(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
05 April 2018 (05.04.2018)

(10) International Publication Number

WO 2018/058509 A1

WIPO I PCT

(51) International Patent Classification:
GO6N 3/08 (2006.01)

(21) International Application Number:
PCT/CN2016/101043

(22) International Filing Date:

30 September 2016 (30.09.2016)
(25) Filing Language: English
English

(71) Applicant: INTEL CORPORATION [US/US]; 2200
Mission College Blvd., Santa Clara, California 95054 (US).

(26) Publication Language:

(72) Inventors; and

(71) Applicants (for BZ only): YAQ, Anbang [CN/CN]; 8F,
Raycom Infotech Park A, No. 2 KeXueYuan South Road,
ZhongGuanCun, HaiDian District, Beijing 100090 (CN).
GUO, Yiwen [CN/CN]; 8F, Raycom Infotech Park A, No.
2 KeXueYuan South Road, ZhongGuanCun, HaiDian Dis-
trict, Beijing 100190 (CN). LI, Yan [CN/CN]; 8F, Ray-
com Infotech Park A, No. 2 KeXueYuan South Road,
ZhongGuanCun, Beijing 100190 (CN). CHEN, Yurong

[CN/CN]; Room 503, Unit 1, Building 4, QingFengHua-
JingYuan, Haidian District, Beijing 100085 (CN).

(74) Agent: NTD PATENT AND TRADEMARK AGENCY
LIMITED; 10th Floor, Block A, Investment Plaza, 27 Jin-

rongdajie, Xicheng District, Beijing 100033 (CN).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA,CH,CL,CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KW,
KZ,LA,LC,LK,LR,LS,LU,LY,MA, MD, ME, MG, MK,
MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA,
PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD,
SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT,
TZ,UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM,KE, LR, LS, MW, MZ,NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

(54) Title: DYNAMIC NEURAL NETWORK SURGERY

800

Receive Relerence Weights for Reference DNN Model

—— 801

y

Generate Sparsely Connected DNN Model Heratively

Prune and Splice Available Connections Between
Adiacent Layers of the DNN 803

A

A - 802

Update Weights of Connected and Disconnected
Available Connections 804

wo 2018/058509 A1 | I0K 00000 O

5

Store and/or Implement Sparsely Connected DNN — 805

FIG. 8

(57) Abstract: Techniques related to compressing a pre-trained dense deep neural network to a sparsely connected deep neural network
for etficient implementation are discussed. Such techniques may include iteratively pruning and splicing available connections between
adjacent layers of the deep neural network and updating weights corresponding to both currently disconnected and currently connected
connections between the adjacent layers.

[Continued on next page]

WO 2018/058509 A1 {10000 N OO A

EE, ES, FL, FR, GB, GR, HR, HU, IF, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:
— of inventorship (Rule 4.17(iv))

Published:
— with international search report (Art. 21(3))

whn

10

20

[\
whn

WO 2018/058509 PCT/CN2016/101043

DYNAMIC NEURAL NETWORK SURGERY

BACKGROUND

Deep neural networks (DNNs) are useful in a variety of artificial intelligence fields such
as computer vision using deep conveolutional neural networks (CNNs) and speech recognition
using deep recurrent neural networks (RNNs). However, known DNN architectures may include
many stacked layers and learnable parameters, resulting in heavy implementation costs in terms
of computation and memory. As a result, it may oot be possible to deploy such DNNs on current

or emerging devices such as mobile devices.

Current techniques for DNN model compression and/or implementation speed up include
lossy and lossless approaches. Lossy technigues include truncated singular vector decomposition
(SVD), vector quantization (VQ), and hashing to remove parameter redundancy in the layers of
well-trained DNN models as well as graphics processing unit (GPU) implementation, Fast
Fourier Transforms (FFTs), circulant projections (CPs), and low rank expansions (LREs) that
attempt to speed up the feed-forward testing of well-trained DNN models. One drawback of such
lossy techniques is that they suffer from accuracy loss to some extent, especially for recent
binary and ternary methods with model accuracy dropping significantly when handling deep and
dense neural networks. Lossless techniques include reducing well-trained dense DINN models
into lossless sparse models by deleting unimportant parameters and retraining the remaining ones.
Such techniques may reduce storage requirements and may be used in designing hardware
accelerators for implementation. However, such lossless techniques may have difficulties such as
irretricvably losing connections during training and learning inefficiency as several (¢.g., at least
4) iterations of alternating pruning and retraining (including hundreds of thousands of training

iterations) are required.

It may be advantageous to compress DNNs for efficient implementation on ever more
mobile devices while maintaining high accuracy. It is with respect to these and other
considerations that the present improvements have been needed. Such improvements may
become critical as the desire to perform artificial intelligence in a variety of contexts becomes

more widespread.

L

10

15

20

WO 2018/058509 PCT/CN2016/101043

BRIEF DESCRIPTION OF THE DRAWINGS

The material described herein is illustrated by way of example and not by way of
limitation in the accompanying figures. For simplicity and clarity of illustration, elements
illustrated in the figures are not necessarily drawn to scale. For example, the dimensions of some
clements may be exaggerated relative to other elements for clarity. Further, where considered
appropriate, reference labels have been repeated among the figures to indicate corresponding or

analogous elements. In the figures:
FIG. 1 illustrates an example device for compressing a trained deep neural network;
FIG. 2 illustrates an example device for implementing a sparse neural network model;
FIG. 3 illustrates an example reference DNN model;
FIG. 4 dlustrates an example process for implementing a discriminative function;
FIG. 5 illustrates example pruning and splicing across example iterations;
FIG. 6 illustrates an example sparse DNN model;

FIG. 7 is a flow diagram illustrating an example process for generating a sparse deep

neural network model;

FIG. 8 is a flow diagram illustrating an example process for compressing a deep neural

network;

FIG. 9 is an illustrative diagram of an example system for compressing a deep neural

network;
FIG. 10 1s an illustrative diagram of an example system; and

FIG. 11 illustrates an example device, all arranged in accordance with at least some

implementations of the present disclosure.

W

10

20

WO 2018/058509 PCT/CN2016/101043

DETAILED DESCRIPTION

One or more embodiments or implementations are now described with reference to the
enclosed figures. While specific configurations and arrangements are discussed, it should be
understood that this is done for illustrative purposes only. Persons skilled in the relevant art will
recognize that other configurations and arrangements may be employed without departing {rom
the spirit and scope of the description. It will be apparent to those skilled in the relevant art that
techniques and/or arrangements described herein may also be employed in a variety of other

systems and applications other than what is described herein.

While the following description sets forth various implementations that may be
manifested in architectures such as system-on-a-chip (SoC) architectures for example,
implementation of the techniques and/or arrangements described herein are not restricted to
particular architectures and/or computing systems and may be implemented by any architecture
and/or computing system for similar purposes. For instance, various architectures employing, for
example, multiple integrated circuit (IC) chips and/or packages, and/or various computing
devices and/or consumer electronic (CE) devices such as set top boxes, smart phones, elc., may
implement the techniques and/or arrangements described herein. Further, while the following
description may set forth namerous specific details such as logic implementations, types and
mterrelationships of system components, logic partitioning/integration choices, etc., claimed
subject matter may be practiced without such specific details. In other instances, some material
such as, for example, control structures and full software instruction sequences, may not be

shown in detail in order not to obscure the material disclosed herein.

The material disclosed herein may be implemented in hardware, firmware, software, or
any combination thereof. The material disclosed herein may also be implemented as instructions
stored on a machine-readable medium, which may be read and executed by one or more
processors. A machine-readable medium may include any medium and/or mechanism for storing
or transmitting information in a form readable by a machine (e.g., a computing device). For
example, a machine-readable medinm may include read only memory (ROM); random access
memory {RAM); magnetic disk storage media; optical storage media; {lash memory devices;
electrical, optical, acoustical or other forms of propagated signals (e.g., carrier waves, infrared

signals, digital signals, etc.), and others.

WO 2018/058509 PCT/CN2016/101043

References in the specification to "one implementation”, "an implementation”, "an
example implementation”, eic., indicate that the implementation described may include a
particular feature, structure, or characteristic, but every embodiment may not necessarily include

the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily

W

referring to the same implementation. Further, when a particular feature, structure, or
characteristic is described in connection with an embodiment, it is submitted that it is within the
knowledge of one skilled in the art to affect such feature, structure, or characteristic in

connection with other implementations whether or not explicitly described herein.

Methods, devices, apparatuses, systems, computing platforms, and articles are described
10 herein related to compressing deep neural networks by pruning and splicing a trained deep neural

network to generate a sparse neural network for artificial intelligence implementations.

As described above, deep neural networks (DNNs) may include many layers and many

parameters that place a heavy burden on devices during plementation. As 1s discussed herein, a
trained (e.g.. pre-trained) deep neural network model having full connectivity, convolutional

15 layers, {ully connected layers, or the like between available connections and weights or
parameters for each of such connections, convolutional layers, fully connected layers, or the like
may be received {or compression. For example, such DNNs may be characterized as dense
DNNSs. The compression discussed herein may include iterative pruning and splicing operations
and parameter weight update operations. Such pruning operations {e.g., disconnecting an

20 available connection at a particular iteration) may compress the DNN model by removing
unimportant connections and such splicing operations (e.g., reconnecting previously
disconnected available connections at a particular iteration) may provide recovery for pruned
connections that arc found to be important over the iterations. Such techniques provide dynamic
network surgery for learning lossless highly sparse DNNs. Such technigues may be performed on

25 the fly to compress a pre-trained (i.e., fully trained) DNN model.

The reference DNN received for compression may be any suitable DNN such as a deep
fully connected neural network, a deep convolutional veural network, a deep recurrent neural
network, or the like. The compressed or sparse DNN may be implemented for classifying input
data to generate classification data in the context of, for example, computer vision, visual

30 recognition, face recognition, face detection, object detection, gesture recognition, voice
detection, voice identification, speech recognition, or the like. As discussed, the DNN model

Cﬁm}jressigi‘i tec}}i}iqueg digcussed hergii‘i Ina‘;’ ;ﬂf“!i}[{ﬂ t‘si‘]'lﬂi.ﬂﬂ QﬂA Qi’\}';i“‘;hﬂf [\!\P'!"Qt‘;!’\ﬂ@ It‘s (Nasaalal

W

10

20

WO 2018/058509 PCT/CN2016/101043

embodiments the pruning and splicing operations are integrated into a Stochastic Gradient
Descent (SGD) variant by updating parameter importance whenever necessary. The discussed
techniques may provide sparse DNNs with ~18-100x compression rates or more without
accuracy loss allowing implementation, due to the decreased memory, compuiation, and energy

requirements, on a wider range of devices such as mobile devices and the like.

In some embodiments discussed herein, a sparsely connected deep neural network model
may be generaied based on a {ully trained deep neural network model having an input layer, a
plurality of hidden layers, an output layer, and available connections between the layers by,
iteratively, pruning and splicing available connections between at least two adjacent layers of the
deep neural network model such that pruning includes disconnecting connections of the available
connections and said splicing includes reconnecting connections of the available connections
(e.g., reconnecling connections that were disconnecied in a previous iteration) and updating
weights corresponding to both the currently disconnected and the currently connected
connections of the available connections between the two adjacent layers. Such iterative pruning
and splicing may be performed any number of times such as ~700,000 times (e.g.. on AlexNet
including 8 layers and 60 million paramelers) or the like to provide connections at a final
iteration and corresponding weights. The sparsely connected deep neural network model having
{inal iteration weights for only connected connections of the available connections may be stored

m memory for implementation and/or transmitted to another device for implementation.

FIG. 1 illustrates an example device 100 for compressing a pre-trained deep neural
network, arranged in accordance with at least some implementations of the present disclosure. As
shown in FIG. 1, device 100 may include a deep neural network (BNN) pre-training module 101,
a pruning and splicing module 102, and parameters updating module 103. As shown, pruning and
splicing module 102 and parameters updating module 103 may be implemented as a compression
module 104 or the like. As shown, in some embodiments, device 100 may implement both DNN
pre-training module 101 and compression module 104, For example, DNN pre-training module
101 and compression module 104 may be characterized as a sparse DNN model pipeline. In an
embodument, device 100 may implement only coropression module 104 and a reference DNN
model 113 may be received from another device. Device 100 may be any suitable form factor
device such as a personal compuler, a laptop computer, a tablet, a phablet, a smart phone, a
digital camera, a gaming conscle, a smart TV, a wearable device, a display device, an all-in-one

device, a two-in-one device, an in-vehicle infotainment device, a web server, or the like.

W

10

20

WO 2018/058509 PCT/CN2016/101043

As shown, DNN pre-training module 101 may receive an initial DNN model 111 and a
tratning data set 112 and DNN pre-training module 101 may generate reference DNN model 113
by training initial DNN model 111 using training data set 112. Initial DNN model 111 may be
any suitable deep neural network such as a deep fully connected neural network, a deep
convolutional neural network, a deep recurrent neural network, or the like. In some embodiments,
mitial DNN model 111 may have layers that provide inner products on vector spaces for

compressing using the techniques discussed herein.

DNN pre-training module 101 may generate reference DNN model 113 using any
suitable technique or technigques. For example, training data set 112 may include training data for
object recognition training {e.g., images having pre-labeled objects), training data for speech
recognition training {(e.g., voice recordings of known utterances), and so on. Through iterative
fratning using fraining data set 112, mitial DNN model 111 may be trained to generate reference
DNN model 113. For example, initial DNN model 111 may have a predetermined number of
layers each having a predetermined number of nodes. For example, initial DNN model 111 may
have an input layer, a number of hidden layers, and an output layer each with any suitable
number of nodes. The weights or parameters of inttial DNN model 111 may then be determined
based on training data set 112 to generate reference DNN model 113. Reference DNN model 113
may include any suitable data structure representing a deep neural network. For example,
reference DNN model 113 may include weights for a fully connected deep neural network (e.g.,
a weight for each available connection of the DNN), weights for coefficients of cach kernel of a
convolutional neural network, or the like. For example, reference DNN model 113 may include

on the order of 60,000,000 weights or parameters.

Also as shown, compression module 104 receives reference DNN model 113 and at least
a portion of training data set 112 and compression module 104 generates a sparse DNN model
116 using techniques discussed further herein. Sparse DNN model 116 may include any suitable
data structure representative of a sparse DNN model. For example, sparse DNN model 116 may
include weights for only those connections that are not pruned by compression module 104. All
other weights may be set to zero (e.g., all other available connections may not be used) such that

compression of reference DNN model 113 is provided.

FIG. 2 illustrates an example device 200 for implementing a sparse neural network model,
arranged in accordance with at least some implementations of the present disclosure. As shown

in FIG. 2’ device 200 may include a pre-pr@cpccinn minditle 701 and a enarce MINN madel

W

10

20

WO 2018/058509 PCT/CN2016/101043

implementation module 202 that may receive sparse DNN model 116 {(e.g., from volatile or non-
volatile merory, not shown) and implement sparse DNN model 116. As shown, in some
embodiments, device 200 may implement only pre-processing module 201 and sparse DNN
model implementation moduale 202 such that sparse DNN model 116 may be received from
another device. For example, pre-processing module 201 and sparse DNN model implementation
module 202 may be mmplemented as an artificial intelligence processing application or pipeline.
In an embodiment, device 200 or device 100 may implement one or more of DNN pre-training
module 101, compression module 104, pre-processing module 201, and sparse DNN model
implementation module 202. As with device 100, device 200 may be any suitable form factor
device such as a personal computer, a laptop computer, a tablet, a phablet, a smart phone, a
digital camera, a gaming console, a smart TV, a wearable device, a display device, an all-in-one

device, a two-in-one device, an in-vehicle infotainment device, a web server, or the like.

As shown, pre-processing module 201 may receive input data 211 and pre-processing
module 201 may generale pre-processed data 212, Input data 211 may include any suitable data
and pre-processing module 201 may generate pre-processed data 212 using any suitable
technigue or techniques such that pre-processed data 212 are suitable for processing by a deep
neural network. For example, input data 211 may include image data {e.g., from an image sensor
or image preprocessor), audio data (e.g., from a microphone or audio preprocessor), or the like.
Pre-processing module 201 may pre-process input data 211 into a form of a pre-processed or
normalized data suitable for processing by sparse DNN model 116. For example, pre-processing
module 201 may provide image resizing, cropping, subtraction of pixel mans from a training
dataset, or the like in the context of image processing or audio normalization or the like in the

context of andio processing to generate pre-processed data 212.

Pre-processed data 212 may be received by sparse DNN model implementation module
202 and sparse DNN model implementation module 202 may implement sparse DNN model 116
to generate classification scores 213 or similar data representative of outputs from an output layer
of sparse DNN model 116. For sparse DNN model 116 as implemented by sparse DNN model
implementation module 202 may provide hierarchical {eature extraction (e.g., via hidden layers)
and classification (e.g., via an output layer) to generate classification scores 213. Classification
scores 213 may include any suitable data or dala structures classifying features, regious, temporal
portions, or the like of pre-processed data 212 as provided by sparse DNN model implementation

module 202. For example, classification scores 213 may be outputs from an output layer of

W

10

20

WO 2018/058509 PCT/CN2016/101043

sparse DNN model 116. In the context of speech recognition, classification scores 213 may
include scores of sub-phonetic audio units for time slices of a speech recording represented by
input data 211. Such classification scores may be used to recognize received speech into a
recognized word sequence. In the countext of {acial recognition, classification scores 213 may
represent likelihoods an image represented by input data 211 includes a face of multiple users,
and so on. In an embodiment, classification scores 213 are used by another module or application

to provide a variety of outputs for device 200.

For example, sparse DNN model implementation module 202 may implement sparse
DNN model 116 as a part of an artificial intelligence processing application or pipeline or the
like such that input data 211 is received for processing, pre-processed data 212 are optionally
extracted from input data 211 (as needed, in some examples sparse DNN model implementation
module 202 may be capable of processing input data 211), classification scores 213 are generated
by sparse DNN model implementation module 202 based on pre-processed data, and
classification scores 213 are used to generate data for use by device 200 and/or for presentation

to a user of device 200.

For example, the artificial intelligence processing application receives input data for
classification and classifies the input data to generate classification data. In an embodiment, the
artificial intelligence processing application is a computer vision application, the input data is
image or video data, and the classification data represents labeled 1mages or video (e.g., images
with regions labeled with background, car, person, animal, hand, face, etc.). In an embodiment,
the artificial intelligence processing application is a face recognition application, the input data is
image or video data, and the classification data represents labeled faces (e.g., images or video
with regions labeled as faces and with such faces labeled with an identification of to whom the
face belongs). In an embodiment, the artificial intelligence processing application is a face
detection application, the input data is image or video data, and the classification data represents
labeled {aces (e.g., images or video with regions labeled as positive detection of faces). In an
embodiment, the artificial intelligence processing application is an object detection application,
the input data is image or video data, and the classification data represents labeled objects (e.g.,
images or video with regions or objects labeled as people, trees, buildings, chairs, etc.). In an
embodiment, the artificial intelligence processing application is a gesture recognition application,
the input data is image or video data, and the classification data represents labeled gestures (e.g.,

a hand waving, a head nodding, etc.). In an embodiment, the artificial intelligence processing

W

10

20

WO 2018/058509 PCT/CN2016/101043

application is a voice detection application, the input data is audio data, and the classification
data represents an indicator that a human voice has been detected in the audio data. In an
embodiment, the artificial intelligence processing application is a voice identification application,
the input data is audio data, and the classification data represents an identification of the source
of the audio data (e.g., a speaker from a number of available speakers or the like). In an
embodiment, the artificial intelligence processing application is a speech to recognized series of
textual elements application, the input data is audio data, and the classification data represents a
series of identified words, utterances, or the like (e.g., a string of text or words corresponding to
the received speech). Although several implementations are described herein, sparse DNN model
116 as implemented by sparse DNN model implementation module 202 may be used in any
context to translate received input data to likelihood scores, classification scores, output values,

neural network output values, or the like.

Returning to FIG. 1, as discussed, DNN pre-training module 101 may generate reference
DNN model 113. FIG. 3 illustrates an example reference DNN model 113, arranged 1o
accordance with at least some implementations of the present disclosure. Reference DNN model
113 is shown n operation for the sake of clarity of presentation. As will be appreciated, reference
DNN model 113 may be a pre-trained implementation of a DNN model or structure as provided
by initial DNN model 111. As shown in FIG. 3, reference DNN model 113 may have an input
layer 301 including any number of nodes (e.g., a number of input layer nodes equal to the
number of inputs to reference DNN model 113 as provided by pre-processed data). Based on pre-
processed data, reference DNN model 113 generates classification scores 213 such that an output
layer 306 of reference DNN model 113 may include as many outputs as states or the like

provided or the like as required by classification scores 213.

With continued reference to FIG. 3, reference DNN model 113 may include mput layer
301, hidden layers 302-305, and an output layer 306. Reference DNN model 113 is illustrated as
having three input nodes, hidden layers with four nodes each, and six output nodes for the sake of
clarity of presentation. As discussed, input layer 301 may include any number of nodes. For
example, input layer 301 may have 200 to 300 nodes, 300 to 400 nodes, or more nodes.
Furthermore, as in the illustrated example, reference DNN model 113 may include four hidden
layers 302-305. However, in other exaraples, reference DNN model 113 may include three, five,
six, or more hidden layers. Hidden layers 302-305 may include any number of nodes. For

example, hidden layers 302-303 may include 1,500 to 2,000 nodes, 2,000 to 2,500 nodes, or the

W

10

20

WO 2018/058509 PCT/CN2016/101043

like. In some examples, hidden layers 302--305 have the same number of nodes and in other
examples, one or more layers may have dilferent numbers of nodes. Output layer 306 may
include any suitable number of nodes such that classification scores 213 include values for use in
artificial intelligence applications as discussed herein. For example, output layer 306 may include

hundreds of nodes, thousands of nodes, or more.

As shown, every node of reference DNN model 113 is fully connected to every node in
the adjacent layers of reference DNN model 113 (e.g.. the layers may be {ully connected). For
example, every node of input layer 301 is connected to every node of hidden layer 302 by
connections 311, every layer of hidden layer 302 is connected to every node of hidden layer 303
by connections 312, every layer of hidden layer 303 is connected to every node of hidden layer
304 by connections 313, every layer of hidden layer 304 is connected to every node of hidden
layer 305 by connections 314, and every layer of hidden layer 305 is connected (o every node of
output layer 306 by connections 315. As is discussed further herein, connections 311-315 may
be characterized as available connections such that they are connections that are available within
reference DNN model 113. Such available connections may be pruned and spliced to disconnect
some of such available connections to generate sparse DNN model 116 leaving only a portion of
connections 311--315 and with corresponding weights. Such compression advantageously
reduces the memory, computation, and power required to implement sparse DNN model 116 as
compared to reference DNN model 113. Although illustrated with respect to a fully connected
DNN for the sake of clarity of presentation, the techniques discussed herein are also applicable to
deep convolutional neural networks, deep recurrent neural networks, or the like. For example,
reference DNN model 113 may be a deep fully connected neural network, a deep convolutional

neural network, a deep recurrent neural network, or the like as discussed herein.

Returning again to FIG. 1, reference DNN model 113 and at least portions of training data
set 112 (or another training data set) are received by compression module 104 for iterative
processing by pruning and splicing module 102 and parameters updating module 103. For
example, at each iteration, pruning and splicing module 102 prunes and splices available
connections between adjacent layers of reference DNN model 113 such that pruning disconnects
previously connected available connections and splicing reconnects previously disconnected
available connections. As used herein, the term available connection refers {0 any connection
between nodes of adjacent layers that may be made or any available weighting fora

convolutional kernel or similar operator of a neural network layer. For example, an available

10

W

10

20

WO 2018/058509 PCT/CN2016/101043

connection may be currently disconnected {e.g., pruned) or currently connected {(e.g., never
pruned or currently spliced if previously praned). At a current iteration of such pruning and
slicing, pruning and splicing module 102 provides a set of connection matrices 114 (a connection
matrix for each group of adjacent layers) that indicate, for each available connection, whether the
available connection is currently connected or disconnected. Such connection matrices 114 may
be characterized as a binary matrix, a binary connection matrix, a binary pruning matrix, or the
like. Furthermore, although the discussion of compression module 104 is provided with respect
to cach group of adjacent layers being pruned and spliced, compression module 104 may be
provided only for one or more groups of adjacent layers while other adjacent layers are left fully
connected. For example, pruning and splicing may be performed on only some or a single layer

of reference DNN model 113.

As shown, parameters updating module 103 receives connection matrices 114 and
parameters updating module 103 updates weights for the available connections of reference DNN
model 113 such that weights 115 are updated for both currently connected and currently
disconnected available connections of reference DNN model 113. By updating weights 115 for
both currently connected and currently disconunecied available connections (as opposed to just
currently connected available connections), those currently disconnected available connections
that reveal themselves to be imporiant in future iterations may be spliced. For example,
parameters updating module 103 may update the weights based on a portion of training data set
112 such that the portion is evaluated by the current iteration of the DNN model and appropriate
correction or reweighting or the like is provided based on the difference (e.g., network loss)
between the result from the current iteration of the DNN model and the ground truth result based

on the known training set.

Such pruning/splicing and weights or parameter updates implemented iteratively may
sever redundant connections of reference DNN model 113 based on continual network
maintenance (i.e.. dynamic network surgery) including pruning operations to compress relerence
DNN model 113. Furthermore, splicing operations may correct over-pruning or incorrect pruning
across the iterations to reduce accuracy loss introduced by the pruning operations. Thus, the
network surgery incorporates splicing to allow connection recovery after incorrectly pruned
connections are found to become important. As is discussed further below, such praning and
splicing may be integrated into a Stochastic Gradient Descent (SGD) variant by updating

parameter importance to provide for network surgery that is dynamic and flexible.

11

10

15

WO 2018/058509 PCT/CN2016/101043

As discussed, reference DNN model 113 is received by compression module 104. In an
embodiment, reference DNN model 113 is represented as {W,: 0 < k < €} such that W,
provides a matrix of connection weights and biases (e.g., provided as a single entry) for the &
layer of reference DNN model 113, & is a counter, and C + 1 is the number of connected layers.
For the fully connected layers with p-dimensional inputs and g-dimensional outputs, the size of
W, 1s gy X py. For a convolutional reference DNN model 113 with learnable kernels (e.g., a deep
convolutional neural network), the weights may be coefficients of each kernel of the
convolutional layer of adjacent layers. For example, the coefficients of each kernel may be
unfolded into a vector and concatenated to W, as a matrix. For example, the matrices W), provide

weights 115 as illustrated in FIG. 1.

To represent sparse DNN model 116 having some available connections disconnected
(e.g., pruned), connection matrices may be provided as {W,, T,: 0 < k < C} such that each Ty, is
a binary matrix with its entries indicating the states of DNN connections (1.e., whether they are
currently connected or disconnected). For example, matrices 7}, provide for connection matrices
114 as illustrated in FIG. 1. Such matrices may be characterized as the mask matrices or the like.
For example, connection matrices 114 each include indicators that each indicates whether a
corresponding available connection is connected or not connected. Such matrices may be
implemented by a value of one indicating an available connection is connected and a value of

zexo mdicating an available counnection s not connected for example.

For a current iteration, pruning and splicing module 102 may generate connection
matrices 114 based on weights 115 from a previous iteration (and from weights of reference
DNN model 113 for a first iteration). For example, pruning and splicing module 102 may attempt
to abandon unimportant parameters (e.g., disconnect available connections corresponding to such
weights or parameters) and keep important parameters {e.g., leave connected or reconnect
available connections corresponding to such weights or parameters). Therelore, a learning
process is applied that, over multiple iterations, updates the network structure of the DNN model.
For example, making the & layer of reference DNN model 113 as an example, the optimization
problem provided in Equation (1) may be solved:

mnin LW,OT) st TP = hy (WD), v) €
klk

(h

12

1

0

WO 2018/058509 PCT/CN2016/101043

where L(-) is the network loss function, © indicates the Hadamard product operator, set [
includes all entries in matrix Wy, and h,(*) is a discriminative function. In an embodiment,
the discriminative function satisfies h,{w) = 1 if parameter w is deemed important at the

current iteration for the current layer and h,(w) = 0 otherwise.

For example, previous iteration weights may be evaluated to determine whether they
satisfy the discriminative function. If so, the corresponding connection may be maintained (if
previously connected) or reconnected (if previously disconnected) and if not, the corresponding
disconnection may be maintained (if previously disconnected) or disconnected (if previously
connected). The discriminative {unction, in some embodiments, may also indicate a no change
result such that the connection is left connected/disconnected without change. The discriminative
function may be any suitable function. In an embodiment, discriminative function, (-}, may be
designed such that # constrains a feasible region of W, 0T, and simplifies the original NP-hard

problern for the DNN.

In an embodiment, the discriminative function evaluates an absolute value of the
corresponding weight from a previous iteration. For example, available connections
corresponding to parameters or weights with a relatively small magnitude are disconnected (or
left disconnected) and available connections corresponding to parameters or weights with a
relatively large magnitude are reconnected (or left connected). In an embodiment, applying the
discriminative function comprises comparing an individual previous iteration connection weight
to a threshold and providing a disconnect indicator when the individual previous iteration
connection weight compares unfavorably to the threshold. Such an indicator may be
implemented via connection matrices 114, The threshold of the discriminative function may be
any suitable value or values. In an embodiment, the threshold is the same for all layers of the

DNN. In an embodiment, different thresholds are used for different layers of the DNN.

In other embodiments, multiple thresholds and a no change indicator may be
implemented via the discriminative {unction. FIG. 4 illustrates an example process 400 for
implementing a discriminative function, arranged in accordance with at least some
implementations of the present disclosure. Process 400 may inclade one or more operations 401—
408 as illustrated in FIG. 4. Process 400 may be performed by a device (e.g.. device 100, any

other devices or systems discussed herein, or an external training device such as a computer

13

10

20

WO 2018/058509 PCT/CN2016/101043

device or the like) to apply a discriminative function to weights to generate corresponding

prune/splice/no change indicators.

As shown, process 400 may begin at operation 401 where a particular weight may be
selected for evaluation. At decision operation 402, a determination may be made as to whether
the weight compares unfavorably o a first threshold, a. The weight and the first threshold may be
compared using any suitable technique or techniques. In an embodiment, an absolute value of the
weight (e.g., the maguoitude of the weight) 1s compared to the first threshold. If the weight
compares unfavorably (e.g., the absolute value of the weight is less than the {irst threshold),
processing may continue at operation 403, where a connection indicator for an available
connection corresponding to the weight 1s set to {alse. For example, a connection indicator of
false may provide for the corresponding entry of connection matrices 114 to indicate no
connection or disconnect for the available connection. If the available connection was previously
connected, it will be disconnected and, if the available connection was previously disconnected,

it will remain disconnected.

If the weight compares favorably to the first threshold {e.g., the absolute value of the
weight is greater than or equal to the {irst threshold), processing continues at decision operation
404, where a determination roay be made as to whether the weight compares favorably to a
second threshold, b, which is greater than the first threshold, a. The weight and the second
threshold may be compared using any suitable technique or techniques. In an embodiment, an
absolute value of the weight (e.g., the magnitude of the weight) is compared to second threshold.
If the weight compares favorably to the second threshold (c.g., the absolute value of the weight is
greater than or equal to the second threshold), processing may continue at operation 405, where a
connection indicator for an available connection corresponding to the weight is set to true. For
example, a connection indicator of true may provide for the corresponding entry of connection
matrices 114 to indicate a connection or reconnect for the available connection. If the available
connection was previously connected, it will remain connecied and, il the available connection

was previously disconnected, it will be reconnected (spliced).

If the weight compares unfavorably to the second threshold, b, processing continues at
decision operation 406, where a connection indicator {or an available counection corresponding
to the weight is set to unchanged, no change, or neutral. For example, a connection indicator of
unchanged may provide {or the corresponding entry of connection matrices 114 to indicate the

same connection status from a previous iteration. If the available connection was previously

14

10

-
whn

20

WO 2018/058509 PCT/CN2016/101043

connected, it will remain connected and, if the available connection was previously disconnected,

1t will remain disconnected.

As shown, processing may continue from any of operations 403, 405, or 406 at decision
operation 407, where a determination may be made as to whether the currently selected weight
was the last weight to be processed. I not, processing may continue at operation 401 and as
discussed above. If so, processing may continue at operation 408, where a connection matrix or

matrices may be output.

As discussed, two thresholds, a and b, may be used to evaluate a selected weight. In an
embodiment, the thresholds may be the same for each group of adjacent layers {e.g., for every
layer) of the DNN. In another embodiment, the thresholds may be different for different groups
of adjacent layers of the DNN. In an embodiment, the two thresholds may have the same
difference between them for each group of adjacent layers of the DNN. For example, two
thresholds, a, and by, may be used for the adjacent layers by providing a small margin ¢ such
that the first threshold a is selected and the second threshold by, is set as a;, + ¢ for each group
of adjacent layers. In an embodiment, dilference between the first and second thresholds across
layers are different. As discussed with respect to FIG. 4 the two thresholds may be used to set
connect/disconnect/no change indicators for each weight. In an embodiment, the

connect/disconnect/no change indicators for each weight are provided as shown in Eguation (2):

0 if ap > W
hy (E’if’;fl’ﬂ> — Tf’]) if a, < W/;{(l,j)l < by
1 if b < ||
2

where W, D is a current weight and hy, provides the discriminative function.

Returning to FIG. 1 and Equation (1), the problem of Equation (1) may be solved by
aliernatively updating (e.g., teratively updating) connection matrices 114 (e.g., T},) and weights
115 (e.g., Wy). In an embodiment, such updating may include or incorporate a Stochastic
Gradient Descent (SGD) variant. For example, connection matrices 114 (e.g., T),) may be
determined with the constraints of Equation (1) based on an implemented discriminative function

such as those described above with respect to a single threshold or two thresholds. Discussion

15

10

15

20

WO 2018/058509 PCT/CN2016/101043

now turns to updating weights 115 (e.g., Wy). Based on the method of Lagrange multipliers,

Equation (1) is equivalent to the expression provided in Equation (3):

T |4 O A (5)!
min LW,OT,) +5 Z Hhk(Wk)~ Ty
{i,jyel
(3)

with a certain ¥ > 0 and the fixed T, determined as discussed above.

Since the discriminative function, A, (), may be a Boolean-valued function, the gradient
of the discriminative function with respect to W, is zero (if it exists). Therelore, an update

operation for W, may be provided as shown in Equation (4):

Wi« w —p LW,.OT), v el

3 (%(i,,f)Téi,f})
4

where § indicates a positive learning weight. For example, weights at the carrent iteration may be
provided as updates to weights from the previous iterations such that updates include a product of
a learning rate and a partial differential of the network loss for the weight. The network loss may
be determined by applying the current iteration of the neural network to a subset of training data.
As discussed, weights or parameters are updated for not only connected weights or parameters
but also for disconnected weights or parameters (e.g., those having zero entries in Ty). Such
seemingly unimportant, at a current iteration, weights or parameters may become important over
iterations and, if so, corresponding connections may be spliced or reconnected as discussed. In an
cmbodiment, the partial derivatives of Equation (4) may be determined using the chain rule with

a randomly chosen mini-batch of samples of training data set 112.

Once connection matrices 114 {e.g., Ty) and weights 115 (e.g., W,) are updated for a
current iteration, they may be applied to determine the network activations and a loss function
gradient {or the DNN model, which may be used to update weights at subsequent iterations. Such
steps may be repeated any number of times such as about 700,000 times (e.g., on AlexNet
including 8 layers and 60 million parameters) or the like to generate sparse DNN model 116. As

shown in FIG. 1, such updating of connection matrices 114 (e.g., based on previous iteration

16

WO 2018/058509 PCT/CN2016/101043

weights) and weights 115 (e.g., based on previous iteration weights and a network loss
determined by applying the current iteration veural network to training data) may be ileratively
repeated (e.g., hundreds of thousands of times) to generate sparse DNN model 116 corresponding

io the final connection matrices 114 and the final weights 115. Sparse DNN model 116 may be

W

saved to memory and/or implemented in an artificial intelligence application or pipeline as

discussed herein.

With continued reference to FIG. 1, compression module 104 may, for example, perform

operations as shown with respect to Pseudocode A as follows.

Pseudocode A

10 Imput:

X training datum (with or without label),

{W,:0 < k < C}: the reference model,

a: the base learning rate, and

/: learning policy

Output:

{W,, T,,: 0 < k < C}: the updated parameter matrices and their binary masks,

Process:

Initialize W, « W,. T, « LY0 <k <C,B « landiter « 0

Repeat:

20 Choose a mini-batch of network input from X
Forward propagation and loss calcalation with (W, O Ty), ... , (W © T¢)
Backward propagation of the model output and generate VI
fork=0,...Cdo

Update T}, by function h,(-) and corrent Wy, with probability of o(iter)

25 Update W, by Equation (4) and the current loss {unction gradient VL
end for
Update: iter « iter +land f « f(«, iter)

Until iter reaches desired maximum

End

30 In some embodiroents, the convergence toward sparse DNN model 116 may be boosted.

For example, the pruning and splicing frequency may be reduced such that pruning and splicing

17

W

10

15

WO 2018/058509 PCT/CN2016/101043

module 102 does not perform pruning and splicing at each iteration since those operations
change the structare of the DNN model. In an embodiment, a determination may be made, at a
current iteration as to whether to apply pruning and splicing and pruning and splicing may only
be made in response to a positive determination. For example, at a current iteration, a pruning
and splicing activation indicator indicating whether pruning and splicing are to be applied for the
current iteration may be stochastically determined. In an embodiment, stochastically determining
the pruning and splicing indicator may include applying a probability function based on the
iteration number of the current #terations. For example, the probability function may be a
monotonically non-increasing probability function. As discussed, pruning and splicing of
available connections is only applied when the pruning and splicing activation indicator indicates
pruning and splicing are to be applied for the current iteration. For example, a update process for
connection matrices 114 {e.g., Tx) may be triggered stochastically, with a probability of p =
g(iter) such that function o(-) may be a monotonically non-increasing function that satisfies
g(0) = 1. In an embodiment, after a prolonged decrease, the probability p may even be set to

zero such that no pruning or splicing will be performed for any additional iterations.

In some embodiments, the DNN model may include both fully connected layers and
convolutional layers. In such embodiments, convergence may be enhanced by pruning and
splicing the convolutional layers and fully connected layers separately. In an embodiment, such
pruning and splicing and parameters updating processing may be performed only for one or more
convolutional layers while leaving fully connected layers untouched and then pruning and
splicing and parameters updating processing may be performed only for one or more fully
connected layers while leaving the (compressed) convolutional layers untouched. In an
embodiment, such pruning and splicing and parameters updating processing may be performed
only for one or more fully connected layers while leaving convolutional layers untouched and
then pruning and splicing and paramcters updating processing may be performed only for one or

more convolutional layers while leaving the (compressed) fully connected layers untouched.

FIG. 5 illustrates example pruning and splicing 500 across example iterations 521, 522,
523, arranged in accordance with at least some implementations of the present disclosure. As
shown in FIG. 5, at a first iteration 521, a portion of a DNN model including a {irst layer of
nodes 501, a second layer of nodes 502, and a third layer including node 503 is fully connected

with avatlable connections 504 between first layer of nodes 501 and second layer of nodes 502

18

10

15

WO 2018/058509 PCT/CN2016/101043

all being connected and with available connections 505 between second layer of nodes 502 and

third layer node 503 also all being connected.

At a subsequent second iteration 522 some of available connections 504 and available
connections 505 have been pruned or disconnected as discussed herein. Such pruned or
disconnected available convections are lustrated with dotted lines and include disconnected
connection 511 of available connections 504 and disconnected connection 512 of available
connections 5035, At a yet subsequent third ileration 523, some of avatlable connections 504 and
available connections 505 remain pruned or disconnected or have been newly pruned as
discussed herein. Such pruned or disconnected available connections are illustrated with dotted
lines and include newly disconnected connection 513 of available connections 505. Third
iteration 523 also illustrates some of available connections 504 being spliced or reconnected as
discussed herein. Such spliced or reconnected available connections are lustrated with heavy

lines and include reconnected connection 514 of available connections 504.

As will be appreciated, at each iteration where pruning and splicing are performed, any

number of available connections may be disconnected, reconnected, or left unchanged.

FIG. 6 illustrates an example sparse DNN model 116, arranged in accordance with at
least some implementations of the present disclosure. Sparse DNN model 116 is shown in
operation for the sake of clarily of presentation. As shown in FIG. 6 and as discussed with
respect to FIG. 3, sparse DNN model 116 may have input layer 301 to receive pre-processed data

212, hidden layers 302-305, and output layer 306 to provide classification scores 213.

Furthermore, sparse DNN model 116 includes connections and weights between only
those nodes that were connected after processing by compression module 104. As shown, many
of available connections 311-315 have been disconnected such that sparse connections 601-605
are provided. For example, available connections 311-315 may have been pruned/spliced and
corresponding weights updated through a number of iterations to generate sparse connections
601-605 of sparse DNN model 116 such that sparse connections 601605 represent only the
important connections between layers 301-306 and such that the corresponding weights have
been trained {o implement sparse connections 601-605 to provide robust accuracy mapping input
data to classification scores such that the accuracy of sparse DNN model 116 is similar to that of

reference DNN model 113.

19

W

10

20

WO 2018/058509 PCT/CN2016/101043

FIG. 7 is a flow diagram illustrating an example process 700 for generating a sparse deep
neural network model, arranged in accordance with at least soroe mmplementations of the present
disclosure. Process 700 may include one or more operations 701-711 as illustrated in FIG. 7.
Process 700 may be performed by a device {e.g., device 100, any other devices or systems
discussed herein, or an external training device such as a computer device or the like) to generate
a sparse deep veural network model. Process 700 or portions thereof may be repeated for any

training sets, neural network implementations, or the like.

Process 700 may begin at operation 701, where a reference deep neural network (DNN)
model may be pre-trained. The reference DNN model may be pre-trained using any suitable
technique or techniques. In an embodiment, a structure may be determined for the reference
DNN model inclading an input layer, a plurality of hidden layers, an output layer, and available
connections between the layers and pre-training the reference DNN model may include pre-
training the reference DNN model based on a training set of data. The reference DNN model may
be pre-trained for any suitable purpose such as, for example, a computer vision application, a
face recognition application, a face detection application, an object detection application, a
gesture recognition application, a voice detection application, a voice identification application, a
speech to recognized series of textual elements application, or the like. In an embodiment, pre-
training the relerence DNN model includes determining weights for each of the available

connections of the reference DNN model.

Processing continues at operation 702, where connection weight matrices and connection
matrices may be generated {or the DNN model. The connection weight matrices and connection
matrices may be generated using any suitable technique or technigues. In an embodiment, the
connection weight matrices may be generated by providing a matrix for each connection between
layers of the reference DNN model such the each matrix inclades the weights for the available
connections between the layers. For example, for a fully connected DNN, if a layer has ¢ outputs
to a layer having p ioputs, the matrix for those adjacent layers may have gxp weights. In an
embodiment, the deep neural network is a deep convolutional neural network and the weights of
the weight matrices comprise coefficients of each kernel of the convelutional layers. The
connection matrices may include matrices corresponding to the connection weight matrices (e.g.,
having the same number of entries each corresponding to an entry of the connection weight

matrices). For a first iteration of processing, the entries of the connection matrices may be set to

20

10

15

[\
whn

30

WO 2018/058509 PCT/CN2016/101043

one or true or the like to indicate all available connections of the DNN model are currently

connected.

Processing continues at operation 703, where a mini-batch of a training set may be
selected. For example a mini-batch of a full corpus training set may be selected for a current
iteration of pruning/splicing and parameter updating for the DNN model. The mini-batch may be
selected using any suitable technique or techniques. In an embodiment, the mini-batch is selected
from the training set randomly. In an embodiment, a sample index set is provided containing
sample indices generated in random and a fixed partition of this set is used to generate respective
mini-batches before training. For example, although illustrated in FIG. 7 as occurring at each

iteration, such mini-batches may be preselected prior to iterative processing.

Processing continues at operation 704, where the current DNN model may be evaluated
using the mini-batch and forward propagation to generate a network loss. The network loss may
be determined using any suitable technique or techniques. In an embodiment, the current DNN
model may be applied to the mini-batch and the result from the output layer may be compared to

the known ground truth output {or the mini-batch to determine the network loss.

Processing continues at operation 705, where the current DNN model may be evaluated
using backward propagation to generate a loss function gradient. The loss function gradient may
be determined using any suitable technique or techniques. In an embodiment, backward
propagation may be applied to the current DNN model and, based on known node outputs, the

loss function gradient may be determined.

Processing continues at operation 706, where a layer of the current DNN model may be
selected. For example, the layers may be selected in a forward manner such that an input layer
and a first hidden layer are sclected at a first iteration of operation 706, the first hidden layer and

a second hidden layer are selected at a second ileration, and so on.

Processing continues at operation 707, where the connection matrix for the current layer
of the DNN model may be updated. The connection mairix for the current layer may be updated
using any suitable technique or techniques. In an embodiment, weights of the current layer from
a previous iteration may be evaluated by a discriminative function {o generate a
conmnect/disconnect signal or a connect/disconnect/no change signal for the weighis or the like.

Based on the discriminative function and the signal the connection matrix may be updated. In an

21

W

10

20

WO 2018/058509 PCT/CN2016/101043

embodiment, a weight from a previous iteration is compared to single threshold such that if the
weight compares favorably to the threshold (e.g., the absolute value of the weight 15 greater than
the threshold), a connection is provided (e.g., left connected or reconnected) and if the weight
compares unfavorably to the threshold, a connection is not provided (e.g., disconnected). In
another embodiment, a weight from a previous ileration is compared to two thresholds such that
if the weight compares vonfavorably to the first threshold (e.g., the absolute value of the weight is
less than the first threshold), a connection is not provided (e.g.. disconnected), if the weight
compares favorably to the second threshold (e.g., the absolute value of the weight is greater than
the second threshold), a connection is provided (e.g., left connected or reconnected) and if the

weight is between the first and second thresholds, no change to the connection status is made.

Processing continues at operation 708, where the connection weight matrix for the current
layer of the DNN model may be updated. The connection weight matrix for the current layer may
be updated using any suitable technique or techniques. In an embodiment, cach connection
weight may be provided based on a positive learning rate parameter and the gradient of the loss
function. In an embodiment, each connection weight may be provided as a product of the positive
learning rate parameter and a partial derivative of the loss function. Tn an embodiment, each

connection weight may be provided based on Equation {4) above.

Processing continues at decision operation 709, where a determination may be made as to
whether the current layer of the DNN model is the last layer of the DNN model. If not,
processing may continue at operations 706-708 until the connection matrices and the connection
weight matrices are updated for each layer of the DNN. If so, processing continues at decision
operation 710, where a determination may be made as to whether the last iteration of
pruning/splicing and weight updating has been performed. If not, processing may continue at
operations 706-708 until a final iteration has been reached. If so, processing may continue at
operation 711, where the sparsely connected DNN model may be stored to memory for
implementation. The number of ilerations may be a preset value in the range of about 500,000 to
800,000 iterations or the like. In an embodiment, the preset value of iterations may be about

800.000 for AlexNet, which includes 8 layers and 60 mullion parameters.

Furthermore, as discussed herein, process 700 may inclade, for each iteration or for some
iterations, a determination as to whether operation 707 (e.g., pruning/splicing) are to be

performed. For example, a pruning and splicing activation indicator may be determined for a

22

10

15

WO 2018/058509 PCT/CN2016/101043

current indicator as discussed herein and pruning and splicing may only be applied when the

indicator indicates pruning and splicing are to applied for the current iteration.

FIG. 8 1s a flow diagram illustrating an example process 800 for compressing a pre-
trained deep neural network, arranged in accordance with at least some impliementations of the
present disclosure. Process 800 may include one or more operations 801-805 as illustrated in
FIG. 8. Process 800 may form at least part of a deep neural network compression process. By
way of non-himiting example, process 800 may form at Jeast part of a deep neural network
compression process performed by device 100 as discussed herein. Furthermore, process 800 will

be described herein with reference to system 900 of FIG. 9.

FIG. 9 is an illustrative diagram of an example system 900 for compressing a pre-trained
deep neural network, arranged in accordance with at least some implementations of the present
disclosure. As shown in FIG. 9, system 900 may include one or more central processors 901, a
graphics processor 902, and memory 903. Also as shown, central processor 901 may 1oclude or
implement DNN pre-training module 101, pruning and splicing module 102, parameters updating
module 103, pre-processing module 201, and sparse DNN model implementation module 202.
Such modules may be implemented to perform operations as discussed herein. In the example of
system 900, memory 903 may store DNN model data, training set data, reference DNN model
weights, biases, or parameters, connection matrices, weight matrices, thresholds, sparse DNN

model weights or parameters, input data, classification scores, or any other data discussed herein.

As shown, in some examples, DNN pre-training module 101, pruning and splicing
module 102, parameters updating module 103, pre-processing module 201, and sparse DNN
model implementation module 202 module 102 may be implemented via central processor 901.
In other examples, one or more or portions of DNN pre-training module 101, pruning and
splicing module 102, parameters updating module 103, pre-processing module 201, and sparse
DNN model implerentation module 202 may be implemented via graphics processor 902 or an
image processing unit (not shown) of system 900. In yet other examples, one or more or portions
DNN pre-training module 101, pruning and splicing module 102, parameters updating module
103, pre-processing module 201, and sparse DNN model implementation module 202 may be

implemented via processing pipeline or the like.

Graphics processor 902 may include any number and type of graphics processing units,

that may provide the operations as discussed herein. Such operations may be implemented via

23

W

10

20

WO 2018/058509 PCT/CN2016/101043

software or hardware or a combination thereof. For example, graphics processor 902 may include
circuitry dedicated to manipulate DNN data or the like obtained from memory 903. Central
processor may include any number and type of processing units or modules that may provide
conirol and other high level functions for system 900 and/or provide any operations as discussed
herein. Memory 903 may be any type of memory such as volatile memory {(e.g., Static Random
Access Memory (SRAM), Dyonamic Random Access Memory (DRAM), elc.) or non-volatile
memory {¢.g., flash memory, etc.), and so forth. In a non-limiting example, memory 903 may be

implemented by cache memory.

In an embodiment, one or more or portions DNN pre-training module 101, pruning and
splicing module 102, parameters updating module 103, pre-processing module 201, and sparse
DNN model implementation module 202 may be implemented via an execution unit (EU) of
graphics processor 902. The EU may include, for example, programmable logic or circuitry such
as a logic core or cores that may provide a wide array of programmabile logic functions. In an
embodument, one or more or portions DNN pre-training module 101, pruning and sphicing
module 102, parameters updating module 103, pre-processing moduie 201, and sparse DNN
model implementation module 202 may be implemented via dedicated hardware such as fixed
function circuitry or the like. Fixed function circuitry may include dedicated logic or circuitry
and may provide a set of fixed function entry points that may map to the dedicated logic for a
fixed purpose or function. In some embodiments, one or more or portions DNN pre-training
module 101, pruning and splicing module 102, parameters updating module 103, pre-processing
module 201, and sparse DNN model implementation module 202 may be implemented via an
application specific integrated circuit {ASIC). The ASIC may include an integrated circuitry

customized to perform the operations discussed herein.

Returning to discussion of FIG. 8, process 800 may begin at operation 801, where
reference weights corresponding to available connections of a reference deep neural network
model are received. For example, the deep neural network model may include an input layer, a
plurality of hidden layers, an output layer, and available connections between the layers. The
reference weights may be gencrated using any suitable technique or techniques. In an
embodiment, the deep neural network model may be pre-trained based on a training data set to
determine the relerence weights. In an embodiment, DNN pre-training module 101 as

implemented by central processor 901 generates the reference weights by pre-training an initial

24

10

3

WO 2018/058509 PCT/CN2016/101043

DNN based on a training data set. In an embodiment, the reference weights are received froma

remote device. In an embodiment, the reference weights are received from memory 903.

Processing may continue at operation 802, where a sparsely connected DNN model may
be generated by iteratively performing operations 803 and 804. At operation 803, at each or some
iterations, available connections between adjacent layers of the DNN are pruned and/or spliced.
At operation 804, at each or some iteration, weights of both connected and disconnected
available connections are updated. In an embodiment, operation 803 may be performed by
pruning and splicing module 102 as implemented by central processor 901. In an embodiment,
operation 804 may be performed by parameters updating module 103 as implemented by central

processor 901.

Such iterative pruning and splicing of available connections and updating parameters or
weights may be performed using any suitable technique or techniques. In an embodiment,
pruning and splicing includes praning and splicing one or more of multiple available connections
between at least two adjacent layers of the deep neural network model such that pruning includes
disconnecting at least one connection of the available connections and splicing includes
reconnecting at least one connection of the available connections that was disconnected in a
previous ileration. In an embodiment, updating the weights inclades updating weights
corresponding to both the currently disconnected and the currently connected connections of the

available connections between the two adjacent layers as discussed herein.

In an embodiment, iteratively pruning and splicing the available connections and
updating the weights includes generating a current iteration connection matrix including
indicators each indicating whether a corresponding available connection between the two layers
is connected or not connected and updating the previous iteration connection weights based on a
loss function gradient to generate multiple current iteration connection weights between the two
adjacent layers. For example, generating the current iteration connection matrix may include
applying, to each of multiple previous iteration connection weights each corresponding to one of
the plurality of available convections, a discriminative {unction to determine each indicator of the
current iteration connection matrix. The discriminative function may include any suitable
discriminative function. In an embodiment, applying the discriminative function includes
comparing an individual previous iteration connection weight to a threshold and providing a
disconnect indicator when the individual previous iteration connection weight compares

unfavgrab}y to the threshold. In an embodiment annkuina the dicrriminativa finctinn ~amnricac

25

W

10

20

WO 2018/058509 PCT/CN2016/101043

comparing an individual previous iteration connection weight to a {irst threshold and a second
threshold greater than first threshold and providing a disconnect indicator when the individual
previous iteration connection weight compares unfavorably to the first threshold, a connect

indicator when the individual previous iferation connection weight compares favorably to the

second threshold, and, otherwise, a no change indicator.

In an embodiment, iteratively pruning and splicing the available connections and
updating the weights includes iteratively pruning and splicing available connections and updating
weights between all adjacent layers of the deep neural network model by applying a current
iteration deep neural network model to a training data set, determining a network loss based on
the application of the current iteration deep neural network model to the training data set,
gencrating a loss function gradient based on the current iteration deep neural network model, and,
for each hidden layer and the output layer of the current iteration deep neural network model
generating a current iteration connection matrix based on a previous matrix of connection
weights and updating the previous matrix of connection weights to a current matrix of connection
weights based on the previous matrix of connection weights and the loss function gradient. As
discussed, the deep neural network model may be pre-trained based oun a training set to determine
the reference weights. In an embodiment, training data set for iterative processing is a randomly

selected subset of the training data set used to determine the reference weights.

In some embodiments, the pruning and splicing of operation 803 may be performed at
each iteration. In other embodiments, pruning and splicing may be performed only at some
iterations. In an embodiment, the pruning and sphicing may be performed at a particular
frequency of iterations (e.g., at every x iteration). In an embodiment, iteratively pruning and
splicing available connections and updating the weights includes stochastically determining, for a
current iteration, a pruning and splicing activation indicator indicating whether pruning and
splicing are to be applied for the current iteration and only pruning and splicing available
connections when the pruning and splicing activation indicator indicates pruning and sphicing are
to be applied for the current teration. In an embodiment, wherein stochastically determining the
pruning and splicing indicator includes applying a probability function based on the iteration
number of the current iteration. For example, the probability function may be a monotonically

non-increasing probability function.

The reference deep neural network discussed with respect to operation 801 and the

Sparsely connected d@ep neural network geneiﬁntﬂﬂ at anaratinn Y max ha anv enitahle daoan

26

WO 2018/058509 PCT/CN2016/101043

neural network structure. In an embodiment, the deep neural network is a deep fully connected
neural network. In an embodiment, the deep neural network s a deep convolutional neural

network. In an embodiment, the deep neural network is a deep recurrent neural network.

Processing may continue at operation 803, where the sparsely connected deep neural
5 network model may be stored and/ or implemented. For example, the sparsely connected deep
neural network model includes final iteration weights for only connected connections of the
available connections between the two adjacent layers at a {inal teration. In an embodiment, the
sparsely connected deep neural network model is stored to memory 903. In an embodiment, the
sparsely connected deep neural network model may be transmitted to another device for storage

10 or implementation.

In an embodiment, the sparsely connected deep neural network model is stored for use by
an artificial intelligence processing application and process 800 further includes implementing
the sparsely connected deep neural network model by the artificial intelligence processing
application. In an embodiment, the sparsely connected deep neural network model may be

15 implemented by sparse DNN model implementation module 202 as implemented by central
processor 901. In an embodiment, the sparsely connected deep neural network model may be
implemented based on pre-processed data generated by pre-processing module 201 as
implemented by central processor 901. The input data operated on by the sparsely connected
deep neural network model may be any suitable input data and the sparsely counnected deep

20 neural network model may provide any suitable output data such as scores, scoring data,

classification scores, Hkelihood data, or the Like.

In an embodiment, an artificial intelligence processing application implementing the
sparsely connected deep neural network model receives input data for classification and classifies

the input data, based in part on the sparsely connected deep neural network model, to generate

3
N

classification data The artificial intelligence processing application may include an suitable
application such as a computer vision application, a face recognition application, a face detection
application, an object detection application, a gesture recognition application, a voice detection
application, a voice identification application, a speech to recognized series of textual elements

application, or the like.

30 Process 800 may provide for compression of a pre-trained deep neural network and/or

implementation of the resultant sparsely connected deep neural network. Process 800 may be

27

1

3

0

WO 2018/058509 PCT/CN2016/101043

repeated any number of times either in series or in paraliel for any number of deep neural
networks. As discussed, process 800 may provide for a sparse deep neural network that may be
implemented with reduced memory, computational, and power requirements and with high

accuracy.

Various components of the systems described herein may be implemented in software,
firmware, and/or hardware and/or any combination thereof. For example, various components of
devices or systems discussed herein may be provided, at least in part, by hardware of a
computing System-on-a-Chip (SoC) such as may be found in a computing system such as, for
example, a computer, a laptop computer, a tablet, or a smart phone. For example, such
components or modules may be implemented via a multi-core SoCC processor. Those skilled in
the art may recognize that systems described herein may include additional components that have

not been depicted in the corresponding {igures.

While implementation of the example processes discussed herein may include the
undertaking of all operations shown in the order illustrated, the present disclosure is not limited
in this regard and, in various examples, implementation of the example processes herein may
include only a subset of the operations shown, operations performed in a different order than

illustrated, or additional operations.

In addition. any one or more of the operations discussed herein may be undertaken in
response o instructions provided by one or more computer program products. Such program
products may include signal bearing media providing instructions that, when executed by, for
example, a processor, may provide the functionality described herein. The computer program
products may be provided in any form of one or more machine-rcadable media. Thus, for
example, a processor including one or more graphics processing unit(s) or processor core(s) may
undertake one or more of the blocks of the example processes herein in response to program code
and/or instructions or instruction sets conveyed to the processor by one or more machine-
readable media. In general, a machine-readable medium may convey software in the form of
program code and/or instructions or instruction sets that may cause any of the devices and/or
systems described herein to implement at least portions of devices systems, or any other module

or component as discussed herein.

As used in any implementation described herein, the term “module” refers to any

combination of software logic, firmware logic, hardware logic, and/or circuitry configured to

28

W

10

20

WO 2018/058509 PCT/CN2016/101043

provide the functionality described herein. The software may be embodied as a software package,
code and/or istruction set or instructions, and “hardware”, as used in any implementation
described herein, may include, for example, singly or in any combination, hardwired circuitry,
programmable circuitry, state machine circuitry, fixed function circuitry, execution unit circuitry,
and/or firmware that stores instructions executed by programmable circuitry. The modules may,
collectively or individually, be embodied as circuitry that forms part of a larger system, for

example, an integrated circuit (IC), system on-chip (50C), and so forth.

FIG. 10 is an illustrative diagram of an example system 1000, arranged in accordance
with at least some implementations of the present disclosure. In various implementations, system
1000 may be a computing system although system 1000 is not limited to this context. For
cexample, system 1000 may be incorporated into a personal computer (PC), laptop computer,
ultra-laptop computer, tablet, phablet, touch pad, portable computer, handheld compuler, palmtop
computer, personal digital assistant (PDA), cellular telephone, combination cellular
telephone/PDA, television, smart device (e.g., smart phone, smart tablet or smart television),
mobile internet device (MID), messaging device, data communication device, peripheral device,
garning console, wearable device, display device, all-in-one device, two-in-one device, and so

forth.

In various implementations, system 1000 includes a platform 1002 coupled to a display
1020. Platform 1002 may receive content from a content device such as content services device(s)
1030 or content delivery device(s)y 1040 or other similar content sources such as a camera or
camera module or the like. A navigation controller 1050 including one or more navigation
features may be used to interact with, for example, platform 1002 and/or display 1020. Each of

these components is described in greater detail below.

In various implementations, platform 1002 may include any combination of a chipset
1005, processor 1010, memory 1012, antenna 1013, storage 1014, graphics subsystem 1015,
applications 1016 and/or radio 1018. Chipset 1005 may provide interconumnunication among
processor 1010, memory 1012, storage 1014, graphics subsystem 1015, apphications 1016 and/or
radio 1018. For example, chipset 1005 may include a storage adapter (not depicted) capable of

providing intercommunication with storage 1014.

Processor 1010 may be implemented as a Complex Tostruction Set Computer (CISC) or

Reduced Instruction Set Computer (RISC) processors, x86 instruction set compatible processors,

29

10

15

30

WO 2018/058509 PCT/CN2016/101043

multi-core, or any other microprocessor or central processing unit {CPU). In various
implementations, processor 1010 may be dual-core processor(s), dual-core mobile processor(s),

and so forth.

Memory 1012 may be implemented as a volatile memory device such as, but not limited
io, a Random Access Memory (RAM), Dynamic Random Access Memory (BRAM), or Static
RAM (SRAM).

Storage 1014 may be implemented as a non-volatile storage device such as, but not
limited to, a magnetic disk drive, optical disk drive, tape drive, an internal storage device, an
attached storage device, {lash memory, battery backed-up SDRAM (synchronous DRAM),
and/or a network accessible storage device. In various implementations, storage 1014 may
include technology to increase the storage performance enhanced protection for valuable digital

media when multiple hard drives are included, for example.

Graphics subsystem 1015 may perform processing of images such as still images,
graphics, or video for display. Graphics subsystem 1015 may be a graphics processing unit
(GPU), a visual processing unit (VPU), or an image processing unit, for example. In some
examples, graphics subsystem 1015 may perform scanned image rendering as discussed heren.
An analog or digital interface may be used to communicatively couple graphics subsystem 1015
and display 1020. For example, the interface may be any of a High-Definition Multimedia
Interface, DisplayPort, wireless HDMI, and/or wireless HD compliant techniques. Graphics
subsystem 1015 may be integrated into processor 1010 or chipset 1005. In some implementations,

graphics subsystem 1015 may be a stand-alone device communicatively coupled to chipset 1005.

The image processing techniques described herein may be implemented in various
hardware architectures. For example, image processing functionality may be integrated within a
chipset. Alternatively, a discrete graphics and/or image processor and/or application specific
integrated circuit may be used. As still another implementation, the image processing may be
provided by a general purpose processor, including a multi-core processor. In further

cmbodiments, the functions may be implemented in a consumer electronics device.

Radio 1018 may include one or more radios capable of transmitting and receiving signals
using various suitable wireless cormmmunications techniques. Such techniques may involve

comumunications across one or more wireless networks. Example wireless networks include {but

30

10

15

WO 2018/058509 PCT/CN2016/101043

are not limited to) wircless local area networks (WLANs), wireless personal area networks
{(WPANzs), wireless metropolitan area network (WMANS), cellular networks, and satellite
networks. In communicating across such networks, radio 1018 may operate in accordance with

one or more applicable standards in any version.

In various implementations, display 1020 may mnclude any flat panel monitor or display.
Display 1020 may include, for example, a computer display screen, touch screen display, video
monitor, television-like device, and/or a television. Display 1020 may be digital and/or analog. In
various implementations, display 1020 may be a holographic display. Also, display 1020 may be
a fransparent surface that may receive a visual projection. Such projections may convey various
forms of information, images, and/or objects. For example, such projections may be a visual
overlay for a mobile augmented reality (MAR) application. Under the control of one or more

soltware applications 1016, platform 1002 may display user interface 1022 on display 1020.

o various implementations, content services device(s) 1030 may be hosted by any
national, international and/or independent service and thus accessible o platform 1002 via the
Internet, for example. Content services device(s) 1030 may be coupled to platform 1002 and/or
to display 1020. Platform 1002 and/or content services device(s) 1030 may be coupled to a
network 1060 to communicate (e.g.. send and/or receive) media information to and from network
1060. Content delivery device(s) 1040 also may be coupled to platform 1002 and/or to display
1020.

In various implementations, content services device(s) 1030 may include a cable
television box, personal computer, network, telephone, Internet enabled devices or appliance
capable of delivering digital information and/or content, and any other similar device capable of
uni-directionally or bi-directionally communicating content between content providers and
platform 1002 and/display 1020, via network 1060 or directly. It will be appreciated that the
content may be commmunicated uni-directionally and/or bi-directionally to and from any one of
the components in system 1000 and a content provider via network 1060. Examples of content
may include any media information including, {or example, video, music, medical and gaming

information, and so forth.

Content services device(s) 1030 may receive content such as cable television
programming including media information, digital information, and/or other countent. Examples

of content providers may include any cable or satellite television or radio or Internet content

31

10

15

WO 2018/058509 PCT/CN2016/101043

providers. The provided examples are not meant to limit implementations in accordance with the

present disclosure in any way.

In various implementations, platform 1002 may receive control signals from navigation
controller 1050 having one or more navigation features. The navigation features of navigation
coniroller 1050 may be used fo interact with user interface 1022, for example. In various
embodiments, navigation controller 1050 may be a pointing device that may be a computer
hardware compouent (specifically, a human ioterface device) that allows a user {o input spatial
(e.g., continuous and multi-dimensional) data into a computer. Many systems such as graphical
user interfaces (GUI), and televisions and monitors allow the user (o control and provide data to

the computer or television using physical gestures.

Movements of the navigation features of navigation controller 1050 may be replicated on
a display (e.g., display 1020) by movements of a pointer, cursor, focus ring, or other visual
indicators displayed on the display. For example, ander the control of software applications 1016,
the navigation features located on navigation controller 1050 may be mapped to virtual
navigation features displayed on user interface 1022, for example. In various embodiments,
navigation controller 1050 may not be a separate component but may be integrated into platform
1602 and/or display 1020. The present disclosure, however, is not limited to the elements or in

the context shown or described herein.

In various implementations, drivers (not shown) may include technology to enable users
to instantly turn on and off platform 1002 like a television with the touch of a button after initial
boot-up, when enabled, for example. Program logic may allow platform 1002 to stream content
to media adaptors or other content services device(s) 1030 or content delivery device(s) 1040
even when the platform is turned “off.” In addition, chipset 1005 may inclode hardware and/or
software support for 5.1 surround sound audio and/or high defmition 7.1 surround sound audio,
for exarple. Drivers may include a graphics driver for integrated graphics platforms. In various

embodiments, the graphics driver may comprise a peripheral component interconnect (PCI)

Express graphics card.

In various implementations, any one or more of the components shown 1n system 1000
may be integrated. For example, platform 1002 and content services device(s) 1030 may be
integrated, or platform 1002 and content delivery device(s) 1040 may be integrated, ot platform

1002, content services device(s) 1030, and content delivery device(s) 1040 may be integrated, for

32

10

20

WO 2018/058509 PCT/CN2016/101043

example. In various embodiments, platform 1002 and display 1020 may be an integrated unit.
Display 1020 and content service device(s) 1030 may be integrated, or display 1020 and content
delivery device(s) 1040 may be integrated, for example. These examples are not meant to limit

the present disclosure.

In various embodiments, system 1000 may be implemented as a wireless system, a wired
system, or a combination of both. When implemented as a wireless system, system 1000 may
include components and interfaces suitable for communicating over a wireless shared media,
such as one or more antennas, transmitters, receivers, transceivers, amplifiers, filters, control
logic, and so forth. An example of wircless shared media may inchiude portions of a wireless
spectrum, such as the RF spectrum and so forth. When implemented as a wired system, system
1000 may include components and interfaces suitable for communicating over wired
communications media, such as input/output (I/O) adapters, physical connectors to connect the
1/0 adapter with a corresponding wired communications medium, a network interface card (NIC),
disc controller, video controller, audio controller, and the hike. Examples of wired
communications media may include a wire, cable, metal leads, printed circuit board (PCB),
backplane, switch fabric, semiconductor material, twisted-pair wire, co-axial cable, {iber optics,

and so forth.

Platform 1002 may establish one or more logical or physical channels to communicate
information. The information may include media information and control information. Media
information may refer to any data representing content meant for a user. Examples of content
may include, for example, data from a voice conversation, videoconference, streaming video,
electronic mail (“email”) message, voice mail message, alphanumeric symbols, graphics, image,
video, text and so forth. Data from a voice conversation may be, for example, speech information,
silence periods, background noise, comfort noise, tones and so forth. Control information may
refer to any data representing commands, instructions or control words meant for an automated
system. For example, control information may be used to route media information through a
system, or instruct a node to process the media information in a predetermined manner. The
embodiments, however, are not limited to the elements or in the context shown or described in

FIG. 10.

As described above, system 1000 may be embodied in varying physical styles or form
factors. FIG. 11 illustrates an example small form factor device 1100, arranged in accordance

‘Nlth at Eﬁagt s0me ifnplernentaﬁ(}ng Qf thﬁ prfuc;ﬂnt Adicrlncnira Tn cnme evamnlac cuctam TN

33

W

10

15

WO 2018/058509 PCT/CN2016/101043

may be implemented via device 1100. In other examples, any device or system discussed herein
or portions thereof may be implemented via device 1100. In various embodiments, for example,
device 1100 may be implemented as a mobile computing device a having wircless capabilitics. A
mobile computing device may refer to any device having a processing system and a mobile

power source or supply, such as one or more batteries, for example.

Examples of a mobile computing device may include a personal computer (PC), laptop
computer, ulira-laptop computer, tablet, touch pad, portable computer, handheld computer,
palmtop computer, personal digital assistant (PDA), cellular telephone, combination cellular
telephone/PD A, smart device (e.g., smart phone, smart tablet or smart mobile television), mobile

internet device (MID), messaging device, data communication device, cameras, and so forth.

Examples of a mobile computing device also may include computers that are arranged to
be worn by a person, such as a wrist computers, finger computers, ring computers, eyeglass
coroputers, belt-clip computers, arm-band computers, shoe computers, clothing computers, and
other wearable computers. In various embodiments, {or example, a mobile computing device
may be implemented as a smart phone capable of executing computer applications, as well as
voice communications and/or data communications. Although some embodiments may be
described with a mobile computing device implemented as a smart phone by way of example, it
may be appreciated that other embodiments may be implemented using other wireless mobile

computing devices as well. The embodiments are not limited 1n this context.

As shown in FIG. 11, device 1100 may include a housing with a {ront 1101 and a back
1102. Device 1100 includes a display 1104, an input/output (I/0) device 1106, and an integrated
antenna 1108. Device 1100 also may include navigation features 1112, /0O device 1106 may
include any suitable /0 device for entering mformation into a mobile computing device.
Examples for /O device 1106 may include an alphanumeric keyboard, a numeric keypad, a
touch pad, input keys, buttons, switches, microphones, speakers, voice recognition device and
software, and so forth. Information also may be entered into device 1100 by way of microphone
{not shown), or may be digitized by a voice recognition device. As shown, device 1100 may
include a camera 1105 (e.g., including a lens, an aperture, and an imaging sensor) and a flash
1110 integrated into back 1102 (or elsewhere) of device 1100. In other examples, camera 1105
and flash 1110 may be integrated into front 1101 of device 1100 or both front and back cameras

may be provided. Camera 1105 and flash 1110 may be components of a camera module to

34

1

2

3

0

0

WO 2018/058509 PCT/CN2016/101043

originate image data processed into streaming video that is output to display 1104 and/or

cornmunicated remotely from device 1100 via antenna 1108 for example.

Various embodiments may be implemented using hardware elements, software elements,
or a combination of both. Examples of hardware elements may include processors,
MiCToprocessors, circuits, circuit elements (e.g., transistors, resistors, capacitors, inductors, and
so forth), integrated circuits, application specific integrated circuits (ASIC), progranmimable logic
devices (PLD), digital signal processors (DSP), field programmable gate array (FPGA), logic
gates, registers, semiconductor device, chips, microchips, chip sets, and so forth. Examples of
software may include software components, programs, applications, computer programs,
application programs, system programs, machine programs, operating system software,
middleware, firmware, software modules, routines, subroutines, functions, methods, procedures,
software interfaces, application program interfaces (API), instruction sets, computing code,
computer code, code segments, computer code segments, words, values, symbols, or any
combination thereof. Determining whether an embodiment is implemented using hardware
elements and/or software elements may vary in accordance with any number of factors, such as
desired compuiational rate, power levels, heat tolerances, processing cycle budget, input data
rates, output data rates, memory resources, data bus speeds and other design or performance

constraints.

One or more aspects of at least one embodiment may be implemented by representative
instructions stored on a machine-readable medium which represents various logic within the
processor, which when read by a machine causes the machine to {abricate logic to perform the
techniques described herein. Such representations, known as IP cores may be stored on a tangible,
machince readable medium and supphied to various customers or manufacturing facilities to load

into the fabrication machines that actually make the logic or processor.

While certain features set {orth herein have been described with reference to various
implementations, this description is not intended to be construed in a limiting sense. Hence,
various modifications of the implementations described herein, as well as other implementations,
which are apparent to persons skilled in the art to which the present disclosure pertains are

deemed to lie within the spirit and scope of the present disclosure.

In one or more first embodiments, a computer-implemented method for compressing a

pre-trained deep neural network comprises receiving, for a deep neural network model having an

35

W

10

20

WO 2018/058509 PCT/CN2016/101043

mput layer, a plurality of hidden layers, an output layer, and available connections between the
layers, reference weights corresponding to the available connections, generating a sparsely
connected deep neural network model based on the deep neural network model by iteratively
pruning and splicing one or more of a plurality of available connections between at least two
adjacent layers of the deep neural network model, wherein said pruning comprises disconnecting
at least a {irst connection of the available connections between the two adjacent layers and said
splicing comprises reconnecting at least a second connection of the available connections
between the two adjacent layers, wherein the second connection was disconnected in a previous
iteration and updating weights corresponding to both the currently disconnected and the currently
connected connections of the available connections between the two adjacent layers, and storing
the sparsely connected deep neural network model, wherein the sparsely connected deep neural
network model comprises final iteration weights for only connected connections of the available

connections between the two adjacent layers at a final iteration.

Further to the first embodunents, iteratively pruning and splicing the available
connections and updating the weights comprises generating a current iteration connection matrix
coroprising a plurality of indicators each indicating whether a corresponding available conuvection
between the two layers is connected or not connected, wherein generating the current iteration
connection matrix comprises applying, to each of a plurality of previous iteration counnection
weights each corresponding to one of the plurality of available connections, a discriminative
function to determine cach indicator of the current iteration connection matrix and updating the
previous iteration connection weights based on a loss function gradient to generate a plarality of

current iteration connection weights between the two adjacent layers.

Further to the first embodiments, iteratively pruning and splicing the available
connections and updating the weighis comprises generating a current iteration connection ratrix
comprising a plurality of indicators each indicating whether a corresponding available connection
between the two layers is connected or not connected, wherein generating the current iteration
connection matrix comprises applying, to each of a plurality of previous iteration connection
weights each corresponding to one of the plurality of available connections, a discriminative
function to determine each indicator of the current iteration connection matrix and updating the
previous iteration connection weights based on a loss function gradient to generate a plurality of
current iteration connection weights between the two adjacent layers such that applying the

discriminative function comprises comparing an individual previous iteration connection weight

36

10

20

WO 2018/058509 PCT/CN2016/101043

to a threshold and providing a disconnect indicator when the individual previous iteration

connection weight compares unfavorably to the threshold.

Further to the first embodiments, iteratively pruning and splicing the available
connections and updating the weights comprises generating a current iteration connection matrix
comprising a plurality of indicators each indicating whether a corresponding available connection
between the two layers is connected or not connected, wherein generating the current iteration
connection ratrix comprises applying, to each of a plurality of previous iteration connection
weights each corresponding to one of the plurality of available connections, a discriminative
function to determine cach indicator of the current feration connection matrix and updating the
previous iteration connection weights based on a loss function gradient to generate a plurality of
current iteration connection weights between the two adjacent layers such that applying the
discriminative function comprises comparing an individual previous iteration connection weight
to a first threshold and a second threshold greater than first threshold and providing a disconnect
indicator when the individual previous ieration connection weight compares unfavorably to the
first threshold, a connect indicator when the individual previous iteration connection weight

cornpares {avorably to the second threshold, and. otherwise, a no change indicator.

Farther to the first embodiments, iteratively pruning and splicing the available
connections and updating the weights comprises iteratively pruning and splicing available
connections and updating weights between all adjacent layers of the deep neural network model
by applying a current iteration deep neural network model to a training data set, determining a
network loss based on the application of the current iteration deep neuvral network model to the
training data set, generating a loss function gradient based on the current iteration deep neural
network model, and for cach hidden layer and the output layer of the current iteration deep neural
network model generating a current iteration connection matrix based on a previous matrix of
connection weights and updating the previous matrix of connection weights to a current matrix of
connection weights based on the previous mairix of connection weights and the loss {unction

gradient.

Further to the first embodiments, iteratively pruning and splicing the available
connections and updating the weights comprises ileratively pruning and splicing available
connections and updating weights between all adjacent layers of the deep neural network model
by applying a current ileration deep neural network model to a training data set, determining a

ngt}vv@rk IQSS based on the app]icaﬁ(}n Of thg crirrent iteratinn dean nonral natwnrl mndal tn the

37

W

10

20

3
N

30

WO 2018/058509 PCT/CN2016/101043

training data set, gencrating a loss function gradient based on the current iteration deep neural
network model, and for each hidden layer and the output layer of the current iferation deep neural
network model generating a current iteration connection matrix based on a previous matrix of
connection weights and updating the previous matrix of connection weights to a current matrix of
connection weights based on the previous matrix of connection weights and the loss function
gradient, and the method further comprises pre-training the deep neural network model based on
a first training data set to determine the reference weights such that the training data set is a

randomly selected subset of the first training data sct.

Further to the first embodiments, iteratively pruning and splicing available connections
and updating the weights comprises stochastically determining, for a current iteration, a pruning
and splicing activation indicator indicating whether pruning and splicing are to be applied for the
current iteration and only pruning and splicing available connections when the pruning and
splicing activation indicator indicates pruning and splicing are to be applied for the current

iteration.

Further to the first embodunents, iteratively pruning and splicing available connections
and updating the weights comprises stochastically determining, for a current iteration, a pruning
and splicing activation indicator indicating whether pruning and splicing are to be applied for the
current iteration and only pruning and splicing available connections when the pruning and
splicing activation indicator indicates pruning and splicing are to be applied for the current
iteration such that stochastically determining the pruning and splicing indicator comprises
applying a probability function based on the iteration number of the current iteration such that the

probability function is a monotonically non-increasing probability function.

Further to the first embodiments, the deep neural network comprises a deep fully
connected neural network, a deep convolutional neural network, or a deep recurrent neural

network.

Further to the first emboduments, the deep neural network coroprises a deep convolutional
neural network and the weights comprise coefficients of cach kernel of the convolutional layer of

the two adjacent layers.

Further to the first embodiments, the sparsely connected deep neural network model is

stored for use by an artificial intelligence processing application and the method further

38

W

10

20

WO 2018/058509 PCT/CN2016/101043

comprises implementing the sparsely connected deep neural network model by the artificial
intelligence processing application, wherein the artificial intelligence processing application
receives input data for classification and classifies the input data to generate classification data,
the artificial intelligence processing application comprising at least one of a computer vision
application, a face recognition application, a face detection application, an object detection
application, a gesture recognition application, a voice detection application, a voice identification

application, or a speech to recognized series of textual elements application.

In one or more second embodiments, a for compressing a pre-trained deep neural network
comprises memory to store a deep neural network model having an input layer, a plurality of
hidden layers, an output layer, and available connections between the layers, reference weights
corresponding to the available connections and a processor coupled to the memory, the processor
to generate a sparsely connected deep neural network model based on the deep neural network
model, wherein to generate the sparsely connected deep neural network model, the processor is
to iteratively prune and splice one or more of a plurality of available connections between at least
two adjacent layers of the deep neural network model, wherein to prune comprises the processor
to disconnect at least a first connection of the available connections between the two adjacent
layers and to splice comprises the processor reconnecting at least a second connection of the
available connections between the two adjacent layers, wherein the second connection was
disconnected in a previous iteration and update weights corresponding to both the currently
disconnected and the currently connected connections of the available connections between the
two adjacent layers, and store the sparsely connected deep neural network model to the memory,
wherein the sparsely connected deep neural network model comprises final iteration weights for
only connected connections of the available connections between the two adjacent layers at a

final iteration.

Further to the second embodiments, to iteratively prune and splice the available
connections and update the weights comprises the processor to generate a current eration
connection matrix comprising a plurality of indicators each indicating whether a corresponding
available connection between the two layers is connected or not connected, wherein to generate
the current iteration connection matrix comprises the processor to apply. to each of a plarality of
previous iteration connection weights each corresponding to one of the plurality of available
connections, a discriminative function to determine each indicator of the current iteration

connection matrix and update the previous iteration connection weights based on a loss function

39

10

20

WO 2018/058509 PCT/CN2016/101043

gradient to generate a plurality of current iteration connection weights between the two adjacent

layers.

Further to the second embodiments, to iteratively prune and splice the available
connections and update the weights comprises the processor to generate a current iteration
connection matrix comprising a plurality of indicators each indicating whether a corresponding
available connection between the two layers is connected or not connected, wherein to generate
the current iteration connection matrix comprises the processor to apply, to each of a plurality of
previous iteration connection weights each corresponding to one of the plurality of available
connections, a discriminative function to determine cach indicator of the current iteration
connection matrix and update the previous iteration connection weights based on a loss function
gradicnt to generate a plurality of current iteration connection weights between the two adjacent
layers such that to apply the discriminative function comprises the processor Lo compare an
individual previous iteration connection weight to a threshold and to provide a disconnect
indicator when the individual previous ieration connection weight compares unfavorably to the

threshold.

Further to the second embodiments, to iteratively prune and splice the available
connections and update the weights comprises the processor to generate a current eration
connection matrix comprising a plurality of indicators each indicating whether a corresponding
available connection between the two layers is connected or not connected, wherein to generate
the current iteration connection matrix comprises the processor to apply, to each of a plurality of
previous iteration connection weights each corresponding to one of the plurality of available
connections, a discriminative function to determine each indicator of the current iteration
connection matrix and update the previous iteration connection weights based on a loss function
gradient to generate a plurality of current iteration comnection weighis between the two adjacent
layers such that to apply the discriminative function comprises the processor to compare an
individual previous iteration connection weight to a first threshold and a second threshold greater
than first threshold and to provide a disconnect indicator when the individual previous iteration
connection weight compares unfavorably to the first threshold, a connect indicator when the
mdividual previous iteration connection weight compares favorably to the second threshold, and,

otherwise, a no change indicator.

Further to the second embodiments, to iteratively prune and splice the available

connections and update the weights comprises the processor to iteratively prune and splice

40

W

10

20

WO 2018/058509 PCT/CN2016/101043

available connections and update weights between all adjacent layers of the deep neural network
model by the processor being configured to apply a current iteration deep neural network model
to a training data set, determine a network loss based on the application of the current iteration
deep veural network mode] to the training data set, geoerate a loss function gradient based on the
current iteration deep neural network model, and for each hidden layer and the output layer of the
current iteration deep neural network model generate a current iteration connection matrix based
on a previous matrix of connection weights and update the previous matrix of connection weights
to a current matrix of connection weights based on the previous matrix of connection weights and

the loss function gradient.

Further to the second embodiments, to iteratively prune and splice the available
connections and update the weights comprises the processor to iteratively prune and splice
available connections and update weights between all adjacent layers of the deep neural network
model by the processor being configured to apply a current iteration deep neural network model
io a training data set, determine a network loss based on the application of the current iteration
deep neural network model to the training data set, generate a loss function gradient based on the
current iteration deep neural network model, and {or each hidden layer and the output layer of the
current iteration deep neural network model generate a current iteration connection matrix based
on a previous matrix of connection weights and update the previous matrix of connection weights
to a current matrix of connection weights based on the previous matrix of connection weights and
the loss function gradient, and the processor is further to pre-train the deep neural network model
based on a first training data set to determine the reference weights, wherein the training data set

is a randomly selected subset of the first training data sct.

Further to the second embodiments, to iteratively prune and splice available connections
and update the weights comprises the processor to stochastically determine, for a current iteration,
a pruning and splicing activation indicator indicating whether pruning and splicing are to be
apphed for the current iteration and only prune and splice available connections when the
pruning and splicing activation indicator indicates pruning and splicing are to be applied for the

current tteration.

Further to the second embodiments, to iteratively prune and splice available connections
and update the weights comprises the processor o stochastically determine, for a current iteration,
a pruning and splicing activation indicator indicating whether pruning and splicing are to be

applied for the current iteration and only prune and splice available connections when the

41

1

1

W

0

5

WO 2018/058509 PCT/CN2016/101043

pruning and splicing activation indicator indicates pruning and splicing are to be applied for the
current iteration such that lo stochastically determine the praning and splicing indicator
comprises the processor to apply a probability function based on the iteration number of the
current iteration such that the probability function is a monotonically non-increasing probability

function.

Further to the second embodiments, the deep neural network comprises a deep fully
conmnected neural network, a deep convolutional neural network, or a deep recurrent neural

network.

Further to the second embodiments, the deep neural network comprises a deep
convolutional neural network and the weights comprise coctficients of each kernel of the

convolutional layer of the two adjacent layers.

Further to the second embodiments, the sparsely connected deep neural network model is
stored for use by an artificial intelligence processing application and the processor is further to
implement the sparsely connected deep neural network model by the artificial intelligence
processing application, wherein the artificial intelligence processing application receives input
data for classification and classifies the input data to generate classification data, the artificial
intelligence processing application comprising at least one of a computer vision application, a
face recognition application, a face detection application, an object detection application, a
gesture recognition application, a voice detection application, a voice identification application,

or a specch to recognized series of textual elements application.

In one or more third cmbodiments, a system comprises means for receiving, for a deep
neural network model having an input layer, a plurality of hidden layers, an output layer, and
available connections between the layers, reference weights corresponding to the available
connections, means {or generating a sparsely connected deep neural network model based on the
deep neural network model by iteratively pruning and splicing one or more of a plurality of
available connections between at least two adjacent layers of the deep veural network model,
wherein said pruning comprises disconnecting at least a first connection of the available
connections between the two adjacent layers and said splicing comprises reconnecting at least a
second connection of the available connections between the two adjacent layers, wherein the
second connection was disconnected in a previous Heration and updating weights corresponding

to both the currently disconnected and the currently connected connections of the available

42

10

3

WO 2018/058509 PCT/CN2016/101043

connections between the two adjacent layers, and means for storing the sparsely connected deep
neural network model, wherein the sparsely connecied deep neural network model comprises

final iteration weights for only connected connections of the available connections between the

iwo adjacent layers at a final #eration.

Further to the third embodiments, iteratively pruning and splicing the available
connections and updating the weights comprises generating a current iteration connection matrix
coroprising a plurality of indicators each indicating whether a corresponding available conuvection
between the two layers is connected or not connected, wherein generating the current iteration
connection matrix comprises applying, to each of a plurality of previous iteration connection
weights each corresponding to one of the plurality of available connections, a discriminative
function to determine cach indicator of the current iteration connection matrix and updating the
previous iteration connection weights based on a loss function gradient to generate a plurality of

current iteration connection weights between the two adjacent layers.

Further to the third embodiments, applying the discriminative function comprises
comparing an individual previous iteration connection weight to a first threshold and a second
threshold greater than first threshold and providing a disconnect indicator when the individual
previous ileration connection weight compares unfavorably to the first threshold, a connect
indicator when the individual previous iteration connection weight compares favorably to the

second threshold, and, otherwise, a no change indicator.

Further to the third embodiments, iteratively pruning and splicing the available
connections and updating the weights comprises iteratively pruning and splicing available
connections and updating weights between all adjacent layers of the deep neural network model
by applying a current iteration deep neural network model to a training data set, determining a
network loss based on the application of the current iteration deep neural network model to the
training data sel, generating a loss function gradient based on the current iteration deep neural
network model, and for each hidden layer and the output layer of the current iteration deep neural
network model generating a current iteration connection matrix based on a previous matrix of
connection weights and updating the previous matrix of connection weights to a current matrix of
connection weights based on the previous matrix of connection weights and the loss function

gradient.

43

W

3

WO 2018/058509 PCT/CN2016/101043

Further to the third embodiments, iteratively pruning and splicing available connections
and updating the weights comprises stochastically determining, for a current iteration, a pruning
and splicing activation indicator indicating whether pruning and splicing are to be applied for the
current iteration and only pruning and splicing available connections when the pruning and
splicing activation indicator indicates pruning and splicing are to be applied for the current

lteration.

Further to the third embodiments, iteratively pruning and splicing available connections
and updating the weights comprises stochastically determining, for a current iteration, a pruning
and splicing activation indicator indicating whether pruning and splicing are to be applied for the
current iteration and only pruning and splicing available connections when the pruning and
splicing activation indicator indicates pruning and splicing are to be applied for the current
iteration such that stochastically determining the pruning and splicing indicator comprises
applying a probability function based on the iteration number of the current iteration such that the

probability {unction is a mounotonically non-increasing probability function.

Further to the third embodiments, the deep neural network comprises a deep
convolutional neural network and the weights comprise coefficients of each kernel of the

convolutional layer of the two adjacent layers.

In one or more fourth embodiments, at least one machine readable mediom comprises a
plurality of instructions that, in response to being executed on a computing device, cause the
computing device to compress a deep neural network by receiving, for a deep neural network
model having an input layer, a plurality of hidden layers, an output layer, and available
connections between the layers, reference weights corresponding to the available connections,
generating a sparsely connected deep neural network model based on the deep neural network
model by iteratively pruning and splicing one or more of a plurality of available connections
between al least two adjacent layers of the deep neural network model, wherein said pruoing
comprises disconnecting at least a first connection of the available connections between the two
adjacent layers and said splicing comprises reconnecting at least a second conunection of the
available connections between the two adjacent layers, wherein the second connection was
disconnected i a previous iteration and updating weights corresponding to both the currently
disconnected and the currently connected connections of the available connections between the
two adjacent layers, and storing the sparsely connected deep neural network model, wherein the

sparsely connected deep neural network model comprises final iteration weights for only

44

10

20

3

WO 2018/058509 PCT/CN2016/101043

connected connections of the available connections between the two adjacent layers at a final

lteration.

Further to the fourth embodiments, iteratively pruning and splicing the available
connections and updating the weights comprises generating a current iteration connection matrix
comprising a plurality of indicators each indicating whether a corresponding available connection
between the two layers is connected or not connected, wherein generating the current iteration
connection ratrix comprises applying, to each of a plurality of previous iteration connection
weights each corresponding to one of the plurality of available connections, a discriminative
function to determine cach indicator of the current feration connection matrix and updating the
previous iteration connection weights based on a loss function gradient to generate a plurality of

current iteration connection weights between the two adjacent layers.

Further to the fourth embodiments, iteratively pruning and splicing the available
connections and updating the weights comprises generating a corrent iferation connection matrix
comprising a plurality of indicators each indicating whether a corresponding available connection
between the two layers is connected or not connected, wherein generating the current iteration
connection matrix comprises applying, to each of a plurality of previous iteration connection
weights each corresponding to one of the plurality of available connections, a discrimoinative
function to determine cach indicator of the current iteration connection matrix and updating the
previous iteration connection weights based on a loss function gradient to generate a plurality of
current iteration connection weights between the two adjacent layers such that applying the
discriminative function comprises comparing an individual previous iteration connection weight
to a threshold and providing a disconnect indicator when the individual previous iteration

connection weight compares unfavorably to the threshold.

Further to the fourth embodiments, iteratively pruning and splicing the available
connections and updating the weights comprises ileratively pruning and splicing available
connections and updating weights between all adjacent layers of the deep neural network model
by applying a current iteration deep neural network model to a training data set, determining a
network loss based on the application of the current iteration deep neural network model to the
{raining data sel, generating a loss function gradient based on the current iteration deep neural
network model, and for each hidden layer and the output layer of the current iteration deep neural
network model generating a current iteration connection matrix based on a previous matrix of

connection weights and updating the previous matrix of connection weights to a current matrix of

45

10

15

20

WO 2018/058509 PCT/CN2016/101043

connection weights based on the previous matrix of connection weights and the loss function

gradient.

Further to the fourth embodiments, iteratively pruning and splicing available connections
and updating the weights comprises stochastically determining, for a current iteration, a pruning
and splicing activation indicator indicating whether pruning and splicing are to be applied {or the
current iteration and only pruning and splicing available connections when the pruning and
splicing activation indicator indicates pruning and splicing are to be applied for the current

iteration.

Further to the fourth embodiments, iteratively pruning and splicing available connections
and updating the weights comprises stochastically determining, for a current iteration, a pruning
and splicing activation indicator indicating whether pruning and splicing are to be applied for the
current iteration and only pruning and splicing available connections when the pruning and
splicing activation indicator indicates pruning and splicing are to be applied for the current
iteration such that stochastically determining the pruning and splicing indicator comprises
applying a probability function based on the iteration number of the current iteration such that the

probability function is a monotonically non-increasing probability function

Further to the fourth embodiments, the deep neural network comprises a deep
convolutional neural network and the weights comprise coefficients of each kernel of the

convolutional layer of the two adjacent layers.

In one or more fifth embodiments, at least one machine readable medium may inclade a
plurality of instructions that in response to being executed on a computing device, causcs the

computing device to perform a method according to any one of the above embodiments.

In one or more sixth embodiments, an apparatus may include means for performing a

method according to any one of the above embodiments.

It will be recognized that the embodiments are not limited to the embodiments so
described, but can be practiced with modification and alteration without departing from the scope
of the appended claims. For example, the above embodiments may include specific combination
of features. However, the above embodiments are not limited in this regard and, in various
implementations, the above embodiments may include the undertaking only a subset of such

featares, undertaking a different order of such features, undertaking a different combination of

46

WO 2018/058509 PCT/CN2016/101043

such features, and/or undertaking additional features than those features explicitly listed. The
scope of the embodiments should, therefore, be determined with reference to the appended

claims, along with the full scope of equivalents to which such claims are entitled.

47

whn

10

15

20

WO 2018/058509 PCT/CN2016/101043

CLAIMS

What is claimed is:

I. A computer-implemenied method for compressing a pre-trained deep neural network
comprising:
recetving, for a deep neural network model having an input layer, a plorality of hidden
layers, an output layer, and available connections between the layers, reference weights
corresponding to the available connections;
generating a sparsely connected deep neural network model based on the deep neural
network model by iteratively:
pruning and splicing one or more of a plurality of available connections between
at least two adjacent layers of the deep neural network model, wherein said pruning
comprises disconnecting at least a first connection of the available connections between
the two adjacent layers and said splicing compriscs reconnecting at least a second
connection of the available connections between the two adjacent layers, wherein the
second connection was disconnected in a previous iteration; and
updating weights corresponding to both the currently disconnected and the
currently connected connections of the available connections between the two adjacent
layers; and
storing the sparsely connected deep neural network model, wherein the sparsely
connected deep neural network model comprises final iteration weights for only connected

connections of the available connections between the two adjacent layers at a final iteration.

2. The method of claim 1, wherein iteratively pruning and splicing the available connections

and updating the weights comprises:

48

10

20

WO 2018/058509 PCT/CN2016/101043

generating a current iteration connection matrix comprising a plurality of indicators each
indicating whether a corresponding available connection between the two layers is connected or
not connected, wherein generating the current iteration connection matrix comprises applying, to
each of a plurality of previous iteration connection weights each corresponding to one of the
plurality of available connections, a discriminative function to determine cach indicator of the
current iteration connection matrix; and

updating the previous iteration connection weights based on a loss function gradient to

generate a plurality of current iteration connection weights between the two adjacent layers.

3. The method of claim 2, wherein applying the discriminative function comprises
comparing an individual previous iteration connection weight to a threshold and providing a
disconnect indicator when the individual previous iteration connection weight compares

unfavorably to the threshold.

4. The method of claim 2, wherein applying the discriminative function comprises
comparing an individual previous iteration connection weight to a first threshold and a second
threshold greater than first threshold and providing a disconnect indicator when the individual
previous iteration connection weight compares unfavorably to the first threshold, a connect
indicator when the individual previous iteration connection weight compares favorably to the

second threshold, and, otherwise, a no change indicator.

5. The method of claim 1, wherein iteratively pruning and splicing the available connections
and updating the weights comprises iteratively pruning and splicing available connections and
updating weights between all adjacent layers of the deep neural network model by:

applying a current iteration deep neural network model to a training data set;

49

10

20

WO 2018/058509 PCT/CN2016/101043

determining a network loss based on the application of the current iteration deep neural
network model to the fraining data set;
generating a loss function gradient based on the current iteration deep neural network
model: and
for cach hidden layer and the output layer of the current iteration deep neural network
model:
generating a current iteration connection matrix based on a previous matrix of
connection weights; and
updating the previous matrix of connection weights to a current matrix of
connection weights based on the previous matrix of connection weights and the loss

function gradient.

6. The method of claim 5, further comprising:
pre-training the deep neural network model based on a first training data set to determine
the reference weights, wherein the training data set is a randomly selected subset of the first

training data set.

7. The method of claim 1, wherein iteratively pruning and splicing available connections
and updating the weights comprises:
stochastically determining, for a current iteration, a pruning and splicing activation
indicator indicating whether pruning and splicing are to be applied {or the current ieration; and
only pruning and splicing available connections when the pruning and splicing activation

indicator indicates pruning and splicing are to be applied for the current iteration.

50

10

20

WO 2018/058509 PCT/CN2016/101043

8. The method of claim 7, wherein stochastically determining the pruning and splicing
indicator comprises applying a probability function based on the iteration number of the current

iteration, wherein the probability function is a monotonically non-increasing probability function.

9. The method of claim 1, wherein the deep neural network comprises a deep fully
connected neural network, a deep convolutional neural network, or a deep recurrent neoral

network.

10. The method of claim 1, wherein the deep neural network comprises a deep convolutional
neural network and the weights comprise coefficients of each kernel of the conveolutional layer of

the two adjacent layers.

11 The method of claim 1, wherein the sparsely connected deep neural network model is
stored for use by an artificial intelligence processing application, the method further comprising:
implementing the sparsely connected deep neural network model by the artificial
intelligence processing application, wherein the artificial intelligence processing application
receives input data for classification and classifies the 1oput data to generate classification data,
the artificial intelligence processing application comprising at least one of a computer vision
application, a face recognition application, a face detection application, an object detection
application, a gesture recognition application, a voice detection application, a voice identification

application, or a speech to recognized series of textual elements application.

12. A system for compressing a pre-trained decep neural network comprising:

51

10

20

WO 2018/058509 PCT/CN2016/101043

memory to store a deep neural network model having an input layer, a plurality of hidden
layers, an output layer, and available connections between the layers, reference weights
corresponding to the available connections; and
a processor coupled to the memory, the processor to:
generate a sparsely connected deep neural network model based on the decp neural
network model, wherein to generate the sparsely connected deep neural network model, the
processor is to iteratively:
prune and splice one or more of a plurality of available connections between at
least two adjacent layers of the deep neural network model, wherein to prune comprises
the processor to disconunect at least a first connection of the available conuvections
between the two adjacent layers and to splice comprises the processor reconnecting at
least a second connection of the available connections between the two adjacent layers,
wherein the second connection was disconnected in a previous iteration; and
update weights corresponding to both the currently disconnected and the currently
connected connections of the available connections between the two adjacent iayers; and
store the sparsely connected deep neural network model to the memory, wherein the
sparsely connected deep neural network model comprises {inal teration weights for only
connected connections of the available connections between the two adjacent layers at a final

iteration.

13. The system of claim 12, wherein to iteratively prune and splice the available connections
and update the weights comprises the processor to:

generate a current iteration connection matrix comprising a plurality of indicators cach
indicating whether a corresponding available connection between the two layers is connected or

not connected, wherein to generate the current iteration connection matrix comprises the

52

10

20

WO 2018/058509 PCT/CN2016/101043

processor to apply, to each of a plurality of previous iteration connection weights each
corresponding to one of the plurality of available connections, a discriminative function to
determine each indicator of the current iteration connection matrix; and

update the previous iteration connection weights based on a loss function gradient to

generate a plurality of current #eration connection weights between the two adjacent layers.

14. The system of claim 13, wherein to apply the discriminative function comprises the
processor to compare an individual previous Heration connection weight to a first threshold and a
second threshold greater than first threshold and to provide a disconnect indicator when the
individual previous iteration convection weight compares unfavorably to the first threshold, a
connect indicator when the individual previous iteration connection weight compares favorably

to the second threshold. and, otherwise, a no change indicator.

I5. The system of claim 12, wherein to iteratively prune and splice the available connections
and update the weights comprises the processor to iteratively prune and splice available
connections and update weights between all adjacent layers of the deep neural network model by
the processor being configured to:

apply a current iteration deep neural network model to a training data set;

determine a network loss based on the application of the current iteration deep neural
network model to the training data set;

generate a loss {unction gradient based on the current iteration deep neural network model;
and

for each hidden layer and the output layer of the current iteration deep neural network

maodel:

53

10

20

WO 2018/058509 PCT/CN2016/101043

generate a current iteration connection matrix based on a previous matrix of
connection weights; and

update the previous matrix of connection weights to a current matrix of
connection weights based on the previous matrix of connection weights and the loss

function gradient.

16. The system of claim 12, wherein to iteratively prune and splice available connections and
update the weights comprises the processor to:
stochastically determine, for a corrent iteration, a pruning and splicing activation
indicator indicating whether pruning and splicing are to be applied {or the current Heration; and
only prune and splice available connections when the pruning and splicing activation

indicator indicates pruning and splicing are to be applied for the current iteration.

17. The system of claim 16, wherein to stochastically determine the pruning and splicing
indicator comprises the processor to apply a probability function based on the iteration number of
the current iteration, wherein the probability function is a2 monotonically non-increasing

probability function.
I8. The system of claim 12, wherein the deep neural network comprises a deep convolutional
neural network and the weights comprise coefficients of cach kernel of the convolutional layer of

the two adjacent layers.

19. A system comprising:

54

10

20

WO 2018/058509 PCT/CN2016/101043

means for receiving, for a deep neural network model having an input layer, a plorality of
hidden layers, an output layer, and available connections between the layers, reference weights
corresponding to the available connections;
means for generating a sparsely connected deep neural network model based on the deep
neural network model by iteratively:
pruning and splicing one or more of a plurality of available connections between
at least two adjacent layers of the deep neural network model, wherein said pruning
comprises disconnecting at least a first connection of the available connections between
the two adjacent layers and said splicing comprises reconnecting at least a second
connection of the avatlable connections between the two adjacent layers, whereio the
second connection was disconnected in a previous iteration; and
updating weights corresponding to both the currently disconnected and the
currently connected connections of the available convections between the two adjacent
layers; and
means for storing the sparsely connected deep neural network model, wherein the
sparsely connected deep neural network model comprises final iteration weights for only
conmnected convections of the available connections between the two adjacent layers at a final

iteration.

20. The system of claim 19, wherein iteratively pruning and splicing the available
connections and updating the weights comprises:

generating a current iteration connection matrix comprising a plarality of indicators each
indicating whether a corresponding available connection between the two layers is connected or
not connected, wheremn generating the current #eration counection roatrix comprises applying, to

each of a plurality of previous iteration connection weights each corresponding to one of the

55

10

20

WO 2018/058509 PCT/CN2016/101043

plurality of available connections, a discriminative function to determine each indicator of the
current iteration connection matrix; and
updating the previous iteration connection weights based on a loss function gradient to

generate a plurality of current Heration connection weights between the two adjacent layers.

21 The system of claim 20, wherein applying the discriminative function comprises
comparing an individual previous iteration connection weight to a first threshold and a second
threshold greater than first threshold and providing a disconnect indicator when the individual
previous iteration connection weight compares unfavorably to the first threshold, a connect
indicator when the individual previous teration connection weight compares favorably to the

second threshold, and, otherwise, a no change indicator.

22. The system of claim 19, wherein iteratively pruning and splicing the available
connections and updating the weights comprises iteratively pruning and splicing available
connections and updating weights between all adjacent layers of the deep neural network model
by:

applying a current iteration deep neural network model to a training data set;

determining a network loss based on the application of the current iteration deep neural
network model to the training data set;

generating a loss function gradient based on the current iteration deep neural network
model; and

for each hidden layer and the output layer of the current iteration deep neural network
model:

generating a current iteration connection matrix based on a previous matrix of

connection weights; and

56

10

20

WO 2018/058509 PCT/CN2016/101043

updating the previous matrix of connection weights to a current matrix of
connection weights based on the previous matrix of connection weights and the loss

function gradient.

23. The system of claim 19, wherein iteratively pruning and splicing available connections
and updating the weights comprises:
stochastically determining, for a current iteration, a praning and splicing activation
indicator indicating whether pruning and splicing are to be applied for the current iteration; and
only pruning and splicing available connections when the pruning and splicing activation

indicator indicates pruning and splicing are to be applied for the current iteration.

24. The system of claim 23, wherein stochastically determining the pruning and splicing
indicator comprises applying a probability function based on the iteration number of the current

iteration, wherein the probability function is a monotonically non-increasing probability function.

25. The system of claim 19, wherein the deep neural network comprises a deep convolutional
neural network and the weights comprise coefficients of each kernel of the convolutional Jayer of

the two adjacent layers.

26. At least onc machine readable medium comprising a plurality of instructions that, in
response to being executed on a computing device, cause the computing device to compress a
deep neural network by:

recetving, for a deep neural network model having an input layer, a plurality of hidden
layers, an output layer, and available connections between the layers, reference weights

corresponding to the available connections;

57

10

20

WO 2018/058509 PCT/CN2016/101043

generating a sparsely connected deep neural network model based on the deep neural
network model by iteratively:
pruning and splicing one or more of a plurality of available connections between
at least two adjacent layers of the deep neural network model, wherein said pruning
comprises disconnecting at least a first connection of the available connections between
the two adjacent layers and said splicing comprises reconnecting at least a second
connection of the available connections between the two adjacent layers, wherein the
second connection was disconnected in a previous iteration; and
updating weights corresponding to both the currently disconnected and the
currently connected connections of the available connections between the two adjacent
layers; and
storing the sparsely connected deep neural network model, wherein the sparsely
connected deep veural network model comprises final iteration weights for only connected

connections of the available connections between the two adjacent layers at a final iteration.

27. The machine readable medium of claim 26, wherein #eratively pruning and splicing the
available connections and updating the weights comprises:

generating a current iteration connection matrix comprising a plurality of indicators each
indicating whether a corresponding available connection between the two layers is connected or
not connected, wherein generating the current itcration connection matrix comprises applying, to
each of a plurality of previous iteration connection weights each corresponding to one of the
plurality of available connections, a discriminative function to determine each indicator of the
current iteration connection matrix; and

updating the previous ileration connection weights based on a loss function gradient to

generate a plurality of current iteration connection weights between the two adjacent layers.

58

WO 2018/058509 PCT/CN2016/101043

28. The machine readable medium of claim 27, wherein applying the discriminative function
comprises comparing an individual previous iteration connection weight to a threshold and
providing a disconnect indicator when the individual previous iteration connection weight

5 compares unfavorably to the threshold.

29. The machine readable medium of claim 26, wherein iteratively pruning and splicing the
available connections and updating the weights comprises iteratively pruning and splicing
available connections and updating weights between all adjacent layers of the deep neural
10 npetwork model by:
applying a current iteration deep neural network model to a training data set;
determining a network loss based on the application of the current iteration deep neural
network model to the training data set;

generating a loss function gradient based on the current iteration deep neural network

15 model; and
for cach hidden layer and the output layer of the current iteration deep neural network
model:
generating a current iteration connection matrix based on a previous matrix of
connection weights; and
20 updating the previous matrix of connection weights to a current matrix of

connection weights based on the previous matrix of connection weights and the loss

function gradient.

30. The machine readable medium of claim 26, wherein iteratively pruning and sphcing

25 available connections and updating the weights comprises:

59

10

WO 2018/058509 PCT/CN2016/101043

stochastically determining, for a current iteration, a pruning and splicing activation
indicator indicating whether pruning and splicing are to be applied for the current iteration; and
only pruning and splicing available connections when the pruning and splicing activation

indicator indicates pruning and splicing are to be applied for the current iteration.

31 The machine readable medium of claim 30, wherein stochastically determining the
pruning and splicing indicator comprises applying a probability function based on the iteration
number of the current iteration, wherein the probability function is a monotonically non-

increasing probability function.

32. The machine readable medium of claim 26, wherein the deep neural network comprises a
deep convolutional neural network and the weights comprise coefficients of each kernel of the

convolutional layer of the two adjacent layers.

60

WO 2018/058509 PCT/CN2016/101043

100 Initial DNN Model Training Data Set
T — | DNNPre
| Training 101
Reference
DNN Maodel
113

:’“ """"""""""""""""""""""""""""" i

! Pruning and ;

! Splicing 102 ;

i

i §

 Connection Updated !

! Matrices Weights |

1 SN

! ;

§

i Parameters i

§ | Updating 103 §

T ey ;

Sparse DNN
Model
116
Sparse DNN
200 Model
i 116
Pre—P[;zfsssec — Classification
Input Data 211 51 Sparse DNN | Seores 213
Pre-Processing &L Model ‘
201 implementation
202

FIG. 2

1/7

WO 2018/058509

Processed

Pre-

Data
212

400

Hidden

PCT/CN2016/101043

Classification
Scores 213

B

Layer

i

i

i

i

i

Output ;
i

306 E
— i

B

Set Connection Indicator |
to TRUE 405

Connection Indicator
UNCHANGED 406

| Set Connection Indicator

to FALSE 403

No Last™

Weight? >

Ouiput Connection Matrix
408

FIG. 4

2/7

WO 2018/058509 PCT/CN2016/101043

500 502

Pre-
Processed
Data
212 Classification
Scores 213
B

605 T
input
Layer \\‘\\\/// Output

Hidden Layer
Layers 306

3/7

WO 2018/058509

Pre-Train Reference Deep Neural
Network Mode! 701

v

Generate Connection Weight and
Connection Matrices 702

v

Select Mini-batch of Training Set 703

PCT/CN2016/101043

v

Forward Propagation and Loss
Determination 704

v

Backward Propagation to Determine
Loss Function Gradient 705

v

Select DNN Layer 706

v

Update Connection (Pruning) Matrix
707

v

Update Connection Weights based on
Loss Function Gradient 708

FIG.

4/7

2 e lteration? e

No

Store Sparsely Connected DNN Model
1

7

WO 2018/058509

800

PCT/CN2016/101043

Receive Reference Weights for Reference DNN Model

—— 801

:

Generate Sparsely Connected DNN Model! lteratively

Prune and Splice Available Connections Between
Adjacent Layers of the DNN 803

! I

Update Weights of Connected and Disconnected

Available Connections 804

— 802

é

Store and/or Implement Sparsely Connected DNN

—— 805

FIG. 8

Central Processor 901

DNN Pre- Pruning and Parameters
Training 101 Splicing 102 Updating 103
Sparse DNN
Pre-Processing Model
201 Implementation
202

{araphics Processor

902 Memory 203

System 900

FIG. 9

57

WO 2018/058509 PCT/CN2016/101043

1000

Dispiay 1020

N\

1050

/

<) >)
v

User interface 1022

Platform 1002 Anienna 1013

FIG. 10

Network

1060

6/7

e
: &Y
Conient Delivery
¥ \ Device(s)
emory Radio 1018 1040
1012
Content Services
» Applications Storage Device(s)
Chipset 1005 1016 1014 1030
b Graphics
r?%i%sor Subsystem
1015

WO 2018/058509 PCT/CN2016/101043

1100
Jiid 1102 1110
\\\; 1105 \\; [

! — 1 N } e
a E
i i
! i
! i
!]
! i
! i
! i

44
1104 ; 08 !
a E
! '
! i
I i
! i
i E
| R |

1112~
. vy

FIG. 11

717

INTERNATIONAL SEARCH REPORT

International application No.

PCT/CN2016/101043

A. CLASSIFICATION OF SUBJECT MATTER

GO6N 3/08(2006.01)1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6N; GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CNPAT, WPL, EPODOC, CNKI, IEEE, GOOGLE: neural network, pre, train, deep, input layer, hidden layers, output layer,

connect, weight, iterate, adjacent

C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

A US 2013138436 A1 (MICROSOFT CORPORATION) 30 May 2013 (2013-05-30) 1-32
description, paragraphs [0004], [0039]; claim 15

A US 2014067735 A1 (MICROSOFT CORPORATION) 06 March 2014 (2014-03-06) 1-32
the whole document

A US 2013138589 A1 (MICROSOFT CORPORATION) 30 May 2013 (2013-05-30) 1-32
the whole document

A CN 105137967 A (BEJING UNIVERSITY OF TECHNOLOGY) 09 December 2015 1-32

(2015-12-09)

the whole document

D Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E earlier application or patent but published on or after the international
filing date

“1* document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“0” document referring to an oral disclosure, use, exhibition or other
means

“p” document published prior to the international filing date but later than
the priority date claimed

«T” later document published after the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

“X document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the document is taken alone

«y” document of particular rele_/ance;_the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

07 April 2017 03 July 2017
Name and mailing address of the ISA/CN Authorized officer
STATE INTELLECTUAL PROPERTY OFFICE OF THE
P.R.CHINA
6, Xitucheng Rd., Jimen Bridge, Haidian District, Beijing KONG,Xin

100088
China

Facsimile No. (86-10)62019451

Telephone No. (86-10)62413663

Form PCT/ISA/210 (second sheet) (July 2009)

INTERNATIONAL SEARCH REPORT

International application No.
Information on patent family members

PCT/CN2016/101043
. Patc.ant document Publication date Patent family member(s) Publication date
cited in search report (day/month/year) (day/month/year)
Us 2013138436 Al 30 May 2013 us 2016026914 Al 28 January 2016
CN 103049792 A 17 April 2013
HK 1183141 AO 13 December 2013
Us 2014067735 Al 06 March 2014 WO 2014035738 Al 06 March 2014
Us 2013138589 Al 30 May 2013 None
CN 105137967 A 09 December 2015 None

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - claims
	Page 51 - claims
	Page 52 - claims
	Page 53 - claims
	Page 54 - claims
	Page 55 - claims
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - wo-search-report
	Page 71 - wo-search-report

