of the corresponding
tenancy. In one embodiment, microservice 804 is an OAuth microservice requested
through https://tenant3/oauth/token for getting a token. The function of the OAuth
microservice is performed in microservice 804 using data from database 806 to verify
that the request of client 802 is legitimate, and if it is legitimate, use the data from
different tenancies 808 to construct the token. Accordingly, system 800 is multi-tenant
in that it can work in a cross-tenant environment by not only supporting services coming
into each tenancy, but also supporting services that can act on behalf of different
tenants.

[00117] System 800 is advantageous since microservice 804 is physically
decoupled from the data in database 806, and by replicating the data across locations
that are closer to the client, microservice 804 can be provided as a local service to the
clients and system 800 can manage the availability of the service and provide it globally.

[00118] In one embodiment, microservice 804 is stateless, meaning that the

machine that runs microservice 804 does not maintain any markers pointing the service

-45 -

WO 2018/044604 PCT/US2017/047726

to any specific tenants. Instead, a tenancy may be marked, for example, on the host
portion of a URL of a request that comes in. That tenancy points to one of tenants 808
in database 806. When supporting a large number of tenants (e.g., millions of tenants),
microservice 804 cannot have the same number of connections to database 806, but
instead uses a connection pool 810 which provides the actual physical connections to
database 806 in the context of a database user.

[00119] Generally, connections are built by supplying an underlying driver or
provider with a connection string, which is used to address a specific database or server
and to provide instance and user authentication credentials (e.g.,
“Server=sql_box;Database=Common;User ID=uid;Pwd=password;”). Once a
connection has been built, it can be opened and closed, and properties (e.g., the
command time-out length, or transaction, if one exists) can be set. The connection
string includes a set of key-value pairs, dictated by the data access interface of the data
provider. A connection pool is a cache of database connections maintained so that the
connections can be reused when future requests to a database are required. In
connection pooling, after a connection is created, it is placed in the pool and it is used
again so that a new connection does not have to be established. For example, when
there needs to be ten connections between microservice 804 and database 808, there
will be ten open connections in connection pool 810, all in the context of a database
user (e.g., in association with a specific database user, e.g., who is the owner of that
connection, whose credentials are being validated, is it a database user, is it a system

credential, etc.).

- 46 -

WO 2018/044604 PCT/US2017/047726

[00120] The connections in connection pool 810 are created for a system user
that can access anything. Therefore, in order to correctly handle auditing and privileges
by microservice 804 processing requests on behalf of a tenant, the database operation
is performed in the context of a "proxy user" 812 associated with the schema owner
assigned to the specific tenant. This schema owner can access only the tenancy that
the schema was created for, and the value of the tenancy is the value of the schema
owner. When a request is made for data in database 806, microservice 804 uses the
connections in connection pool 810 to provide that data. Accordingly, multi-tenancy is
achieved by having stateless, elastic middle tier services process incoming requests in
the context of (e.g., in association with) the tenant-specific data store binding
established on a per request basis on top of the data connection created in the context
of (e.g., in association with) the data store proxy user associated with the resource
tenancy, and the database can scale independently of the services.

[00121] The following provides an example functionality for implementing proxy
user 812:

dbOperation = <prepare DB command to execute>

dbConnection = getDBConnectionFromPool()

dbConnection.setProxyUser (resourceTenant)

result = dbConnection.executeOperation (dbOperation)

In this functionality, microservice 804 sets the “Proxy User” setting on the connection
pulled from connection pool 810 to the “Tenant,” and performs the database operation
in the context of the tenant while using the database connection in connection pool 810.

[00122] When striping every table to configure different columns in a same

database for different tenants, one table may include all tenants’ data mixed together.
-47 -

WO 2018/044604 PCT/US2017/047726

In contrast, one embodiment provides a tenant-driven data tier. The embodiment does
not stripe the same database for different tenants, but instead provides a different
physical database per tenant. For example, multi-tenancy may be implemented by
using a pluggable database (e.g., Oracle Database 12c from Oracle Corp.) where each
tenant is allocated a separate partition. At the data tier, a resource manager processes
the request and then asks for the data source for the request (separate from
metadata). The embodiment performs runtime switch to a respective data source/store
per request. By isolating each tenant’s data from the other tenants, the embodiment
provides improved data security.

[00123] In one embodiment, various tokens codify different tenancies. A URL
token may identify the tenancy of the application that requests a service. An identity
token may codify the identity of a user that is to be authenticated. An access token may
identify multiple tenancies. For example, an access token may codify the tenancy that
is the target of such access (e.g., an application tenancy) as well as the user tenancy of
the user that is given access. A client assertion token may identify a client ID and the
client tenancy. A user-assertion token may identify the user and the user tenancy.

[00124] In one embodiment, an identity token includes at least a claim/statement
indicating the user tenant name (i.e., where the user lives). A “claim” (as used by one of
ordinary skill in the security field) in connection with authorization tokens is a statement
that one subject makes about itself or another subject. The statement can be about a
name, identity, key, group, privilege, or capability, for example. Claims are issued by a

provider, and they are given one or more values and then packaged in security tokens

-48 -

WO 2018/044604 PCT/US2017/047726

that are issued by an issuer, commonly known as a security token service (“STS”).

[00125] In one embodiment, an access token includes at least a claim/statement
indicating the resource tenant name at the time the request for the access token was
made (e.g., the customer), a claim indicating the user tenant name, a claim indicating
the name of the OAuth client making the request, and a claim indicating the client tenant
name. In one embodiment, an access token may be implemented according to the
following JSON functionality:

{

"tok_type ": "AT",
"user_id" : "testuser",
"user_tenantname" : "<value-of-identity-tenant>"

5 [

“tenant” ; “<value-of-resource-tenant>”
“client_id” ; “testclient”,

n, ok

‘client_tenantname”: “<value-of-client-tenant>”

}...

[00126] In one embodiment, a client assertion token includes at least a claim
indicating the client tenant name, and a claim indicating the name of the OAuth client
making the request.

[00127] The tokens and/or multiple tenancies described herein may be
implemented in any multi-tenant cloud-based service other than IDCS. For example,
the tokens and/or multiple tenancies described herein may be implemented in Saa$S or
Enterprise Resource Planning (“ERP”) services.

[00128] Fig. 9 is a block diagram of a network view 900 of IDCS in one
embodiment. Fig. 9 illustrates network interactions that are performed in one

embodiment between application “zones” 904. Applications are broken into zones
-49 -

WO 2018/044604 PCT/US2017/047726

based on the required level of protection and the implementation of connections to
various other systems (e.g., SSL zone, no SSL zone, etc.). Some application zones
provide services that require access from the inside of IDCS, while some application
zones provide services that require access from the outside of IDCS, and some are
open access. Accordingly, a respective level of protection is enforced for each zone.

[00129] In the embodiment of Fig. 9, service to service communication is
performed using HTTP requests. In one embodiment, IDCS uses the access tokens
described herein not only to provide services but also to secure access to and within
IDCS itself. In one embodiment, IDCS microservices are exposed through RESTful
interfaces and secured by the tokens described herein.

[00130] In the embodiment of Fig. 9, any one of a variety of applications/services
902 may make HTTP calls to IDCS APIs to use IDCS services. In one embodiment, the
HTTP requests of applications/services 902 go through an Oracle Public Cloud Load
Balancing External Virtual IP address (“VIP”) 906 (or other similar technologies), a
public cloud web routing tier 908, and an IDCS Load Balancing Internal VIP appliance
910 (or other similar technologies), to be received by IDCS web routing tier 912. IDCS
web routing tier 912 receives the requests coming in from the outside or from the inside
of IDCS and routes them across either an IDCS platform services tier 914 or an IDCS
infrastructure services tier 916. IDCS platform services tier 914 includes IDCS
microservices that are invoked from the outside of IDCS, such as OpenlD Connect,
OAuth, SAML, SCIM, etc. IDCS infrastructure services tier 916 includes supporting

microservices that are invoked from the inside of IDCS to support the functionality of

-50 -

WO 2018/044604 PCT/US2017/047726

other IDCS microservices. Examples of IDCS infrastructure microservices are Ul, SSO,
reports, cache, job scheduler, service manager, functionality for making keys, etc. An
IDCS cache tier 926 supports caching functionality for IDCS platform services tier 914
and IDCS infrastructure services tier 916.

[00131] By enforcing security both for outside access to IDCS and within IDCS,
customers of IDCS can be provided with outstanding security compliance for the
applications they run.

[00132] In the embodiment of Fig. 9, other than the data tier 918 which
communicates based on Structured Query Language (“SQL”) and the ID store tier 920
that communicates based on LDAP, OAuth protocol is used to protect the
communication among IDCS components (e.g., microservices) within IDCS, and the
same tokens that are used for securing access from the outside of IDCS are also used
for security within IDCS. That is, web routing tier 912 uses the same tokens and
protocols for processing the requests it receives regardless of whether a request is
received from the outside of IDCS or from the inside of IDCS. Accordingly, IDCS
provides a single consistent security model for protecting the entire system, thereby
allowing for outstanding security compliance since the fewer security models
implemented in a system, the more secure the system is.

[00133] In the IDCS cloud environment, applications communicate by making
network calls. The network call may be based on an applicable network protocol such
as HTTP, Transmission Control Protocol (“TCP”), User Datagram Protocol (“UDP”), etc.

For example, an application “X” may communicate with an application “Y” based on

-51 -

WO 2018/044604 PCT/US2017/047726

HTTP by exposing application “Y” as an HTTP Uniform Resource Locator (“URL”). In
one embodiment, “Y” is an IDCS microservice that exposes a number of resources each
corresponding to a capability. When “X” (e.g., another IDCS microservice) needs to call
“¥Y”, it constructs a URL that includes “Y” and the resource/capability that needs to be
invoked (e.g., https:/host/Y/resource), and makes a corresponding REST call which
goes through web routing tier 912 and gets directed to “Y”.

[00134] In one embodiment, a caller outside the IDCS may not need to know
where “Y” is, but web routing tier 912 needs to know where application “Y” is running.

In one embodiment, IDCS implements discovery functionality (implemented by an API
of OAuth service) to determine where each application is running so that there is no
need for the availability of static routing information.

[00135] In one embodiment, an enterprise manager (“EM”) 922 provides a
“single pane of glass” that extends on-premise and cloud-based management to IDCS.
In one embodiment, a “Chef” server 924 which is a configuration management tool from
Chef Software, Inc., provides configuration management functionality for various IDCS
tiers. In one embodiment, a service deployment infrastructure and/or a persistent
stored module 928 may send OAuth2 HTTP messages to IDCS web routing tier 912 for
tenant lifecycle management operations, public cloud lifecycle management operations,
or other operations. In one embodiment, IDCS infrastructure services tier 916 may
send ID/password HTTP messages to a public cloud notification service 930 or a public
cloud storage service 932.

Cloud Access Control - SSO

-52.-

WO 2018/044604 PCT/US2017/047726

[00136] One embodiment supports lightweight cloud standards for implementing
a cloud scale SSO service. Examples of lightweight cloud standards are HTTP, REST,
and any standard that provides access through a browser (since a web browser is
lightweight). On the contrary, SOAP is an example of a heavy cloud standard which
requires more management, configuration, and tooling to build a client with. The
embodiment uses OpenlD Connect semantics for applications to request user
authentication against IDCS. The embodiment uses lightweight HTTP cookie-based
user session tracking to track user’s active sessions at IDCS without statefull server-
side session support. The embodiment uses JWT-based identity tokens for applications
to use in mapping an authenticated identity back to their own local session. The
embodiment supports integration with federated identity management systems, and
exposes SAML IDP support for enterprise deployments to request user authentication
against IDCS.

[00137] Fig. 10 is a block diagram 1000 of a system architecture view of SSO
functionality in IDCS in one embodiment. The embodiment enables client applications
to leverage standards-based web protocols to initiate user authentication flows.
Applications requiring SSO integration with a cloud system may be located in enterprise
data centers, in remote partner data centers, or even operated by a customer on-
premise. In one embodiment, different IDCS platform services implement the business
of SSO, such as OpenlID Connect for processing login/logout requests from connected
native applications (i.e., applications utilizing OpenlD Connect to integrate with IDCS);

SAML IDP service for processing browser-based login/logout requests from connected

-53 -

WO 2018/044604 PCT/US2017/047726

applications; SAML SP service for orchestrating user authentication against an external
SAML IDP; and an internal IDCS SSO service for orchestrating end user login
ceremony including local or federated login flows, and for managing IDCS host session
cookie. Generally, HTTP works either with a form or without a form. When it works with
a form, the form is seen within a browser. When it works without a form, it functions as
a client to server communication. Both OpenlID Connect and SAML require the ability to
render a form, which may be accomplished by presence of a browser or virtually
performed by an application that acts as if there is a browser. In one embodiment, an
application client implementing user authentication/SSO through IDCS needs to be
registered in IDCS as an OAuth2 client and needs to obtain client identifier and
credentials (e.g., ID/password, ID/certificate, etc.).

[00138] The example embodiment of Fig. 10 includes three
components/microservices that collectively provide login capabilities, including two
platform microservices: OAuth2 1004 and SAML2 1006, and one infrastructure
microservice: SSO 1008. In the embodiment of Fig. 10, IDCS provides an “Identity
Metasystem” in which SSO services 1008 are provided over different types of
applications, such as browser based web or native applications 1010 requiring 3-legged
OAuth flow and acting as an OpenlD Connect relaying party (“RP,” an application that
outsources its user authentication function to an IDP), native applications 1011 requiring
2-legged OAuth flow and acting as an OpenlD Connect RP, and web applications 1012
acting as a SAML SP.

[00139] Generally, an Identity Metasystem is an interoperable architecture for

-54 -

WO 2018/044604 PCT/US2017/047726

digital identity, allowing for employing a collection of digital identities based on multiple
underlying technologies, implementations, and providers. LDAP, SAML, and OAuth are
examples of different security standards that provide identity capability and can be the
basis for building applications, and an Identity Metasystem may be configured to
provide a unified security system over such applications. The LDAP security model
specifies a specific mechanism for handling identity, and all passes through the system
are to be strictly protected. SAML was developed to allow one set of applications
securely exchange information with another set of applications that belong to a different
organization in a different security domain. Since there is no trust between the two
applications, SAML was developed to allow for one application to authenticate another
application that does not belong to the same organization. OAuth provides OpenID
Connect that is a lightweight protocol for performing web based authentication.

[00140] In the embodiment of Fig. 10, when an OpenID application 1010
connects to an OpenlD server in IDCS, its “channels” request SSO service. Similarly,
when a SAML application 1012 connects to a SAML server in IDCS, its “channels” also
request SSO service. In IDCS, a respective microservice (e.g., an OpenlD microservice
1004 and a SAML microservice 1006) will handle each of the applications, and these
microservices request SSO capability from SSO microservice 1008. This architecture
can be expanded to support any number of other security protocols by adding a
microservice for each protocol and then using SSO microservice 1008 for SSO
capability. SSO microservice 1008 issues the sessions (i.e., an SSO cookie 1014 is

provided) and is the only system in the architecture that has the authority to issue a

-55 -

WO 2018/044604 PCT/US2017/047726

session. An IDCS session is realized through the use of SSO cookie 1014 by browser
1002. Browser 1002 also uses a local session cookie 1016 to manage its local session.

[00141] In one embodiment, for example, within a browser, a user may use a first
application based on SAML and get logged in, and later use a second application built
with a different protocol such as OAuth. The user is provided with SSO on the second
application within the same browser. Accordingly, the browser is the state or user agent
and maintains the cookies

[00142] In one embodiment, SSO microservice 1008 provides login ceremony
1018, ID/password recovery 1020, first time login flow 1022, an authentication manager
1024, an HTTP cookie manager 1026, and an event manager 1028. Login ceremony
1018 implements SSO functionality based on customer settings and/or application
context, and may be configured according to a local form (i.e., basic Auth), an external
SAML IDP, an external OIDC IDP, etc. ID/password recovery 1020 is used to recover a
user’s ID and/or password. First time login flow 1022 is implemented when a user logs
in for the first time (i.e., an SSO session does not yet exist). Authentication manager
1024 issues authentication tokens upon successful authentication. HTTP cookie
manager 1026 saves the authentication token in an SSO cookie. Event manager 1028
publishes events related to SSO functionality.

[00143] In one embodiment, interactions between OAuth microservice 1004 and
SSO microservice 1008 are based on browser redirects so that SSO microservice 1008
challenges the user using an HTML form, validates credentials, and issues a session

cookie.

-56 -

WO 2018/044604 PCT/US2017/047726

[00144] In one embodiment, for example, OAuth microservice 1004 may receive
an authorization request from browser 1002 to authenticate a user of an application
according to 3-legged OAuth flow. OAuth microservice 1004 then acts as an OIDC
provider 1030, redirects browser 1002 to SSO microservice 1008, and passes along
application context. Depending on whether the user has a valid SSO session or not,
SSO microservice 1008 either validates the existing session or performs a login
ceremony. Upon successful authentication or validation, SSO microservice 1008
returns authentication context to OAuth microservice 1004. OAuth microservice 1004
then redirects browser 1002 to a callback URL with an authorization (“AZ”) code.
Browser 1002 sends the AZ code to OAuth microservice 1004 to request the required
tokens 1032. Browser 1002 also includes its client credentials (obtained when
registering in IDCS as an OAuth2 client) in the HTTP authorization header. OAuth
microservice 1004 in return provides the required tokens 1032 to browser 1002. In one
embodiment, tokens 1032 provided to browser 1002 include JW identity and access
tokens signed by the IDCS OAuth2 server. Further details of this functionality are
disclosed below with reference to Fig. 11.

[00145] In one embodiment, for example, OAuth microservice 1004 may receive
an authorization request from a native application 1011 to authenticate a user according
to a 2-legged OAuth flow. In this case, an authentication manager 1034 in OAuth
microservice 1004 performs the corresponding authentication (e.g., based on
ID/password received from a client 1011) and a token manager 1036 issues a

corresponding access token upon successful authentication.

-57-

WO 2018/044604 PCT/US2017/047726

[00146] In one embodiment, for example, SAML microservice 1006 may receive
an SSO POST request from a browser to authenticate a user of a web application 1012
that acts as a SAML SP. SAML microservice 1006 then acts as a SAML IDP 1038,
redirects browser 1002 to SSO microservice 1008, and passes along application
context. Depending on whether the user has a valid SSO session or not, SSO
microservice 1008 either validates the existing session or performs a login ceremony.
Upon successful authentication or validation, SSO microservice 1008 returns
authentication context to SAML microservice 1006. SAML microservice then redirects
to the SP with required tokens.

[00147] In one embodiment, for example, SAML microservice 1006 may act as a
SAML SP 1040 and go to a remote SAML IDP 1042 (e.g., an active directory federation
service (“ADFS”)). One embodiment implements the standard SAML/AD flows. In one
embodiment, interactions between SAML microservice 1006 and SSO microservice
1008 are based on browser redirects so that SSO microservice 1008 challenges the
user using an HTML form, validates credentials, and issues a session cookie.

[00148] In one embodiment, the interactions between a component within IDCS
(e.g., 1004, 1006, 1008) and a component outside IDCS (e.g., 1002, 1011, 1042) are
performed through firewalls 1044.

Login/Logout Flow

[00149] Fig. 11 is a message sequence flow 1100 of SSO functionality provided
by IDCS in one embodiment. When a user uses a browser 1102 to access a client

1106 (e.g., a browser-based application or a mobile/native application), Cloud Gate

-58 -

WO 2018/044604 PCT/US2017/047726

1104 acts as an application enforcement point and enforces a policy defined in a local
policy text file. If Cloud Gate 1104 detects that the user has no local application
session, it requires the user to be authenticated. In order to do so, Cloud Gate 1104
redirects browser 1102 to OAuth2 microservice 1110 to initiate OpenlD Connect login
flow against the OAuth2 microservice 1110 (3-legged AZ Grant flow with scopes =
"openid profile”).

[00150] The request of browser 1102 traverses IDCS routing tier web service
1108 and Cloud Gate 1104 and reaches OAuth2 microservice 1110. OAuth2
microservice 1110 constructs the application context (i.e., metadata that describes the
application, e.g., identity of the connecting application, client ID, configuration, what the
application can do, etc.), and redirects browser 1102 to SSO microservice 1112 to log
in.

[00151] If the user has a valid SSO session, SSO microservice 1112 validates
the existing session without starting a login ceremony. If the user does not have a valid
SSO session (i.e., no session cookie exists), the SSO microservice 1112 initiates the
user login ceremony in accordance with customer’s login preferences (e.g., displaying a
branded login page). In order to do so, the SSO microservice 1112 redirects browser
1102 to a login application service 1114 implemented in JavaScript. Login application
service 1114 provides a login page in browser 1102. Browser 1102 sends a REST
POST to the SSO microservice 1112 including login credentials. The SSO microservice
1112 generates an access token and sends it to Cloud Gate 1104 in a REST POST.

Cloud Gate 1104 sends the authentication information to Admin SCIM microservice

-59-

WO 2018/044604 PCT/US2017/047726

1116 to validate the user’s password. Admin SCIM microservice 1116 determines
successful authentication and sends a corresponding message to SSO microservice
1112.

[00152] In one embodiment, during the login ceremony, the login page does not
display a consent page, as “login” operation requires no further consent. Instead, a
privacy policy is stated on the login page, informing the user about certain profile
attributes being exposed to applications. During the login ceremony, the SSO
microservice 1112 respects customer’s IDP preferences, and if configured, redirects to
the IDP for authentication against the configured IDP.

[00153] Upon successful authentication or validation, SSO microservice 1112
redirects browser 1102 back to OAuth2 microservice 1110 with the newly
created/updated SSO host HTTP cookie (e.g., the cookie that is created in the context
of the host indicated by “HOSTURL”) containing the user’s authentication token.
OAuth2 microservice 1110 returns AZ Code (e.g., an OAuth concept) back to browser
1102 and redirects to Cloud Gate 1104. Browser 1102 sends AZ Code to Cloud Gate
1104, and Cloud Gate 1104 sends a REST POST to OAuth2 microservice 1110 to
request the access token and the identity token. Both tokens are scoped to OAuth
microservice 1110 (indicated by the audience token claim). Cloud Gate 1104 receives
the tokens from OAuth2 microservice 1110.

[00154] Cloud Gate 1104 uses the identity token to map the user’s authenticated
identity to its internal account representation, and it may save this mapping in its own

HTTP cookie. Cloud Gate 1104 then redirects browser 1102 to client 1106. Browser

-60 -

WO 2018/044604 PCT/US2017/047726

1102 then reaches client 1106 and receives a corresponding response from client 1106.
From this point on, browser 1102 can access the application (i.e., client 1106)
seamlessly for as long as the application’s local cookie is valid. Once the local cookie
becomes invalid, the authentication process is repeated.

[00155] Cloud Gate 1104 further uses the access token received in a request to
obtain “userinfo” from OAuth2 microservice 1110 or the SCIM microservice. The
access token is sufficient to access the “userinfo” resource for the attributes allowed by
the “profile” scope. It is also sufficient to access “/me” resources via the SCIM
microservice. In one embodiment, by default, the received access token is only good
for user profile attributes that are allowed under the “profile” scope. Access to other
profile attributes is authorized based on additional (optional) scopes submitted in the AZ
grant login request issued by Cloud Gate 1104.

[00156] When the user accesses another OAuth2 integrated connecting
application, the same process repeats.

[00157] In one embodiment, the SSO integration architecture uses a similar
OpenlID Connect user authentication flow for browser-based user logouts. In one
embodiment, a user with an existing application session accesses Cloud Gate 1104 to
initiate a logout. Alternatively, the user may have initiated the logout on the IDCS side.
Cloud Gate 1104 terminates the application-specific user session, and initiates OAuth2
OpenlD Provider (“OP”) logout request against OAuth2 microservice 1110. OAuth2
microservice 1110 redirects to SSO microservice 1112 that kills the user’s host SSO

cookie. SSO microservice 1112 initiates a set of redirects (OAuth2 OP and SAML IDP)

-61 -

WO 2018/044604 PCT/US2017/047726

against known logout endpoints as tracked in user’s SSO cookie.

[00158] In one embodiment, if Cloud Gate 1104 uses SAML protocol to request
user authentication (e.g., login), a similar process starts between the SAML
microservice and SSO microservice 1112.

Cloud Cache

[00159] One embodiment provides a service/capability referred to as Cloud
Cache. Cloud Cache is provided in IDCS to support communication with applications
that are LDAP based (e.g., email servers, calendar servers, some business
applications, etc.) since IDCS does not communicate according to LDAP while such
applications are configured to communicate only based on LDAP. Typically, cloud
directories are exposed via REST APIls and do not communicate according to the LDAP
protocol. Generally, managing LDAP connections across corporate firewalls requires
special configurations that are difficult to set up and manage.

[00160] To support LDAP based applications, Cloud Cache translates LDAP
communications to a protocol suitable for communication with a cloud system.
Generally, an LDAP based application uses a database via LDAP. An application may
be alternatively configured to use a database via a different protocol such as SQL.
However, LDAP provides a hierarchical representation of resources in tree structures,
while SQL represents data as tables and fields. Accordingly, LDAP may be more
desirable for searching functionality, while SQL may be more desirable for transactional
functionality.

[00161] In one embodiment, services provided by IDCS may be used in an LDAP

-62 -

WO 2018/044604 PCT/US2017/047726

based application to, for example, authenticate a user of the applications (i.e., an
identity service) or enforce a security policy for the application (i.e., a security service).
In one embodiment, the interface with IDCS is through a firewall and based on HTTP
(e.g., REST). Typically, corporate firewalls do not allow access to internal LDAP
communication even if the communication implements Secure Sockets Layer (“SSL”),
and do not allow a TCP port to be exposed through the firewall. However, Cloud Cache
translates between LDAP and HTTP to allow LDAP based applications reach services
provided by IDCS, and the firewall will be open for HTTP.

[00162] Generally, an LDAP directory may be used in a line of business such as
marketing and development, and defines users, groups, works, etc. In one example, a
marketing and development business may have different targeted customers, and for
each customer, may have their own applications, users, groups, works, etc. Another
example of a line of business that may run an LDAP cache directory is a wireless
service provider. In this case, each call made by a user of the wireless service provider
authenticates the user’s device against the LDAP directory, and some of the
corresponding information in the LDAP directory may be synchronized with a billing
system. In these examples, LDAP provides functionality to physically segregate content
that is being searched at runtime.

[00163] In one example, a wireless service provider may handle its own identity
management services for their core business (e.g., regular calls), while using services
provided by IDCS in support of a short term marketing campaign. In this case, Cloud

Cache “flattens” LDAP when it has a single set of users and a single set of groups that it

-63 -

WO 2018/044604 PCT/US2017/047726

runs against the cloud. In one embodiment, any number of Cloud Caches may be
implemented in IDCS.

Distributed Data Grid

[00164] In one embodiment, the cache cluster in IDCS is implemented based on
a distributed data grid, as disclosed, for example, in U.S. Pat. Pub. No. 2016/0092540,
the disclosure of which is hereby incorporated by reference. A distributed data grid is a
system in which a collection of computer servers work together in one or more clusters
to manage information and related operations, such as computations, within a
distributed or clustered environment. A distributed data grid can be used to manage
application objects and data that are shared across the servers. A distributed data grid
provides low response time, high throughput, predictable scalability, continuous
availability, and information reliability. In particular examples, distributed data grids,
such as, e.g., the Oracle Coherence data grid from Oracle Corp., store information in-
memory to achieve higher performance, and employ redundancy in keeping copies of
that information synchronized across multiple servers, thus ensuring resiliency of the
system and continued availability of the data in the event of failure of a server.

[00165] In one embodiment, IDCS implements a distributed data grid such as
Coherence so that every microservice can request access to shared cache objects
without getting blocked. Coherence is a proprietary Java-based in-memory data grid,
designed to have better reliability, scalability, and performance than traditional relational
database management systems. Coherence provides a peer to peer (i.e., with no

central manager), in-memory, distributed cache.

-64 -

WO 2018/044604 PCT/US2017/047726

[00166] Fig. 12 illustrates an example of a distributed data grid 1200 which
stores data and provides data access to clients 1250 and implements embodiments of
the invention. A "data grid cluster", or "distributed data grid", is a system comprising a
plurality of computer servers (e.g., 1220a, 1220b, 1220c, and 1220d) which work
together in one or more clusters (e.g., 1200a, 1200b, 1200c) to store and manage
information and related operations, such as computations, within a distributed or
clustered environment. While distributed data grid 1200 is illustrated as comprising four
servers 1220a, 1220b, 1220c, 1220d, with five data nodes 1230a, 1230b, 1230c, 1230d,
and 1230e¢ in a cluster 1200a, the distributed data grid 1200 may comprise any number
of clusters and any number of servers and/or nodes in each cluster. In an embodiment,
distributed data grid 1200 implements the present invention.

[00167] As illustrated in Fig. 12, a distributed data grid provides data storage and
management capabilities by distributing data over a number of servers (e.g., 1220a,
1220b, 1220c, and 1220d) working together. Each server of the data grid cluster may
be a conventional computer system such as, for example, a "commodity x86" server
hardware platform with one to two processor sockets and two to four CPU cores per
processor socket. Each server (e.g., 1220a, 1220b, 1220c, and 1220d) is configured
with one or more CPUs, Network Interface Cards (“NIC”), and memory including, for
example, a minimum of 4 GB of RAM up to 64 GB of RAM or more. Server 1220a is
illustrated as having CPU 1222a, Memory 1224a, and NIC 1226a (these elements are
also present but not shown in the other Servers 1220b, 1220c, 1220d). Optionally, each

server may also be provided with flash memory (e.g., SSD 1228a) to provide spillover

-65 -

WO 2018/044604 PCT/US2017/047726

storage capacity. When provided, the SSD capacity is preferably ten times the size of
the RAM. The servers (e.g., 1220a, 1220b, 1220c, 1220d) in a data grid cluster 1200a
are connected using high bandwidth NICs (e.g., PCI-X or PCle) to a high-performance
network switch 1220 (for example, gigabit Ethernet or better).

[00168] A cluster 1200a preferably contains a minimum of four physical servers
to avoid the possibility of data loss during a failure, but a typical installation has many
more servers. Failover and failback are more efficient the more servers that are present
in each cluster and the impact of a server failure on a cluster is lessened. To minimize
communication time between servers, each data grid cluster is ideally confined to a
single switch 1202 which provides single hop communication between servers. A
cluster may thus be limited by the number of ports on the switch 1202. A typical cluster
will therefore include between 4 and 96 physical servers.

[00169] In most Wide Area Network (“WAN”) configurations of a distributed data
grid 1200, each data center in the WAN has independent, but interconnected, data grid
clusters (e.g., 1200a, 1200b, and 1200c). A WAN may, for example, include many
more clusters than shown in Fig. 12. Additionally, by using interconnected but
independent clusters (e.g., 1200a, 1200b, 1200c) and/or locating interconnected, but
independent, clusters in data centers that are remote from one another, the distributed
data grid can secure data and service to clients 1250 against simultaneous loss of all
servers in one cluster caused by a natural disaster, fire, flooding, extended power loss,
and the like.

[00170] One or more nodes (e.g., 1230a, 1230b, 1230c, 1230d and 1230¢)

- 66 -

WO 2018/044604 PCT/US2017/047726

operate on each server (e.g., 1220a, 1220b, 1220c, 1220d) of a cluster 1200a. In a
distributed data grid, the nodes may be, for example, software applications, virtual
machines, or the like, and the servers may comprise an operating system, hypervisor,
or the like (not shown) on which the node operates. In an Oracle Coherence data grid,
each node is a Java virtual machine (“dVM”). A number of JVMs/nodes may be
provided on each server depending on the CPU processing power and memory
available on the server. JVMs/nodes may be added, started, stopped, and deleted as
required by the distributed data grid. JVMs that run Oracle Coherence automatically
join and cluster when started. JVMs/nodes that join a cluster are called cluster
members or cluster nodes.

[00171] Each client or server includes a bus or other communication mechanism
for communicating information, and a processor coupled to bus for processing
information. The processor may be any type of general or specific purpose processor.
Each client or server may further include a memory for storing information and
instructions to be executed by processor. The memory can be comprised of any
combination of random access memory (“RAM”), read only memory (“ROM”), static
storage such as a magnetic or optical disk, or any other type of computer readable
media. Each client or server may further include a communication device, such as a
network interface card, to provide access to a network. Therefore, a user may interface
with each client or server directly, or remotely through a network, or any other method.

[00172] Computer readable media may be any available media that can be

accessed by processor and includes both volatile and non-volatile media, removable

-67 -

WO 2018/044604 PCT/US2017/047726

and non-removable media, and communication media. Communication media may
include computer readable instructions, data structures, program modules, or other data
in a modulated data signal such as a carrier wave or other transport mechanism, and
includes any information delivery media.

[00173] The processor may further be coupled via bus to a display, such as a
Liquid Crystal Display (“LCD”). A keyboard and a cursor control device, such as a
computer mouse, may be further coupled to bus to enable a user to interface with each
client or server.

[00174] In one embodiment, the memory stores software modules that provide
functionality when executed by the processor. The modules include an operating
system that provides operating system functionality each client or server. The modules
may further include a cloud identity management module for providing cloud identity
management functionality, and all other functionality disclosed herein.

[00175] The clients may access a web service such as a cloud service. The web
service may be implemented on a WebLogic Server from Oracle Corp. in one
embodiment. In other embodiments, other implementations of a web service can be
used. The web service accesses a database which stores cloud data.

Data Management — Metadata Driven Framework

[00176] In embodiments, there is a need to manage a large amount of different
types of data/resources, referred to as “resource types”. Examples of resource types
include users, groups, applications (“apps”), configurations, settings, password policies,

etc. The resource types are management entities that are managed in the cloud using

-68 -

WO 2018/044604 PCT/US2017/047726

embodiments of the invention.

[00177] Each resource type has various configurations that define its behavior.
One configuration is a schema (i.e., data that can be associated with a resource of that
type), including both primary/core and extension schemas. For example, if a resource
type is a “user”, each user may have 4-5 schemas associated with it. A core schema
includes the user name (e.g., first, last), phone number, address, and any relevant
profile information for that user. Extension schemas may include a password state
(e.g., has the user’s password expired, has the maximum number of password tries
been exceeded. etfc.) or a user state (e.g., active or inactive). These are considered
“schema attributes”. Similarly, another resource type such as application has its own
schema that defines how the resource is organized and how its data is related..

[00178] Every schema has a list of attributes in one embodiment. Every attribute
has a set of metadata that defines the behavior of that attribute (e.g., is it read/write,
what is its mutability (i.e., ability to be changed or altered), is it required or not, is it
searchable). For each resource type, there can be a resource type definition and a
schema definition. A resource type definition can include: (1) a list of schemas - core
and optional extension schemas; (2) Supported operations - create, replace, update,
delete, get, search, postsearch; (3) Data provider type: LDAP provider, database (“DB”)
provider, Notification provider, etc. Schema definitions can include a list of attributes
and the metadata for each of the attributes describing its properties and behavior - data
type, mutability (readonly, readwrite, immutable, writeonly), returned (always, request,

never), target attribute name, trimspaces, maxlength, etc. Therefore, the metadata

-69 -

WO 2018/044604 PCT/US2017/047726

makes up the definition of the resource type, what schemas are associated with it, and
for each attribute what the metadata is.

[00179] In one example embodiment, there are 175 different resource types. If
software code was required to manage each one of those resource types and each
specific schema, there would be a requirement for a large amount of code specific to
each resource type and schema. For example, for a “POJO” (plain old Java object)
resource type that provides getters and setters for a particular attribute (e.g., get user
name, set user name, get first name, get last name), it would require a large amount of
code for all resource types.

[00180] In contrast, in embodiments of the invention, a single unified
code/module performs all functionality (e.g., create, update, modify, delete, search, etc.)
for any resource type. Initially, embodiments determine what the resource type is, and
then look up the schema and schema definitions to determine the attributes and the
attribute definitions. Embodiments can then make runtime decisions such as which
attributes are required for this resource type for its schemas in order to perform
validation. When performing the persistence of the data in the database in LDAP,
embodiments are aware of what the attributes are for the resource type so
embodiments can construct the payload correctly for SQL update/insert. For each
resource, resource type and schema definitions contain the provider type and target
attribute mapping configured. If the provider type is LDAP then an LDAP provider is
invoked to persist the data in LDAP with the right objectclass under the directory tree as

configured in the resource type and schema definition. If the provider type is a DB

-70 -

WO 2018/044604 PCT/US2017/047726

provider then the provider generates SQLs to persist/fetch data in the DB in a table in
right columns as configured in resource type and schema definitions.

[00181] Therefore, one embodiment is entirely data driven so that if a developer
wants to add a new resource type, the developer merely needs to add the JSON
definitions of the new resource type and schema instead of writing new code.
Embodiments are considered a data driven model since embodiments are completely
metadata driven. Embodiments perform a complete abstraction of the data away from
the run-time code. As a result, embodiments do not require the need to write, maintain
or test separate code for each resource type.

[00182] In one embodiment, for performance reasons, all metadata is cached at
service startup time. Further, embodiments can use metadata to drive documentation
and can automatically generate external docs, including REST APIs, based on resource
types and schema definitions.

[00183] Fig. 13 illustrates a data manager architecture for IDCS or Identity as a
Service (“IDaaS”) in accordance with one embodiment. The architecture includes a
resource manager 1301 (or “ResourceManager”), a SCIM/REST layer 1310, an API
layer 1311, a data provider (“DP”) layer 1312 and a data store layer 1313.

[00184] Resource manager 1301 is the common data access layer for
IDCS/IDaaS. Itis metadata driven so it can manage any resource type defined in a
SCIM compliant resource type and schema definition. In one embodiment, resource
manager 1301 handles all common logic for all resource types including schema based

validation of attributes, data types, required, canonical values, etc. It also handles

=71 -

WO 2018/044604 PCT/US2017/047726

setting default values, create/update dates, create/update by, protecting sensitive
attributes, mapping to target attributes, authorization checks and event publishing.
Resource type specific managers in APl layer 1311 extend resource manager 1301 to
handle any resource type specific operations or extend common logic for CRUDQ
operations. Resource manager 1301 integrates with data stores in data store layer 1313
via data providers in data provider layer 1313, which integrate directly with the data
store specific interfaces. Since resource manager 1301 is metadata driven, it supports
runtime schema customizations and DataProvider configuration changes with no impact
to the resource manager 1301 or resource type managers 1311.

[00185] A resource type (or “ResourceType”) is a type of resource managed by
IDCS. Examples include User, Group, Application, Token, Key, etc. In SCIM, each
resource type is a top-level endpoint (e.g. /Users, /Groups). Each resource type has a
resource type definition (or “ResourceTypeDef”). A resource type definition is the
metadata that describes a given resource type. A resource type definition defines the
resource type name, endpoint, primary schema URI and extended schema URlIs, if any.
In addition it defines several IDCS specific metadata. Each resource type definition is a
blob of JSON. Resource types can be pre-seeded or can be created at runtime. Any
resource type definition can be configured to be internal, meaning it is not accessible via
SCIM REST 1310, or external, meaning it is discoverable through SCIM REST GET
/ResourceTypes and GET /Schemas/<ResourceType>.

[00186] A schema definition (or “SchemaDef”) is a collection of attribute

definitions (or “AttributeDefs”) that describe the contents of an entire or partial resource

-72-

WO 2018/044604 PCT/US2017/047726

type (e.g., “Device”). SCIM defines the core metadata and IDCS, in accordance to
embodiments, extends the metadata. Specifically, a schema definition describes every
attribute and sub-attribute of that resource type. Each schema definition is a blob of
JSON. Schema definitions can be pre-seeded or can be created at runtime.

[00187] An attribute definition defines the name and metadata such as type (e.g.,
string, binary), cardinality (single, multi, complex), mutability (readOnly, readWrite, etc.),
returnability, searchability, etc. Attribute names should be camel-cased (e.g.,
camelCased) and should be unique within the schema they are defined in. Attribute
data types can be one of the following in an embodiment: String; Boolean; Decimal;
Integer; DateTime; Binary; Reference; or Complex.

[00188] A singular attribute is a resource attribute that contains 0..1 values (e.g.,
“displayName”). A multi-valued attribute is a resource attribute that contains 0..n values
(e.g., “emails”). A simple attribute is a singular or multi-valued attribute whose value is
a primitive (e.g., “String”). A complex attribute is a singular or multi-valued attribute
whose value is a composition of one or more simple attributes (e.g., “addresses”), and
has sub-attributes (e.g., “streetAddress”, “locality”, “postalCode” and “country”). A sub-
attribute is a simple attribute that is contained within a complex attribute.

[00189] A resource is an instance of an IDCS managed artifact containing one or
more attributes. In SCIM, a resource is an object that can be read and manipulated,
such as a particular User, Group or Token. Each resource has a globally unique
identifier and contains attribute values that conform to the corresponding resource type

definition’s schemas.

-73-

WO 2018/044604 PCT/US2017/047726

[00190] In one embodiment, in APl layer 1311, a Java class is implemented for
each resource type as a resource type manager. A user manager, for example,
manages users. A group manager manages groups. Each manager exposes the
interfaces appropriate for managing objects of that resource type. Every resource type
manager extends a common abstract resource manager that implements methods to
create, replace, update, delete, get and search for resources. Each resource type
manager can implement custom validation for each method implemented by abstract
resource manager, if needed. In addition, each resource type manager can extend
these methods as needed. For example, the user manager exposes methods unique to
the user resource including enable, disable, lock, unlock, changePassword. The group
manager exposes methods that the user manager does not, such as grant or revoke
user membership.

[00191] In one embodiment, HK2 based on the JSR-330 standard annotations
will be used for APl layer 1311. Each resource type manager’s custom Java interface
will be annotated with @Contract and their impls will be annotated with @Service. This
will ensure that that the resource type manager class will be placed into the service
registry advertised under both resource type manager and
<ResourceType>Managerimpl and will be requestable via a service locator.

[00192] In one embodiment, resource manager 1301 is a stateless common
Java class, which defines a set of APIs for querying and managing resources of any
resource type. Resource manager’s interfaces will be annotated with @Contract and

<ResourceType>Manager’s impls will be annotated with @Service to ensure they will

-74 -

WO 2018/044604 PCT/US2017/047726

be placed into the service registry and requestable via ServiceLocator.

[00193] An abstract resource manager (or “AbstractResourceManager”)
implements resource manager interfaces providing common behavior that each
<ResourceType>Manager inherits. For example, AbstractResourceManager checks
authorization, performs validation based on the ResourceTypeDef and emits events for
create, replace, update and delete operations. In addition, AbstractResourceManager
methods will call back to <ResourceType>Manager’s to enable custom validation.

[00194] Data provider layer 1312 is a pluggable layer underneath resource
manager 1301. It implements each operation against the underlying data store. For
example, the JDBC data provider uses JDBC to talk to the database. The JNDI data
provider uses JNDI to talk to a directory service. The data provider will switch between
data stores based on the tenant ID of each request.

[00195] One embodiment initially supports two types of data stores: JDBC and
JNDI. Other embodiments support other data stores, such as NoSQL. Data stores are
tenant specific and can be resource type specific. For example, events may be stored
in a JDBC database separate from the JDBC database used to store applications.

[00196] As described, embodiments are data driven because common resource
manager 1301 not only handles the validation, create, and error handling and
exceptions, regardless of the resource type, but also generates events based on the
metadata. The events are queued in a messaging service and are handled by backend
handlers and are audited, generate notifications, etc.

[00197] Fig. 14 illustrates the functional flow of embodiments of the invention

-75 -

WO 2018/044604 PCT/US2017/047726

implemented by the resource data manager of Fig. 13. The functionality includes:

(1) At 1401, resolve what the resource type is.

(2) At 1402, validate that the operation is supported by the resource type (i.e.,
validate what the user is trying to do). For example, some resource types
support create, update, and delete, and some only support get and search. The

support is determined by the metadata.

(3) At 1403, authorize by making an authorization check to determine if

authorized to perform the operation.

(4) At 1404, 1405, callbacks to the resource manager are implemented if
required (i.e., certain resource types require customization) for, for example,
custom validation, custom preprocessing, custom post-processing, custom event
generation. The callbacks are invoked from the common flow, and is novel

because it allows each resource type to inject resource type specific behavior.

(5) At 1406, get the data provider based on the request. For a given resource
type there is only one data provider irrespective of the tenant. Based on the
tenant, the data provider establishes a connection to the correct database
schema (for resources stored in DB) or points to the right directory tree (for
resources stored in LDAP). Uses a “Getdataprovider” Java method in one

embodiment.

(6) At 1406, call the data provider to perform the operation (e.g., in the example

of Fig. 14, the operation is “create”).

(7) At 1407, after the create operation, make callback to resource manager to
determine if any post processing is needed (e.g., inject additional attributes in
result, modify data). Provides a plug-in callback to the resource manager.

(8) At 1408, publish events.

-76 -

WO 2018/044604 PCT/US2017/047726

(9) At 1409, return resource that comes back in a POST response.

[00198] The primary use of metadata in the flow in Fig. 14 in one embodiment is
validation of payload that comes in with the Post request 1409 against the schema
defined for that resource type. This is dynamically done based on the cached resource
data. However, resource type metadata is not only for validation, as the metadata that
is loaded at the beginning of the request can be used at every stage in resource
manager processing, including: Validation 1402 (check for valid attrnames, data type,
missing required attrs, etc.), Authorization 1407, Dataprovider operation 1430 (target
attribute mapping, Table or objectclass mapping, etc.), Post processing 1409 (filter out
the data based on return attribute property in metadata), Publish events 1408 (what
events to publish is in metadata).

[00199] Embodiments determine where the requests are coming from, and who
is the user of the resource manager. The user can be an end user, another application,
an internal IDCS component, etc. Typically, a client makes the request - an API
request in the form of an HTTP request that is then handed over to the resource
manager to process based on the resource metadata.

[00200] In one embodiment, resource manager 1301 is a microservice that is
referred to as “admin service” and handles the administration of all resource types. It
talks to a messaging service (i.e., a microservice) when it generates events. Referring
again to Fig. 13, resource manager 1301 represents the admin service and the entire
Fig. 13 (with the exception of the databases at the bottom) is the admin service

microservice.

-77 -

WO 2018/044604 PCT/US2017/047726

[00201] One embodiment supports the cache coherence of IDCS. For example,
for Get request: get/user/ID, embodiments will initially query the cache data provider to
see if the User ID is cached. If cached, the data is returned from the cache. If not
cached, the data is retrieved from a data store, and the data is added to the coherence
cache on the way back.

[00202] Based on the tenant, embodiments determine which DB (e.g., LDAP
data partition “DP” 1305 of Fig. 13) to read from using the metadata. Embodiments
perform a DB switch at the data layer based on the tenant.

[00203] Embodiments can be used by any service that needs to manage data.
The clients that use embodiments can include a Ul service console, import jobs, or
anything that is updating data in IDCS.

Data Management — Multi-Tenant

[00204] One embodiment implements multi-tenant support at the data layer.
Resource manager 1301 processes the request, then asks for the appropriate data
source for the request. The processing is tenant driven and separate from the metadata
functionality. This functionality provides embodiments with the ability to make runtime
switches between data stores based on the tenant, which helps in security (i.e., isolation
of tenant data).

[00205] Other known identity managers may not have multiple tenants. Instead,
some known identity manager systems perform striping using a different column in the
database for every table for each tenant. In these solutions, one table would have all of

the multiple tenants data mixed together, which may not be secure.

-78 -

WO 2018/044604 PCT/US2017/047726

[00206] In contrast, in one embodiment different databases are used per tenant
instead of striping. Embodiments perform a runtime switch to the appropriate data
source per request.

Data Management — Automatic Schema Versioning

[00207] In one embodiment, over the life of a resource type (e.g., a “user”
resource type), a version 1 may have a schema for a user. In a subsequent version 2 of
the resource type, there may be a need to add or delete attributes, so there may be a
need to replicate the schema that represents a schema with all attributes of version 1,
and a version 2 schema with all attributes of version 2. There may be a need to keep
replicating schemas with each new version.

[00208] However, in contrast, in one embodiment, instead of replicating
schemas, the schema attributes themselves are allowed to be tagged with either an
added since version attribute or a deprecated since version attribute.

[00209] For example, an embodiment may have a version 1 attribute for a
resource type called “red”. In version 2, red is no longer needed. In the single user
schema, embodiments will tag the red attribute as deprecated for version 2, but can
also add 3 new attributes to version 2: A, B and C. For the three new attributes, a tag
is added for version 2.

[00210] At runtime, when a user makes a request, the request can include the
version of the schema they wish to work with (e.g., version 1 users, version 2 users,
etc.). Atruntime, embodiments evaluate the schema (metadata driven) to determine

what the schema version 1 includes, what the schema version 2 includes, etc.

-79 -

WO 2018/044604 PCT/US2017/047726

[00211] In an example use case: request to Get a user for version 2 of schema.
The request gets the user based on attributes that were added and deprecated. So
instead of returning deprecated attributes, the request will return added attributes. In
contrast, version 1 would not have any tags added or deprecated.

[00212] Embodiments are entirely metadata driven. This allows multiple
versions of every user being supported concurrently through same the resource
manager service. Embodiments can support schema changes with zero down time.

[00213] Fig. 15 illustrates automatic schema versioning in accordance with one
embodiment. As shown in Fig. 15, version 1 of the user schema includes attributes
“‘name” and “type” (at 1501). Version 2 includes “name” and “costcenter” (at 1502). In
this example, the attribute “Type” was deprecated since it is not included in version 2.

[00214] When a request is made to get a user, by default the latest version of the
schema (i.e., version 2 in Fig. 15) is always retrieved in one embodiment. However, the
request payload can request version 1 instead. In this case, embodiments will get a
subset of data specific to that schema. Embodiments also works with cache.

[00215] Most known solutions have a separate schema definition for each
version. In contrast, embodiments only have a single schema definition, and metadata
that defines the changes between versions. One benefit is the support of zero down
time.

[00216] As disclosed, embodiments implement metadata that defines a resource
type and associated schemas. A request for performing an operation on a resource in a

multi-tenant system is resolved using the metadata to determine the data provider

-80 -

WO 2018/044604 PCT/US2017/047726

associated with the tenant that performs the operation.

[00217] Several embodiments are specifically illustrated and/or described herein.
However, it will be appreciated that modifications and variations of the disclosed
embodiments are covered by the above teachings and within the purview of the

appended claims without departing from the spirit and intended scope of the invention.

-81 -

WO 2018/044604 PCT/US2017/047726

WHAT IS CLAIMED IS:

1. A non-transitory computer readable medium having instructions stored
thereon that, when executed by a processor, cause the processor to provide cloud
based identity management, the providing comprising:

receiving a request from an application by a web gate for a resource, wherein the
request comprises an operation on a resource type out of a plurality of resource types
and the request specifies a tenant out of a plurality of tenants;

accessing a microservice based on the request;

resolving the resource type;

validating that the operation is supported by the resource type based on
metadata;

getting a data provider associated with the tenant;

calling the data provider to perform the operation; and

returning the resource.

2. The non-transitory computer readable medium of claim 1, wherein the
resource type comprises a schema definition, and the schema definition comprises a

plurality of attributes and metadata for each of the attributes.

3. The non-transitory computer readable medium of claim 1, wherein the
resolving the resource type comprises determining the resource type and retrieving

corresponding schema and schema definitions.

-82-

WO 2018/044604 PCT/US2017/047726

4. The non-transitory computer readable medium of claim 3, the resolving further
comprising determining which attributes are required for the resource type based on the

schema in order to perform the validating.

5. The non-transitory computer readable medium of claim 1, wherein for multiple
versions of the resource type, at least one version of the resource type comprises a tag
indicating a deprecated attribute with respect to a previous version, and at least one
version of the resource type comprises a tag indicating an added attribute with respect
to a previous resource type, further comprising:

performing the operation using the version of the resource type based on

corresponding tags of the resource type.

6. The non-transitory computer readable medium of claim 1, wherein the

operation comprises one of create, update, delete, get or search.

7. The non-transitory computer readable medium of claim 3, wherein the

resource type is a user, and the corresponding schema comprises a password state.

8. The non-transitory computer readable medium of claim 1, wherein the data
provider comprises one of a database or an Lightweight Directory Access Protocol

(LDAP) provider.

-83-

WO 2018/044604 PCT/US2017/047726

9. A method of providing cloud based identity management, the method
comprising:

receiving a request from an application by a web gate for a resource, wherein the
request comprises an operation on a resource type out of a plurality of resource types
and the request specifies a tenant out of a plurality of tenants;

accessing a microservice based on the request;

resolving the resource type;

validating that the operation is supported by the resource type based on
metadata;

getting a data provider associated with the tenant;

calling the data provider to perform the operation; and

returning the resource.

10. The method of claim 9, wherein the resource type comprises a schema
definition, and the schema definition comprises a plurality of attributes and metadata for

each of the attributes.

11. The method of claim 9, wherein the resolving the resource type comprises
determining the resource type and retrieving corresponding schema and schema

definitions.

12. The method of claim 11, the resolving further comprising determining which

-84 -

WO 2018/044604 PCT/US2017/047726

attributes are required for the resource type based on the schema in order to perform

the validating.

13. The method of claim 9, wherein for multiple versions of the resource type, at
least one version of the resource type comprises a tag indicating a deprecated attribute
with respect to a previous version, and at least one version of the resource type
comprises a tag indicating an added attribute with respect to a previous resource type,
further comprising:

performing the operation using the version of the resource type based on

corresponding tags of the resource type.

14. The method of claim 9, wherein the operation comprises one of create,

update, delete, get or search.

15. The method of claim 12, wherein the resource type is a user, and the

corresponding schema comprises a password state.

16. The method of claim 9, wherein the data provider comprises one of a

database or an Lightweight Directory Access Protocol (LDAP) provider.

17. A system for providing cloud based identity and access management,

comprising:

-85 -

WO 2018/044604 PCT/US2017/047726

a plurality of tenants;
a plurality of microservices; and
one or more processors that:

receive a request from an application by a web gate for a resource,
wherein the request comprises an operation on a resource type out of a plurality
of resource types and the request specifies a tenant out of the plurality of
tenants;

access a microservice out of the plurality of microservices based on the
request;

resolve the resource type;

validate that the operation is supported by the resource type based on
metadata;

get a data provider associated with the tenant;

call the data provider to perform the operation; and

return the resource.

18. The system of claim 17, wherein the resource type comprises a schema
definition, and the schema definition comprises a plurality of attributes and metadata for

each of the attributes.

19. The system of claim 17, wherein the resolve the resource type comprises

determining the resource type and retrieving corresponding schema and schema

-86 -

WO 2018/044604 PCT/US2017/047726

definitions.

20. The system of claim 17, the resolve further comprising determining which

attributes are required for the resource type based on the schema in order to perform

the validate.

-87 -

PCT/US2017/047726

WO 2018/044604

vl
/
/ / \ aviMag Pojg) AluBp| BlRRIC /f,
N ,
m |
O (I08) onieg Dvay
gel 16Ty somsg sy
GE T W0LY /W05 somiag Bunienig
SSUOG PET (peng) eameg Aopatg ULCRB i sddy
il o : Apuept 1l Ay L
PO 5er umyp) sanisg uep] Idy
aE] (WYS) euuiag uoesapey
frostuny cpesdn) sumies 0S5 Wi
m»*(M m fEM Messsnsaannd
/,_ .\ \N SPIBOGUSE(] / SHoday / _ /
/.,m/z M\\ “ \] M\\
A I 74 4
82l ol gl

sy ssuisng

sldy pNo JslilBd

I

J

oo

:

A,

N e

\N |

sUdy pnojs Aued .8
11
SOy pROID BRI

,
My «:&&:&&&:\\

/

i
VY
W

Ny
004

1/16

PCT/US2017/047726

WO 2018/044604

280 ~

—

¥

sk

Y

SpIMSSR T

A

7

N Aigesg
,,,w BAOY \
TN,
N/

abpug Qi

sty ssiRid Uny

e,

stdy |)

;
b
§
£
£
§
3

817

RO

\\

[S—

.,

WO LT
ROELIOIOH |/
seldy
UG | | o
| | soa
' \J.m:...f Ve

(D5 sdnein 5 2881 SUig

,v\‘

L b I I e i I

A\

e

b3

H

1

H

1
P

7

808

74

2/16

PCT/US2017/047726

WO 2018/044604

90

]
3
1
i ssiuBId-UCy
b
v m ~n.,
g PR,
uanBlana
T WY0 b
sddy |
il et
e BRI sty aSiUBI4 U0
1 aoosaue)
. o
"

0
-

SN

{osuuog g urdg /
Bl

—

(IS sennuep

R

e
/

W) UoIEORUSYINY SlBepaY

x .
GGy Jethgsnyy |

93} UOIBIACIY

e = =

WP 0D 2LE 3
f e,
Sl
g0z
JTT e

3/16

PCT/US2017/047726

WO 2018/044604

2 e o e e o e e e e
i
;
gsnusid-ug :
e ~,
/ n N
7 ™ M
b, ;
| I —
B BN 5T
Silthy B8i8id U0 .\\

4

e,

sddy

.,

regorerreeeeens? 4
mz.............\

A

,/ dvil

5,
s,
5

/
f/\\/.

0oy

f

2

2D

i Bi

IR 3An0E) R S8 2WAG

P

sddy JBUWSND

~,
/. on

28 DAY

IR

N
A

SODIaERR]
SRIAAT SER

SEAnIES

[—

SO

\\J

00y

TR

4/16

PCT/US2017/047726

WO 2018/044604

Aypuap) 10S pUB B0 1S -

SPIBPUBIS WIDS TINYS TWnYD m,\mgﬁ Qado -
pIROIG SjBAlld - sade ok) Se0IABS Auen 1aaEsr -

RADL SHNG - sdnoigy g 1857) 2UAS - ",
SO - ,, ARG PO Anuepl epRID Y
7 uondn | I
G050y e uogeiba B0 o
e Va o NBUIBO RO u\ . : 915
, W 5, % ..w [yewnbeusy USYO] b, .
: s i : - ; 12+
N ya st {dY D UDNBOMUSINY B8O b
v N@w | s £is
‘% e S R Fp pewsbeusy S0 Josh _:f.x. 81
-) 3
.......... - \ | wawelieuey pIOMSSEY ., o
o o J ; ?
w B9 PO) mwmw“w - _Hojensibey BIARS RS fo
w \. B e R
)\... % » “ % ./ a....,. \.\
AINORS 14V 18T 8 OS5 U9 SR8 107 81RS) INDID XNION ot 3
506 N
i
5,
S
(0%

5/16

PCT/US2017/047726

WO 2018/044604

[RORISG BOIRTRADN Dd0 Bk} utnpidss @ : mm nw
;) S%ﬁm LT e

f../ f&i BUIBIOS
: muoERIegD | oo
7 P moss o v, v
Ty o o Y / : T,
" N T BE

m.
M b7 SO RUDgeUo puE yypey seysygd
. VE# 3 oy vy s 5 73 1
M s 079 St odinos suEn SOy Aesg
L { semnousy sisy/pesy |
3
i
w

fwe)

Pl
~
(P‘\% -

Y SUIE

e ssEdhG 4 \\,,,w, .

st . w SHOIESS 875 . S
pwsyd ssaoond i W Apneaipg) ; \,\ Cogie

SRYISENS [esy .

3 ity I e ™, " aRiEg ARG «

: , SRS P N

e 1 SHOOEY +

QN\(re— H ;\m”m -

SUCHOIGNY HA
SEMMING BHNINERIRE

PO

o i

SHIBAY

o
«i%

L d

E BUNDEE TIRBIGT Q%% . , : =
7/ fﬁm& SEHAIBE WAHRIY s, aibm dibig 464 M\%m‘w%\
Y ey ¢ UOBEM
429 I 2 mﬁﬁ&w ﬁmm@m e 6 §30 um@ \Jopesy

AW
LR
hSw
bt
frond
L%
N
]
€2

FEHALSEOLIN Y

6/16

PCT/US2017/047726

WO 2018/044604

v9 "Bi4

(NE)
99IA19g Buliojuoy pnoio

(e1egex3 pabeuey) sewayos ueusa] Jad

(suydess)
90IAI8S SO Pno|D

9JIAISG UONEDYNON PNOID

8oIAleg abeIoIS pNnolD

S92IN0S9Y

sbumes

uonezijeuosiad

r\J

avl.

jueua] |eqojo

alo1g Auap|

(elnquiN |eusaiu]) 991nI8S 81ndwo) pnojD

r.woo

m_m_w__w_we 5 M_m_m sidY 8009 || sidv uonezuoyny || sidv uonesnuauyiny || sidy ebeiois || sidy wea3 || sidv tebeuely ejeq 00
369 Th69 269 ade9 adsg adeo apge SeLeIqIT aInjnseu] SOA -
adeg
Qmo_;_m:m elep h@:_ﬁ_uv:m “suonduosqns A_ozmoo pnop 211and)] [ebeiars | [yoeo | [suode | [0ss || In | [Jeinpauas gor |
B ‘SUoIBoIIoU J9SN) J0SS920I1d JUSAT Jobeuepy ao1AI9S =y
.Q\WN@ M@N@ arle rQ\MN@ ..Q\&N@ rnﬂmwomwu_?hmm@%.%;oq@w%%t:_ Sodl
1299
wC@E@@mCm_\/_ Jayolg Jayolg 90uUBUJIBA0D) 90UBUIBAO0D) 90INIDS 90INIBS 90INIDS 90INIDS
JUNoooY djeAud | | uonesspad || Nuiny || esudisjuz || pue oss pnoio ++NI0S || zInvs || zuinvo || 1euuod guedo
ade9 an a2s9 el
rg\mmm M@m@ arse S92IAIRS Wniwald SOdl .Q\m.vm rQ\@.v@ Q.v.vmwmo_zrmwww.vmg.hohﬁm_n_ Sodi r&.vm
0
q0se dllH/1s3¥ || wios || zavs || zunvo || 1wsuuon glusdo
< < = < < spJepuels uado uo ying
caseo 08¢0 q9¢9 are9 aze9 ade9 adz9
D dd
Hhuwwx coﬁomh::oo LoteJoaiu v P9 _ N uiboT IN Ulwpy IN ulwpy IN Jasn pu3
L NIDS YNM 13 SJemulli4 sddy souped | . sdonaq || sewoisng || sewoisno
Jusby uonesbeyul gv) adze asig =
ayoedy abpuLg Anuap| uonesbayu) goro_ sddy Jswoisng _ adlo ados adoo aro9 1N SOal
avz9 a?l9 arle 209

—~
4009

7116

WO 2018/044604

Rt

PR

&

W

»

BEED

PCT/US2017/047726

.,;(1}\ 3 %x
e S8

Aarager

L
o

&
{
|

o

WO 2018/044604 PCT/US2017/047726

800

/

802
Client
812
4
804 }
A Service proxy |1
User
810
— v
Database Connection
806 Pool
\——\
Tenant 1

808 ~1C

Tenant 2
808 ' O

Tenant 3
808 1

9/16

PCT/US2017/047726

WO 2018/044604

0AIeg
abRinig
240

[A%S)

208G
UOHEDON
2d0

gi8
\
<
B ERQSO0 | 181) 21015) wuam_
e IZSURNTDS 0908/ vaT X DN
| M _,&\gm/ L oz

1
C e o e o o e oo
¥
i 4
1
1
;

gt :

}i!!i!l!&fﬁ!ll,&i -y
[

/

dbiH

i
m
H i w
Ny A/ § o dLH
m B SYUIAST sDNIsREY mumlM - w @@WM@”\\W
: iidn)
m 0oy BincuiN

_N.mm | SHHUAISS ULOI] ST

F
"

6 'bi4

RRAG YT

W3 paol)

: W M/ G918
i1
§
S e E PAAYD DO
§ SHINYG U0
M W %&m [" N dLiH B wmﬁx ceb
m " o 4 18 mc_wnon B84 SO - o] Lulnoy £
: W) suoiessd) sl L PUR0N Q98 330 J WMOd0 | B
: sucHEsado 1] STIMES DO, - w .
W pEr .ngw&mgo..ﬁﬁwcmnmh, W m / di Big $00 Ay A dt &g 3O\
RO o /N IR B 47 0L6 806 T
: j 807 188 ON Y07 158
111111 ey
5 :
206 b6 .f/
006

10/16

PCT/US2017/047726

WO 2018/044604

g

e VT .

R %

Lar @

wlt
H

A Yy £ R

| ipeBlerg) meang

. | Buen didy shnen 1o el g
ALY

ey

J g]

rhYyrrrrrrrrrrrrrns
eyt

et ruraii it

o,
=

e
s B
Rt

~
T T IR B 1

<

11/16

WO 2018/044604

&

AR R DWW KA

L

SR

Ny e
>

R

&

PCT/US2017/047726

%\\\\\\
1

iiiiiiiiiiii)iiiiiiiﬁ
e,

?’
7y
H
H
H
H

ER R L EEY

12/16

WO 2018/044604 PCT/US2017/047726

1200

N

{

Node 12302 Node 1230
el o [z | | St
1290a |122683] = HERE S e

3 I EEE §

§ ¥
Node 1230¢ Node 1230 Node 1230e
Server 1220c Servey 1220d
Cluster 1200a
F i s
Cluster 1200b
Cluster 1200c
Fig. 12

13/16

PCT/US2017/047726

WO 2018/044604

spary suoneayddy
eigy "1 alojgerq 17zl 01l w
G0EL
it ™~
(m%ge e - dadva {nepionangsieass ipule da _ (|8Inoaxe Yeysdaid—
70— (deyJoreaio {1950} | xawuonipunieb ey Blfjueus| {(Lonesyddy' 1 | uuonaaprisbiiabeuen: _%EWT
{depyioresi (dey)arpai
(depyiolesiy dpe-
(Lepinoidsiequal jogsel = dpe A
{«adA | sinosayjaradi | soinosayiab iebeueyyingadf| somosay=ieqsel «- JeDeUEeIN0SSY
{80In0S8Y) 8188l
ri.//._ (U0 aealo (fay)eealo (spalr)sjeals (sBupasddy)iypow (Goyleleann || (1esnjsjealn ddyjopean
Sigveaert 1B uswop iBpy Aoy 1By spain 1By sBumes 1y 910y 1By Jesny il %magmaﬁ
M LS9+ {08
.A\. 0
Gheh <adf 2anosayls! 1S0d 111 B0l NNy {30r %ﬁ "X 4apeay djy
sBuleS/ HO 1Y Jseniel [SIHWIOS
Siss(Y/ 1S0d

suofeayddy/ 150d

14/16
SUBSTITUTE SHEET (RULE 26)

PCT/US2017/047726

WO 2018/044604

uondaoxa
10 80n089]
195() MOU UINYS) @

80Inosel 9Jealn o)
|y <8Gh}> g0 =

(pul
Ba) payads sod
deo mﬁ 0] seepi

11 SONEA BINGUNE <ol

59 Ay deu »

pur g
[B4o[9oapr "gpr
38 S<adf> =

A

Bpinel e
b <90ifis

{

<2

e

g JU9Ag Usgand =
* (Jraiisod jes e
L7~ saUiey e

5eSp! 0} Sawey e 19fie) wioy dew

Wb~ (suondo

delliaesio ispinolde) mm&% P> Jjeo

QIng 185 4 Sjelsush

s3uey

1ye jefile) o) sauey e seep deul

(leearaid jeo

MISUBSSI) %mﬁ%ucm flepdn

,;m lesio/aepdnyaiesls 'syneep 19s

{lajalnaiEpiEn 1o
0j8 'SanjeA [ealuouEs
84j3 % 1 SINGINE Sjepien

pamojyuolERdDs! «

PIZUOYINYS! ®

&

=5

{ 1
{SUOY

ido ‘sasn)eiear ey

IefeueyyaINoSNI0R Sy

(suondo
‘a5 apeainisod

{suondo
RspjeleaInaid

{suondo Jesp)
Jaleainslepien

20vl

JabeuepyeE(
SpUAIK® <8df | 20IN0ssY>

suondo {peoifed
% 30M088) Jash yos! Josny
fuissed poysew asticdsey
geap<ssen T ST
sebeuels eo e
suondo 0} jueus)
+ SJ8(JeUIYIS + 6071
1or18dA | somnosay \
PpE» {peofey
1804 v paypads Uos 19sn}
Jiodpus Buisn el
sle(jeuieyas § 1804
19718041 90IN0SAY e
185) Y00 o fepesy
JAYN
9 5 “NIVIROG
901N0S9) JOSN 0)
LaMU00 @mcmg "ALILNAd]
uos! assed “senbal ?wm
dpysseood e~ oo + G
90IN0SENISTMaLAURD)

15/16
SUBSTITUTE SHEET (RULE 26)

PCT/US2017/047726

! M A

H EaY

2. Sz%ﬁ%%w seE s MOISINBOIGPS) Jes0ids()seepi, EWRLRS

ol [81URNIS09, | mgm ' vonduosap, . auweu, Ladhy, sy, 1250

" B | \
('7.3100:10:5UeJed. ol U 188N, ’ T rmw
; mea“Ouwgowé_om”mgmﬁgUEH“%_a%s Koy syoen BUIBYIS
sisfieupy s0in0sey

ALUIOMN0STY speay iy
<PISTRIS8()/ | AU/ D)

e B9 NOISHIA WWEHOS
SIS/ MUNUPE/1 S0

[T

™ s A
LA |y JaBeueyy 80in0sey S0usy LA Iy JebRUBp 20In0SaY Sjouisy
X g SIOABUIBYIS E Q Ege@ maqs S 1neo
UoIsia mmw BUIBYIS 18 Wstas 1esn
Brysunyo el }._“_ #) U01 uoeniddy
CIRYSUINYQ "Bre) A el uol J Y Heol y

WO 2018/044604

16/16
SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2017/047726

A. CLASSIFICATION OF SUBJECT MATTER

INV. GOD6F21/41 GO6F21/60
ADD.

According ta International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched {classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

figures 1-11

31 January 2013 (2013-01-31)

paragraph [0101] - paragraph [0107]

X US 20167124742 A1l (RANGASAMY VENKATACHALAM 1-20
[US] ET AL) 5 May 2016 (2016-05-05)
paragraph [0041] - paragraph [0106];

X US 20147280948 Al (SCHMIDT RENE W [DK] ET 1-20
AL) 18 September 2014 (2014-09-18)
paragraph [0013] - paragraph [0054]

X US 20147090037 Al (SINGH SERVESH PRATAP 1-20
[IN]) 27 March 2014 (2014-03-27)
paragraph [0021] - paragraph [0051]

X US 2013/031136 Al (SHAH ANKUR B [IN]) 1-20

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Speoial categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
oited to establish the publication date of another sitation or other
special reason (as specified)

"0O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention sannotbe
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the interational search

19 Qctober 2017

Date of mailing of the international search report

07/11/2017

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswik

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Jascau, Adrian

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2017/047726
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2016124742 Al 05-05-2016 AU 2015338902 Al 22-12-2016
CA 2951939 Al 06-05-2016
CN 106464736 A 22-02-2017
EP 3155524 Al 19-04-2017
JP 2017525232 A 31-08-2017
SG 11201610099P A 30-05-2017
US 2016124742 Al 05-05-2016
US 2016127254 Al 05-05-2016
US 2016127454 Al 05-05-2016
US 2017111220 Al 20-04-2017
WO 2016070145 Al 06-05-2016
US 2014280948 Al 18-09-2014 NONE
US 2014090037 Al 27-03-2014 US 2014090037 Al 27-03-2014
WO 2014046857 Al 27-03-2014
US 2013031136 Al 31-01-2013 NONE

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - description
	Page 82 - description
	Page 83 - description
	Page 84 - claims
	Page 85 - claims
	Page 86 - claims
	Page 87 - claims
	Page 88 - claims
	Page 89 - claims
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - drawings
	Page 102 - drawings
	Page 103 - drawings
	Page 104 - drawings
	Page 105 - drawings
	Page 106 - wo-search-report
	Page 107 - wo-search-report

