(54) 发明名称
确定和分析高尔夫球击球时的运动与旋球特点的方法和装置

(57) 摘要
一种确定高尔夫球杆(19)和球(13)的运动特点的系统或装置(1)，包括旋球特点，不需要增加或检测球上的标记或标志。光束中断系统测量击球前和击球时的球杆运动及击球时和击球后的球运动。确定旋球特点，包括旋球分量和旋球原因。
1. 一种确定或确定和分析球杆和球在击球时与具体高尔夫球挥杆有关的运动特点的方法，其中在执行所述具体高尔夫球挥杆时进行直接测量来确定击球时和/或击球后球的三维运动方向，其特征在于：
 a) 运动特点包括选自以下特点的旋球特点：角旋球特点；角旋球特点和偏心旋球特点；
 b) 角旋球特点包括角旋球速率和角旋球轴的三维方向；
 c) 旋球特点的确定不需要增加或检测球的表面或内部标志或球上的标记；
 d) 在执行所述具体高尔夫球挥杆时，角旋球轴的三维方向由在击球前和/或击球时测量出的球杆的三维运动方向及在击球时和/或击球后测量出的球的三维运动方向确定；
 e) 通过预先确定的球信息，而不是所述具体高尔夫球挥杆中使用的实际球信息，和限定执行所述具体高尔夫球挥杆时以下运动特点的选择的直接测量值一起确定角旋球速率；
球的三维运动方向、球速大小、球杆的三维运动方向、球杆速度大小和球杆的三维杆面方向角。

2. 根据权利要求1所述的方法，所述方法分析运动特点并指出旋球特点的原因。

3. 根据权利要求1所述的方法，所述方法在不需要技术人员或专家辅助的情况下自动测量、确定和分析或解释旋球特点、球杆运动特点和球运动特点。

4. 根据权利要求1所述的方法，其中通过有效重建击球前和/或击球时测得的球杆运动特点和击球时和/或击球后测得的球杆运动特点的击球事件确定旋球特点。

5. 根据权利要求1所述的方法，其中通过结合根据在具体挥杆中击球前和/或击球时的球杆运动特点和在具体挥杆中击球时和/或击球后的球运动特点测得的潜在重复信息确定旋球特点，以创建与旋球特点有关的更准确或可靠的新信息。

6. 根据权利要求5所述的方法，其中人工智能装置结合运动特点。

7. 根据权利要求6所述的方法，其中所述人工智能装置包括采用训练输入进行训练的神经网络系统，所述方法包括测量击球前和/或击球时的球杆运动特点和击球时和/或击球后的球运动特点及包括旋球特点的训练输出。

8. 根据权利要求1所述的方法，其中确定旋球特点所需的球特性值基于预先确定的标准特性。

9. 根据权利要求8所述的方法，其中用作标准特性的特性不会显著影响用于确定旋球特点的球运动特点的测量。

10. 根据权利要求6或7中任一权利要求所述的方法，其中通过击球前和/或击球时测得的球杆运动特点、击球时和/或击球后的球运动特点及人工智能系统的结合数据确定旋球特点。

11. 根据权利要求10所述的方法，其中也通过预先确定的球数据确定旋球特点和/或所述人工智能装置也使用预先确定的球数据。

12. 根据权利要求10所述的方法，其中也通过测得的球杆运动特点、和/或通过测得的球杆信息确定的进一步球杆信息及人工智能装置的结合数据确定旋球特点。

13. 根据权利要求10所述的方法，其中对挥杆进行分析。

14. 根据权利要求13所述的方法，其中测得的球运动特点、和/或测得的球杆运动特点、和/或通过测得的球杆信息确定的进一步球杆信息及人工智能装置的结合数据也用于所述分析。
15. 根据权利要求14所述的方法，其中预先确定的球数据也用于分析挥杆。

16. 根据权利要求1所述的方法，其中通过确定不存在或不认为存在偏心旋转时采用的旋球特点确定角旋球方向，例如侧旋球。

17. 根据权利要求16所述的方法，其中测得的球杆运动特点和测得的球运动特点用于确定角旋球速率数据、和/或不存在偏心旋转时会出现的旋转球轴数据，和/或偏心旋球数据。

18. 根据权利要求6或17所述的方法，其中也使用通过人工智能结合球数据和球杆数据的数据。

19. 根据权利要求17所述的方法，其中通过角旋球速率数据和不存在偏心旋转时会出现的旋转球轴数据确定角旋球分量数据。

20. 根据权利要求19所述的方法，其中通过角旋球速率数据、角旋球分量数据和偏心旋球数据确定旋转数据。

21. 根据权利要求8所述的方法，其中也使用预先确定的球数据。

22. 根据权利要求1所述的方法，其中通过测量值确定旋转球特点，测量值包括击球时或击球后的球杆速度和杆面方向，及在给定球杆和球条件下通过试验预先确定的定值。

23. 根据权利要求1所述的方法，其中通过击球前测得的球杆运动特点及击球后测得的球运动特点和球杆运动特点确定球杆头质量。

24. 根据权利要求1所述的方法，其中通过变量为球方向角时经试验建立的数学关系式确定杆面方向角。

25. 根据权利要求1所述的方法，其中通过测量值确定旋转球数据，测量值包括击球时或击球后的球杆速度和杆面方向，及在给定球杆和球条件下通过试验预先确定的定值。

26. 根据权利要求25所述的方法，其中通过测量值确定旋转球数据，测量值包括击球时或击球后的球杆速度和杆面方向，及在给定球杆和球条件下通过试验预先确定的定值。

27. 根据权利要求25所述的方法，其中通过测量值确定旋转球数据，测量值包括击球时或击球后的球杆速度和杆面方向，及在给定球杆和球条件下通过试验预先确定的定值。

28. 根据权利要求1所述的方法，其中通过高速摄像系统、雷达检测系统或光束中断系统测量球杆运动特点和/或球运动特点。

29. 根据权利要求1所述的方法，其中从不同角度高速立体捕捉球杆和/或球图像。

30. 根据权利要求29所述的方法，其中测量或确定杆身角度，如杆身角度用作确定球杆运动特点的重要量度。

31. 根据权利要求28所述的方法，其中通过光束中断系统测量或确定球杆运动特点，所述系统包括以下特征的选集：
 a) 将若干条光束置于杆路径上；
 b) 至少有三条球杆测量光束；
 c) 如果准确性很重要，则至少有四条球杆测量光束；
 d) 将球杆测量光束设置于不同角度。

32. 根据权利要求29所述的方法，其中通过光束中断系统测量或确定球运动特点，所述系统包括以下特征的选集：
 a) 将若干条光束置于球道上；

3
b) 至少有两条光束；
c) 如果准确性很重要，则至少有四条光束；
d) 如果准确性很重要且击球杆面斜角显著不同，则至少有六条光束；
e) 将光束设置在不同角度。

33. 根据权利要求28所述的方法，其中通过光束中断系统测量或确定球杆运动特点和/或球运动特点，所述系统包括以下特征的选集：
 a) 光束被遮住或部分被遮住时检测变化；
 b) 光束平直，厚度远小于其宽度；
 c) 光束平直；
 d) 光束边缘附近的强度增加，光束中心附近的强度减少；
 e) 光束沿相同路径通过回射返回；
 f) 通过光束分解光束；
 g) 光束为激光束，通过修改光束的激光透过率，从而使其水平和垂直散度与准直透镜上的孔径匹配。

34. 根据权利要求28所述的方法，其中通过光束中断系统测量或确定球杆运动特点，其中光束为激光光束且会回射，和/或通过分束镜反射和反射，并通过传感器装置感应，所述系统包括以下特征的选集：
 a) 生成光束并将光束置于红外波长处或附近；
 b) 通过不均匀分束镜分解光束，与透射或反射回激光束的返回光的比例相比，所述不均匀分束镜反射或透射的传感器装置返回光的比例较大；
 c) 球杆和球在光束区内时，通过瞬间连接非连续生成光束，球杆和球不在光束区内时，通过瞬间关闭非连续生成光束。

35. 根据权利要求34所述的方法，其中球杆中断或触发导向光束时，光束瞬间切换，所述系统包括以下特征的选集：
 a) 导向光束置于球杆第一入光束的区域内的挥杆路径上；
 b) 导向光束置于球杆中断球杆测量光束前由球杆中断的挥杆路径上；
 c) 生成的导向光束为光束；
 d) 通过单一传感器检测导光束变化；
 e) 生成强度在眼睛安全水平范围内的导向光束，以便连续操作；
 f) 设置两条导光束，一条导向光束与一条第一球杆测量光束平行或几乎平行，另一条导向光束与另一条第一球杆测量光束平行或几乎平行。

36. 根据权利要求28所述的方法，其中通过检测击球的光束变化测量和/或监控球位置。

37. 根据权利要求36所述的方法，其中通过阻断球的光束变化检测击球时间，还可通过内插信号灰度级来增加分辨率精确度。

38. 根据权利要求28所述的方法，其中通过测量已知精确位置或运动或物体及校正测得值和已知值之间的差异在系统软件内校准与球杆运动特点和球运动特点有关的测量值。

39. 根据权利要求28所述的方法，其中通过测量穿过光束且大体在直线上恒速运动的球击在系统软件内校准与球杆运动特点和球运动特点有关的测量值。
40. 根据权利要求28所述的方法，包括以下步骤：
 a) 球杆测量值取自球杆测量光束处，并处理成相关球杆数据；
 b) 球杆数据用于确定球杆测量光束处的球杆位置参数，并用于确定球杆速度和方向；
 c) 球杆速度和方向数据用于规范球杆数据；
 d) 球杆速度、球杆方向、球杆数据和规范球杆数据用于确定球杆类型和杆面方向角，球杆类型和杆面方向角与球杆类型的存入或其他可用信息一起用于确定杆面上的击球位置；
 e) 球测量值取自球测量光束处且用于确定球测量光束处的球位置参数，所述球测量值用于确定球速和方向；
 f) 在上述步骤中确定的球杆数据和球数据用于确定旋球特点。

41. 根据权利要求28所述的方法，其中人工智能装置确定人工智能装置输入包括与测得的球杆运动特点有关的数据时的球杆类型，所述人工智能装置采用大量球杆运动特点训练输入和相应的球杆类型训练输出进行训练。

42. 根据权利要求24所述的方法，所述数学关系式为二阶多项式。

43. 根据权利要求41所述的方法，所述人工智能装置为神经网络系统。

44. 一种确定或确定和分析球杆和球击球时与具体高尔夫球杆有关的运动特点的装置，所述装置包括球测量装置和处理器装置，所述球测量装置用于在执行所述具体高尔夫球杆杆时直接测量击球时和/或击球后的球运动特点，可通过球运动特点确定球的三维运动方向，所述装置特征在于：

 a) 装置可用于确定与具体杆杆有关的运动特点，所述运动特点包括选自以下特点的旋球特点：角旋球特点；角旋球特点和偏心旋球特点；

 b) 装置可用于确定角旋球特点，所述角旋球特点包括角旋球速率和角旋球轴的三维方向；

 c) 装置可用于确定旋球特点，不需要增加或检测球的表面或内部标志或球上的标记；

 d) 装置还包括用于在击球前和/或击球时测量球杆的三维运动方向的球杆测量装置；球测量装置用于在击球时和/或击球后测量球的三维运动方向；所述处理器装置用于在执行所述具体高尔夫球杆杆时通过所述球杆的三维运动方向确定角旋球轴的三维方向；

 e) 所述处理器装置可用于通过所述处理器装置的预先确定的可用球信息，而不是具体高尔夫球杆杆中使用的实际球信息，和执行所述具体高尔夫球杆杆时涉及直接测量的以下特点的选择一起确定角旋球速率；球的三维运动方向、球杆的三维运动方向，球的三维运动方向，所述球杆测量装置用于测量球杆速度时的球杆速度大小、所述球测量装置用于测量球速时的球速大小，及所述处理器装置可用于通过所述所述球杆测量装置和球测量装置测量的运动特点确定三维面方向角时的三维杆面方向角。

45. 根据权利要求44所述的装置，其中所述处理器装置可用于分析运动特点和指出旋球特点的原因。

46. 根据权利要求44或45所述的装置，其中所述球杆测量装置、球测量装置和处理装置可在不需要技术人员或专家辅助的情况下用于测量、确定和分析或解释旋球特点，球杆运动特点和球运动特点。
47. 根据权利要求44所述的装置，其中所述处理器装置可用于通过有效重建击球前和/或击球时测得的球杆运动特点和击球时和/或击球后测得的球运动特点的击球事件确定旋球特点。

48. 根据权利要求44所述的装置，其中所述处理器装置可用于通过结合根据具体握杆中击球前和/或击球时的球杆运动特点和具体握杆中击球时和/或击球后的球运动特点测得的潜在重复信息确定旋球特点，以创建与旋球特点有关的更准确或可靠的新信息。

49. 根据权利要求48所述的装置，所述装置包括可用于结合运动特征的人工智能装置。

50. 根据权利要求49所述的装置，其中所述人工智能装置包括采用训练输入进行训练的神经网络系统，所述装置包括测量击球前和/或击球时的球杆运动特点和击球时和/或击球后的球运动特点及包括旋球特点的训练输出。

51. 根据权利要求44所述的装置，其中所述处理器装置可用于使用根据预先确定的标准特性确定旋球特点所需的球特性值。

52. 根据权利要求51所述的装置，其中用作标准特性的特性不会显著影响用于确定旋球特点的球运动特点的测量。

53. 根据权利要求49或50中任一权利要求所述的装置，其中所述处理器装置可用于通过击球前和/或击球时测得的球杆运动特点、击球时和/或击球后的球运动特点及人工智能装置的结合数据确定旋球特点。

54. 根据权利要求49所述的装置，其中所述处理器装置可用于通过预先确定的球数据确定旋球特点和/或所述人工智能装置也使用预先确定的球数据。

55. 根据权利要求54所述的装置，其中所述处理器装置可用于通过测得的球杆运动特点、和/或通过测得的球杆信息确定的进一步球杆信息及人工智能装置的结合数据确定旋球特点。

56. 根据权利要求53所述的装置，其中所述处理器装置可用于分析握杆。

57. 根据权利要求54所述的装置，其中所述处理器装置也可用于在分析握杆时使用测得的球运动特点、和/或测得的球杆运动特点、和/或通过测得的球杆信息确定的进一步球杆信息及人工智能装置的结合数据。

58. 根据权利要求55所述的装置，其中所述处理器装置也可用于在分析握杆时使用预先确定的球数据。

59. 根据权利要求44所述的装置，其中所述处理器装置可用于通过确定不存在或不认为存在偏心旋球时采用的旋球特点确定角旋球分量，例如侧旋球。

60. 根据权利要求59所述的装置，其中所述处理器装置可用于通过测得的球杆运动特点和测得的球运动特点确定角旋球速率数据、和/或不存在偏心旋球时会出现的角旋球轴数据、和/或偏心旋球数据。

61. 根据权利要求49和60中任一权利要求所述的装置，其中所述处理器装置也可用于在确定中使用通过人工智能结合球数据和球杆数据的数据。

62. 根据权利要求61所述的装置，其中所述处理器装置可用于通过角旋球速率数据和不存在偏心旋球时会出现的角旋球轴数据确定角旋球分量数据。

63. 根据权利要求62所述的装置，其中所述处理器装置可用于通过角旋球速率数据、角旋球分量数据和偏心旋球数据确定旋球数据。
64. 根据权利要求62所述的装置，其中所述处理器装置可用于在确定中使用预先确定的球数据。

65. 根据权利要求44所述的装置，其中所述处理器装置可用于通过测量值确定角旋球特点，测量值包括击球时或击球后的球杆速度和杆面角度，及在给定球杆和球条件下通过试验预先确定的定值。

66. 根据权利要求44所述的装置，其中所述处理器装置可用于通过击球前测得的球杆运动特点及击球后测得的球运动特点和球杆运动特点确定球杆头质量。

67. 根据权利要求44所述的装置，其中所述处理器装置可用于通过变量为球方向角时经试验建立的数学关系式确定杆面方向角。

68. 根据权利要求44所述的装置，其中所述处理器装置可用于通过测量值确定旋球数据，测量值包括击球时或击球后的球杆速度矢量，及击球前或击球前的球速度矢量。

69. 根据权利要求68所述的装置，其中所述处理器装置可用于通过测量值确定角旋球数据，测量值包括击球时或击球后的球杆速度矢量及击球时或击球前的球速度矢量及击球前的杆面方向。

70. 根据权利要求68所述的装置，其中所述处理器装置可用于通过测量值确定偏心旋球数据，测量值包括击球时或击球后的球杆速度矢量及击球时或击球前的球速度矢量及杆面上的击球位置。

71. 根据权利要求44所述的装置，其中所述球测量装置和/或所述球杆测量装置包括高速摄像系统，雷达检测系统或光束中断系统。

72. 根据权利要求44所述的装置，所述装置可用于从不同角度高速立体捕捉球杆和/或球图像。

73. 根据权利要求72所述的装置，其中所述球杆测量装置和/或处理装置可用于测量或确定杆身角度，并将杆身角度用作确定球杆运动特点的重要度量。

74. 根据权利要求73所述的装置，其中所述球杆测量装置包括光束中断系统，所述光束中断系统包括可用于执行以下任务选集的光束生成装置和检测装置：
 a) 将若干条光束置于杆路径上；
 b) 将至少三条球杆测量光束置于杆路径上；
 c) 如果准确性很重要，将至少四条球杆测量光束置于杆路径上；
 d) 将球杆测量光束置于不同角度。

75. 根据权利要求72所述的装置，其中所述球测量装置包括光束中断系统，所述光束中断系统包括可用于执行以下任务选集的光束生成装置和检测装置：
 a) 将若干条光束置于球道上；
 b) 将至少两条球测量光束置于球道上；
 c) 如果准确性很重要，则将至少四条球测量光束置于球道上；
 d) 如果准确性很重要且击球杆面斜角显著不同，则将至少六条球测量光束置于球道上；
 e) 将球测量光束置于不同角度。

76. 根据权利要求75所述的装置，其中所述球测量装置和/或球杆测量装置包括光束中断系统，所述光束中断系统包括可用于执行以下任务选集的光束生成装置和检测装置：
a) 光束被遮住或部分被遮住时检测变化；
b) 生成平直且厚度远小于其宽度的光束；
c) 通过准直透镜生成水平准直的光束；
d) 生成边缘附近强度增加且中心附近强度减少的光束；
e) 通过回射器装置沿相同路径返回光束；
f) 通过分束镜装置分开光束；
g) 包括修改激光光束的激光透镜，从而使其水平和垂直散度与准直透镜上的孔径匹配。

77. 根据权利要求76所述的装置，其中所述球杆测量装置包括光束中断系统，所述光束中断系统包括可用于执行以下任务或活动选集的激光光束生成装置及包括传感器装置、回射器装置和/或分束镜装置的检测装置：
 a) 生成光束并将光束置于红外波长处或附近；
 b) 通过不均匀分束镜分开光束，与透射或反射回激光器的返回光的比例相比，所述不均匀分束镜反射或透射的传感器装置返回光的比例较大；
 c) 球杆和球在光束区范围内时，通过瞬间接通非连续生成光束，球杆和球不在光束区范围内时，通过瞬间关闭非连续生成光束。

78. 根据权利要求77所述的装置，其中光束瞬间切断，其中所述装置可用于执行以下任务或活动选集：
 a) 将一条或多条导光束置于球杆首先进入光束的区域内的挥杆路径上；
 b) 将导向光束置于球杆中断球杆测量光束前由球杆中断的挥杆路径上；
 c) 生成包括点光束的导向光束；
 d) 通过单一传感器检测导向光束变化；
 e) 生成强度在眼睛安全水平范围内的导向光束，以便连续操作；
 f) 设置两条导向光束，一条导向光束与一条第一球杆测量光束平行或几乎平行，另一条导向光束与另一条第一球杆测量光束平行或几乎平行。

79. 根据权利要求78所述的装置，其中设置在击球前对部分阻断球的光束，由此所述处理器装置可用于通过所述光束变化测量和/或监控击球前的球。

80. 根据权利要求79所述的装置，其中所述处理器装置可用于通过检测阻断球的光束变化确定击球时间和，还可用于内插信号强度级，以增加分辨率精度。

81. 根据权利要求80所述的装置，其中所述处理器装置可用于通过测量已知精确位置或运动或物体及校准测得值和已知值之间的差异在系统软件内校准球杆测量装置和/或球测量装置。

82. 根据权利要求80所述的装置，其中所述处理器装置可用于通过测量穿过光束且大体在直线上恒速运动的击球在系统软件内校准球杆测量装置和/或球测量装置。

83. 根据权利要求81所述的装置，所述装置可用于执行以下步骤：
 a) 在球杆测量光束处获得球杆测量值，并将所述球杆测量值处理成相关球杆数据；
 b) 使用球杆数据确定球杆测量光束处的球杆位置参数，并且使用球杆数据确定球杆速度和方向；
 c) 使用球杆速度和方向数据规范球杆数据；
d) 使用球杆速度、球杆方向、球杆角度和规范球杆数据确定球杆类型和杆面方向角，使用所述球杆类型和杆面方向角与球杆类型的存入或其他可用信息一起确定杆面上的击球位置；

e) 在球测量光束处获得球测量值，确定球测量光束处的球位置参数，并使用所述球测量值和所述球位置参数确定球速和方向；

f) 使用前述步骤中确定的球杆数据和球数据确定旋球特点。

84. 根据权利要求61所述的装置，其中所述处理器装置包括人工智能装置，且可用于确定人工智能装置输入包括与测得的球杆运动参数有关的数据时的球杆类型，其中所述人工智能装置采用非矢量球杆运动参数训练输入和相应的球杆类型训练输出进行训练。

85. 根据权利要求67所述的装置，所述数学关系式为二阶多项式。

86. 根据权利要求84所述的装置，所述人工智能装置为神经网络系统。
确定和分析高尔夫球击球时的运动与旋球特点的方法和装置

技术领域

[0001] 本发明涉及一种用于确定与球杆击球时高尔夫球挥杆相关的运动特点(包括高尔夫球旋球特点)的系统和装置。本发明具体涉及但不仅涉及一种此类方法和装置，所述方法包括分析这些球旋球特点的原因；所述装置完全或很大程度上自动运行，无需技术人员或专家帮助。

[0002] 下述现有技术文件公开了用于确定高尔夫球击球的运动特点(包括旋转特点)的装置。

[0004] 类似上述系统的一些系统试图避免使用特别标记的球。US 7,292,711 B2公开了一种类似于上述系统的系统，其中，不检测特别标记或标志，而是检测自然表面标记，如球表面的污渍、凹痕或刮痕。US 2006/0046861公开了一种系统，其中，检测旋球时对标志，而非特别标记。但人们认为，这些系统均不能在实际情况下工作。此外，即使这些系统能在实际情况下工作，也不能克服在确定侧旋球参数时因准确性或可靠性非常低而相关的其他局限性，而且不能区分角旋球和偏心旋球。

[0005] US 2002/0107078和US 6,224,971 B1公开了可通过雷达系统捕捉对高尔夫球球上所做对比反射信号来定义旋球特点的装置。通过处理器分析反射信号，以确定旋球特点。但这些系统不能测量球轴和侧旋球。这些系统也不能区分角旋球和偏心旋球。另一个局限是测量过程中高尔夫球不能正常旋转，这需要对低速旋转、一号木杆击球等高速击球进行较长距离跟踪，因此不能使用近距离球网。还存在需要在高尔夫球上提供特别反射标记的击球前使高尔夫球在特定方向定向等局限性。

[0006] US 20090075744公开了一种雷达装置，其通过雷达信号(包括频率中等距离分布的频率痕迹)频率分析确定旋球速率等方法，无需使用特别反射标志就能确定旋球参数。该装置还可在克服不能通过确定高尔夫球飞行弹道单独确定旋球轴来检测侧旋球这一局限性。但该系统存在一些其他局限性。其中之一就是其只可在跟踪远距离飞行弹道时使用，因此不能在室内使用或击球入网时使用。另一个局限性就是未计入的有利情况可能影响方式类似于旋球产生的弹道，致使检测相关旋球参数不准确。再一个局限性是不能区分角旋球和偏心旋球。

[0007] 所有这些现有技术公开内容的另一个局限性是尽管可确定高尔夫球的旋球特点，但不能提供如何或为什么会产生这些特点的信息。本发明力图克服现有技术的这些局限
背景技术
[0008] 高尔夫球旋球在高尔夫运动中极具重要性，因为旋球显著影响高尔夫球飞行和随后的反弹与滚动。尽管在一般高尔夫教练中没有旋转轴旋转，通常从下旋列球和侧旋列球的垂直和水平分量逆球。下旋列列出现在标准的空中击球过程中，且根据击球方式和要求下旋列球通常有最佳发射值。侧旋列球有时也出现在标准空中击球过程中，且与逐步横向偏离弹道有关。本说明书中，所有术语适用于从右向左击球的高尔夫球手，几乎包括所有右手击球的球手和大部分左手击球的球手。本说明书中，旋球讨论仅适用于铁杆和木杆击球，术语“木”杆包括开球木杆和刀型球杆等所有金属木杆。本说明书不包括主要以较低速发生的二维推进击球。

[0009] 当高尔夫球杆击打高尔夫球时，有两种基本情况会导致旋球。其中一种情况产生所谓的“侧旋球”，击球时，球杆面上的接触点三维曲线与球杆运动三维方向不平行时出现这种情况。当球杆面与水平轴成角度时，因球杆存在杆面斜角，在所有标准高尔夫球击球后均出现所述情况。如果球杆面与垂直轴成角度，即球杆面“开”或“合”，也出现这种情况。另外，当接触点曲线刚好与目标方向对正，但击球时球杆有在与目标方向不对准的方向不正确的接近高尔夫球时也出现这种情况。正确定位定向击球中同样出现上述情况，其中高尔夫球飞离球杆中心，且球杆面弯曲，如通常出现在使用开球木杆及其他木杆的情况下，因为球杆面曲率会导致侧线与目标方向不对准。

[0010] 如果球被球杆击球后在水平或垂直方向上做偏心运动，以及球杆重心明显位于球杆面后端时，通常出现导致旋球的另一种情况，例如，特别是用一号木杆时，能够引起偏心运动，用其他木杆时，以较小的角度做偏心运动，用铁杆时，以更小的角度做偏心运动或无偏心运动。这类旋球与球杆头的旋转有关，使得球表面和旋转球杆表面之间的摩擦产生反向旋转。高尔夫球杆中常用不太科学的术语称之为“齿轮效应旋球”，但本说明书采用术语“偏心旋球”。在用铁杆产生一定偏心旋球的情况下，与木杆产生的效果相比，铁杆通常产生的相称高角旋球和通常更短的铁杆击球距离（侧旋球对弹道影响较小）进一步减少铁杆产生的效应。偏心旋球会造成水平偏心球头趾部击球为钩状弹道，水平偏心趾部击球为斜切弹道，垂直偏心击球为下斜弹道，垂直偏心低击球为上升弹道，“趾部”和“跟部”分别指远离和靠近杆身的球杆面侧面。为部分抑制这些旋球效应并在球杆中产生一定程度的“宽恕”，一号木杆和其他木杆制造商分别在水平和垂直方向上设置横过球杆面的“凸出”和“起伏”弯折线。虽然偏心旋球通常占优势，但该弯折线促成一定角度的旋球，并促成在与偏心旋球所致方向的反方向上定向击球，根据高尔夫球规则，木杆可具有该弯折线，必须具有平面上的铁杆不得存在该弯折线。

[0011] 如果发生侧旋球和偏心旋球，它们可形成一个单个组合旋球，可根据下旋球和侧旋球分量观察该组合旋球，尽管其实际上以取决于下旋球和侧旋球分量比例倾斜的一个具有旋球轴的总组合旋球存在。无侧旋球时，旋球轴与球的运动方向在同一水平面，并与之正交，旋球轴方向为球前缘上升，而后缘下降。虽然旋球通常不足被击球动能的1%，但由于旋球在不直接使用能量的情况下可使弹道升高和弯曲，有时以方向舵的方式驱动，因此，旋球对弹道产生不成比例的巨大效应。与旋球轴和球的方向即正直角产生上升。这使得球向
左或向右旋转，其中侧旋球使旋球轴远离水平方向倾斜。如果球正在上升过程中，其还会产生向后分量和拖曳力，使球减速。同样，如果球正处于下降过程中，其会造成抵制拖曳力的向前分量，使球加速。当球达到地面时，高尔夫球通常将保持其大部分初始旋球能量。

实质上通过射回球杆杆头重心的球杆面的垂线来定义球杆面中心。由于制造商有时为了实现一些特殊功能而故意将其设置在稍微偏离中心的位置，球杆面中心不一定位于球杆面的几何中心，例如，如果认为球手倾向于削球，有时将其向后移动几毫米来进行补偿。从重心开始的球杆面垂线通常也位于球杆面几何中心上方一点的位置。对于标准高速击球，击球时，杆身不会对垂直轴周围的球杆运动特点产生重大效应。击球时，其对水平轴周围的运动特点的影响也非常小，除非杆身在球杆头端部设有非常硬的尖部。

发明内容

通过纳入本说明书的所附系统权利要求及装置权利要求更具体地限定本发明。

本发明的一方面涉及一种领会，即在一般使用，间接测量或规定提供一种可准确方便地确定某些旋球参数的最佳方法，也是常用的唯一方法。术语“一般使用”通常指高尔夫球手和高尔夫教练正常练习和教练中的使用，不是具体使用专业实验室或设备的专家的使用。术语“间接测量”是指通过测量球的次要或衍生原因或效应确定，而不是直接或即时检测原因，例如，在本发明实例中球面上标记或标志的运动检测构成本直接或即时测量。

本发明的另一方面涉及一种通过识别和使用球和球杆运动特点有效重建和适当分析研究击球动作等方面来确定旋球参数的领会。所述有效重建涉及确定击球动作周围情况并根据确定情况确定击球特点。

本发明的又一方面涉及一种领会，即能够用测量准确度有限以及有时不适当的可测量运动特点来确定某些旋球特点，因为存在比严格要求的可用信息更容易测量的信息，以及可能存在使用这项多余信息来提高确定的准确性的方法，用该方法确定的旋球特点准确度更高。该领会中值得注意的是，完全掌握球杆运动特点以及球杆和球的物理物质在理论上足以充分确定相关的球运动特点，包括旋球特点，理论上不需要更多的球运动特点知识。除旋球特点以外，球运动特点可由一般使用者直接测量，能够用于在确定前提供所述多余信息。其有限准确度的潜在复制或或于信息可用于确定较高准确度结果，包括神经网络等人工智能系统，人工智能系统能够不受限制地接收输入以及可经过训练用于确定考虑了所有输入及其相互关系的结果。

本发明的另一方面涉及一种领会，该领会克服了许多困难，还亦可用于准确确定旋球特点，同时可为使用者提供更有意义更一致的确定结果。这涉及理解下述情况，即使用者的与旋球旋球特点相关的最有用的反馈信息往往与已知情况下据经验确定的特殊分类或类型的球平面特性有关，而非与被测球中实际使用的球的平面特性以及周围条件有关，而且这允许在确定这一特点时解决许多未知因素以及消除无关变量的不必要的测量。具体地，球的旋球特点受到球体材料回弹系数以及外层材料硬度相关特点的影响，自旋球特点随着使用者实际感兴趣的方式变化。例如，旋球特点能够随球温、使用的时间以及结构条件等情况发生重大变化，球温、球龄以及结构条件等统称为“球的条件”，通常情况下使用者不知道球的这些状况。使用者通常对其在已知预先选定的温度和条件下击出特殊分类或类型的球引起的旋球特点更感兴趣。这还允许对在不同周围条件下的不同的球产生的不同击球动作进
行更有意义的比较，以提供更加一致的结果。

0018 在实际情况过程中，球的一些特性会影响球的特性，但不可能影响间接测量，始终有利地通过使用者正常打法相关的标准特性取代球的这些特性。例如，标准类型的表面磨损或损坏可以造成此种情况。部分特性可能影响间接测量，但是，这些特性通常不是很显著，由于间接测量误差是由与一般使用者无关的特性造成的，因此，一方面说来，它仍有利于使用者使用标准特性。为了尽量减少这些效应，使用者应使用特性与具有标准特性的球类似的测试球。

0019 图1为在使用上述发明方面的组合的本发明实例中显示信息流主要元素的框图。本图中使用的缩写在以下示例描述的标题内显示。虚线范围内的框与方法或装置内的内部流程对应。对装置进行高尔夫球杆杆(S)动作时测量高尔夫球信息(MB)和杆杆信息(MC)。神经网络等人工智能(AI)接收来自测量的高尔夫球(MB)和杆杆信息(MC)以及使用者选定的高尔夫球杆和条件(SB)的输入。根据自人工智能(AI)获得的信息和测量的球杆信息(MC)确
定更多的球杆信息(DC)。然后，根据测量的球信息(MB)、人工智能(AI)、确定的杆杆信息
(DC)、测量的球杆信息(MC)和使用者选定的高尔夫球杆和条件(SB)的组合信息确定球
球杆信息(DC)和使用者选定的高尔夫球杆和条件(SB)进行杆杆分析(A)。根据要求对分析进行外部沟通(C)。

0020 本发明的另一方面涉及一种领会：由于其与角下旋球相比幅度通常较小，可通过分别确定某些可用于准确确定的点克服准确测量重要的角度旋球分量这一困难。这些特点之一涉及旋球轴的角度，不存在或不计入偏心旋球时会形成该角度。其他特点还涉及组合角旋球速率。

0021 图2为类似图1的框图，但仅限于全部过程的一部分，显示与上节所述发明方面有关的信息流主要元素。如果可能采用了人工智能，测量和确定的高尔夫球和杆杆信息
(MDBC/AI)则用于确定角旋球速率数据(DASR)和角旋球轴数据，无偏心旋球(DASANO)，即不存在偏心旋球时已经确定数据。如果不考虑偏心旋球(DASANO)，则根据螺旋球的速率数据(DASR)和角旋球轴数据的组合信息确定角旋球分量数据(DASC)。根据
确定的角旋球速率数据(DASR)、角旋球分量数据(DASC)和确定的偏心旋球数据(DOS)的组合输入，确定旋球轴点(DS)或至少还未确定的那些特点。使用者的高尔夫球杆和条件选择(SB)也是对高尔夫球和杆杆信息(MDBC/AI)测量和确定、角旋球速率数据(DASR)确定和旋球轴点(DS)确定的输入。

0022 确定角旋球轴和角旋球速率

0023 从对称性而言，可表明旋球轴在击球前垂直于产生的球杆运动方向以及最初产生的球运动方向，如球离开球杆面。在本说明书中，除非另有规定，‘方向’表示3D(三维)空间中的方向。产生的球杆运动方向(与球杆头运动方向同义)应简称为‘球杆方向’。产生的球运动方向应简称为‘球方向’。由于在任何标准的熟练击球中球杆方向和球方向永远不平衡，它们的方位相应地确定角旋球轴的方位。角旋球轴是不存在或不计入偏心旋球时球绕其旋球的轴。

0024 通过关系：\(\tan(\lambda) = \omega_{sb}/\omega_{ab} \) 得出角旋球的侧旋球和下旋球分量的比值，其中 \(\lambda \)
为不存在或不计入偏心旋球时水平轴和旋球轴之间的角度；ω作为角侧旋球速率；ωab为角下旋球速率。

[0025] 由于可交性和不确定性（角旋球在产生时球在球杆面上变形），角旋球速率实际上是不适用于精确通用数学处理。然而，已从经验性测试得出以下结果。在同等条件下，角旋球实质上与球杆速度和球杆方向角正弦成线性正比，与球的惯性矩成线性反比。术语“球杆面方向角”表示击球时在球接触点处球杆面的垂直和3D垂线之间的角度。同样地，角旋球实质上与 mc/(mb+mc) 比率成线性正比，其中mb和mc分别为球和球杆的质量。同样地，角旋球实质上与球杆面弹性特性差异造成的球速差异比值成线性正比。该比值也可用球和球杆面组合的反弹系数的当量比表示。角旋球也在很大程度上取决于球的结构、弹性和变形特性，包括球温、球龄和条件等变化。这些后面的依赖性在数学上的表示复杂、可变且困难。在预设的环境条件下，使角确定集中于球示例的适当范围来从练习中轻松删除这些关系，如前所述。

[0026] 暂时不考虑球杆面质量和球杆面弹性的球杆相关变量，对于给定环境条件下的给定球和球杆，通过以下得出组合旋球速率：ωa=K.Vc.sinθ，其中，ωa为组合角旋球速率；K为给定球和球杆条件的恒定值；Vc为击球前的组合球杆速度；ωa为球杆面方向角。在需要或选定的任何条件下，由各型的探索性试验确定K值。如果相似特性的球杆用于探索性试验以确定K值，也需消除确定球杆有关变量的需求。或者，通过将确定的角旋球速乘以上述适当的调整比值使K的单个值可用于不同球杆头质量和球杆面弹性特性的球杆。

[0027] 在调整球杆面质量（但事先质量未知）的情况下，可在击球前和击球后根据动量守恒定律在击球前球杆运动方向通过使用以下类型的直接测量球或球杆速度进行确定：mc.Vc=mc.Wc.cos(θ)+mb.Vb.cos(φ)，其中mc为球杆头质量；mb为球质量；Vc为击球前球杆头速度；Wc为击球后球杆头速度；Vb为击球后球速度；θ为击球前后球杆面方向之间的夹角；φ为击球前球杆面方向和击球后球速度之间的夹角。可通过直接测量获得关系中所有术语（除了mc和mb）。由于监管机构限制球重量的上限值，所有标准球十分相似时，容易估计mb的值。

[0028] 球杆头弹性变量主要是指通常通过薄面金属杆，尤其是大头钛合金一号木杆获得的其他弹性。这些其他弹性取决于监管机构的上限，给定球杆面尺寸的所有或大多数金属杆最终将具有相似的弹性特性，似乎越来越可能。因此，弹性将逐渐计入试验确定的K值。

[0029] 确定球杆面方向和球杆面方向角

[0030] 从对称性而言，可表明球杆面的3D垂线方位，如果首先与球接触，则处于球杆方向和球杆方向相同的平面。球杆面垂线应称为“球杆面方向”。

[0031] 在3D参照系范围内球杆面垂线角应称为“球杆面方向角”，可通过包括垂直方向和预期方向的轴在参照系范围内方便地确定。如果球杆面在水平内为方形，球杆面方向角与常见高尔夫术语“动杆面斜角”相同。可通过直接或间接测量确定球杆面方向角，或使用经验确定的方法估计杆面方向角。如述方法，其称为确定本角度的“经验”方法。

[0032] 根据球杆的杆面斜角，球杆面方向角值约为组合球方向角的130°-110°。在所有情况下值随球杆方向和球杆杆面斜角的减少而减少，范围内的值也随球型变化。试验显示任何给定球型的单个数学表达式，如以下二阶多项式关系，可在通常遇到的球方向角范围内提供合理准确的球杆面方向角估算：γ=a.θ+b.θ，其中γ为球杆面方向角；θ为球方
向角；a和b为表达式的系数所得数。以下关系在通常遇到的情况下适用于一个普通球型：
\[\gamma = (0.027, 0.02 + (0.75, 0)) \]。试验进一步显示结果仅对球型中度敏感，这样，较小的代表性
球型抽样数据能充分覆盖相似准确度水平的类型。可通过探索性试验容易得出数学表达
式中的系数数据。

[0033] 确定偏心旋球

[0034] 如果产生偏心旋球，偏心击球使球杆头绕其质量中心旋转，反过来会使球杆面沿
球表面运动，从而产生旋球。采用一致的单位的情况下，该击球动作和组合旋转中涉及的相
关力、运动和几何形状的简单分析提供了以下关系：\(\beta I = Vb \cdot d \cdot mb \) 和 \(\omega o = A / \beta I / Db \)，因此
结论是：\(\omega o = [Vb \cdot d] \cdot [A / I] \cdot [mb / Db] \)，其中 \(\omega o \) 为球产生的偏心旋球速率；\(\beta I \) 为球离开球杆
面时球杆头绕其质量中心的角速度；\(d \) 为从球杆面的法线击球点到其质量中心的偏心距；\(mb \)
为球质量；\(Vb \) 为球击球后速度；\(I I \) 为球杆头绕其通过质量中心的轴的惯性矩，其中球杆绕轴旋转
；\(Db \) 为球直径；\(A \) 为球杆面后质量中心的距离。

[0035] 在此情况下，最好是单独计算偏心旋球的水平和垂直分量，由于球杆头惯性矩值
对绕垂直和水平轴的旋转完全不同，通常仅通过这些轴可用或容易计算。关系如下，其中下
标 \(h \) 和 \(v \) 分别表示水平和垂直：\(\omega oh = [Vb \cdot dh] \cdot [A / Ih] \cdot [mb / Db] \) 和 \(\omega ov = [Vb \cdot dv] \cdot [A / Iv] \cdot
[mb / Db] \) ，其中 \(\omega oh \) 为球偏心旋球的组合水平分量；\(dh \) 为球杆面的垂线击球点到其质量中
心的偏心距的水平分量，即，力的水平位移；\(Ih \) 为球杆头绕通过其质量中心的水平轴的惯性
矩；\(\omega ov \) 为球偏心旋球的组合水平分量；\(dv \) 为球杆面的垂线击球点到其质量中心偏心距的
水平分量，即，力的水平位移；\(Iv \) 为球杆头绕通过其质量中心的水平轴的惯性矩。

[0036] \([mb / Db] \) 中所有项值与球相关并随时可用。多数球符合目前相关监管机构设定的
限制，直径最小为 4.267 cm，质量最大为 45.93 g。

[0037] \([A / Ih] \) 和 \([A / Iv] \) 的值对球杆特有，已公布并适用于许多球杆，尤其是水平值。或
者，可通过众所周知的标准和确认的方法预先计算值。同时应注意大多数球杆的 \(A / I \) 比率总
是相当稳定的，分成一般设计类别，包括在由相关监管机构目前设定的 460cc 体积限制中制造
的大多数现代一号木杆球杆。这种方式允许使用 \(A / I \) 标准默认值，除非已知球超出了这些标
准值，则可代替更多相关值。还应注意相关监管机构目前设定的球杆头水平惯性矩最大值
为 5900g cm²，但很少球杆能达到该值（如果有）。

[0038] 旋球特点之间的关系

[0039] 在相同的参照系中组合旋球和偏心旋球的分量来确定旋球速率和旋球轴的总
分量。可通过各种充分验证的数学技巧方便地完成该组合。本文中的术语 ‘总’ 表示旋球
和偏心旋球的组合或这些分量的组合。术语 ‘总旋球’ 、 ‘总侧旋球’ 和 ‘总下旋球’ 也分别
与术语 ‘旋球’ 、 ‘侧旋球’ 和 ‘下旋球’ 同义，这些术语与角旋球或偏置旋球无明确联系。

[0040] 数学上相关的旋球速率分量如下：\(\omega a = \omega a + \omega ab + \omega o 2 \) 和 \(\omega o 2 = \omega o 2 + \omega o b 2 \)，其
中 \(\omega a \) 为角旋球速率；\(\omega ab \) 为角侧旋球速率；\(\omega o b \) 为角下旋球速率；\(\omega o \) 为偏心旋球速率；\(\omega
o 2 \) 为偏心侧旋球速率；\(\omega o b \) 为偏心下旋球速率。

[0041] 在相同的参照系中确定角旋球和偏心旋球因解到相同的参照系中时：\(\omega s = \omega
a + \omega o s \) 和 \(\omega b = \omega a + \omega o b \)，其中 \(\omega s \) 为侧旋球总速率；以及 \(\omega o b \) 为下旋球总速率。注意 ‘下旋
球’ 假设为正值。角下旋球速率和下旋球总速率在标准的已完成高尔夫击球运动中通常
为正值。然而，偏心下旋球分量的速率时常为负，其中从通常较大的下旋球分量中减去。
具体实施方式

[0043] 从上述公开的步骤中可见，通过一定的运动特点和预先确定的信息项可确定一组总旋球特点以及其角旋球特点和偏心旋球特点的分量组合。运动特点指测量或确定的具体击球的运动特点，包括击球前的球杆矢量、击球后的球速矢量。球杆半径未计入 K’值时击球后的球杆速度矢量以及球杆面击球位置。运动特点也包括击球前的球杆面方向，对于具体击球可加以测量或确定，或通过将确定先前已公开的球杆面方向角关系的"经验法"用于球方向角的测量值来确定。预先确定的信息项涉及击球分类或类例，包括给定球和球杆条件的确定角旋球相关 K’值、球杆头的 A/1h 和 A/1l 和球杆杆面弹性值（如果未计入 K’值）。术语"球杆速度矢量"和"球速矢量"分别定义为描述球杆和球体位置、运动方向和速度的矢量，因此包括"球杆方向"和"球方向"。

[0044] 可通过各种方式测量所要求的运动特点，包括但不限于高速摄像系统、雷达检测系统和光束中断系统。

[0045] 能够以足够速度来确定运动特点，且方法能够交互操作，从而在练习环节给使用者提供反馈。

[0046] 现参考图3至12(b)更具体地描述本发明，以举例的方式描述本发明的一个实施例，该实施例采用光束中断系统确定运动特点，包括高尔夫击球的旋球特点。尽管文件不包括旋球特点的确定，但确定击球运动特点的光束中断系统是已知的，同时还参考了现有技术文件WO 2006/061809。这种类型的光束中断系统可用于以3D立体方式捕捉非常高速的运动。在替代实施例中，使用通过棱镜等光学器件在不同角度可见的两个或以上的摄像机，或在不同角度可见的一个摄像机，可采用高速摄像系统捕捉立体图像。

[0047] 现参考图3，其为装置布置的图解外部平面图，包括光束路径，尽管光束实际上不可见。

[0048] 图4为图3中心光束区域的更近的视图，还包括光束上的识别标签。

[0049] 图5和图6为分别与图3和图4相似的视图，显示了装置布置中的任意变化。

[0050] 图7为包括发射器、接收器、准直透镜和其他光学元件的一条光束的图解视图。光束轮廓线表示，光束击球区域内的相应平行线表示，其包括一平带的准直射线。该图沿着实际上比显示更长的光束的准直路径缩短，如图3至图5所见。该图也显示了中断光束中心部分的外路径的球。

[0051] 图8描述了通过放大准直透镜的图解部分平面图，其中光束穿过放大准直透镜的一面。

[0052] 图9(a)和9(b)为标准一号木杆球杆头及其相连杆身的一部分的正视图和侧视图。球杆头位于中间方位，即零滚动角和动杆面斜角等于静杆面斜角。

[0053] 图10(a)和10(b)为标准铁杆球杆头及其相连杆身的一部分的正视图和侧视图。球杆头位于中间方位。

[0054] 图11(a)为如图9(a)和图9(b)所示，在光束B1、B2、B3或B0中任一条的扫描方向中
可见，如图4或图6所述的中间方位中一号木杆球杆头的视图。该图也显示了在这些光束中扫描球杆头时可进行的各种测量。

图11（b）为如图9（a）和图9（b）所示，在光束F1、F2、F3或F0中任一条的扫描方向中可见，如图4或图6所述的中间方位中一号木杆球杆头的视图。该图也显示了在这些光束中扫描球杆头时可进行的各种测量。

图12（a）为如图10（a）和图10（b）所示，在光束B1、B2、B3或B0中任一条的扫描方向中可见，如图4或图6所述的中间方位中一号木杆球杆头的视图。该图也显示了在这些光束中扫描球杆头时可进行的各种测量。

图12（b）为如图10（a）和图10（b）所示，在光束F1、F2、F3或F0中任一条的扫描方向中可见，如图4或图6所述的中间方位中一号木杆球杆头的视图。该图也显示了在这些光束中扫描球杆头时可进行的各种测量。图11（a）和12（a）为球杆的‘跟部光束’视图，其中图像的前沿位于跟部侧。图11（b）和12（b）为‘球杆头趾部光束’视图，其中图像的前沿位于球杆头趾部侧。

以下是图3至12（b）中所参考数字的索引：

1. 装置
2. 初始静止位置的球
3. 显示预计飞行方向的线
4. 光束
5. 光束相交
6. 容纳发射器和检测器的外壳
7. 击球面
8. 反光镜
9. 站立面或垫子
10. 发射器/激光
11. 发射器透镜/激光透镜
12. 准直透镜
13. 球
14. 分束镜
15. 光电检测器点阵
16. 准直透镜面
17. 准直透镜光束屏幕
18. 准直透镜定位凸缘
19. 球杆头
20. 球杆面
21. 杆身
22. 插销
23. 刀背
24. 趾部
25. 跟部
说 明 书

[0084] 26. 引导标记
[0085] 27. 杆身
[0086] 28. 跟部前沿
[0087] 29. 指部前沿
[0088] 30. 轴和轮廓的参考点相交
[0089] 31. 导向光束

[0090] 参考图3，装置包括承放有发射器和接收器的外壳、击球面、反光镜装置及使用者站立面或垫子。装置也显示了被球杆击中前放置到位的高尔夫球，同时还显示了虚拟直线和箭头，从左到右表示预计球运动方向。该图显示了标准一号木杆击球位置，其中站立面和反光镜装置远离球放置。对于更短的球杆，依更靠近球的方式放置，可在最近的位置摆放。‘预计’方向通常指能够击中球且使用者可以将他或她的击球对准围场、击球面或站立面的平行边的目标方向。

[0091] 参考图4，标记的光束具有以下功能和布置。面向平行光束的F1和F2以及背向平行光束的B1和B2用于检测球杆运动。光束F3和B3用于检测球静止位置和击球时间时球杆运动。面向平行光束的F4和F5以及背向平行光束的B4和B5用于检测球运动。将所有光束设置为与预计方向呈65°。出于简洁和清晰，几对相关光束如F1和B1有时用格式“F1-B1”表示。光束F1-B1、F2-B2、F3-B3、F4-B4和F5-B5的相交点均位于通过球心的预计方向的直线上。F1-B1和F2-B2的相交点与F2-B2和F3-B3的相交点之间的距离分别为50mm和20mm。F2-B2的相交点与球心之间的距离为38mm，球心与F4-B4相交点的距离至少为41mm。F4-B4和F5-B5的相交点之间的距离为30mm。

[0092] 图5和图6分别与图3和图4类似，但光束布置中包括两种任意变化。这些任意变化中的一个包括其他光束对F0-B0，仅由光束对F0-B0、F1-B1和F2-B2检测球杆运动，而由光束对F3-B3检测静止位置和击球时间。其他任意变化包括检测光束对F6-B6的其他球。

[0093] 图3和图4所示的布置具有更少部件以及低成本、复杂性降低和尺寸减小的相对优势，在性能满足操作要求时可采用。在图5和图6所示的布置中，低弹道击球，如与木杆和长铁杆击球同时出现，通过光束对F4-B4和F6-B6测量，而高弹道击球则通过光束对F4-B4和F5-B5测量。增加光束对F6-B6以提供更远距离，通过该距离可测量球的飞行路线以增加测量准确度。不能将光束对F5-B5移至较远位置，因为高弹道击球将上升到该距离110mm高光束的最高位置。在图5和图6所示的布置中，单组光束不再检测球的初始状况和球杆运动。几种情况下，认为这种功能分离是可取的，包括以些情况。可以认为被球挡住的部分光束损失会对检测球杆的可靠性和准确性产生不利影响。认为适合球的准确静态位置检测的检测器不适于球杆的准确高速度检测。

[0094] 可采用其他光束布置和尺寸变化。没必要采用与球的目标线对称的几组平行光束，但这种布置可简化系统的计算和理解并优化各种变量，部分原因是类似情况适于目标线的两侧。采用一致的光束角度具有归一化分量和方便更为紧密的分量布置的优点。选择光束角度主要作为横向检测灵敏度和尽量减少装置尺寸的最佳平衡。选择光束和光束高度之间的距离主要作为检测灵敏度，捕捉击球范围和尽量减少装置尺寸的最佳平衡。

[0095] 尽管示例系统包括以两个不同角度设置的六条球杆测量光束，但球杆测量光束的最低要求中至少有三或四条光束以及至少两个不同角度。然而，优选四条光束以实现不同角
度组之间的平衡并获得高准确度。当球杆移向且移入击球区域时，大量光束提供了其他特点或变化改变信息。这些光束也可以分隔功能，如定位球和击球时间的测量。同样，尽管示例系统包括有两个不同角度设置的四或六条球测量光束，但球测光束的最低要求是两条光束且必须再次以不同角度设置。因为球的对称性以及测量特点或变量减少，最小光束数量少于球杆运动所要求的数量。但是，如示例布置描述中所讨论，须用更多球测量光束实现更高的准确度。

[0096] 装置包括击球面和击球前直接放置于地面、地面支柱或脚部的球。击球面包括耐用人造草皮或聚合物垫。以类似于作息场采用的方式，将球放置于灵活或可折叠支架上的要求高度。站立或垫子用来平衡使用者站立位置的高度与击球面的高度。虽然图中没有显示，该装置还包括使用者接口和编程电子处理器，该处理器可操作如将光束的信号转换成球杆和球的运动特点，大体符合本说明书中其他地方所述的方法。

[0097] 现参考图7,图3至图6所述的每条光束包括图3所示布置形式。由激光二极管组成的发射器以垂直方向强烈发散，同时横向发散的方式发出光束。光束通过透镜（称为激光透镜），将光束修正成更为的形状，同时将光束分布从边缘最弱修改成中心最弱。因为光束边缘的光传输损失较高，可修改光束分布以显示光电二极管阵列中最均匀的最终分布。

[0098] 分束镜截取平顶光束，传输部分光束，贯穿伸长的垂直准直透镜，将光束修正成平行准直光束。除非受球杆或球阻挡或部分受其阻挡，平行光束按这种形式穿过击球面，同时通过反光镜沿外路径反射回去。反射光束返回准直透镜，从平行准直形式转换成会聚形式，这与外路径的转换截然不同。返回光束与分束镜相遇，部分反射回，形成垂直导向的光电检测器点阵图像，如图所示任意角度。绕垂直轴旋转分束镜，从直角转向出射和返回的光束路径，使检测器定位略微偏移准直透镜和出射光束路径。因此，通过主要准直光束的任何物体会在检测器阵列上形成比例的轮廓图像。分量以主要准直光束厚度1mm和高度110mm的方式进行排列。

[0099] 由纵向阵列的菲涅尔刻面组成的准直透镜执行两个任务：将激光和激光透镜的射线分成分成平行准直形式的穿过击球面的出射操作光束；以及将返回光束聚焦到收敛射线，最终产生了光电检测器点阵的图象。准直透镜随聚合物注塑产生，其横截面如图8所示。各面垂直高度约1mm，宽度约2mm。从水平剖面看去，这些面大体是平的，但从垂直剖面看去为曲线，以适合角度设置各面，折射穿过要求的准直方向的部分光束。模塑随光束角度的一系列面产生，使模塑能轻易准确地安装在外壳中，主体和定位法兰朝向外壳主轴。模塑也在与各面相对的表面上设置有出模压屏幕。这些屏幕由有角度的面组成，这些面延伸到模塑光学部分的全高并偏移操作光束；屏幕间距的任何宽度增加以选择的光束厚度设置，在所述实例中为1mm。因此，将准直光束调整成外路径上1mm宽的光束，返回时再次调整为1mm。这有助于消除沿光束路径各边衍射和反光镜中横向发生的其他光传播效果产生的分散。

[0100] 反光镜也包括聚合物注塑，但在此情况下可用第一次注塑来反射所有前向光束，同时采用第二次注塑来反射所有后向光束。通常，反射镜面包括将光反射回源头的密集的一系列光学角隅棱镜。角隅棱镜具有相互呈90°的三个反射面。从信号观点看，反射镜的总体方向相当不加鉴别，尽管它能影响强度级并沿相同路径以相当高的准确度返回碰撞光束。

[0101] 光电检测器可包括各种类型的装置，包括光电二极管、电荷耦合器件 (CCD) 和互补
金属氧化物半导体（CMOS）线性阵列，分别包括单一布置的垂直对准像素。检测器阵列类型的选择通常包括垂直和水平方向上成本和图象分辨率的折中。

[0102] 反光镜造成光束强度的大幅降低，这可通过采用背面漆减少或最小化光束与反光器面的角度。无涂层的反光镜具有更高潜在反射效率，某些常规的廉价涂料如铝涂料对方向角更敏感，但背面易受污染物或冷凝物污染。镀铱更有效但更贵。

[0103] 因回射导致的光束强度降低使高输出激光功率成为必要，这又有可能需要采取特殊措施保证激光强度级在眼部安全极限内。示例性实施例中采用如下特殊措施的一项或其组合。可使用间歇供电的激光束，在开启时，其眼部安全强度级比其继续供电时的强度级更高。在批量生产的低成本激光二极管中，有波长供选择。有利的是，光波长的眼部安全级更高。例如，在强度级远大于可见光波长约为785nm的强度级时，可安全使用近红外波长约980nm的二极管。还可通过使用不均匀分束镜增加暴露的外部光束内的激光强度。在示例系统中，分束镜反射的返回光与光电二极管或传感器的比值大于朝向激光发出的射出光的比例。在激光二极管的强度为控制因素时，其允许暴露的外部光束的强度低于因使用均匀分束镜而出现的强度，但需要更大的功率输出激光。光电二极管的强度不是控制因素时，通常情况下最好采用均匀分束镜，其投射和反射类似量的光。

[0104] 可通过在第一组球杆光束的上游提供导向光束实现光束的瞬时开关。当导向光束受到球杆的扰动时，在足以捕捉球杆和球运动的短时间内打开激光束。导向光束可包括功率足以中低允许连续安全操作的两条LED光束或激光点光束。在示例性布置中，导向光束与前两条球杆平行或近平行布置，且由反光镜返回。光束的光束强度等于球杆带状光束的中间位置。单个光束检测器检测出返回信号。导向光束不穿过菲涅尔透镜或分束器。可使用近平行导向光束将导向光束指向反光镜而避免使用尺寸大于球杆和球测量光束要求尺寸的反光镜。平行导向光束设置为球杆测量区内球杆光束的上游。此类导向光束由图3和图5的下划线所示。在激光点光束采用配有内置光电二极管或反馈控制器的类型时，本光电二极管还可用于提供回波信号。LED或激光点光束可安装在外壳前端面上，与菲涅尔透镜的阵列大致相符。由于前两条球杆将通过光束透镜放在远离外壳边缘的位置，因此其将增加套管的要求长度。导向光束的使用进一步提供如下两种帮助。其降低连续操作的球杆和球测量光束产生的不必要热量，这可能导致组件不必要的热膨胀以及外壳内光强变空气对流，其还降低了功率的使用量，在装置由电池供电时其至关重要。

[0105] 如上文所述，按照包括如下内容的标准选择激光二极管发射器：发射特性，成本和提供密封装置外壳外部的完全安全的光束且符合安全注意事项和规定的最大功率。可通过匹配激光器的特点增加激光强度从而产生垂直和水平轴对准准直透镜处的孔径相配的光束。

[0106] 按照如下制造装配对各装置进行电子校准以优化光束检测的准确度。例如，可在小心控制情况下通过将不同形状的精度目标穿过装配装置的光束以及记录理论值与一体化检测器的实际检测数目的差值进行校准。然后将与这些差异相关的数据提供给装置处理器内的软件，从而根据校准测试结果纠正各像素的检测读数。本校准过程将制作准确性要求降至球杆系统的总装，且增加了完整形式的光束系统的总准确度。

[0107] 可选地，本装置还可配有允许使用者校准装置的工具，例如，如果装置在遭受损坏或延长使用之后失去准确性，则可采用上述工具。例如，可通过对装置提供软件设施进行校
准。在使用者激活时，软件设施允许通过击打沿着左右方向的目标方向，以高速和低抛物线通过光束的高尔夫球（如在常规木杆击球出现的击球）校准像素值。可使用有利于击穿所有光束的球座位置。在可以预测理论上正确的像素值且可将其与检测器的实际规范像素读数比较时，高尔夫球的已知对称形状在大体垂直和均匀的一号木杆击球的配合下提供一个已知的准确目标，从而通过装置处理器进行自动校准。由于校准仅以高速直线球为基础，因此没有必要在准确位置或仰角处对待击球的球进行校准测试。

【0108】测量球速度矢量

测量球速度矢量的一般方法是首先通过追踪球穿过各光束时其上的参考位置确定穿过光束的球弹道，然后通过分析信息计算球速度矢量。在自由飞行时，球的三维对称性允许忽略球的中心用作参考位置。本方法的第一阶段包括确定球通过各光束中心时参考点的高度，以及此动作的时间标识。在本阶段中，光束中参考点的侧向位置未知。在第二阶段由于仅一条弹道和一种速度将与这些条件相匹配，因此利用这些已确定的参考点高度、时间标识、光束的已知几何结构以及对高尔夫球的直线运动的了解确定球在三维飞行的直线方向和速度。用电子处理器确定计算值。在第三阶段，通过预估与球自由飞行的开始相对应的时间标识确定球速度矢量的起始点。

【0109】可使用各种图像处理技术确定球的中心高度以及随着中心穿过各光束时相应的时间标识，但应描述其中一种技术。在各光束处，随着球穿过各光束，检测器阵列以高速进行一系列扫描，各扫描在检测器阵列的各像素处产生测量值。如果光束被遮盖，则在击球之前，通过使用在光束的打开的激光二极管中确定的校准值为各像素规范扫描数据。通过常规方法使规范数据平滑。通过增加扫描频率和光电二极管内的像素数量提高图像清晰度，反之亦然。选择这些变量的重要标准包括组成成本。在本示例系统中，已发现在大约120KHz的频率下扫描的16像素光电二极管令人满意，其可用相对较低的位置，包括处理工具的成本生产。

【0110】各次扫描产生了一张与球在相关扫描时间对光束的遮挡方式相对应的图像。可使用各种图像处理方法通过扫描数据确定球中心。例如，处理器可将最佳适合高斯曲线等对称曲线与各扫描的像素值或各像素的扫描值相适应，这将由沿着垂直轴或水平轴设置具体装置的分辨率两个更高信号决定。通过微分法发现这些曲线的中心，使最佳适合高斯曲线等最终对应曲线适应这些中心。通过微分法发现最后曲线的中心，曲线向中心穿过光束厚度中心点的球中心参考点相对。记录各光束与球中心参考点相对应的时间标识和垂直高度。本技术可使在所有检测器的扫描上收集的所有值有利于最终确定球中心，小部分球顶因太高而无法被光束捕捉时，进行适当调整。在正确应用时，测量技术的对称性为垂直或倾斜穿过光束的球提供同样准确的结果。

【0111】通过评价关于球和球杆面分开的点以及自由飞行的起始点的时间标识估计球速度矢量的起始点。通过将球和球杆面的接触时间估计值加至测量的初始击球时间估计时间标识。根据与光束F3至B3像素信号的第一次显著变化对应的时间标识确定击球的时间，其中光束F3至B3在架球和静止位置被球遮盖。球和球杆面的接触时间接近所有正常高尔夫击球的0.45ms，其因球型、条件及球杆头的杆面斜角和速度而略有不同。

【0112】测量球的初始位置和击球时间

【0113】在本发明的示例性实施例中，高尔夫球安装在活动架或将球大致放在相对于光束
的牢固对称位置的球座上。然后使用光束F3至B3测量球的初始静止位置，光束F3至B3的一部分被地面或架球位置的球遮盖。校准本处理器以确定在球的各可能静止位置出现的像素闭塞的独特模式。基于一些原因，本方法可能优于使用相对于光束的固定精密架。其中一个原因是球座或固定架设置灵活或可折叠从而可以承受球杆的击球，像在练习场使用耐用橡胶球座类型而通常发生的那样，可预测球座或固定架可能因经常使用而发生部分变形或磨损。另一个原因是刚性固定架可能向装置发送有问题的冲击波，或者在击球时导致便携式击球面或装置移动。

[0115] 光束F3至B3还用于测量精确的击球时间，在通过上游球杆光束检测正到达的球杆之后，击球将与这些光束的输出信号的首次变化同时发生。采用像素值灰度测量的常规信号处理方式用于插入初始运动的精确时间，从而提供更比检测器阵列的扫描频率更加精确的分辨率。

[0116] 光束F3至B3还用于告知使用者球是否正确安装或放在球座上。例如，由于受损球座的不重合或比赛击球面的释放等原因，如果球位于光束的可行检测范围外，则可通过恰当的可见或可听方式提醒使用者。

[0117] 确定球杆速度、球杆方向、球杆类型和球杆面方向角

[0118] 在通过其中一条球杆光束扫描到球杆头通过时，最佳直接结果是在光束倾斜角看见球杆头的两维剪影图像。此类球杆头图像存在各种检测和测量困难，尤其是球杆头的不规则曲线形状和其可被准确的定位范围造成的困难。尽管木杆的表面粗糙，铁杆表面完全平坦，但仍明显区别于球杆头主体。由于球杆面和主体的曲线轮廓各不相同，因此不能在轮廓剪影的两维视图中轻易检测球杆面方向和球杆面方向角。应理解存在图9(a)和图9(b)所示标准球杆，即球杆头位于中间方位及跟部前沿及趾部前沿的清晰视图。术语“中间方位”指用静杆面斜角将球杆定位到等于动杆面斜角，球杆的滚动角为零度，即球杆面和球杆面导向线水平定位。更加难以确定球杆平面方向角视图是否远离中间方位发生变化。在图10(a)所示铁杆的趾部前沿的情况下，由于球杆头轮廓的弯曲度比木杆轮廓的弯曲度小，因此可在某种程度上区分球杆面方向角。但是，显露角将随着垂直动杆面斜角而变化，球杆头的滚动角在实际球中变化，球杆面方向角仍然难以确定。另外，对于铁杆铁杆头的某些定位，尤其是具有低杆面斜角的长铁杆而言，插鞘可遮盖大部分前沿。在图10(b)所示铁杆的趾部前沿的情况下，由于球杆头的后部和插鞘的下部完全遮盖可视边缘，因此不能完全区分球杆面方向角。同样地，在试图将固定参考点当作可与已知球杆头特点直接比较的图像或测量时仍出现困难。

[0119] 如果要准确测量或确定所需的运动特征，需克服这些困难。本发明克服了这些困难，关于如何克服困难的详细实例如下文所示。为便于描述，以步骤的方式概括本方法。步骤不一定要按时间顺序或显示的组发生。

[0120] 步骤1：在六条球杆光束中的各光束处扫描球杆头。

[0121] 步骤2：将扫描数据处理为预先确定的相关数据，为了方便起见将相关数据称为“关键参数”。

[0122] 步骤3：使用其中一些关键参数确定相对于球杆头的参考点。通过光束将参考点作为球杆头进展跟踪，提供球杆头方向和速度曲线值。

[0123] 步骤4：方向和速度值用于规范关键参数。
步骤5：先前确定的球运动特点以及归一化和非归一化的球杆关键参数用于确定球杆类型和球杆面方向角。

步骤6：先前提取的数据以及关于时间标识和光束几何结构的知识用于在球杆上穿过光束以及进行击球的瞬间内改善和确定球杆方向的值。

步骤7：使用记忆或者其他特定于确定的球杆类型和球杆面方向确定的球杆面中心相对于某某些关键参数的位置。

步骤8：通过本说明书中早先公开的方法通过先前的球信息以及先前步骤确定的球杆关键信息确定球杆特点。

步骤9：更详细的描述这些步骤，以了解图3和图4所示布置。

步骤10：在球杆光束F1、F2、B2、B3和B3中的各光束处扫描球杆头。以类似于先前所述的方式按照例行程序初步处理信号，以测量球方向，其包括归一化和平滑化。

步骤11：将扫描数据进一步处理成预先确定的关键参数。

步骤12：在本步骤的第一个式中，关键参数包括杆身轴的长宽和高度，其他各种相对简单定义的测量中进行选择，如在图11(a)至12(b)分别显示为'A'和'B'的图像长度和高度，以及显示为'C'的前沿上导引点的高度。如果采用杆尾和杆头光束铁杆，关键参数还包括插槽与球杆轴方向的交叉，其在图11(a)、11(b)和12(a)中显示为'D'和'E'。如果采用跟部光束铁杆，关键参数另外包括刀背和插槽间弯曲部分的最低点的相对垂直和水平位置，在图12(b)中其显示为'F'。

步骤13：在第二个式中，关键参数包括杆身轴的位置和角度。其还包括杆头腕和插槽所有和部分剪影轮廓，轮廓通过处理扫描获得。根据轮廓确定各种二值测量，包括与第一个式中所讨论的相似的测量值，最佳适于跟部光束杆和铁杆的前沿，适于跟部光束杆的前沿以及适于跟部光束铁杆的杆身轴方向的线的角度。

步骤14：如图12(a)所示，根据光束铁杆图的杆部侧轮廓没有可见的最高、最低或基准点。杆身轴延线与球杆轴相切轮廓的交点视为终点或基准点。该交点有利地位于球杆身平面底部侧边缘附近。

步骤15：杆身轴角度是一个特别重要的测量值，有两个原因。第一个原因是它能进行精确度较高的测量。这是由于杆身轴包括一条受杆身边缘和插槽边缘限制的直线，且杆身边缘和插槽边缘到这条直线距离相等。杆身轴也被接近于垂直，而且通过连续扫描时会经过较多的检测器像素。这些因素使测试具有高准确度。该参数重要的第二个原因是，杆身轴角度与球杆的球杆轴方向角、垂直动态杆面斜角、转动角和球位角度接近或直接相关。安装该装置是为了确保杆身和插槽的足够部分通过相关光束。为提高在球座上击球，该装置可能被抬高，这样升高了光束矩阵的低处区域，使其与球杆的低部区域一致，这足够捕捉位于光束矩阵高处区域的杆身和插槽的必要部分。

步骤16：使用特定关键参数确定相对于杆杆头的基准点，当球杆头通过光束时进行追踪。这些关键参数为杆身轴的角度以及沿杆身轴的任何便利标记，例如杆身轴和最高或最低杆头检测点对应的水平线的交点，或者与球杆头上最高和最低检测点的中点相应的水平线的交点。产生的交点将在它穿过每根光束时，在光束厚度中心测量，从而确定特定时间标记。当每对光束测量的杆身轴角度以及位置组合时，它们限定在每个光束对F1—B1、F2—B2和F3—B3的三维空间内的杆身角度。合适的统计手段，例如每对杆身轴的交点和时间标识的...
平均数，被用作三维杆身轴的基准点和时间标记。

【0136】光束对F1-B1、F2-B2和F3-B3处的追踪的基准点的位置和时间标识用于确定在F1-B1和F2-B2之间以及F2-B2和F3-B3之间穿行的基准点的平均方向和速度。这些方向和速度可能在这段距离中保持不变，或者可能显示处方向或速度变化。当变化发生时，这可能继续在这段距离中逐渐发生，而且处理器计算出通过这三个点的一条平坦的三维路径和速度分布图。这允许对这六条光束中的每条光束分别估计杆杆头速度和运动方向。

【0137】当击球发生在基准点通过所有六条光束之前时，要求在击球发生的任何距离中进行速度调整，即使这预计不会发生在标准的已完成击球中。当基准点重新限定为位于与趾部或球杆杆部侧边附近的位置时，这个速度调整是可以避免的，这取决于击球后哪条光束被中断。或者，可以保留原始基准点，而且可以进行必要的速度调整。在此情况下，球杆头及其上面的点在0.45ms的击球持续时间内可能呈线性减速，从基本不变的击球前速度到基本不变的击球后速度。击球前和击球后速度可以通过计算完全击球前或完全击球后穿过光束的通道的球杆上任何可辨别的特征的时间来估计。

【0138】步骤4：上一步骤所确定的球杆方向和速度用于使关键参数归一化。当球杆头通过光束时被扫描，装置在水平方向上部件的长度会降低，而球杆头速度增加，反之亦然。它们也会降低，因为不旋转方向上，球杆头运动方向的角度变化离基点更远，反之亦然。归一化过程使用检测到的方向和速度来更正这些改变，并将水平方向上的部件长度转换为在一致的标准方向中速度上的长度。通常，这个标准方向被选为预期或目标方向。

【0139】步骤5：归一化和非归一化的关键参数以及特定的其他可用数据用于确定球杆杆方向和球杆类型。这种确定可能，以混合准确度水平，使用神经网络型人工智能系统通过潜在的设置选择球杆杆运动特别的特点信息进行。这种系统能够收到有限量的输入信息，而且已训练成识别考虑了所有输入信息和它们之间相互关系的结果。这预测了具有更高准确度水平的结果，可通过把关系应用在没有潜在剩余信息的直接测量中来得到。

【0140】网络或人工智能系统的输入信息包括已知的高尔夫球信息，主要包括球杆杆方向以及球杆和选定的类型和条件。它也包括已知的杆杆信息，包括在每条光束、球杆杆方向和上一步骤确定的每条光束中的球杆长度下选择相关归一化和非归一化关键参数。输出预测即每条光束或每组光束中球杆类型和球杆杆方向角的预测。这个网络可能通过使用影响标准的球杆头三维扫描图像的自动软件程序来训练，这节省了大量的实际球杆头输入的训练成本。可能为自动化软件训练输入提供数据理论值的统计变化，从而复制预测在实际测量中出现的数值。这允许最终工作网络处理发生在实际测量中发生的正常错误。

【0141】在最终工作网络中，球杆类型存在在精度输出中。系统也用完整的一套可预测的所有球杆类型的特性特性预编程序。自动球杆类型识别与其它方法相比更有优势，例如使用者手动输入球杆类型或特性。它对使用者而言很方便，特别是连续使用不同球杆时，它避免了使用者输入错误；它很有可能激发使用者对正确操作系统更具有信心；而且它克服了使用者所不知或无法获取的相关信息和操作说明引起的潜在问题。

【0142】或者，如之前所述，可能通过之前所述的经验方法估计球杆杆方向角。

【0143】其他方法也可选用用于确定球杆类型和球杆杆类型相关特性。包括以下实例：使用者可能直接输入相关球杆特性的详细信息；使用者可能输入球杆制造商和型号，系统使用
从预编程序存储器中提取的相关特性或其他可用的特性组合；当处理器处于交互式训练系统控制下，以及指示使用者使用特定类型的球杆时，系统可能获取何所使用的球杆类型信息，该信息对该系统而言也是可获取的；该系统可能假设特定类型的击球用系统已知的距离者的特定球杆完成，其中使用者的数据保存在系统存储器中；或者系统可能假设击球用前述击球相同的球杆完成，其中击球确定为类似的类型，并发生前述击球的较短预定期限内。球杆类型可能仅过使用更简单的算法或人工智能系统类型预测，例如基于使用关键参数输入的模糊逻辑系统的规则。

步骤6：之前步骤获取的信息，包括每条球杆光束对条上的球杆类型和球杆面方向，以及之前步骤获取的信息和对时间标记和光束几何形状的了解，用于在球杆头穿过每条球杆光束以及进行击球的瞬间内完善和确定球杆方向和球杆速度曲线的数据。在之前的步骤中，穿过光束对进行球杆方向和球杆速度平均值等 statistic。当前步骤包括球杆方向、球杆速度和击球瞬间面方向的方向值。

步骤7：系统识别相对于球杆头的球杆面中心位置。为此，系统具备特定的记忆信息，这些信息将球杆面中心映射至特定关键参数，说明了系统可以识别的每种球杆类型的球杆面方向。该信息用于使用已经确定的球杆类型和关键参数和之前步骤稳定球杆面方向来确定击球时的球杆面中心。各种关键参数可以用于这项技术，在一个实例中，球杆类型特定的记忆信息用于识别相对于确定的球杆头基准点的中心，从而适当地说明了确定的球杆面方向。在另一个实例中，球杆类型特定的记忆信息用于识别相对于确定的长度和角度的关键参数的水平和垂直坐标，再次适当地说明了确定的球杆面方向。

步骤8：确定的击球点球杆运动特点：确定的击球运动特点；相对于球杆面中心的已识别的球和球杆面的接触点，如之前说明书中所述部分所述，用于确定各种球杆特点，包括角度和偏心率球分量。击球最初瞬间的球杆面和球杆面中心的位置在之前的步骤中已知。如之前讨论的，击球最初瞬间球的位置通过光束F3-B3收到的数据已知。球和球杆面的最初接触的发生与半径已知的球的球状曲线表面成切线。

分析和交叉式应用

本发明，如之前所述，确定球方向、球速以及产生的垂直和水平总旋转球速率分量，所有这些均足以全面描述给定球型和条件的球的弹道。

[149] 但是这些运动特点，该方法从本质上研究和识别直接导致球发射在弹道上方式的动作和起因，在这方面，本方法与不包括这个研究方面的现有技术方法不同。如之前所述，本方法也测量或确定产生的垂直和水平角旋转球分量、偏心旋球的垂直和水平分量、球杆类型和特点、球杆面接触点的水平和垂直分量、朝向击球的球杆头速度历程、朝向击球的球杆头路径历程、朝向击球的球杆面角历程（包括垂直动态杆面斜角、水平面斜角、滚动角以及杆身较低区域的动态杆位置角的分量历程）。

[150] 本发明的本特点有利地提供了通过测量和确定的信息的直接人工解释或通过装置处理器软件进行自动化解释分析击球的现成基础。本发明的特点有利地提供了在装置实践期间用装置驱动交互式训练软件的现成基础。
图1

图2
图10a
图10b
图12a
图12b