wO 2005/086906 A2 | |00 000 0 000 0 O A

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Burcau

(43) International Publication Date
22 September 2005 (22.09.2005)

AT O OO0

(10) International Publication Number

WO 2005/086906 A2

(51) International Patent Classification: Not classified
(21) International Application Number:
PCT/US2005/007923

(22) International Filing Date: 8 March 2005 (08.03.2005)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

10/795,374 8 March 2004 (08.03.2004) US
(71) Applicant (for all designated States except US): AB
INITIO SOFTWARE CORPORATION [US/US]; 201

Spring Street, Lexington, MA 02421 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): INCHINGOLO,

(74)

(81)

(84)

Frank [US/US]; 108 Country Club View, Edwardville,
IL 62025 (US). STANFILL, Craig, W. [US/US]; 43
Huckleberry Hill Road, Lincoln, MA 01773 (US).

Agents: HENNESSEY, Gilbert, H. et al.; Fish & Richard-
son P.C., 225 Franklin Street, Boston, MA 02110-2804
(Us).

Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ,
™™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA,
ZM, ZW.

Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,

[Continued on next page]

(54) Title: DEPENDENCY GRAPH PARAMETER SCOPING

1
=]
o

110

~—— 120

PLAN
SPECIFICATION
124 (TASKS SPEC
pN

TASK MANAGER <
221 GRAPH
o spec
132
A

(mmmm T e

| 134 [

! 1 - |

| . |

‘ 136 136 !
L

| 134 4 134 |

| W |

J 2 3 |

| |

| |

: 136 {

\ 4 138/ \ 436 |

7 |

| 134) 134 |

| |

| |

| |

| |

\)

(57) Abstract: A number of tasks are defined accord-
ing to a dependency graph. Multiple parameter contexts
are maintained, each associated with a different scope
of the tasks. A parameter used in a first of the tasks is
bound to a value. This binding includes identifying a
first of the contexts according to the dependency graph
and retrieving the value for the parameter from the iden-
tified context.

WO 2005/086906 A2

000 OO O

GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Burasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR,HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO,
SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN,
GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii)) for the following designations AE,
AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ,
CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE,
EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS,
JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA,
MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM,
PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY,
TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA,
ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ,
NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ], TM), European patent (AT,
BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR,
HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK,
TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GO,
GW, ML, MR, NE, SN, TD, TG)

— asto the applicant’s entitlement to claim the priority of the

earlier application (Rule 4.17(iii)) for the following desig-
nations AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW,
BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ,
EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID,
IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU,
LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ,
OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM,
SY, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VC, VN, YU, ZA,
ZM, ZW, ARIPO patent (BW, GH, GM, KE, LS, MW, MZ,
NA, SD, SL, 87, TZ, UG, ZM, ZW), Eurasian patent (AM,
AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT,
BE, BG, CH, CY, CZ, DE, DK, FEE, ES, FI, FR, GB, GR,
HU, IE, IS, IT, LT, LU, MC, NL, PL, PT, RO, SE, SI, SK,
TR), OAPI patent (BF, BJ, CE, CG, CI, CM, GA, GN, GQ,
GW, ML, MR, NE, SN, TD, TG)

Published:
— without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

10

15

20

25

WO 2005/086906 PCT/US2005/007923

DEPENDENCY GRAPH PARAMETER SCOPING

Background

This invention relates to scoping of parameters in a dependency graph.

Computer job control systems have been used to sequence execution of computer
programs or other processes according to constraints related to the order in which the programs
are to be executed. One approach to specifying the ordering constraints is using a dependency
graph. The programs may accept arguments that are specified at the time jobs are submitted to
the system. One example of such job control systems is a distributed batch systems in which
different jobs can be specified to execute on different computers or types of computers (e.g.,
supercomputers), and dependencies between different jobs are explicitly identified before the
jobs are executed. One approach to communication of information between jobs is through a
common data store such as through files in a file system. Another example of such job control
relates to job scheduling in a distributed personal computer environment, for example,
scheduling maintenance tasks that need to be executed on different computers in a particular

sequence.

Summary

In a general aspect, the invention features a method for binding values of parameters. A
number of tasks are defined according to a dependency graph. Multiple parameter contexts are
maintained, each associated with a different scope of the tasks. A parameter used in a first of
the tasks is bound to a value. This binding includes identifying a first of the contexts according

to the dependency graph and retrieving the value for the parameter from the identified context.
This aspect can include one or more of the following features:

A value for assignment to a parameter is determined during execution of a second of the
tasks. The value for the parameter is stored in the first parameter context, which is associated

with the second of the tasks.

The dependency graph specifies an execution order for the tasks. Identifying the first of

the contexts includes identifying tasks that necessarily execute prior to the first of the tasks.

-1-

10

15

20

25

WO 2005/086906 PCT/US2005/007923

Identifying the first of the contexts also includes identifying tasks that assign a value to the first

parameter and identifying a task that executes latest according to the dependency graph.

In another aspect, in general, the invention features a method for checking parameter
access including accepting a specification of an ordering constraint for a plurality of tasks, in
which at least some of the tasks are not ordered relative to one another. This checking
includes, for each of one or more parameters, identifying the tasks that access those parameters,
and checking for potential conflict in the access to the parameters by the identified tasks

according to the specification of the ordering constraint.
Aspects of the invention can include one or more of the following advantages:

Use of explicit parameter passing between tasks enables checking for conflicts and
ambiguities in parameter values. For example, such checking can ensure that parameters will

take on the same values on repeated execution of a plan of tasks.

Scoping according to precedence in a dependency graph can be preferable to scoping
according to nesting or plans and sub-plans because parameters can be passed between peer

tasks in the plans.

Use of multiple parameter contexts can reduce name conflict by allowing the same
parameter name to be used in different portions of a dependency graph subject to the multiple
uses not introducing conflicts or ambiguities according to the scoping rules. This can allow
different developers to author different portions of a plan without introducing name conflicts,

and without having to explicitly identify different naming domains.

Other features and advantages of the invention are apparent from the following

description, and from the claims.

Description of Drawings

FIG. 1 is a task management system.
FIG. 2 is a dependency graph.

FIG. 3 is a diagram that includes a single global context in a task manager.

-2

10

15

20

25

WO 2005/086906 PCT/US2005/007923

FIG. 4A is a diagram that includes multiple task-specific dynamic contexts in a task

manager.

FIG. 4B is a diagram showing the relationships among the dynamic contexts according

the dependency graph of FIG. 2.
FIG. 4C is a diagram showing scopes of tasks in the dependency graph of FIG. 2.
FIG. 5 is a task specification.

FIGS. 6A-B are examples of an application that uses dynamic parameters.

Description
Overview

Referring to FIG. 1, a task management system 100 controls the execution of tasks that
make up an overall plan according to dependency constraints which specify which tasks in the
plan must be completed before others of the tasks are executed. The dependency constraints
are represented using a directed dependency graph 132 in which each node 134 of the graph
corresponds to a different task in the plan and each directed arc 136 from one node to another
indicates an ordering constraint such that the task corresponding to the first (“upstream”) node
must complete before the task corresponding to the second (“downstream”) node is executed.
More generally, a task corresponding to a node can execute only after all its upstream tasks in
the graph have completed. The dependency graph establishes a partial ordering of the tasks.
Therefore, tasks may be executed concurrently subject to constraints including the graph-based
dependency constraints. Tasks may also be executed on different computers to achieve a

parallelism speedup in overall execution of the plan.

Task management system 100 includes a task manager 110, which reads a plan
specification 120. The plan specification includes a graph specification 122 defining the
dependency graph 132, as well as a tasks specification 124 that defines the characteristics of
each of the tasks. Graph specification 122 defines the dependency graph by a list of nodes 134,
and a list of arcs 136 each identifying a source node and a destination node in the graph. Each

node is associated with a task definition, which is specified in tasks specification 124, that

-3

10

15

20

25

WO 2005/086906 PCT/US2005/007923

specifies the specific operations to be carried out in the task.

A task can be defined using a task template and a plan can be defined using a plan
template. A template for a task or a plan can include references to parameters that are
represented symbolically and are not necessarily bound to values until the task is executed. For
example, a task template may include a reference to a parameter named FILENAME, and a
reference to that parameter, represented using a “dollar-sign” syntax $FILENAME, is bound to

a specific value by the task manager 110 prior to or during execution of the task.

Some parameters are global to the entire plan and are assigned values when the entire
plan is first executed. Such parameters can be formal parameters of the plan as a whole and
may, for example, be specified in the command that invokes the overall plan or can be elicited

interactively from a user who invokes the plan.

Other parameters do not necessarily have values specified when the plan is first
executed. Such dynamic parameters may be assigned values during or as a result of execution
of one or more tasks and then referenced by the templates of other tasks. For example, in FIG.

2, a parameter A can be set to a value by task 1, and then that value can be used by task 2.

Task management system 100 supports a number of additional features that are relevant
to the discussion below. A first feature is that a node 134 may be associated with an entire
“sub-plan” rather than a single task. A sub-plan is a lower-level plan of partially ordered tasks.
The sub-plan has a plan specification 120 of the same or similar structure as the top-level plan

specification.

A second feature is that tasks have the ability to modify plan specification 120 through
their execution. In particular, a task has the ability to add additional nodes 134 and arcs 136 to
graph 132, and define characteristics for the tasks associated with the added nodes using
services provided by the task manager 110. For example, a first task can generate a sub-plan
using a template for a plan having unknown (before runtime) number of tasks to perform. The
number of tasks in the template is bound at runtime using a dynamic parameter. The generated

sub-plan is incorporated into the higher-level plan of the first task by the task manager 110.

10

15

20

25

WO 2005/086906 PCT/US2005/007923

Binding Approaches

Task manager 110 uses one of a number of alternative approaches to parameter binding
as described below. Alternatively, the task manager 110 uses a combination of the binding
approaches, for example, using different approaches for different parameters according to
declarations of those parameters. One aspect in which some (or all) of the approaches differ is

in the scope of parameter definitions.

Approach 1

Referring to FIG. 3, in a first binding approach, task manager 110 maintains a single
global context 310 for all parameters. The task manager 110 maintains a single copy of any
parameter. That is, it maintains a data structure 320 that associates each of a number of
different parameter names 322 with a current value 324 of that parameter (where a value 324
can be empty if the corresponding parameter has not yet been assigned a value). This same
data structure 320 can be used to hold values of global parameters as well as those dynamically

assigned by tasks as they execute.

Referring to FIGS. 2 and 3, in an example of this first approach, a task 1 assigns a value
FOO to parameter A, as indicated by the assignment A=FOOQO. Task manager 110 receives the
assigned value, FOO, from task 1 (indicated by the arrow from task 1 to the value cell 324 for
parameter A) and stores the value in a value cell 324. The task manager 110 later provides the
value FOO to task 2 in order to bind a reference to parameter A in the template for task 2. In
this example, task 2 includes an assignment B=§A/BAZ, which can result in the parameter B
being assigned the value FOO/BAZ. The task manager 110 receives the assigned value for B
which it stores in global context 310. According to graph 132, task 2 executes only after task 1
is completed. Therefore, the assignment of FOO to the parameter A is guaranteed to have been

performed prior to the execution of task 2.

In general, groups of multiple tasks of a plan can be executed concurrently. For a
particular dependency graph, two or more tasks that are not ordered relative to one another
could potentially be executed concurrently or in an unpredictable sequence if there is no direct
path between them in the dependency graph. In FIG. 2, tasks 2 and 3 are such unordered tasks.
In the example in FIG. 2, task 3 assigns a value of BAR to parameter A. If task 3 executes

5.

10

15

20

25

30

WO 2005/086906 PCT/US2005/007923

before task 2, then the parameter B is assigned a value of BAR/BAZ in task 2, while if task 3
executes after task 2, the parameter B is assigned a value of FOO/BAZ.

In a number of applications, the uncertainty of which value will be assigned to B is
undesirable. One approach to preventing such a situation is to perform a static checking of a
dependency graph and prohibiting use of a plan that exhibits such uncertainty. The check
includes identifying groups of tasks that are not ordered by the graph. If a particular parameter
is used by one task in the group and assigned by another task in the group, a potential
ambiguity occurs. Similarly, if two tasks in such a group assign values to a particular
parameter, there is also a conflict. In general, in any group of unordered tasks in which
multiple tasks access a particular parameter no task may assign a value to that parameter. This
static check would identify the conflict between tasks 2 and 3 with respect to their reference to
parameter A. The task management system 100 handles conflicts identified by the static check
(e.g., using error handling mechanisms). Note that in this example, tasks 2 and 5 can also
execute in an unpredictable order, but both use rather than assign a value of parameter A and

therefore do not represent a conflict or ambiguity.

The static checking of the dependency graph is performed by the task manager 110
before execution of the plan or alternatively can be performed in a pre-process by another
module that validates the plan specification. In the situation in which the graph is modified by
execution of a task, the static check is performed again or augmented to account for the

modification of the graph.

For plans that include sub-plans, two variants of this approach can be used. In a first
variant, the task manager 110 maintains a single context for all parameters for all levels of sub-
plans. In static checking of a plan that includes a node with a sub-plan, an assignment of a
parameter by any task in that sub-plan conflicts with any unordered task (with respect to the

node with that sub-plan) in the higher-level plan that uses the value of that parameter.

In a second variant involving sub-plans, the task manager 110 maintains a separate
context for parameters of each sub-plan, and the specification of a sub-plan explicitly identifies
which parameters are exported from the sub-plan to the next higher-level plan when the sub-
plan is completed. In such a variant, the static checking involves conflict between an exported

parameter of a sub-plan and access to that parameter in a task in the next higher-level plan that
-6-

10

15

20

25

WO 2005/086906 PCT/US2005/007923

is not ordered with execution of the sub-plan.

In another version of this approach, the task manager 110 prohibits repeated assignment

of values to any particular global dynamic parameter.

Approach 2

Referring to FIG. 4A, in a second approach task manager 110 maintains a global
context 310, for parameters that are set for the plan as a whole, and multiple dynamic contexts
410, each associated with a different node of the dependency graph. Each task that assigns a
parameter generates a new “instance” of that parameter and stores (via the task manager 110)
the assigned value in the dynamic context 410 associated with the node corresponding to that
task. The task manager 110 can therefore store multiple values associated with a parameter,
each value associated with a different instance of the parameter. For any particular parameter
(e.g., A), the task manager 110 maintains a separate value of the parameter associated with
each task in which that parameter is assigned (since each task corresponds to a separate node

and a separate dynamic context 410).

Referring to FIGS. 4B and 4C, each instance of a parameter and its associated dynamic
context 410 has a scope of tasks that determines which tasks “see” the value assigned to that
instance. Each dynamic context 410 is associated with a different scope of tasks based on
relationships among the dynamic contexts 410 following a pattern 420 according to the
dependency graph 132. For example, the instance of parameter A that is assigned A=FOO in
task 1 (stored in a dynamic context 410) has a scope of task 430 that is different from the scope
of tasks 432 associated with the instance of parameter A that is assigned A=BAR in task 3.

The scope of tasks 434 associated with the instance of parameter B that is assigned B=SA/BAZ
in task 2 includes task 4 but not task 5. In this approach, the scope of tasks or “scope” of an
instance of a parameter (and its associated dynamic context 410) includes only the task that
assigned the value to the instance of the parameter and tasks that are ordered after
(“downstream of”) that task. When a task references a parameter, the task manager 110 binds to

that reference a value of an instance of the parameter whose scope includes the task.

When task 1 assigns a value FOO to parameter A, the task manager 110 stores the value
in a dynamic context 410 associated with task 1. Similarly, when task 3 assigns a value BAR

-7-

10

15

20

25

WO 2005/086906 PCT/US2005/007923

to parameter A, the task manager 110 stores the value in a dynamic context 410 associated with
task 3. Task 2 is within the scope of the instance of parameter A which is assigned a value
A=FOO in task 1, but is not in the scope of the instance of parameter A that is assigned
A=BAR in task 3. Therefore, under this scoping approach, there is no uncertainty or ambiguity
regarding the value of B in task 2. The task manager 110 binds the reference to parameter A in
task 2 with the value from the dynamic context 410 for task 1. Task 2 assigns B the valve
FOO/BAZ, which it provides to the task manager 110 for storage in the dynamic context 410

associated with task 2.

In general, during execution the task manager 110 binds a value to a reference to a
parameter in a task by considering upstream paths (i.e., direct paths through a single arc or
indirect paths through already executed tasks) through the graph that terminate with a task that
assigns a value to the parameter. In the example, when binding the parameter A in task 2, the

task manager 110 follows the upstream path to task 1, where the parameter has been set.

In the example in FIG. 2, task 4 is potentially within the scope of both the instance of
parameter A of task 1 and that of task 3. That is, there is an upstream path from task 4 to both
task 1 (indirectly through task 2) and to task 3 (directly) each of which assigns a value to A.
Howeyver, in this example, there is no ambiguity because task 3 is constrained to execute after
task 1. If there are multiple upstream assignments of a parameters and if there is one task that
is ordered after all the others, then there is no ambiguity and the value assigned to the instance

of the parameter in the dynamic context 410 of that last task is used.

As with the first approach, potential ambiguity can be checked statically from the
dependency graph. Specifically, for each reference to a parameter at a node (task) in the graph,
the upstream tasks that could assign values to the parameter are first identified. If there is no
such task, then the parameter would have an undefined value or is provided from a global
context for the plan. If there is exactly one upstream task, then there is no ambiguity. If there
are multiple upstream tasks that assign values to the parameter there is an ambiguity unless
there is a single one of those tasks that is ordered after the others (i.e., constrained to be

executed after the other by the dependency graph).

10

15

20

25

30

WO 2005/086906 PCT/US2005/007923

Implementation approaches

Referring to FIG. 5, a task specification 500 (which is contained in tasks specification
124 in FIG. 1) includes a declaration section 510 and an instruction section 520. The
declaration section 510 identifies (e.g., using a declaration statement or statements) the
dynamic parameters that are assigned through execution of the corresponding task. The task
specification shown in FIG. 5 corresponds to task 1 in FIG. 2. The parameter A is declared as
being dynamically assigned by the task, illustrated as the declaration “dynamic A” 512. The
declaration section 510 also identifies references to parameters that are required to be bound by

the task manager 110 according to the scopes of the available parameters.

The instruction section 520 includes computer instruction (e.g., programming language
or other procedural statements) for the operations to be carried out by the task, as well as
instructions for assigning values to dynamic parameters, such as the instruction “A=FO0” 522.
Such computer instruction, for example, can be specified by a user or automatically generated

by a computer process. ‘

Task manager 110 is able to process the declaration sections of the task specifications
for a plan to determine which parameters are to be assigned, or referenced, or both during
execution of the corresponding tasks. The task manager 110 can distinguish between an
assignment or a reference by additionally processing the instruction sections of the task
specifications, or alternatively, by the use of a separate type of declaration statement for
dynamic parameter assignment or reference. For example, for the example shown in FIG. 2, the
task manager 110 can parse the task specifications to determine that task 2 references parameter
A while task 3 assigns a value to A. This allows the task manager 110 to perform a static
check, such as a static check for the first approach (see FIG. 3) in which the reference in task 2

and the assignment in task 3 would conflict.

When the declaration section identifies the parameters that are to be referenced, the task
manager 110 is able to assemble an environment of parameters and their bound values prior to
executing the instructions of instruction section 520. Having assembled the environment for a
task, the task manager 110 invokes a process that executes the instructions of the instruction
section of the task specification. That process then accesses the parameter values from the

environment that has been created for it. During execution, processing of an assignment
-9

10

15

20

25

30

WO 2005/086906 PCT/US2005/007923

instruction for a dynamic parameter results in a (parameter,value) pair being recorded in an
output of the task execution, a dynamic parameter assignment section 530. For example, the
pair (A,FOO) 532 would be recorded in the assignment section 530. The task manager 110
receives the assignment section 530 after execution of the instructions of the instruction section

520, and uses its contents to update the parameter values.

In one specific implementation of this approach, the instruction section includes
statements in a shell scripting language such as “ksh.” Prior to invoking a shell process to
interpret the instructions, the task manager 110 uses the declaration section 510 to assemble an
environment of parameter values that will be used in processing the shell instructions. In this
implementation, assignment statements take the form of output statements to the text output of
the script. That is, rather than using an assignment “A=FOO”, the scripting instructions would
include a statement such as “PRINT A=FOOQ”, resulting in a line “A=FOO” being output. The
text output of the script forms the dynamic parameter assignment section 530. The task
manager 110 receives the text output, and interprets the assignment statements storing the

values in the appropriate dynamic contexts 410.

In another implementation, the process interpreting the instructions in instruction
section 520 is in communication with the task manager 110, and the task manager 110 services
requests to store or to access values of dynamic parameters. When a parameter reference needs
to be bound to a value to execute an instruction, the process sends a request to the task manager
110, which determines the appropriate dynamic context 410 for that parameter and returns the
value in that dynamic context 410. Similarly, when a parameter is assigned a value, the process

sends a request to store the value in the appropriate dynamic context 410.

In an alternative implementation, task specification 500 declaration section 510 does not
identify the parameters that will be needed by the task during execution, and a suitable
communication mechanism is not available to request the parameter values while the
instructions of the task are being executed. In this implementation, the task manager 110
assembles a complete list of all parameter instances whose scopes include the task. For
parameters for which binding would cause a potential ambiguity (for example because the
parameter was assigned a value by multiple upstream unordered tasks), the parameter value is

replace with an indicator, such as “ambiguous_value”, so that an error would occur should that

-10-

10

15

20

25

WO 2005/086906 PCT/US2005/007923

parameter be referenced in the task.

When the declaration sections 510 do not include declarations of the parameters that
will be dynamically assigned and/or referenced in each task, static checking of a dependency
graph may not be possible. However, the task manager 110 is still able to identify some
potential conflicts that may occur during execution of a plan. For example, using the scoping
approach with a single global context (see FIG. 3), if the task manager 110 detects during
execution of a plan that multiple unordered tasks have assigned values to a parameter, the task
manager 110 can identify the potential conflict. The task management system 100 can then

handle conflicts identified by the task manager.

Examples

Referring to FIG. 6A, an example of use of dynamically assigned parameters involves
the processing of a number of data files 641-643, each by a different task 631-633 in an overall
plan. The file names of the data files 641-643 are not known when the plan is first executed.
Rather, the file names are listed in a text file 622, the name of which is provided as a global

parameter LIST FILE for the overall plan.

The plan includes a first task 620, which is responsible for opening the LIST_FILE file
622, and reading its contents. This task 620 opens the file and reads the contents, determining
the number of separate data files listed. In this example, the list file 622 has three file names,
FNAME1.DAT, FNAME2.DAT, and FNAME3.DAT. The task retrieves the listed files 641-
643, for example, using a file transfer protocol across a data network. Task 1 assigns values to
a number of dynamic parameters, NUM_INPUT, and DATA_FILE 1 through DATA FILE 3,
and passes this assignment information to the task manager 110 which records it in an
appropriate context 610 (e.g., a global context, or a dynamic context associated with task 1,

depending on the scoping approach used).

In this first version of the example, the initially specified plan has exactly three
instances of tasks for processing the input files, tasks 2-4 (631-633). Each task retrieves the

name of its corresponding input data file by referencing a dynamic parameter assigned by task
1.

-11-

10

15

20

25

30

WO 2005/086906 PCT/US2005/007923

A variant of this example takes advantage of tasks being able to modify the plan
specification. The plan initially has only a single task, the GET NAMES task 1 (620). After
the GET NAMES task has determined that there are three data files to process, the task makes
use of services of the task manager 110 to create the three processing tasks 631-633 and
connect them to itself (task 1). Then after task 1 completes, the task manager 110 executes the

newly-created tasks 631-633 as described above.

Alternatively, in another variant of this example, the task manager 110 can use a plan
template having a modifiable number of tasks. Referring to FIG. 6B, the plan initially has two
tasks, the GET NAMES task 1 (620), and a PROCESS task 2 (650). After the GET NAMES
task has determined that there are three data files to process, the PROCESS task creates a sub-
plan using a plan template having a modifiable number of tasks. The PROCESS task references
the dynamic parameter NUM_INPUT to create a sub-plan with three (unordered) processing
tasks 631-633. The task manager 110 executes the tasks 631-633 in the newly-created sub-plan

as described above.

The parameter scoping approach described above can be implemented using software
for execution on a computer. For instance, the software forms procedures in one or more
computer programs that execute on one or more programmed or pro grammable computer
systems (which may be of various architectures such as distributed, client/server, or grid) each
including at least one processor, at least one data storage system (including volatile and non-
volatile memory and/or storage elements), at least one input device or port, and at least one
output device or port. The software may form one or more modules of a larger program, for

example, that provides other services related to the design and configuration of computation

graphs.

The software may be provided on a medium, such as a CD-ROM, readable by a general
or special purpose programmable computer or delivered (encoded in a propagated signal) over
a network to the computer where it is executed. All of the functions may be performed on a
special purpose computer, or using special-purpose hardware, such as coprocessors. The
software may be implemented in a distributed manner in which different parts of the
computation specified by the software are performed by different computers. Each such

computer program is preferably stored on or downloaded to a storage media or device (e.g.,

-12-

10

WO 2005/086906 PCT/US2005/007923

solid state memory or media, or magnetic or optical media) readable by a general or special
purpose programamable computer, for configuring and operating the computer when the storage
media or device is read by the computer system to perform the procedures described herein.
The inventive system may also be considered to be implemented as a computer-readable
storage medium, configured with a computer program, where the storage medium so
configured causes a computer system to operate in a specific and predefined manner to perform

the functions described herein.

It is to be understood that the foregoing description is intended to illustrate and not to
limit the scope of the invention, which is defined by the scope of the appended claims. Other

embodiments are within the scope of the following claims.

-13-

WO 2005/086906 PCT/US2005/007923

What is claimed is:
L. A method for binding values of parameters including:
defining a plurality of tasks according to a dependency graph;

maintaining a plurality of parameter contexts, each associated with a different

5 scope of the tasks; and

binding a value to a first parameter used in a first of the tasks, including
identifying a first of the parameter contexts according to the dependency graph and

retrieving the value for the parameter from the identified context.
2. The method of claim 1 further including:

10 determining a value for assignment to the first parameter during execution of a

second of the tasks; and

storing the value for the first parameter in the first parameter conte}it.

3. The method of claim 2 wherein the first parameter context is associated with the second
of the tasks.
15 4 The method of claim 1 wherein the dependency graph specifies an execution order for

the tasks, and wherein identifying the first of the contexts includes identifying tasks that

necessarily execute prior to the first of the tasks.

5. The method of claim 4 wherein identifying the first of the contexts includes identifying

tasks that assign a value to the first parameter.

20 6. The method of claim 5 wherein identifying tasks that assign a value to the first

parameter includes identifying a task that executes latest according to the dependency graph.
7. A method for checking parameter access including:

accepting a specification of an ordering constraint for a plurality of tasks, in

which at least some of the tasks are not ordered relative to one another;

- 14-

10

15

20

25

WO 2005/086906 PCT/US2005/007923

for each of one or more parameters, identifying the tasks that access those

parameters; and

checking for potential conflict in the access to the parameters by the identified

tasks according to the specification of the ordering constraint.

8. The method of claim 7 wherein accepting the specification of the ordering constraint

includes accepting a specification of a dependency graph.

9. The method of claim 7 wherein identifying the tasks that access a parameter includes

processing declarations for the tasks.

10. The method of claim 7 wherein checking for potential conflict in the access to the
parameters includes determining scopes of instances of one of the parameters, and whether a

plurality of the scopes include a task that references the parameter.

11. The method of claim 10 further including identifying the referenced parameter as an

ambiguous parameter if a plurality of the scopes include the task that references the parameter.

12. Software stored on a computer-readable medium including instructions for causing a

computer system to:
define a plurality of tasks according to a dependency graph;

maintain a plurality of parameter contexts, each associated with a different scope

of the tasks; and

bind a value to a first parameter used in a first of the tasks, including identifying
a first of the parameter contexts according to the dependency graph and retrieving the

value for the parameter from the identified context.

13. The software of claim 12 further including instructions for causing the computer system

to:

determine a value for assignment to the first parameter during execution of a

second of the tasks; and

-15-

WO 2005/086906 PCT/US2005/007923

store the value for the first parameter in the first parameter context.

14. The software of claim 13 wherein the first parameter context is associated with the

second of the tasks.

15. The software of claim 12 wherein the dependency graph specifies an execution order
5 for the tasks, and wherein identifying the first of the contexts includes identifying tasks that

necessarily execute prior to the first of the tasks.

16. The software of claim 15 wherein identifying the first of the contexts includes

identifying tasks that assign a value to the first parameter.

17. The software of claim 16 wherein identifying tasks that assign a value to the first

10 parameter includes identifying a task that executes latest according to the dependency graph.
18. A task managing system including:

a task manager definition module configured to define a plurality of tasks

according to a dependency graph; and

a task manager dynamic context module having storage space to maintain a

15 plurality of parameter contexts, each associated with a different scope of the tasks; and

a task manager parameter binding module, having access to the parameter
contexts, configured to bind a value to a first parameter used in a first of the tasks,
including identifying a first of the parameter contexts according to the dependency

graph and retrieving the value for the parameter from the identified context.

20 19. The system of claim 18 wherein the task manager parameter binding module is further

configured to:

determine a value for assignment to the first parameter during execution of a

second of the tasks; and
store the value for the first parameter in the first parameter context.

25 20. The system of claim 19 wherein the first parameter context is associated with the

-16-

10

15

20

WO 2005/086906 PCT/US2005/007923

second of the tasks.

21.

The system of claim 18 wherein the dependency graph specifies an execution order for

the tasks, and wherein identifying the first of the contexts includes identifying tasks that

necessarily execute prior to the first of the tasks.

22.

The system of claim 21 wherein identifying the first of the contexts includes identifying

tasks that assign a value to the first parameter.

23.

The system of claim 22 wherein identifying tasks that assign a value to the first

parameter includes identifying a task that executes latest according to the dependency graph.

24.

25.

26.

A task managing system including:
means for defining a plurality of tasks according to a dependency graph;

means for maintaining a plurality of parameter contexts, each associated with a

different scope of the tasks; and

means for binding a value to a first parameter used in a first of the tasks,
including identifying a first of the parameter contexts according to the dependency

graph and retrieving the value for the parameter from the identified context.
The system of claim 24 further including:

means for determining a value for assignment to the first parameter during

execution of a second of the tasks; and
means for storing the value for the first parameter in the first parameter context.

The system of claim 25 wherein the first parameter context is associated with the

second of the tasks.

217.

The system of claim 24 wherein the dependency graph specifies an execution order for

the tasks, and wherein identifying the first of the contexts includes identifying tasks that

necessarily execute prior to the first of the tasks.

-17-

10

15

20

25

WO 2005/086906 PCT/US2005/007923

28. The system of claim 27 wherein identifying the first of the contexts includes identifying

tasks that assign a value to the first parameter.

29. The system of claim 28 wherein identifying tasks that assign a value to the first

parameter includes identifying a task that executes latest according to the dependency graph.

30. Software stored on a computer-readable medium including instructions for causing a

computer system to:

accept a specification of an ordering constraint for a plurality of tasks, in which

at least some of the tasks are not ordered relative to one another;

for each of one or more parameters, identify the tasks that access those

parameters; and

check for potential conflict in the access to the parameters by the identified tasks

according to the specification of the ordering constraint.

31. The software of claim 30 wherein accepting the specification of the ordering constraint

includes accepting a specification of a dependency graph. -

32. The software of claim 30 wherein identifying the tasks that access a parameter includes

processing declarations for the tasks.

33. The software of claim 30 wherein checking for potential conflict in the access to the
parameters includes determining scopes of instances of one of the parameters, and whether a

plurality of the scopes include a task that references the parameter.

34. The software of claim 33 further including instructions for causing the computer system
to identify the referenced parameter as an ambiguous parameter if a plurality of the scopes

include the task that references the parameter.
35. A task managing system including:

a task manager definition module configured to accept a specification of an

ordering constraint for a plurality of tasks, in which at least some of the tasks are not

- 18-

10

15

20

25

WO 2005/086906 PCT/US2005/007923

ordered relative to one another; and

a task manager static checking module, having access to the specification,

configured to

for each of one or more parameters, identify the tasks that access those

parameters; and

check for potential conflict in the access to the parameters by the

identified tasks according to the specification of the ordering constraint.

36. The system of claim 35 wherein accepting the specification of the ordering constraint

includes accepting a specification of a dependency graph.

37. The system of claim 35 wherein identifying the tasks that access a parameter includes

processing declarations for the tasks.

38. The system of claim 35 wherein checking for potential conflict in the access to the
parameters includes determining scopes of instances of one of the parameters, and whether a

plurality of the scopes include a task that references the parameter.

39. The system of claim 38 wherein the task manager static checking module is further
configured to identify the referenced parameter as an ambiguous parameter if a plurality of the

scopes include the task that references the parameter.
40. A task managing system including:

means for accepting a specification of an ordering constraint for a plurality of

tasks, in which at least some of the tasks are not ordered relative to one another;

means for identifying, for each of one or more parameters, the tasks that access

those parameters; and

means for checking for potential conflict in the access to the parameters by the

identified tasks according to the specification of the ordering constraint.

41. The system of claim 40 wherein accepting the specification of the ordering constraint

-19-

WO 2005/086906 PCT/US2005/007923

includes accepting a specification of a dependency graph.

42. The system of claim 40 wherein identifying the tasks that access a parameter includes

processing declarations for the tasks.

43. The system of claim 40 wherein checking for potential conflict in the access to the
parameters includes determining scopes of instances of one of the parameters, and whether a

plurality of the scopes include a task that references the parameter.

44. The system of claim 43 further including means for identifying the referenced
parameter as an ambiguous parameter if a plurality of the scopes include the task that

references the parameter.

-20-

WO 2005/086906 PCT/US2005/007923
1/9

100
— //——120
110 " PLAN)
SPECIFICATION
124| (TASKS SPEC.
N
TASK MANAGER «—>

221 GRAPH
N SPEC.

132
______________ _/_— { : Y,

(\
I 134 |

| - |

| 1 |

| 136 136 |

| I

| 134 134 |

| 2 3 |

| |

I I

: 136 :

| 4 136 136 |

| |

| 134-:> 134 |

I [T

I 5 |

| | FIG. 1
| I

\)

WO 2005/086906

2/9

2
B =$ABAZ

PCT/US2005/007923

134 132
—
1
A=FOO0
134
\ -
134
/an 3
A=BAR
134
—
4
C =$A/BAZ
FIG. 2

134
f

$A

WO 2005/086906

3/9

PCT/US2005/007923

TASK MANAGER

110
310 /'

320

324
e

GLOBAL CONTEXT
322 — PARAM VALUE
A FOO _|
322 —| et
/ B |, FOOBAZ

-

324

A
}
134
\ /S
1 2
A=FOO B = $AIBAZ

FIG. 3

WO 2005/086906

4/9

PCT/US2005/007923

TASK MANAGER

310
a

ONTEXT

420 GLOBAL CON 304
X
Y

DYNAMIC CONTEXT 1 410
— -
—FO00
/ DYNAMIC CONTEXT 2

B /LFOO/BAZ

/—410

[

DYNAMIC CONTEXT 3

[

A/‘> BAR "™

/—410

\ :

f A A A
| \1 10
v
N
A=FOO !
N 134 2 \
(—B = $AIBAZ . L
FIG. 4A A B 4
134 C = $AIBAZ

__134 ann

WO 2005/086906

PCT/US2005/007923
5/9

NeN
N
o

410
/_

410 410
) -

410) /—410

[$)]

FIG. 4B

WO 2005/086906 PCT/US2005/007923
6/9

430 - 134
/_

A=FOO

134
/_

134
/ 3

A=BAR

2
B =$ABAZ

432

134
/_

4
C = $A/BAZ

134
/_

434

FIG. 4C D=$A

WO 2005/086906 " PCT/US2005/007923

(" TASKSPECIFICATION)

500
o /

DECLARATION
512 — SECTION

dynamic A

520 —
™
INSTRUCTION

SECTION

522
\

A = FOO
N _/
. D
530 \
_\ﬁ
DYNAMIC
PARAMETER
ASSIGNMENT
532 SECTION
(A, FOO)
. _

FIG. 5

WO 2005/086906

622

LIST.TXT f

i

FNAME1.DAT

FNAME2.DAT

FNAME3.DAT

pinl

PCT/US2005/007923
8/9
610 —
LIST_FILE LIST.TXT
/1 NUMINPUT 3
S ’(
DATA_FILE_1 FNAME1.DAT ..
¥
/| DATAFILE2 | FNAMEZDAT -
L DATAFIES | FNAME3DAT ~{-.
]
f 620 i
1 \
GET NAMES |
o4 631 i
2 j
........ » ",,
PROCESS INPUT | {
642 |
4
3 |
PROCESS INPUT |/
/
43 ;
633 |
4
PROCESS INPUT

FIG. 6A

WO 2005/086906 PCT/US2005/007923

9/9

610
/

LIST_FILE LIST.TXT

/| NUM_INPUT 3 -
"l ‘

DATA_FILE_1 FNAME1.DAT -~

FIG. 6B I 4
/ [/ | DATAFILE2 | FNAME2DAT =

| 1/ | DATAFILE3 | FNAME3DAT ~{~.

622
ERARY 620 It
/ 650
__________ o
LIST.TXT ™ GETNAMES 2 I
PROCESS | ||
641 fo
631 ol
c
FNAME1.DAT f
PROCESS INPUT |/ |
642 [
632 i
LA
2
FNAME2.DAT]
‘ PROCESS INPUT |
643 /
633 |
3
FNAME3.DAT >
PROCESS INPUT

Y

\ 4

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

