(54) 发明名称
修饰的 MELK 肽及包含它们的疫苗

(57) 摘要
本申请中描述了由修饰的 MELK 表位肽或其免疫学活性片段的氨基酸序列组成的不同肽，它们结合 HLA 抗原并且具有比野生型 MELK 肽表位肽更高的细胞毒性 T 细胞 (CTL) 诱导能力，因此可用于癌症免疫治疗或子宫内膜异位症免疫治疗，更具体地说是子宫癌或子宫内膜异位症的治疗。本发明还提供包含对上述肽或片段的一个、两个或多个氨基酸插入、替代或添加，但仍保留所需的细胞毒性 T 细胞诱导能力的肽。进一步提供了编码上述任何肽的核酸，以及包含任何上述肽或核酸的药用物质或者组合物。本发明的肽、核酸、药用物质和组合物在癌症、肿瘤和子宫内膜异位症的治疗中特别有用。
1. 一种具有细胞毒性 T 淋巴细胞 (CTL) 诱导能力的分离的肽，其中所述肽由 SEQ ID NO:44 的氨基酸序列组成。

2. 一种具有细胞毒性 T 淋巴细胞 (CTL) 诱导能力的分离的肽，其中所述肽由 SEQ ID NO:44 的氨基酸序列组成，其中 SEQ ID NO:44 的氨基酸序列的 N 端第四个氨基酸被替代为选自苯丙氨酸、甲硫氨酸和色氨酸的氨基酸，和/或 SEQ ID NO:44 的氨基酸序列的 C 端氨基酸被替代为选自亮氨酸、异亮氨酸、色氨酸和甲硫氨酸的氨基酸。

3. 一种分离的多核苷酸，其编码权利要求 1 或 2 的肽。

4. 一种用于诱导 CTL 的组合物，其中所述组合物包含一种或多种权利要求 1 或 2 的肽，或者一种或多种权利要求 3 的多核苷酸。

5. 一种用于治疗和/或预防癌症或子宫内膜异位，和/或防止其手术后复发的药物组合物，其中所述组合物包含一种或多种权利要求 1 或 2 的肽，或者一种或多种权利要求 3 的多核苷酸。

6. 权利要求 5 的药物组合物，其中所述药物组合物配制为对 HLA 抗原为 HLA-A24 的受试者施用。

7. 权利要求 5 或 6 的药物组合物，其中所述药物组合物配制为用于治疗癌症或子宫内膜异位。

8. 一种用于诱导具有 CTL 诱导能力的抗原呈递细胞 (APC) 的体外方法，其中所述方法包括下述步骤之一：
 (a) 在体外使 APC 与权利要求 1 或 2 的肽接触；和
 (b) 将编码权利要求 1 或 2 的肽的多核苷酸导入 APC。

9. 通过任何包含至少一个下述的步骤的方法来诱导 CTL 的体外方法：
 (a) 将 CD8- 阳性 T 细胞与 APC 共培养，所述 APC 在其表面上呈递 HLA 抗原与权利要求 1 或 2 的肽的复合物；
 (b) 将 CD8- 阳性 T 细胞与外来体共培养，所述外来体在其表面上呈递 HLA 抗原与权利要求 1 或 2 的肽的复合物；和
 (c) 向 T 细胞中导入包含编码结合权利要求 1 或 2 的肽的 T 细胞受体 (TCR) 亚单位多肽的多核苷酸的基因。

10. 一种分离的 APC，该 APC 在其表面上呈递 HLA 抗原与权利要求 1 或 2 的肽的复合物。

11. 权利要求 10 的 APC，其中所述 APC 是通过权利要求 8 的方法诱导的。

12. 一种分离的 CTL，其靶向权利要求 1 或 2 的肽。

13. 权利要求 12 的 CTL，其是通过权利要求 9 的方法诱导的。

14. 权利要求 1 或 2 的肽，或编码所述肽的多核苷酸在制备用于诱导受试者中针对癌症或子宫内膜异位的免疫应答的组合物中的用途。

15. 一种或多种权利要求 1 或 2 的肽，或一种或多种权利要求 3 的多核苷酸在制备用于治疗和/或预防癌症或子宫内膜异位，和/或防止其手术后复发的药物组合物中的用途。

16. 权利要求 1 或 2 的肽，或权利要求 3 的多核苷酸在制备用于诱导具有 CTL 诱导能力的 APC 的组合物中的用途。

17. 权利要求 1 或 2 的肽，或权利要求 3 的多核苷酸在制备用于诱导 CTL 的组合物中的用途。
修饰的 MELK 肽及其包含它们的疫苗

技术领域
[0001] 本发明涉及生物科学领域，更具体的说，是肿瘤治疗领域。具体而言，本发明涉及作为为癌症疫苗极为有用的新肽，以及用于治疗和预防肿瘤（或者涉及 MELK 表达的疾病）的药物。

[0002] 优先权

背景技术
[0004] 已经证明，CD8 阳性细胞毒性 T 细胞 (CTL) 可识别主要组织相容性复合物 (MHC) I 类分子上出现的肿瘤相关抗原 (TAA) 所衍生的表位肽，然后杀死肿瘤细胞。从 TAA 的第一个例子——黑素瘤抗原 (MAGE) 家族被发现起，人们主要通过免疫学手段 (NPL 1, 2) 已经发现了许多其它 TAA。这些 TAA 中的一些目前正在作为免疫治疗靶标接受临床开发。

[0005] 有利的 TAA 对于癌细胞的扩增和存活而言是不可或缺的。使用这样的 TAA 作为免疫治疗的靶标，可以最大程度的减小人们熟知的癌细胞免疫逃逸的风险。癌细胞免疫逃逸可归因于治疗驱动的免疫选择 (therapeutically driven immune selection) 而导致的 TAA 删除、突变或下调。因此，能够诱导或抑制特异性的抗肿瘤免疫应答的新 TAA 的鉴定保证了进一步开发针对各种类型的癌症的免疫疫苗接种策略的临床观察 (NPL 3-10)。迄今为止，已经有数项使用这些 TAA 衍生的肽进行临床试验的报告 (NPL 11-13)。虽然已经观察到一些成功，但仍然需要鉴定能作为免疫治疗靶的新 TAA。

[0006] MELK，即母体胚胎亮氨酸拉链激酶 (maternal embryonic leucine zipper kinase)，先前被鉴定为涉及哺乳动物胚胎发育的 snf1/AMPK 丝氨酸-苏氨酸激酶家族的新成员 (NPL14)。已经显示这种基因在干细胞性更新 (NPL15)、细胞周期行进 (NPL16,17) 和前 mRNA 剪接 (NPL18) 中发挥重要作用。为此目的，本发明人通过使用含有 23,040 种基因的全基因组 cDNA 随机序列的基因表达谱分析鉴定了 MELK，其在乳腺癌中上调 (NPL19)。

[0007] MELK 在数种癌细胞中上调，例如肺癌、膀胱癌、淋巴瘤和宫颈癌细胞。在多种人体组织和癌细胞系进行的 Northern 印迹分析显示，在绝大部分乳腺癌和细胞系中显著高水平表达，而在正常生命器官（如心脏、肝、肺和肾）中则不表达。此外，已显著显示用 siRNA 抑制 MELK 表达可导致乳腺癌细胞的生长。

[0008] 已经有多项关于对与 MHC 或 T 细胞受体的相互作用必不可少的肽的氨基酸残基进行修饰，以增强这些肽的免疫原性的研究的报道 (NPL20, 21)。

[0009] 引用表

[0010] 专利文献

[0011] [PTL 1]WO2005/073374

[0012] [非专利文献]

[0013] [NPL 1]Boon T, Int J Cancer 1993 May 8, 54(2):177-80
发明内容

本发明分部分地基于可作为免疫疗法的合适靶标的新型肽的发现。由于 TAA 一般被免疫系统察觉为“自身”并因此常常没有免疫原性，适宜靶标的发现是极其重要的。意识到 MELK（例如如上文 SEQ ID NO:47 所描述的，又如 GenBank 登录号 NM_014791 (SEQ ID NO:46) 所示）已经被鉴定为在子宫内膜异位症以及癌症（包括但不限于乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、慢性髓性白血病 (CML)、结肠直肠癌、食道癌、胃癌、肝癌、非小细胞肺癌 (NSCLC)、淋巴瘤、肾癌、卵巢癌、胰腺癌、前列腺癌、肾细胞癌和小细胞肺癌 (SCLC) 中上调 (WO2010/013485), 本发明聚焦于 MELK 作为候选的免疫疗法靶标。

为了解决该问题，本发明至少部分地致力于 MELK 的具有诱导针对 MELK 的细胞毒性 T 淋巴细胞 (CTL) 的能力的特异性修饰的表位肽的鉴定。如下文详细讨论的，使用源自修饰的 MELK 表位肽的肽，即野生型 MELK-A24-9-87_WT (SEQ ID NO:6) 的 A*2402 结合候选肽刺激从健康供体获得的外周血单个核细胞 (PBMC)。然后建立了可特异性识别经每种候选肽刺激的HLA-A24 阳性靶细胞的 CTL。综合起来，这些结果证明这些肽是鉴定出能诱导针对 MELK 的强而特异性的免疫应答的 HLA-A24 限制型表位肽。这些结果进一步证明了 MELK 具有强免疫原性，而且它的表位是肿瘤免疫疗法的有效靶标。

因此，本发明的一个目的是提供源自 MELK (SEQ ID NO:47) 的修饰表位肽，尤其是源自野生型 MELK-A24-9-87_WT (SEQ ID NO:6) 的修饰表位肽的分离的肽，或它们的结合 HLA
抗原的免疫学活性片段。这些肽具有 CTL 诱导能力。因此，它们可以用来离体诱导 CTL 或者用来施用给受试者以诱导针对子宫内膜异位和癌症的免疫应答，癌症的例子包括但不限于乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、CML、慢性髓性白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴瘤、骨肉瘤、卵巢癌、胰腺癌、前列腺癌、肾细胞癌和 SCLC。优选的肽是九肽，并且典型地，由选自 SEQ ID NO:35-45 的氨基酸序列组成。在这些之中，具有选自 SEQ ID NO:35, 41 和 44 的氨基酸序列的肽显示特别强的 CTL 诱导能力，因此在本发明中特别有用。

[0037] 本发明还考虑修饰的肽，它们具有 SEQ ID NO:35-45 的氨基酸序列，其中替代、缺失或添加了一个、两个或更多个氨基酸，只要所述的修饰的肽保留所需的原始肽的 CTL 诱导能力。

[0038] 进一步，本发明还提供编码任何本发明的肽的分离的多核苷酸。这些多核苷酸可以和本发明的肽一样用来诱导具有 CTL 诱导能力的抗原呈递细胞（APC），或者可以施用给受试者以诱导针对癌症的免疫应答。

[0039] 当施用给受试者时，本发明的肽被呈递在 APC 的表面上，以诱导靶向相应肽的 CTL。因此，本发明的一个目的是提供诱导 CTL 的物质，此类物质包括一种或多种本发明的肽或者编码此类肽的多核苷酸。本发明还考虑包含一种或多种本发明的肽或编码此类肽的多核苷酸的药用物质，这样的组合物可以用来治疗和 / 或预防子宫内膜异位和癌症，此类癌症包括但不限于乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、CML、慢性髓性白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴瘤、骨肉瘤、卵巢癌、胰腺癌、前列腺癌、肾细胞癌和 SCLC，和 / 或防止其术后复发，但不限于此。因此，本发明的另一个目的是提供配制为用于治疗和 / 或预防子宫内膜异位或癌症，和 / 或防止其手术后复发的药物组合物或药用物质，其包含任何本发明的肽或多核苷酸。作为本发明的肽或多核苷酸的替代或者补充，本发明物质的物质或药物可任选地包括呈递任何本发明的肽的 APC 或外来体作为有效成分。

[0040] 本发明的肽或多核苷酸可以用来诱导在表面上呈递 HLA 抗原与本发明的肽的复合物的 APC，例如通过使源自受试者的 APC 与本发明的肽接触，或者通过将编码本发明的肽的多核苷酸导入到 APC 中。这样的 APC 具有针对靶肽的高的 CTL 诱导能力，因而能够用于癌症免疫疗法。因此，本发明的另一个目标是提供用于诱导具有 CTL 诱导能力的 APC 的方法和通过该方法获得的 APC。

[0041] 本发明的另一个目的是提供用于诱导 CTL 的方法，所述方法包括将 CD8 阳性细胞与在其表面上呈递本发明的肽的 APC 或外来体接触的步骤，或者导入包括编码结合本发明的肽的 T 细胞受体（TCR）亚单位的多核苷酸的基因的步骤。通过本方法能够获得的 CTL 也能够用于治疗和 / 或预防其中过表达 MELK 的疾病，如子宫内膜异位、乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、CML、慢性髓性白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴瘤、骨肉瘤、卵巢癌、胰腺癌、前列腺癌、肾细胞癌和 SCLC，但不限于此。因此，本发明的另一个目标是提供通过本发明的方法获得的 CTL。

[0042] 此外，本发明的还有一个目的是提供在有需要的受试者体内诱导针对癌症的免疫应答的方法，所述方法包括给所述受试者施用含有修饰的 MELK 或其免疫学活性片段、编码修饰的 MELK 或其片段的多核苷酸，以及呈递修饰的 MELK 或其片段的 APC 或外来体的物质或组合物的步骤。
说明书

[0043] 本发明的应用可延及多种与 MELK 过表达相关，或者源于 MELK 过表达的疾病中的任何一种，包括子宫内膜异位症和癌症，癌症的例子包括但不限于乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、CML、慢性髓性白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴瘤、骨肉瘤、卵巢癌、胰腺癌、前列腺癌、肾细胞癌和 SCLC。

[0044] 更具体地，本发明提供下述：

[0045] [1]。一种结合 HLA 抗原并具有细胞毒性 T 淋巴细胞（CTL）诱导能力的分离的肽，
其中所述肽由 SEQ ID NO:6 的氨基酸序列组成，或者有在 SEQ ID NO:6 的氨基酸序列中包含一或多个氨基酸替代的氨基酸序列组成。

[0046] [2]。[1] 的分离的肽，其中所述 HLA 抗原是 HLA-A24。

[0047] [3]。[1] 的分离的肽，其中所述肽在 SEQ ID NO:6 的氨基酸序列中的选自下组 (a)–(d) 中的位置上包含一个或多个氨基酸替代：

(a) N 末端氨基酸，

(b) 自 N 末端起的第三个氨基酸

(c) 自 C 末端起的第三个氨基酸，和

(d) C 末端氨基酸。

[0048] [4]。[3] 的分离的肽，其中所述多肽包含选自下组 (i)–(iv) 中的一个或多个氨基酸替代：

(i) SEQ ID NO:6 的氨基酸序列中 N 末端氨基酸从 E 到 K 或 R 的氨基酸替代；

(ii) SEQ ID NO:6 的氨基酸序列中自 N 末端起的第三个氨基酸从 C 到 E、I、L、M、N 或 P 的氨基酸替代；

(iii) SEQ ID NO:6 的氨基酸序列中自 C 末端起的第三个氨基酸从 E 到 N 或 Q 的氨基酸替代；和

(iv) SEQ ID NO:6 的氨基酸序列中 C 末端氨基酸从 F 到 L 的氨基酸替代。

[0049] [5]。[4] 的分离的肽，其中所述肽包含单一氨基酸替代。

[0050] [6]。[4] 的分离的肽，其中所述肽包含两个氨基酸替代。

[0051] [7]。[4] 的分离的肽，其中所述肽包含三个氨基酸替代。

[0052] [8]。[4] 的分离的肽，其中所述肽包含四个氨基酸替代。

[0053] [9]。[4]–[5] 的分离的肽，其包含选自 SEQ ID NO:35–45 的氨基酸序列。

[0054] [10]。一种结合 HLA 抗原并具有细胞毒性 T 淋巴细胞（CTL）诱导能力的分离的肽，
其中所述肽由选自 SEQ ID NO:35–45 的氨基酸序列组成，其中插入、替代、缺失或添加了 1 个、2 个或数个氨基酸。

[0055] [11]。[10] 的肽，其具有下述特征之一或者二者：

(a) 自 N 末端起的第二个氨基酸选自苯丙氨酸、酪氨酸、甲硫氨酸和色氨酸；和

(b) C 末端氨基酸选自苯丙氨酸、亮氨酸、异亮氨酸、色氨酸、和甲硫氨酸。

[0056] [12]。一种分离的多核苷酸，其编码 [1]–[11] 中任一项的肽。

[0057] [13]。一种用于诱导 CTL 的物质，其中所述物质包含一种或多种 [1]–[11] 中任一项的肽，或者一种或多种 [12] 的多核苷酸。

[0058] [14]。一种用于治疗和 / 或预防癌症或子宫内膜异位症，和 / 或防止其手术后复发的药物组合物，其中所述组合物包含一种或多种 [1]–[11] 中任一项的肽，或者一种或多种
[12] 的多核苷酸。
[0069] [15]. [14] 的药物组合物，其中所述组合物配制为对 HLA 抗原为 HLA-A24 的受试者施用。
[0071] [17]. 一种用于诱导具有 CTL 诱导能力的抗原呈递细胞 (APC) 的方法，其中所述方法包括下述步骤之一：
[0072] (a) 在体外、离休或在体内使 APC 与 [1]~[11] 中任一项的肽接触；和
[0073] (b) 将编码 [1]~[9] 中任一项的肽的多核苷酸导入 APC。
[0074] [18]. 通过任何包含至少一个下述的步骤的方法来诱导 CTL 的方法：
[0075] (a) 将 CD8+ 阳性 T 细胞与 APC 共培养，所述 APC 在其表面上呈递 HLA 抗原与 [1]~[9] 中任一项的肽的复合物；
[0076] (b) 将 CD8+ 阳性 T 细胞与外来体共培养，所述外来体在其表面上呈递 HLA 抗原与 [1]~[11] 中任一项的肽的复合物；和
[0077] (c) 向 T 细胞中导入包含编码结合 [1]~[11] 中任一项的肽的 T 细胞受体 (TCR) 亚单位多肽的多核苷酸的基因。
[0078] [19]. 一种分离的 APC，该 APC 在其表面上呈递 HLA 抗原与 [1]~[11] 中任一项的肽的复合物。
[0081] [22]. [21] 的 CTL，其是通过 [18] 的方法诱导的。
[0082] [23]. 一种诱导受试者中针对癌症或子宫内膜异位的免疫应答的方法，包括对受试者施用包含 [1]~[11] 中任一项的肽、其免疫学活性片段、或编码所述肽或所述片段的多核苷酸的组合。
[0083] 除了上述之外，在联系附图和实施例阅读下面的详细说明时，本发明的这些和其它目的和特征将变得更加显而易见。然而，应当理解，前面的发明概要和后面的详细说明都仅仅提出了示例性的实施方案，并没有提供发明的其它可替代实施方案构成限制。尤其是，虽然在本文中就若干具体的实施方案对本发明进行了说明，应当理解这些描述对本发明而言是示例说明性的，不解释对本发明的限制。在不背离如随附的权利要求所描述的本发明的精神和范围的前提下本领域技术人员将容易地想到本发明的多种修改和应用。类似地，本发明的其它目的、特征、好处和优势是从此处的概要和下文描述的特定实施方案可以容易地想到的，并且是本领域技术人员可以显见的。根据上文的内容并结合随附的实施例、数据、附图以及从该能够合理推测的内容，或者进一步考虑本文中引用的参考文献，这样的目的、特征、好处和优势是容易想到的。
[0084] 附图简述
[0085] 本领域技术人员在考虑了下文的附图简要说明及对本发明及其优选实施方案的详细说明后将清楚地得知本发明的各个方面应用。
[0086] [图 1] 图 1 描绘显示对用源自 MELK 的肽诱导的供体 A 的 CTL 进行的 IFN-γ ELISPOT 测定的结果的照片。用 MELK-A24-9-87 (SEQ ID NO:6) (a) MELK-A24-10-637 (SEQ ID...
N0:23) (b) MELK-A24-9-199 (SEQ ID NO:1) (d) 和 MELK-A24-9-78 (SEQ ID NO:21) (e) 刺激的 CTL 显示了强的 (potential) IFN-γ 生成功能。对比地，作为典型的阴性数据实例，用 MELK-A24-9-96 (SEQ ID NO:2) (c) 刺激的 CTL 未检出特异性的 IFN-γ 生成功能。在图中，“＋”指示针对经关联肽激活的靶细胞的 IFN-γ 生成，而“－”指示针对未经任何肽激活的靶细胞的 IFN-γ 生成。

[0087] 图 2 描绘显示 CTL 的建立的结果的线图。通过 IFN-γ ELISPOT 测定从用 MELK-A24-9-87 (SEQ ID NO:6) (a), MELK-A24-10-637 (SEQ ID NO:23) (b), 和 MELK-A24-9-199 (SEQ ID NO:1) (c) 刺激的 CTL 系检测到强的 IFN-γ 生成功能。在图中，“黑色菱形”指示针对经关联肽激活的靶细胞的 IFN-γ 生成，而“白色方块”指示针对未经任何肽激活的靶细胞的 IFN-γ 生成。

[0088] 图 3 描绘显示 CTL 克隆的建立的结果的线图。通过 IFN-γ ELISPOT 测定从用 MELK-A24-9-87 (SEQ ID NO:6) (a) 和 MELK-A24-9-199 (SEQ ID NO:1) (b) 刺激的 CTL 克隆检测到强的 IFN-γ 生成功能。在图中，“黑色菱形”指示针对经 MELK-A24-9-87 (SEQ ID NO:6) 激活的靶细胞的 IFN-γ 生成，而“白色方块”指示针对未经任何肽激活的靶细胞的 IFN-γ 生成。

[0089] 图 4 是描绘针对外源表达 MELK 和 HLA-Α*2402 的靶细胞的特异性 CTL 活性的线图。制备用 HLA-Α*2402 或用全长 MELK 基因转染的 COS7 细胞作为对照。用 MELK-A24-9-87 (SEQ ID NO:6) 建立的 CTL 克隆显示针对用 MELK 和 HLA-Α*2402 二者转染的 COS7 细胞的特异性 CTL 活性（黑色菱形）。另一方面，没有检测到显著的针对表达 HLA-Α*2402 (白色三角形) 或 MELK (白色圆形) 任一的靶细胞的特异性 CTL 活性。

[0090] 图 5A 图 5A 描绘显示对用来自 MELK-A24-9-87 WT (SEQ ID NO:6) 的修饰肽诱导的供体 B 的 CTL 进行的 IFN-γ ELISPOT 测定的结果的照片。用 MELK-A24-9-87 1K (SEQ ID NO:35) (a), MELK-A24-9-87 3M (SEQ ID NO:41) (b) 和 MELK-A24-9-87 7N (SEQ ID NO:44) (c) 刺激的 CTL 显示了强的 IFN-γ 生成功能，如方块中表示的。另一方面，用 MELK-A24-9-87 WT (SEQ ID NO:6) (d) 刺激的 CTL 未检出肽特异性的 IFN-γ 生成功能。在图中，“＋”指示针对经关联肽激活的靶细胞的 IFN-γ 生成，而“－”指示针对未经任何肽激活的靶细胞的 IFN-γ 生成。

[0091] 图 5B 图 5B 描绘显示对用来自 MELK-A24-9-87 WT (SEQ ID NO:6) 的修饰肽诱导的供体 C 的 CTL 进行的 IFN-γ ELISPOT 测定的结果的照片。用 MELK-A24-9-87 7N (SEQ ID NO:44) (a) 刺激的 CTL 显示了强的 IFN-γ 生成功能，如方块中表示的。另一方面，用 MELK-A24-9-87 WT (SEQ ID NO:6) (b) 刺激的 CTL 未检出肽特异性的 IFN-γ 生成功能。在图中，“＋”指示针对经关联肽激活的靶细胞的 IFN-γ 生成，而“－”指示针对未经任何肽激活的靶细胞的 IFN-γ 生成。将用 MELK-A24-9-87 7N (SEQ ID NO:44) 刺激的 14 号孔中的细胞扩增以建立 CTL 系。对于显示较少 IFN-γ 生成的用 MELK-A24-9-87 WT (SEQ ID NO:6) 刺激的 4 号孔中的细胞也进行了扩增。

[0092] 图 6 图 6a-c 描绘了显示从供体 B 的 PBMC 诱导的 CTL 系的建立的结果的线图。通过 IFN-γ ELISPOT 测定从用 MELK-A24-9-87 1K (SEQ ID NO:35) (a), MELK-A24-9-87 3M (SEQ ID NO:41) (b) 和 MELK-A24-9-87 7N (SEQ ID NO:44) (c) 刺激的 CTL 系检测到了强的 IFN-γ 生成功能。在图中，“黑色菱形”指示针对用 MELK-A24-9-87 WT (SEQ ID NO:6) 激活的靶细胞
的 IFN-γ 生产，而“白色方块”表示针对用无关的 HIV 肺冲激的靶细胞的 IFN-γ 生产。图 6d-e 绘制了显示从供体 C 的 PBMC 诱导的 CTL 系的建立的结果的线图。通过 IFN-γ ELISPOT 测定从用 MELK-A24-9–87_7N (SEQ ID NO:44) (d) 刺激的 CTL 系检测到了强的 IFN-γ 生产。从用 MELK-A24-9–87_WT (SEQ ID NO:6) (e) 刺激的 PBMC 未建立起 CTL 系。在图中，“黑色菱形”表示针对用 MELK-A24-9–87_WT (SEQ ID NO:6) 刺激的靶细胞的 IFN-γ 生产，而“白色方块”表示针对用无关的 HIV 肺冲激的靶细胞的 IFN-γ 生产。

[0093] [图 7] 图 7a-c 描绘了显示从供体 B 的 PBMC 诱导的 CTL 克隆的建立的结果的线图。通过 IFN-γ ELISPOT 测定从用 MELK-A24-9–87_1K (SEQ ID NO:35) (a), MELK-A24-9–87_3M (SEQ ID NO:41) (b) 和 MELK-A24-9–87_7N (SEQ ID NO:44) (c) 刺激的 CTL 克隆检测到了强的 IFN-γ 生产。在图中，“黑色菱形”表示针对用 MELK-A24-9–87_WT (SEQ ID NO:6) 刺激的靶细胞的 IFN-γ 生产，而“白色方块”表示针对用无关的 HIV 肺冲激的靶细胞的 IFN-γ 生产。图 7d 描绘了显示从供体 C 的 PBMC 诱导的 CTL 克隆的建立的结果的线图。通过 IFN-γ ELISPOT 测定从用 MELK-A24-9–87_7N (SEQ ID NO:44) 刺激的 CTL 克隆检测到了强的 IFN-γ 生产。在图中，“黑色菱形”表示针对用 MELK-A24-9–87_WT (SEQ ID NO:6) 刺激的靶细胞的 IFN-γ 生产，而“白色方块”表示针对用无关的 HIV 肺冲激的靶细胞的 IFN-γ 生产。

[0094] [图 8] 图 8 描绘针对外源表达 MELK 和 HLA-A*2402 的靶细胞的特异性 CTL 活性的线图。（a）用 MELK-A24-9–87 7N (SEQ ID NO:44) 建立的 CTL 系针对表达 MELK 和 HLA-A*2402 二者的肿瘤细胞系显示了特异性 CTL 活性（黑色菱形；KLM-1，黑色三角形；MDA-MB-435S），与其他表达 MELK 而不表达 HLA-A*2402 的细胞系相比（白色圆形；T47D，白色方块；KP-1N）。（b）显示了用抗 HLA 1 类单抗处理对 CTL 应答的抑制。用 MELK-A24-9–87_7N (SEQ ID NO:44) 建立的 CTL 克隆针对 KLM-1（黑色菱形）显示了特异性 CTL 活性，与 KP-1N 相比（白色方块）。针对 KLM-1（黑色菱形）的 INF-α 生成被抗 HLA 1 类单抗处理（白色菱形）所抑制，与作为对照的正常小鼠 IgG 处理相比（短线）。

[0095] [图 9] 图 9 描绘了显示 MELK-A24-9–199 (SEQ ID NO:1) 特异性 CTL 克隆的反应性的结果的线图。在图 9(a) 中，“黑色菱形”表示针对用 MELK-A24-9–199 (SEQ ID NO:1) 刺激的靶细胞的 IFN-γ 生产，而“白色方块”表示针对用无关肺冲激的靶细胞的 IFN-γ 生产。在图 9(b) 中，针对表达 MELK 和 HLA-A*2402 二者的肿瘤细胞系的 IFN-γ 生产（黑色菱形；KLM-1）和针对表达 MELK 但不表达 HLA-A*2402 的肿瘤细胞系的 IFN-γ 生产（白色方块；KP-1N）。

[0096] 实施方案的描述

[0097] 现在描述优选的方法、装置、和材料，不过在实施或检验本发明的实施方案时可使用与本文中描述的方法和材料相似或等同的任何方法和材料。然而，在描述本发明材料和方法之前，要理解本发明不限于特定大小、性状、尺度、材料、方法学、方案等，因为它们可因循例行实验和优化而变化。还要理解，所述描述中使用的术语只是出于描述特定样式或实施方案的目的，而非意图限制本发明的范围，本发明的范围只会由所附权利要求来限制。

[0098] 通过前述明确地将本说明书中提到的每一篇出版物、专利或专利申请的公开文本完整收入本文。然而，本文中无一处可解释为承认本发明没有资格凭借发明在先而早于此类公开文本。
说明书记

[0099] 除非另有定义，本文中使用的所有技术和科学术语均具有本发明相关领域的技术人员通常知晓的意义。如有冲突，以本说明书（包括定义）为准。此外，材料、方法和实例仅为举例说明而不构成限制。

[0100] 1. 定义

[0101] 如本文中使用的，词语“一个 / 种”、“该”和“所述”意味着“至少一个 / 种”，除非另有明确说明。

[0102] 术语“多肽”、“肽”和“蛋白质”在本文中可互换使用，指氨基酸残基的聚合物。该术语适用于其中一个或多个氨基酸残基是经过修饰的残基或非天然存在型残基（诸如相应的天然存在的氨基酸的人工化学模拟物）的氨基酸聚合物，以及天然存在的氨基酸聚合物。

[0103] 本说明书中有时使用的术语“寡肽”用于指长度为 20 个残基或更少，典型地为 15 个残基或更少的本发明的肽，通常由约 8 个 - 约 11 个残基，经常为 9 个或 10 个残基组成。

[0104] 如本文中使用的，术语“氨基酸”指天然存在的和合成的氨基酸，以及具有与天然存在的氨基酸相似的功能的氨基酸类似物和氨基酸模拟物。氨基酸可以是 L- 氨基酸或者是 D- 氨基酸。天然存在的氨基酸指由遗传密码编码的氨基酸，以及在细胞中在翻译后被修饰的氨基酸（例如羟脯氨酸、γ- 羟基谷氨酸、和 0- 磷酸丝氨酸）。短语“氨基酸类似物”指与天然存在的氨基酸具有相同的化学结构（α- 碳与氢、羧基、氨基和 R 基团结合）但具有经过修饰的 R 基团或经过修饰的主链的化合物（例如高丝氨酸、正亮氨酸、甲硫氨酸亚砜、甲硫氨酸甲基硫）。

[0105] 氨基酸在本文中可以它们已知的三字母符号或 IUPAC-IUB 生物化学命名委员会推荐的单字母符号来指称。

[0106] 术语“基因”、“多核苷酸”、“核苷酸”和“核酸”在本文中除非另有明确说明可互换使用，而且与氨基酸类似地通过它们普遍接受的单字母符号来指称。

[0107] 术语“组合物”、“物质”或“（作用）剂”和在本文中可以互换使用，指包含规定量的规定成分的产品，以及通过所述规定量的规定成分的组合直接或间接地得到的任何产品。这些术语与“药剂”关联使用时，意在涵盖：包括活性成分以及任何组成担载体的惰性成分的产品，以及通过所述任何两种或更多种成分的组合、复合或聚集，或通过一种或多种成分的解离，或通过一种或多种成分的其他类型的反应或相互作用而直接或间接地得到的任何产品。相应地，在本发明的语境中，术语“药物组合物”指任何通过混合本发明的化合物与药学或生理学上可接受的担载体而制成的产品。本文中所用的短语“药学上可接受的担载体”或“生理学上可接受的担载体”意思是药学上或生理学上可接受的材料、组合物、物质或媒介，包括但不限于担载或运输主体的支架多聚肽团从一个器官或身体部分到另一个器官或身体部分所涉及的液体或固体填充剂、稀释剂、赋形剂、溶剂或包埋材料。

[0108] 术语“活性成分”在本文中意指作用剂或组合物中具有生物学活性或生理学活性的物质。尤其是，在药剂或药物组合物中，“活性成分”指显示客观地观察到的药理学效果的物质。例如，在用于治疗或预防癌症的药剂或药物组合物的场合，作用剂或组合物中的活性成分可直接或间接地导致对于癌细胞和 / 或组织的至少一种生物学或生理学作用。优选地，这样的作用可包括减少或抑制癌细胞生长、破坏或杀死癌细胞和 / 或癌组织，等等。
活性成分的间接效果包括诱导可识别或杀死癌细胞的CTL。在配制之前，“活性成分”又称“原料药”（bulk），“药物物质”（drug substance）或“技术产品”（technical product）。

【0109】本发明的药剂或药物组合物特别可以用于疫苗。在本发明的语境中，短语“疫苗”（又称“免疫原性组合物”）是指在接种到动物体内后具有诱导抗肿瘤免疫功能的物质。

【0110】除非另有定义，术语“癌症”是指能表达MELK基因的癌症，且在临床上，乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、CML、慢性髓性白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴癌、胃癌、卵巢癌、胰腺癌、前列腺癌、肺腺癌和SCLC。

【0111】除非另有定义，术语“子宫内膜异位”是指能表达MELK基因的子宫内膜异位。其实例包括但不限于根据美国生育学会分类法（American Fertility Society classification）分类的子宫内膜异位I型（极小）、II型（轻微）、III型（中度）或IV型（严重）。或者，子宫内膜的实例包括但不限于根据Beecham分类法分类的子宫内膜异位I型、II型、III型或IV型。

【0112】除非另有定义，术语“细胞毒性T淋巴细胞”、“细胞毒性T细胞”和“CTL”在本文中可共使用，而且除非另有明确说明，细胞能够识别非自身细胞（例如肿瘤细胞、病毒感染的细胞）并诱导此类细胞死亡的T淋巴细胞亚群。

【0113】除非另有定义，本文中使用的术语“HLA-A24”指包含亚型如HLA-A*2402等的HLA-A24型。

【0114】除非另有定义，如本文中所用的术语“试剂盒”是指试剂及其他材料的组合。术语“试剂盒”可包括微阵列、芯片、标记物等。术语“试剂盒”不意图限于某种特定的试剂和/或材料组合。

【0115】如本文中使用的，在受试者或患者的语境中，短语“HLA-A24阳性”是指受试者或患者单纯地或以不同地拥有HLA-A24抗原基因，且HLA-A24抗原在受试者或患者的细胞中作为HLA抗原表达。

【0116】以本发明的材料和方法在“治疗”癌症或子宫内膜异位的语境中有用为限，如果治疗导致临床上的收益，例如受试者体内MELK基因表达的减少，或者癌症或子宫内膜异位的尺寸、普遍性（prevalence）或转移潜力的降低，则认为治疗是“有效的”。当预后性地进行治疗时，“有效的”意思是其阻碍或阻止癌症或子宫内膜异位的形成，或者阻止或减轻癌症或其他疾病的临床症状。“有效性”结合用于诊断或治疗疾病或特定肿瘤类型的任何已有方法来确定。

【0117】以本发明的材料和方法可用于疾病如癌症或子宫内膜异位的“预防”和“防治”的语境为限，诸如术语在本文中可互换使用，指降低癌症的死亡率或发病率负担的任何活动。预防和防治可发生于“一级、二级和三级预防水平”。一级预防和防治避免疾病的发生，而二级和三级预防和防治水平涵盖旨在预防和防治疾病的进展与症状的出现、以及通过恢复功能和减轻疾病和并发症来降低已建立的疾病的负面影响的活动。或者，预防和防治可包括旨在减轻特定病症的严重性（例如降低肿瘤的增殖和转移等）的多种多样的预防性疗法。

【0118】在本发明的语境中，治疗和/或预防癌症或子宫内膜异位和/或预防其手术后复发可包括下述一个或多个步骤：手术去除癌细胞、抑制癌性细胞生长、肿瘤衰退或消退、诱导癌症减退和抑制癌症发生、肿瘤衰退、及降低或抑制转移。癌症的有效治疗和/或预防可
降低患癌个体死亡率及改善其预后，降低其血液中肿瘤标志物的水平，及减轻其伴随癌症的可检测症状。例如，症状的减轻或改善构成有效治疗和/或预防，包括10%、20%、30%或更多降低，或实现病情稳定。

[0119] 在本发明的语境中，术语“抗体”指可以与指定的蛋白或其肽具有特异性反应性的免疫球蛋白及其片段。抗体可以包括人抗体、灵长源化（primatized）抗体、嵌合抗体、双特异性抗体、人源化抗体、与其它蛋白或放射性标记物融合的抗体、和抗体片段。另外，在本文中，抗体以最广义使用，具体涵盖完整单克隆抗体、多克隆抗体、由至少两种完整抗体形成的多特异性抗体（例如双特异性抗体）、和抗体片段，只要它们展现期望的生物学活性。“抗体”指示所有类别（例如IgA、IgD、IgE、IgG和IgM）。

[0120] **1. 肽**

[0122] 基于它们对HLA-A24的结合亲和力，鉴定了源自MELK具有野生型MELK-A24-9-87（MELK-A24-9-87 WT）（SEQ ID NO:6）更高效的诱导特异性CTL的潜在能力的HLA-A24结合性修饰肽的候选者。也就是说，根据本发明，提供了修饰的肽，其包含在SEQ ID NO:6的氨基酸序列中具有一个或多个氨基酸替代的氨基酸序列。

[0123] 在本发明中，修饰的MELK-A24-9-87 WT（SEQ ID NO:6）中的氨基酸替代的数目是至少一个。在一些实施方案中，替代的数目是在SEQ ID NO:6的氨基酸序列的下述位置（a）-（d）上有一个，两个，三个，或四个替代：

- (a) N末端氨基酸
- (b) 自N末端起第3个氨基酸
- (c) 自C末端起第3个氨基酸，和
- (d) C末端氨基酸。

[0129] 在本发明的一个实施方案中，这些位置上的替代可选自下组（i）至（iv）：

- (i) SEQ ID NO:6的氨基酸序列中N末端氨基酸从E到K或R的氨基酸替代

- (ii) SEQ ID NO:6的氨基酸序列中N末端起的第三个氨基酸从C到 E、I、L、M、N或P的替代

- (iii) SEQ ID NO:6的氨基酸序列中C末端氨基酸从E到N或Q的氨基酸替代

- (iv) SEQ ID NO:6的氨基酸序列中自C末端起的第三个氨基酸从F到L的替代。

肽中一个、两个或更多个氨基酸的替代不会影响肽的功能，如下面详细描述的。鉴定下述肽是具有与 MELK-A24-9-87 WT（SEQ ID NO:6）相比更高的结合能力的候选肽：
用加载了这些肽的树突细胞 (DC) 体外刺激 T 细胞后，使用下述肽成功地建立了 CTL：

- MELK-A24-9-87_1K (SEQ ID NO:35),
- MELK-A24-9-87_1R (SEQ ID NO:36),
- MELK-A24-9-87_9L (SEQ ID NO:37),
- MELK-A24-9-87_3E (SEQ ID NO:38),
- MELK-A24-9-87_3I (SEQ ID NO:39),
- MELK-A24-9-87_3L (SEQ ID NO:40),
- MELK-A24-9-87_3M (SEQ ID NO:41),
- MELK-A24-9-87_3N (SEQ ID NO:42),
- MELK-A24-9-87_3P (SEQ ID NO:43),
- MELK-A24-9-87_7N (SEQ ID NO:44),
- MELK-A24-9-87_7Q (SEQ ID NO:45),

这些建立的 CTL 针对用相应的肽冲激的靶细胞显示强的 CTL 活性。这里的结果表明这些肽是 MELK 的受 HLA-A24 限制的修饰的表位肽。

由于 MELK 基因在子宫内膜异位和癌细胞和癌组织（包括但不限于乳腺癌、膀胱癌、宫颈癌、胆管癌细胞系、CML、慢性髓性白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴瘤、骨肉瘤、卵巢癌、胰腺癌、前列腺癌、肾细胞癌和 SCLC 的细胞和组织）中过表达，而在大多数正常器官中不表达，它是良好的免疫治疗靶标。因此，本发明提供对应于 MELK 的被 CTL 识别的表位的九肽（由九个氨基酸残基组成的肽）。本发明的九肽的优选的例子包括那些具有选自 SEQ ID NO:35-45 的氨基酸序列的肽。

此外，本发明肽在其侧翼可以具有额外的氨基酸残基，只要所述肽保持其 CTL 诱导能力即可。本发明肽的侧翼的氨基酸残基可以由任何种类的氨基酸构成，只要其不损害原来的肽的 CTL 诱导能力。因此，本发明涵盖这样的肽，其包含源自 MELK 的修饰肽且具有
对 HLA 抗原的结合亲和力。这样的肽典型地少于约 40 个氨基酸，通常少于约 20 个氨基酸，通
常少于约 15 个氨基酸。

对 HLA 抗原的结合亲和力。这样的肽典型地少于约 40 个氨基酸，通常少于约 20 个氨基酸，通
常少于约 15 个氨基酸。

【0154】一般而言，蛋白质中一个、两个、或更多个氨基酸的修饰不会影响蛋白质的功能，
或者在有些情况下甚至会增强原蛋白质的期待功能。事实上，已知有经过修饰的肽 (即由与
原始参照序列相比其中修饰 (即替代、缺失、添加和 / 或插入) 一个、两个或数个氨基酸残基
而生成的氨基酸序列构成的肽) 保留原始肽的生物学活性 (Mark et al., Proc Natl Acad Sci
US A 1984, 81: 5662-6; Zoller and Smith, Nucleic Acids Res 1982, 10: 6487-500; Dalbadie-
McFarland et al., Proc Natl Acad Sci USA 1982, 79: 6409-13)。因此，在一个实施方案
中，本发明的肽可既具有 CTL 诱导能力，又具有选自 SEQ ID NO: 35-45 的氨基酸序列中添
加、插入、和 / 或替代一个、两个或甚至更多个氨基酸而得到的氨基酸序列。

【0155】本领域技术人员认可，改变氨基酸序列中的单个氨基酸或少数百分比氨基酸的
个别添加或替代往往会导致原始氨基酸序列的特性得以保留。因此，它们常规上称作“保
守取代”或“保守修饰”，其中对蛋白质的改变导致具有与原始蛋白质类似的性质和功能
的修饰蛋白质。提供同样上相似的氨基酸的保守取代代表是本领域公知的。期望保留的
氨基酸侧链特征的例子包括例如疏水性氨基酸 (A, I, L, M, F, P, W, Y, V)、亲水性氨基酸
(R, D, N, C, E, Q, G, H, K, S, T) 和具有下面的共同官能团或特征的侧链;脂肪族侧链 (G, A, V,
L, I, P); 含羟基侧链 (S, T, Y); 含硫原子侧链 (C, M); 含羧酸和酰胺侧链 (D, N, E, Q); 含碱侧
链 (R, K, H); 和含芳香族侧链 (H, F, Y, W)。另外，下面的八组各自含有本领域公认互为保守
取代的氨基酸:

【0156】1) 丙氨酸 (A), 甘氨酸 (G);
【0157】2) 天冬氨酸 (D), 谷氨酸 (E);
【0158】3) 天冬酰胺 (N), 谷氨酰胺 (Q);
【0159】4) 精氨酸 (R), 赖氨酸 (K);
【0160】5) 异亮氨酸 (I), 亮氨酸 (L), 甲硫氨酸 (M), 缬氨酸 (V);
【0161】6) 苯丙氨酸 (F), 酪氨酸 (Y), 色氨酸 (W);
【0162】7) 丝氨酸 (S), 苏氨酸 (T); 和
【0163】8) 半胱氨酸 (C), 甲硫氨酸 (M) (参见例如 Creighton, Proteins 1984)。

【0164】此类保守修饰肽也被视为本发明的肽。然而，本发明的肽不限于此，包括非保守
修饰，只要该肽保留原始肽的 CTL 诱导能力。另外，经过修饰的肽不应排除 MELK 的多态变
体，种间同源物，和等位基因中的可诱导 CTL 的肽。

【0165】可以对本发明的肽插入、替代或添加氨基酸残基，或者，可以从本发明的肽缺失氨
基酸残基，以实现更高效的结合亲和力。为了保持所需的 CTL 诱导能力，可以修饰 (添加、缺
失或替代) 少数 (例如, 1 个, 2 个或数个) 或小百分比的氨基酸。这里，术语 “数个” 意指
5 个以下的氨基酸，如 4 个或 3 个以下。要被修饰的氨基酸的百分比优选为 20% 以下，更优
选 15% 以下，进一步更优选 10% 以下，或 1-5%。

【0166】此外，可以对本发明的肽插入、替代或添加氨基酸残基，或者，可以删除氨基酸
残基，以实现更高的结合活性。当在免疫疗法的语境中使用时，本发明的肽应呈递在细胞或
外来体的表面上，优选作为与 HLA 抗原的复合物。除了天然被展示的肽之外，由于已经知道
通过结合 HLA 抗原而被展示的肽的序列规律 (J Immunol 1994, 152: 3913; Immunogenetics
1995, 41:178; J Immunol 1994, 155:4307), 可将基于此类规律的修饰引入本发明的免疫原性肽。例如, 可能优选的是将自 N 末端起的第 2 个氨基酸替代为苯丙氨酸、酪氨酸、甲硫氨酸、或色氨酸, 和 / 或将 C 末端氨基酸替代为苯丙氨酸、亮氨酸、异亮氨酸、色氨酸或甲硫氨酸, 以增加 HLA-A24 结合。因此, 具有 SEQ ID NO:35-45 的氨基酸序列, 其中所述 SEQ ID NO 的氨基酸序列的自 N 末端起的第 2 个氨基酸被替代为苯丙氨酸、酪氨酸、甲硫氨酸、色氨酸, 和 / 或其中所述 SEQ ID NO 的氨基酸序列的 C 末端被替代为苯丙氨酸、亮氨酸、异亮氨酸、色氨酸或甲硫氨酸的肽涵盖了在本发明之内。

[0168] 本发明还考虑向所述的肽的 N 和 / 或 C 末端添加一个、两个或数个氨基酸。此类具有高 HLA 抗原结合亲和力且保留 CTL 诱导能力的修饰肽也包含在本发明之内。

[0169] 需要注意的是, 虽然如上所述已经报道了对肽的自 N 末端起的第 2 个氨基酸以及 N 和 / 或 C 末端进行替代以实现更高的结合亲和力。对自 N 末端起第 7 个氨基酸进行替代的效果还没有被阐明。

[0170] 然而, 蛋白序列与具有不同功能的内源或外源蛋白质的氨基酸序列的一部分相同时, 可能诱导非变种, 诸如自身免疫性病症和 / 或针对特定物质的变应性病症。因此, 优选的是, 首先利用可用的数据库实施同源性搜索, 以避免肽的序列与另一种蛋白质的氨基酸序列匹配的情况。当根据同源性搜索清楚了即使与目标肽相比仅相差 1 个或 2 个氨基酸的肽亦不存在时, 可以修饰目标肽以提高其与 HLA 抗原的结合亲和力, 和 / 或提高其 CTL 诱导能力, 而没有任何发生此类副作用的危险。

[0171] 虽然如上所述的对 HLA 抗原具有高结合亲和力的肽预期是高度有效的, 但还是对根据高结合亲和力的存在为指标选出的候选肽检查了 CTL 诱导能力的存在。这里, 短语“CTL 诱导能力”指肽被递送到抗原呈递细胞上时诱导细胞毒性淋巴细胞 (CTL) 的能力。另外,“CTL 诱导能力”包括肽诱导 CTL 活化、CTL 增殖、促进 CTL 溶解靶细胞、和提高 CTL IFN-γ 生的能力。

隆抗体显现培养基上的抑制区。

[0173] 作为如上所述检查肽的 CTL 诱导能力的结果，发现选自具有 SEQ ID NO: 35-45 所示的氨基酸序列的肽的九肽不但具有对 HLA 抗原的高亲和力，还具有特别高的 CTL 诱导能力。因此，列举这些肽为本发明优选的实施途径。

[0174] 另外，同源性分析的结果显示了那些肽与自任何其它已知人基因产物衍生的肽没有显著的同源性。这降低了用于免疫疗法时发生未知的或不想要的免疫应答的可能性。因此，也是根据这个方面，这些肽可用于在癌症或子宫内膜异位患者中引发针对 MELK 的免疫力。因此，本发明的肽，优选由 SEQ ID Nos: 35-45 的氨基酸序列的肽组成。

[0176] 例如，非 MELK 肿瘤相关抗原肽也可以基本上同时地用来增加藉由 HLA I类和 / 或 HLA II 类的免疫应答。公认癌细胞能表达多于一种肿瘤相关基因。因此，确定特定的受试者是否表达其他肿瘤相关抗原，并进一步将源自这样的基因的表达产物的 HLA I类和 / 或 HLA II 类结合肽包含在根据本发明的 MELK 组合物或疫苗中，是本领域技术人员常规实验的范围之内的。

[0177] 本领域普通技术人员知晓 I 类 HLA 和 II 类 HLA 结合肽的例子（例如参见 Coulie, Stem Cells 13:393-403, 1995)，而且可以与与本文公开类似的方式用于本发明。因此，本领域普通技术人员能容易地利用分子生物学的标准规程来制备一种或多种 MELK 肽和一种或多种非 MELK 肽的多肽，或编码此类多肽的核酸。

[0178] 上述连接的肽在本文中被称为“多表位”（polytope），即两个或更多个潜在免疫原性或免疫应答刺激性肽构成的组，这些肽可以以各种排列方式（例如串联、交叉）连接在一起。该多表位（或编码该多表位的核酸）可以以标准免疫方案来施用，例如施用于动物，以测试该多表位刺激、增强和 / 或引起免疫应答的有效性。

[0180] 除了上面讨论的本发明的肽的修饰之外，还可将上述的肽进一步连接至其它物质，只要它们保留原始肽的 CTL 诱导能力。合适的物质包括，肽、脂质、糖和糖链、乙酰基、天然的和合成的聚合物等。肽还可含有修饰，诸如糖基化、侧链氧化、和 / 或磷酸化，前提是该修饰不破坏原始肽的生物学活性。这些修饰可赋予额外的功能（例如靶向功能和投递功能）和 / 或使肽稳定。

[0181] 例如，为了提高多肽的体内稳定性，本领域已知引入 D- 氨基酸、氨基酸模拟物或
非天然氨基酸；此构思也可适用于本发明多肽。可以以多种方式测定多肽的稳定性。例如，可使用肽酶和各种生物酶介质（如人血浆和血清）来测试稳定性（参见Verhoef et al., Eur J Drug Metab Pharmacokin 1986, 11:291-302）。

[0182] 此外，如上文所述，在上述替代、缺失或添加了一个、两个或多个氨基酸残基的修饰肽中，可以筛选或选择与原始肽相比活性相同或更高者。因此，本发明还提供由于筛选或选择与原始肽相比活性相同或更高的修饰肽的方法。一种示例性的方法可包括下述步骤：

[0183] a: 对本发明的肽替代、删除或添加至少一个氨基酸残基。

[0184] b: 测定肽的活性，和

[0185] c: 选择具有与原始肽相比相同或更高活性的肽。

[0186] 这里，要测定的活性可包括MHC结合活性，APC或CTL诱导能力，和细胞毒性。

[0187] 本文中，本发明的肽也可以称为“MELK肽”或“MELK多肽”。

[0188] III. 修饰的 MELK 肽的制备

[0189] 本发明的肽可使用公知技术来制备。例如，肽可以通过合成、使用重组 DNA 技术或化学合成来制备。本发明的肽可个别地合成，或合成为由两个或更多个肽构成的较长多肽。然后可以分离，即纯化或分离所述肽，使其基本上不含其它天然存在的宿主细胞蛋白质及其片段或任何其它化学物质。

[0190] 本发明的肽可含有修饰，诸如糖基化、侧链氧化、或磷酸化等，前提是该修饰不破坏原始肽的生物学活性。其他示例性的修饰包括掺入D-氨基酸或其他可用的氨基酸模拟物，以便例如增加肽的血清半衰期。

[0191] 本发明的肽可含有修饰，诸如糖基化、侧链氧化、或磷酸化等，只要该修饰不破坏如本文所述的肽的生物学活性。其他修饰包括掺入D-氨基酸或其他可用的氨基酸模拟物，以便例如增加肽的血清半衰期。

[0192] 可以根据选定的氨基酸序列，借助化学合成来获得本发明的肽。可适用于合成的常规肽合成法的例子包括但不限于：

[0195] (iii) Peptide Synthesis(日文)，Maruzen Co., 1975；

[0196] (iv) Basics and Experiment of Peptide Synthesis(日文)，Maruzen Co., 1985；

[0198] (vi) W099/67288；和

外生产肽。

【0201】IV. 多核苷酸

【0202】本发明还提供编码任何上述本发明肽的多核苷酸。这些包括源自天然存在型MELK基因（GenBank Accession No.014791（SEQ ID NO:46））的修饰的多核苷酸以及具有它们的经过保守修饰的核苷酸序列的多核苷酸。在本文中，短语“经过保守修饰的核苷酸序列”指编码相同或本质上相同的氨基酸序列的序列。由于遗传密码的简并性，对于任何给定蛋白质都有极其多种功能上相同的核酸来编码它。例如，密码子GCA、GCC、GCG、和GCU都编码氨基酸丙氨酸。因此，在由密码子规定为丙氨酸的任何位置处，该密码子可改变成任何相应所描述密码子，而不改变所编码的多肽。这样的核酸变异是“沉默变异”，是保守修饰变异的一种。本文中编码肽的每一种氨基酸序列也描述该核酸的每一种可能的沉默变异。本领域技术人员会认识到，核酸中的每一个密码子（AUG和TGG除外，AUG在正常情况下是甲硫氨酸的唯一密码子，而TGG在正常情况下是色氨酸的唯一密码子）都可以被修饰以产生功能上相同的分子。因而，每一种所公开的序列暗示涵盖了编码肽的核酸的每一种沉默变异。

【0203】本发明的多核苷酸可以由DNA、RNA，及其衍生物构成。DNA由碱基诸如天然存在的A、T、C和G合适地构成，而T在RNA中被U替代。本领域技术人员会认识到非天然存在的碱基也包括在多核苷酸中。

【0204】本发明的多核苷酸可编码多个本发明肽，其中它们之间有或无间氨基酸序列存在。例如，居间氨基酸序列可提供多核苷酸的或所翻译的肽的切割位点（例如酶识别序列）。另外，多核苷酸除编码本发明肽的编码序列以外还可包括任何额外的序列。例如，多核苷酸可以是包括表达肽所必要的调节序列的重组多核苷酸，或者可以是具有标志基因等等的表达载体（质粒）。一般而言，此类重组多核苷酸可通过常规重组技术操作多核苷酸来制备，例如通过使用聚合酶和内切核酸酶。

【0206】V. 外来体（exosomes）

【0207】本发明进一步提供了称作外来体的细胞内囊泡，这些外来体在它们的表面上呈递本发明肽与HLA抗原之间形成的复合体。外来体可以通过，例如在日本专利申请公开公报平11-510507和WO99/03499中详细描述的方法来制备，并可以用从作为治疗和/或预防对象的患者获得的APC制备。本发明的外来体可以作为疫苗以与本发明的肽相似的方式进行接种。

【0208】复合体中包含的HLA抗原的类型必须与需要治疗和/或预防的受者的类型匹配。例如，在日本人群中，HLA-A24（尤其是A*2402）是主要的，因而适合用于日本人患者的治疗。使用在日本人和白种人中高达表达的A24型对于获得有效的结果是有利的。典型地说，在临床上，预先考察需要治疗的患者的HLA抗原类型，这样就能够合适地选择对这种抗原具有高水平的结合亲和力、或者具有由抗原呈递的CTL诱导能力的肽。此外，为
了获得具有高结合亲和力和 CTL 诱导能力二者的肽，可以在修饰的 MELK 部分肽，即来自 MELK-A24-9-87WT (SEQ ID NO:6) 的修饰肽的氨基酸序列的基础上进行 1 个、2 个或数个氨基酸的替代和 / 或添加。

[0209] 当本发明的外来体使用 A24 型 HLA 抗原时，具有 SEQ ID NO:35-45 中任一序列的肽是有用的。

[0210] VI. 抗原呈递细胞 (APC)

[0211] 本发明还提供在其表面上呈递在 HLA 抗原与本发明肽之间形成的复合物的分离的 APC。所述 APC 可源自作为治疗和 / 或预防对象的患者，而且可作为疫苗单独地或与其它药物（包括本发明的肽、外来体、或 CTL）组合来施用。

[0212] APC 不限于特定种类的细胞，包括树突细胞 (DC)、Langerhans 细胞、巨噬细胞、B 细胞，和活化的 T 细胞。已知这些细胞可在它们的细胞表面上呈递蛋白质性质的抗原，以供淋巴细胞识别。由于 DC 是 APC 中具有最强 CTL 诱导作用的代表性 APC，DC 可以用作本发明的 APC。

[0213] 例如，可以通过自外周血单核细胞诱导 DC，然后在体外、离体或在体内用本发明的肽接触（刺激）它们来获得 APC。当对受试者施用本发明的肽时，在受试者的身体中诱导出呈递本发明肽的 APC。短语“诱导 APC”包括用本发明的肽或编码本发明肽的核酸接触（刺激）细胞，以在细胞的表面上呈递在 HLA 抗原与本发明肽之间形成的复合物。短语“诱导 APC”包括用本发明的肽，或者编码本发明的肽的核苷酸接触（刺激）细胞，以在细胞表面上呈递 HLA 抗原与本发明的肽之间形成的复合物。因此，可以通过对受试者使用本发明的肽，然后从受试者收集 APC 本发明的 APC，来获得本发明的 APC，或者，可以通过使从受试者收集的 APC 与本发明的肽接触来获得本发明的 APC。

[0214] 本发明的 APC 可以单独或者与其他药物，包括本发明的肽、外来体或 CTL 组合施用给受试者，以在受试者体内诱导针对癌症的免疫应答。例如，离体施用可包括下述步骤：

[0215] a. 自第一受试者收集 APC；

[0216] b. 使肽接触步骤 a 的 APC；并

[0217] c. 对第二受试者步骤 b 的 APC。

[0218] 第一受试者和第二受试者可以是同一个体，或者可以是不同个体。或者，根据本发明，提供了本发明的肽用于治疗诱导抗原呈递细胞的药物组合物的用途。此外，本发明还提供了用于制备诱导抗原呈递细胞的药物组合物的方法或工艺。此外，本发明还提供了用于诱导抗原呈递细胞的本发明的肽。步骤 b 获得的 APC 可以作为疫苗施用来治疗和 / 或预防子宫内膜异位症和癌症。癌症的例子包括但不限于乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、CML、慢性髓性白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴癌、骨肉瘤、卵巢癌、胰腺癌、前列腺癌、肾癌和 SCLC。

[0219] 本发明还提供了用于制备诱导 APC 的药物组合物的方法或工艺，其中所述方法包括将本发明的肽与药学上可接受的载体混合或配制的步骤。

[0220] 依照本发明的一个方面，本发明的 APC 具有高水平的 CTL 诱导能力。在术语“高水平的 CTL 诱导能力”中，高水平是相对于未与肽接触或与不能诱导 CTL 的肽接触的 APC 的该水平而言的。这样的具有高水平 CTL 诱导能力的 APC 除了用上文描述的方法外，还可以通过包括在体外将编码本发明肽的多核苷酸转移至 APC 的步骤的方法来制备。所导入的基因

【0221】VIII. 细胞毒性 T 细胞（CTL）
【0222】诱导出的针对任何本发明肽的 CTL 可在体内加强靶向癌细胞的免疫应答，并且因此可以以与肽本身相似的方式用作疫苗。因此，本发明还提供由任何本发明肽特异性诱导或活化的、分离的细胞毒性 T 细胞。
【0223】此类 CTL 可通过下述步骤来获得：(1) 对受试者施用本发明的肽，并从该受试者收集 CTL；或 (2) 在体外用本发明的肽接触 (刺激) 源自受试者的 APC，以及 CD8 阳性细胞或外周血单核白细胞，然后分离 CTL；或 (3) 在体外使 CD8 阳性细胞或外周血单核白细胞接触在其表面上呈递 HLA 抗原与肽之间形成的复合物的 APC 或外来体，然后分离 CTL；或 (4) 向 CTL 导入包括编码能够结合本发明的肽的 T 细胞受体 (TCR) 亚单位的多核苷酸的基因。上述 APC 或外来体可通过上述记载的方法来制备，而且 (4) 之方法的详情记载于下文“VIII. T 细胞受体 (TCR) 部分。”
【0224】本发明的 CTL 可以从要进行治疗和 / 或预防的患者获取，而且可以将它们单独施用，或者与其它药物 (包括本发明的肽或外来体) 组合施用以产生调节效果。所得到的 CTL 特异性针对呈递本发明的肽 (例如与用于诱导的肽相似的肽) 的靶细胞起作用。靶细胞可以是内源表达 MELK 的细胞，例如癌细胞或宫腔内膜异位细胞，或者被 MELK 基因转染的细胞；而且因本发明肽的刺激而是在细胞表面上呈递本发明肽的细胞也可充当活化 CTL 攻击的靶标。
【0225】VIII. T 细胞受体 (TCR)
【0226】本发明还提供包含编码能够识别 T 细胞受体 (TCR) 的亚单位的多肽的核酸的组合物，及使用该组合物的方法。这些 TCR 亚基能够形成 TCR，后者赋予 T 细胞以针对表达 MELK 的肿瘤细胞的特异性。通过使用本领域已知的方法，可鉴定出在用本发明的一种或多种肽诱导的 CTL 中表达的 TCR α 和 β 链的核酸序列 (WO2007/032255 及 Morgan et al., J Immunol 171, 3288 (2003))。例如，优选用 PCR 方法分析 TCR。用于分析的 PCR 引物可以是，例如，作为 5’ 侧引物的 5’-R 引物 (5′-gtctaccagaggtctggcat-3’) (SEQ ID NO:49)，以及作为 3’ 侧引物的对 TCR α 链 C 区特异的 3-TRα-C 引物 (5′-tcagctggacacagccgcatg-3’) (SEQ ID NO:50)，对 TCR β 链 C1 区特异的 3-TRβ-C1 引物 (5′-tcagatctcgctttcgg-3’) (SEQ ID NO:51)，或对 TCR β 链 C2 区特异的 3-TRβ-C2 引物 (5′-tcagcttgctggmgctctcgg-3’) (SEQ ID NO:52)，但不限于此。衍生的 TCR 能够以高亲合力结合展示修饰的 MELK 肽的靶细胞，并任选地在体内和体外介导针对呈递修饰的 MELK 肽的靶细胞的高效杀伤。
【0227】可以将编码 TCR 亚单位的核酸掺入合适的载体，例如逆转录病毒载体中。这些载体是本领域公知的。可以将所述核酸或者包含它们的载体有用地转入 T 细胞，例如来自患者的 T 细胞中。有利的是，本发明提供一种即配即用型组合物，其容许快速修饰患者自己的
T 细胞（或其他哺乳动物的 T 细胞）以快速且容易地生成具有卓越的癌细胞杀伤特性的修饰型 T 细胞。

【0228】 特异性的 TCR 是这样的受体，它能够特异性地识别本发明的肽与 HLA 分子的复合物。所 TCR 处于 T 细胞的表面上时给予 T 细胞针对靶细胞的特异性。上述复合物的特异性识别可以通过任何已知方法来确认，优选的方法包括，例如，利用 HLA 分子和本发明的肽的四聚体分析，以及 ELISPOT 测定。通过实施 ELISPOT 测定，可以确认在细胞表面上表达 TCR 的 T 细胞借助 TCR 识别细胞，并且在细胞内被传递。也可以通过已知方法来确认上述复合物当存在于 T 细胞表面时能够给予 T 细胞以细胞毒性。优选的方法包括，例如，测定针对 HLA 阳性靶细胞的细胞毒性，例如释放效应测定。

【0229】 此外，本发明提供通过用编码在 HLA-A24 的背景或结合修饰的 MELK 蛋白（例如 SEQ
ID NO: 35-45）的 TCR 亚单位多肽的核酸转导而制备的 CTL。经过转导的 CTL 在体内能够归巢（homing）到癌细胞，并且可以利用已知的培养方法体内扩增（例如 Kawakami et al., J Immunol., 142, 3452-3461 (1989)）。可以利用本发明的 T 细胞来形成免疫原性组合物，所述组合物可以用来在需要治疗或保护的患者中治疗或预防癌症（WO2006/031221）。

【0230】 预防和防范包括降低由于疾病的死亡率或发病率负担的任何活动。预防和防范可
发生于“一级、二级和三级预防水平”。一级预防和防范避免疾病的发生，而二级和三级预防
和防范水平涵盖旨在预防和防止疾病的进展与症状的出现，以及通过恢复功能和减轻疾病
相关并发症降低已建立的疾病的负面影响的活动。或者，预防和防范可包括旨在减轻特定
病症的严重性（例如降低肿瘤或子宫内膜异位的增殖和转移，降低血管新生）的多种多
样的预防性疗法。

【0231】 治疗和 / 或预防癌症和 / 或预防其手术后复发可包括下述一个或多个步骤，手
术去除癌细胞、抑制癌性细胞生长、肿瘤消退或消退、诱导癌症消退和阻抑癌症发生、肿瘤消退、及降低或抑制转移。癌症的有效治疗和 / 或预防可降低患病个体死亡率及改善其预后，降低其血液中肿瘤标志物的水平，及减轻其伴随癌症的可检测症状。例如，症状的减轻或改善构成有效治疗和 / 或预防，包括 10%、20%、30% 或更多降低，或病情稳定。

【0232】 1X. 药物物质或药物组合物

【0233】 由于 MELK 表达于子宫内膜异位和癌症（包括乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、CML、慢性粒性白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴瘤、骨肉瘤、卵巢癌、胰腺癌、前列腺癌和其他各种各样的肿瘤）中与正常组织相比上调，本发明的肽或编码所述肽的多核苷酸可用于治疗和 / 或预防子宫内膜异位和癌症或肿瘤，和 / 或预防它们的手术后复发。因此，本发明提供用于治疗和 / 或预防癌症、肿瘤或子宫内膜异位，和 / 或预防它们的手术后复发的药物物质或药物组合物，其包括一种或多种本发明肽或编码所述肽的多核苷酸作为活性成分。或者，可以在任何上述外来体或细胞如 APC 的表面上表达本发明的肽，以用作药物物质或药物组合物。另外，上述靶向任何本发明的肽的 CTL 也可用作本发明药物物质或药物组合物的活性成分。

【0234】 本发明的药物物质或药物组合物也可用作疫苗。在本发明的语境中，短语“疫苗”（也称作“免疫原性组合物”）指具有在接种入动物后诱导抗肿瘤免疫力的功能的物质。

【0235】 本发明的药物物质或药物组合物可用于在受试者或患者（包括人和任何其它哺乳动物，包括但不限于小鼠、大鼠、豚鼠、家兔、猫、犬、绵羊、山羊、猪、牛、马、猴、獠猴和黑猩
猩，特别是商业上重要的动物或驯养的动物）中治疗和 / 或预防癌症或子宫内膜异位症和 / 或预防其手术后复发。

[0236] 在另一个实施领域中，本发明还提供活力成分在制备用于治疗癌症、肿瘤或子宫内膜异位的药物组合物或药物物质中的用途，所述活力成分选自下组：

[0237] （a）本发明的肽，

[0238] （b）处于可表达形式的编码如本文中公开的肽的核酸，

[0239] （c）在其表面上呈递本发明的肽的 APC 或外来体，和

[0240] （d）本发明的细胞毒性 T 细胞。

[0241] 或者，本发明进一步提供一种用于治疗或预防癌症、肿瘤或子宫内膜异位的活力成分，所述活力成分选自：

[0242] （a）本发明的肽，

[0243] （b）处于可表达形式的编码如本文中公开的肽的核酸，

[0244] （c）在其表面上呈递本发明的肽的 APC 或外来体，和

[0245] （d）本发明的细胞毒性 T 细胞。

[0246] 或者，本发明进一步提供一种制备用于治疗癌症、肿瘤或子宫内膜异位的药物组合物或药物物质的方法或工艺，其中该方法或工艺包括配制药学或生理学上可接受的担载体与选自下组的活性成分的步骤：

[0247] （a）本发明的肽，

[0248] （b）处于可表达形式的编码如本文中公开的肽的核酸，

[0249] （c）在其表面上呈递本发明的肽的 APC 或外来体，和

[0250] （d）本发明的细胞毒性 T 细胞。

[0251] 在另一个实施方案中，本发明还提供一种制备用于治疗癌症、肿瘤或子宫内膜异位的药物组合物或药物物质的方法或工艺，其中该方法或工艺包括混合活性成分与药学或生理学上可接受的担载体的步骤，其中所述活性成分选自下组：

[0252] （a）本发明的肽，

[0253] （b）处于可表达形式的编码如本文中公开的肽的核酸，

[0254] （c）在其表面上呈递本发明的肽的 APC 或外来体，和

[0255] （d）本发明的细胞毒性 T 细胞。

[0256] 或者，本发明还提供一种用于诱导 CTL 的物质，其中所述物质由一种或多种本发明的肽或/或本发明的多核苷酸组成。

[0257] 或者，本发明的药物组合物或药物物质可用于防治癌症、肿瘤或子宫内膜异位症和 / 或预防其手术后复发。

[0258] 本发明的药物物质或药物组合物可用作疫苗。如上所述，在本发明的语境中，短语 “疫苗” （也称作 “免疫原性组合物”）指具有在接种入动物后诱导抗肿瘤免疫效力的物质。

[0259] 本发明的药物物质或药物组合物可用于在受试者或患者（包括人和任何其它哺乳动物，包括但不限于小鼠、大鼠、豚鼠、家兔、猫、犬、绵羊、山羊、猪、牛、马、猴、狒狒、和黑猩猩，特别是商业上重要的动物或驯养的动物）中治疗和 / 或预防癌症、肿瘤或子宫内膜异位症，和 / 或预防其手术后复发。
依照本发明，已经发现具有 SEQ ID NO:35-45 中的任一氨基酸序列的肽是能诱导
强且特异性的免疫应答的 HLA-A24 限制性表位肽或候选者。因此，包括任何这些具有 SEQ
ID NOs:35-45 的氨基酸序列的肽的本发明药物物质或药物组合物特别适合于对其 HLA 抗
原为 HLA-A24 的受试者施用。对于包含编码这些肽中的任一个的多核苷酸（即本发明的多
核苷酸）的药物物质和药物组合物也是如此。

要用本发明的药物物质或药物组合物治疗的癌症、肿瘤或宫内膜异位症不限制，包括其中涉及 MEKL 的所有种类的疾病，包括但不限于子宫内膜异位症，乳腺癌、胰腺癌、
宫颈癌、胆管细胞癌、CML、慢性粒性白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴
瘤、骨肉瘤、卵巢癌、胰腺癌、前列腺癌、肾细胞癌和 SCLC。

本发明的药物物质或药物组合物除上述活性成分之外还可含有其它具有诱导针对
癌性细胞的 CTL 的能力的肽、编码所述其它肽的其它多核苷酸、递递所述其它肽的其它
细胞，等等。在本文中，其它具有诱导针对癌性细胞的 CTL 的能力的肽以癌症特异性抗原
（例如已鉴定的 TAA）为例，但是不限于此。

如果需要，本发明的药物物质或药物组合物可任选包括其它治疗性物质作为活性
成分，只要该物质不抑制活性成分（例如任何本发明肽）的抗肿瘤效果。例如，配制剂可包
括抗炎物质或组合物、镇痛剂、化疗剂，诸如此类。除了在药物自身中包括其它治疗性物质
之外，本发明的药物还可以与一种或多种其它药理学性质药物或同时施用。药物和药理学
物质的量取决于例如所使用的药理学物质的类型、所治疗的疾病、及施用的时序安排和路
径。

应当理解，除在本文中具体提及的组分之外，本发明的药物物质或药物组合物可
包括与上所述的配制剂类型相关的本领域常规的其它物质。

在本发明的一个实施方案中，本发明的药物物质或药物组合物可包括在制品和试
剂盒中，该制品和试剂盒含有可用于治疗要治疗的疾病（例如癌症或子宫内膜异位症）的病
理状况的材料。制品可包括任何本发明药物物质或药物组合物的容器及标签。合适的容器包
括瓶、管形瓶、和试管。容器可以用多种材料制成，诸如玻璃或塑料。容器上的标签应指
明该药物物质用于治疗或预防疾病的一种或多种状况。标签还可指明关于使用的指导等等。

除上文描述的容器之外，包括本发明药物物质或药物组合物的试剂盒还可任选进一
步包括第二容器，其中装有可药用的稀释剂。它可进一步包括从商业和用户立场看期望的
其它材料，包括其它缓冲液、稀释剂、滤器、针头、注射器和载有使用说明的包装插页。

如果期望的话，药物物质或药物组合物可在药包或分配器装置中提供，该药包或
分配器装置可装有一个或多个含有活性成分的单位剂型。例如，药包可包括金属或塑料箱，
诸如泡罩包。药包或分配器装置可附有使用说明书。

1. 含有肽作为活性成分的药物物质或药物组合物

2. 本发明的肽可以作为药物物质或药物组合物直接施用，或者如果必要，通过常
规配制方法来配制。在后一种情况下，除非本发明的肽之外，还可以视情况包括通常用于药物的
担载体、赋形剂、等等，没有特别限制。这类担载体的例子有灭菌水、生理盐水、磷酸盐缓冲
液、培养液、等等。另外，药物物质或药物组合物可在必要时含有稳定剂、悬浮液、防腐剂、表
面活性剂等。本发明的药物物质或药物组合物可用于抗癌目的。

3. 本发明的肽可制备成由两种或更多种本发明肽构成的组合以在体内诱导 CTL。肽
组合可采取鸡尾酒的形式，或者可使用标准技术彼此组合。例如，可以将各个肽化学连接或表达成为单一融合多肽序列。组合中的各个肽可以是相同的或不同的。通过施用本发明的肽，肽被HLA抗原以高密度展示在APC上，然后诱导出与所展示的肽与HLA抗原之间形成的复合物特异性反应的CTL。或者，从受试者分离APC（例如DC），然后用本发明的肽刺激它们，来获得在其细胞表面上展示任何本发明的肽的APC。将这些APC重新施用给受试者而在受试者体内诱导出CTL，结果，可提高针对肿瘤相关内皮的攻击性。

【0271】包括本发明的肽作为活性成分，用于治疗和/或预防癌症、肿瘤或子宫内膜异位的药物物质或药物组合物还可包括已知可有效诱导细胞免疫的佐剂。或者，所述药物物质或药物组合物可以与其它活性成分一起使用，或者通过配制成颗粒来使用。佐剂如与具有免疫学活性的蛋白质一起（或顺序）施用时，增强对该蛋白质的免疫应答的化合物。本文中涵盖的佐剂包括文献中记载的那些（Clin Microbiol Rev 1994, 7:277-89）。适合佐剂的例子包括但不限于磷酸铝、氢氧化铝、明矾、霍乱毒素、沙门氏菌毒素等，但不限于此。

【0272】另外，可方便地使用脂质体配制剂、其中肽结合至几微米直径的珠子的颗粒配制剂，和其中脂质结合至肽的配制剂。

【0273】在本发明的另一个实施方案中，本发明的肽还可以作为可药用盐的形式施用。所述盐的优选实例包括与碱金属的盐、与金属的盐、与有机酸的盐，和与无机酸的盐。本文中所述的“可药用盐”是指保留所述化合物的生物学有效性和性质，通过与无机酸或碱（如盐酸、氯化酸、磷酸、硝酸、磷酸、硫磺酸、乙磺酸、对甲苯磺酸、水杨酸等）反应所得到的盐。

【0274】在一些实施方案中，本发明的药物物质或药物组合物可进一步包括引发（prime）CTL的成分。已经确认脂质是能够在体内引发针对病毒抗原的CTL的物质。例如，可将棕榈酸残基连接至赖氨酸残基的ε-和α-氨基，然后连接至本发明的肽。然后脂化肽可以在胶束或颗粒中直接使用，掺入脂质体，或在佐剂中乳化。作为脂质引发CTL应答的另一个例子，大肠杆菌（E.coli）脂蛋白，诸如三棕榈酸基-S-甘油基半胱氨酸丝氨酸-丝氨酸（P3CSS），当与适宜的肽结合时，可用来引发CTL（参见例如Deres等，Nature 1989, 342:561-4）。

【0275】施用的方法可以是口服、皮内、皮下、静脉内注射等，及系统施用或局部施用至靶位点附近。施用可以通过单次施用来实施，或者通过数次施用来强化。本发明的剂量可以根据被治疗的疾病、患者的年龄、体重、施用的方法等等适当进行调整，通常是0.001mg至1000mg，例如0.001mg至1000mg，例如0.1mg至10mg，而且可以每数日施用一次，至每数月施用一次。本领域技术人员能恰当选择合适的剂量。

【0276】(2)含有多核苷酸作为活性成分的药物物质或药物组合物

DNA 的投递技术的例子包括“裸 DNA”、易化（布比卡因、聚合物、肽介导的）投递、阳离子脂质复合物、和颗粒介导的（“基因枪”）或压力介导的投递（参见例如美国专利 No.5,922,687)。

[0279] 将多核苷酸投递入受试者可以是直接的，其中使受试者直接暴露于携带多核苷酸的载体，或者是间接的，其中首先在体外用感兴趣的多核苷酸转化细胞，然后将细胞移植入受试者。这两种方法分别称为体内和离体基因疗法。

[0281] 施用的方法可以是口服、皮内、皮下、静脉内注射等等，而且可使用系统施用或局部施用至靶点附近。施用可以通过单次施用来实施，或者通过多次施用来强化。合适的担载体或经编码本发明肽的多核苷酸转化的细胞中的多核苷酸的剂量可以依据要治疗的疾病、患者的年龄、体重、施用的方法等等恰当加以调整，通常是 0.001mg 至 1000mg，例如 0.1mg 至 10mg，而且可以每数天施用一次至每数月施用一次。本领域技术人员能恰当选择合适的剂量。

[0282] X. 使用肽、外来体、APC 和 CTL 的方法

[0283] 本发明的肽和编码此类肽的多核苷酸可用于诱导 APC 和 CTL。本发明的外来体和 APC 也可用于诱导 CTL。以及用于诱导针对癌症或肿瘤的免疫应答。肽、多核苷酸、外来体和 APC 可以与任何其它化合物组合使用，只要该其它的化合物不抑制 CTL 诱导能力。因此，任何前文所述的本发明的药物物质或药物组合物可用于诱导 CTL，而且除它们之外，那些包括肽和多核苷酸的也可用于诱导 APC，如下文讨论解释的。

[0284] （1）诱导抗原呈递细胞 (APC) 的方法

[0285] 本发明提供了使用本发明的肽或多核苷酸来诱导具有高 CTL 诱导能力的 APC 的方法。

[0286] 本发明的方法包括在体外、离体或体内使 APC 与本发明的肽接触的步骤。例如，离体将 APC 与肽接触的方法可包括下述步骤：
[0287] a : 从受试者收集 APC；和
[0288] b : 使步骤 a 的 APC 与肽接触。
[0289] APC 不限于特定细胞，而且包括 DC、Langerhans 细胞、巨噬细胞、B 细胞、和活化的 T 细胞，已知它们在它们的细胞表面上呈递蛋白性质的抗原，从而被淋巴细胞识别。优选地，由于 DC 是 APC 中具有最强 CTL 诱导能力的，可使用 DC。任何本发明的肽均可单独或与其它本发明的肽一起用作步骤 b 的肽。
[0290] 或者，可以将本发明的肽施用给受试者以使肽在体内接触 APC。结果，可以在受试者身体中诱导出具有高 CTL 诱导能力的 APC。因此，本发明也考虑将本发明的肽施用于受试者以在体内诱导 APC 的方法。还可以将处于可表达形式的编码本发明的肽的多核苷酸施用于受试者，使得本发明的肽在体内表达并与 APC 接触，从而在受试者身体中诱导出具有高 CTL 诱导能力的 APC。因此，本发明还考虑将本发明的多核苷酸施用于受试者以在体内诱导 APC 的方法。短语“可表达的形式”描述于上文“IX. 药物物质 (2) 含有多核苷酸作为活性组分的药物物质”部分。
[0291] 此外，本发明包括将本发明的多核苷酸导入 APC 以诱导具有 CTL 诱导能力的 APC。例如，该方法可包括下述步骤：
[0292] a : 自受试者收集 APC；并
[0293] b : 导入编码本发明肽的多核苷酸。
[0294] 步骤 b 可如上文“VI. 抗原呈递细胞”部分中所述来实施。
[0295] 或者，本发明提供了一种用于制备特异性诱导针对 MELK 的 CTL 活性的抗原呈递细胞 (APC) 的方法，其中所述方法可包括下述步骤之一：
[0296] (a) 在体外、离体或体内使 APC 与本发明的肽接触；和
[0297] (b) 将编码本发明的肽的多核苷酸导入 APC 中。
[0298] (2) 诱导 CTL 的方法
[0299] 本发明还提供了使用本发明的肽、多核苷酸、或外来体或 APC 来诱导 CTL 的方法。
[0300] 本发明还提供了使用编码能形成 T 细胞受体 (TCR) 亚单位的多肽的多核苷酸来诱导 CTL 的方法，所述 TCR 亚单位识别本发明的肽与 HLA 抗原的复合物。优选地，所述诱导 CTL 的方法包括选自下组的至少一个步骤：
[0301] (a) 使 CD8– 阳性 T 细胞与抗原呈递细胞和 / 或外来体接触，所述抗原呈递细胞和外来体在其表面呈递 HLA 抗原与本发明的肽之间形成的复合物；和
[0302] (b) 向 CD8– 阳性 T 细胞中导入编码能够形成 TCR 亚单位的多肽的多核苷酸，所述 TCR 亚单位可识别 HLA 抗原与本发明的肽之间形成的复合物。
[0303] 当本发明的肽、多核苷酸、APC 或外来体被施用给受试者后，受试者的身体中诱导出 CTL，而且靶向癌细胞的免疫应答的强度增强。因此，本发明还设想这样的方法，其包括将本发明的肽、多核苷酸、APC 或外来体施用于受试者以诱导 APC 的步骤。
[0304] 或者，也可通过离体使用它们来诱导 CTL。在此场合，在诱导 CTL 后，活化的 CTL 将被返还受试者。例如，本发明的诱导 CTL 的方法可包括下述步骤：
[0305] a : 自受试者收集 APC；
[0306] b : 用肽接触步骤 a 的 APC；并
[0307] c : 将步骤 b 的 APC 与 CD8– 阳性细胞共培养。
上文步骤中要与 CD8- 阳性细胞共培养的 APC 也可通过将包括本发明多核苷酸的基因转移入 APC 来制备，如上文“VI. 抗原呈递细胞” 部分所述，但是不限于此，而且任何在其表面上有效呈递 HLA 抗原和本发明肽形成的复合物的 APC 均可用于此方法。

作为此类 APC 的替代，也可使用在其表面上呈递 HLA 抗原和本发明肽形成的复合物的外来体。即，本发明还将可以这样的方法，其中将其表面上呈递 HLA 抗原和本发明肽形成的复合物的外来体与 CD8- 阳性细胞共培养。此类外来体可通过上文“V. 外来体” 部分中描述的方法来制备。

另外，可通过将编码能与本发明的肽结合的 TCR 亚单位的多核苷酸的基因导入 CD8- 阳性细胞来诱导 CTL。此类转导可如上文“VIII. T 细胞受体 (TCR)” 部分中所述来实施。

另外，本发明提供了一种制造用于诱导 CTL 的药用物质或药物组合物的方法或工艺，其中该方法包括混合或配制本发明的肽与药学可接受的担载体的步骤。

（3）诱导免疫应答的方法

此外，本发明提供了诱导针对涉及 MELK 的疾病的免疫应答的方法。合适的疾病包括子宫内膜异位症和癌症，其例子包括但不限于乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、CML、慢性髓性白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴瘤、骨肉瘤、卵巢癌、胰腺癌、前列腺癌、肾细胞癌和 SCLC。

本发明的方法包括施用含有任何本发明肽或编码它们的多核苷酸的物质或组合物的步骤。本发明的方法还包括施用呈递任何本发明肽的外来体或 APC。关于详情参见“IX. 药用物质或药物组合物” 部分，特别是描述本发明的药用物质或药物组合物作为疫苗的用途的部分。另外，可用于本发明诱导免疫应答的方法的外来体和 APC 详细描述于上文“V. 外来体”，“VI. 抗原呈递细胞 (APC)” 和 “X. 使用肽、外来体、APC 和 CTL” 的 (1) 和 (2) 部分。

本发明还提供了一种制造用于诱导免疫应答的药用物质或药物组合物的方法或工艺，其中该方法包括混合或配制本发明的肽与药学可接受的担载体的步骤。

所述方法包括施用本发明的疫苗。所述疫苗包含；

a: 一种或多种本发明的表位肽，或其免疫学活性片段；

b: 一种或多种编码 (a) 的表位肽或免疫学活性片段的多核苷酸；

c: 一种或多种分离的本发明的 CTL；或

d: 一种多种分离的本发明的抗原呈递细胞。

在本发明的语境中，过表达 MELK 的疾病可用这些活性组分来治疗。所述疾病的例子包括但不限于子宫内膜异位、乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、CML、慢性髓性白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴瘤、骨肉瘤、卵巢癌、胰腺癌、前列腺癌、肾细胞癌和 SCLC。因而，在施用包括活性组分的疫苗或药物组合物之前，优选确认要治疗的癌或子宫内膜异位细胞或组织中的 MELK 表达水平与同一器官的正常细胞相比是否增强了。因此，在一个实施方案中，本发明提供了用于治疗 (即) 表达 MELK 的癌症或子宫内膜异位的方法，该方法可包括下述步骤：

1) 测定自具有要治疗的癌症或子宫内膜异位的受试者获得的癌细胞或组织中的 MELK 表达水平；
将 MELK 表达水平与正常对照比较，并
对具有与正常对照相比过表达 MELK 的癌或子宫内膜异位的受试者施用至少一种选自上文所述 (a) 至 (d) 的成分。或者，本发明还提供包含至少一种选自上文所述 (a) 至 (d) 的成分的疫苗或药物组合物，其用于对具有过表达 MELK 的癌或子宫内膜异位的受试者施用。换言之，本发明进一步提供了用于鉴定要用本发明 MELK 多肽来治疗的受试者的方法，所述方法可包括测定源自受试者的癌或子宫内膜异位细胞或组织中的 MELK 表达水平的步骤，其中该水平与该基因的正常对照水平相比的升高指示该受试者具有可用本发明 MELK 多肽来治疗的癌症或子宫内膜异位。本发明的治疗癌症或子宫内膜异位的方法将在下面更加详细的加以叙述。

需用本方法治疗的受试者优选为哺乳动物。例示性的哺乳动物包括但不限于例如人类、非人灵长类、小鼠、大鼠、犬、猫、马、和牛。

根据本发明，测定在自受试者获得的癌或子宫内膜异位细胞或组织中 MELK 的表达水平。表达水平可在转录产物水平确定，使用本领域已知方法。举例而言，MELK 的 mRNA 可通过杂交方法 (例如，Northern 杂交) 使用探针定量。检测可在芯片或阵列上实施。对检测 MELK 的表达水平而言，优选使用阵列。本领域技术人员可利用 MELK 的序列信息编制上述探针。举例而言，MELK 的 cDNA 可用作探针。如需要，所述探针可用合适的标记物来标记，例如染料、荧光物质和同位素，且所述基因的表达水平可以作为所杂交的标记物的强度检测。

此外，MELK (例如 SEQ ID NO:46) 的转录产物还可通过基于扩增的检测方法 (例如，RT-PCR) 使用引物定量。此类引物可基于所述基因的序列信息制备。

具体而言，本方法所用的探针或引物在严格条件下，中等严格条件下或低严格条件下与 MELK 的 mRNA 杂交。如本文中所使用的，短语 “严格 (杂交) 条件” 指这样的条件，在该条件下，探针或引物将与其靶序列杂交，但不与其它序列杂交。严格条件是依赖于序列的，而且在不同的环境下会不同。较长序列的特异杂交与较短序列相比在较高温度下观察到。一般地，严格条件的温度选择比特定序列在限定的离子强度和 pH 下的热熔点 (Tm) 低大约 5 摄氏度。Tm 是 (在限定的离子强度、pH 和核酸浓度下) 平衡状态下有 50% 的与靶序列互补的探针与靶序列杂交的温度。因为靶序列一般过量存在，因此在 Tm, 平衡时 50% 的探针被占据。典型地，严格条件会是这样的：其中盐浓度小于大约 1.0M 钠离子，典型地大约 0.01-1.0M 钠离子 (或其它盐)，pH 7.0-8.3，温度对于较短的探针或引物 (例如 10-50 个核苷酸) 是至少大约 30 摄氏度，用于较长的探针或引物是至少大约 60 摄氏度。严格条件也可以通过添加去稳定物质，例如甲酰胺，来实现。

探针或引物可具有特定的大小。大小的范围可为至少 10 个核苷酸，至少 12 个核苷酸，至少 15 个核苷酸，至少 20 个核苷酸，至少 25 个核苷酸，至少 30 个核苷酸，且探针和引物的大小范围可为 5-10 个核苷酸，10-15 个核苷酸，15-20 个核苷酸，20-25 个核苷酸，和 25-30 个核苷酸。

或者，可以检测翻译产物进行本发明的诊断。例如，可以确定 MELK 蛋白 (SEQ ID NO:47) 的量。测定作为翻译产物的蛋白量的方法包括免疫测定法，此类方法使用特异识别所述蛋白的抗体。抗体可以是单克隆或多克隆的。而且，抗体的任何片段或修饰 (例如嵌合抗体、scFv、Fab、F(ab’)2, Fv 等) 均可用于检测，只要该片段或经修饰抗体保留对 MELK
蛋白的结合能力即可。制备这些类型的用于检测蛋白的抗体的方法是本领域众所周知的，并且在本发明中可以使用任何方法制备这些抗体和它们的等价物。

[0331] 作为另一种基于 MELK 的翻译产物检测 MELK 基因的表达水平的方法，可利用针对 MELK 蛋白的抗体通过免疫组织化学分析测量其染色的强度。意即，在这种测量中，强染色表明所述蛋白质的存在 / 水平增加，且同时表明 MELK 基因的高表达水平。

[0332] 对于癌或子宫内膜异位细胞中的靶基因（例如 MELK 基因），如果其表达水平（例如正常细胞中的水平）增加了例如 10%、25% 或 50% 的话，或增加到超过 1.1 倍，超过 1.5 倍，超过 2.0 倍，超过 5.0 倍，超过 10 倍或更多，则可以认为其在癌或子宫内膜异位细胞中的表达水平增加了。

[0333] 对照水平可以与癌或子宫内膜异位细胞同时确定，使用先前从疾病状态（患病或未患病）已知的受试者收集和保存的样品。另外，自具有要治疗的癌症或子宫内膜异位的器官的非病变区获得的正常细胞可用作正常对照。或者，对照水平可以借助统计方法，根据通过分析先前测定的来自疾病状态已知的受试者的样品的 MELK 基因表达水平获得的结果加以确定。进一步，对照水平可以是来自先前测试过的细胞的模式数据库。而且，根据本发明的一个方面，可以将生物体中 MELK 基因的表达水平与从多个参考样品确定的多个对照水平比较。优选地使用从未受及源自受试者的样品的组织类型相似的组织类型的参考样品确定的对照水平。而且，优选地，使用具有已知的疾病状态的群体中 MELK 基因表达水平的标准值。标准值可以通过本领域已知的任何方法获得，例如，平均值 +/-3 S.D. 或平均值 +/-2 S.D. 的范围可以用作标准值。

[0334] 在本发明的语境中，从已知非患病的生物样品确定的对照水平称作“正常对照水平”；另一方面，如果对照水平从患病生物样品确定，则会称作“患病对照水平”。

[0335] 当 MELK 基因的表达水平比正常表达水平有所提高，或与患病对照水平相似 / 等同，则受试者可诊断为具有要治疗的疾病。

[0336] 更具体地说，本发明提供了一种 (i) 诊断受者是否具有要治疗的癌症或子宫内膜异位，和 / 或 (ii) 选择受试者进行癌症或子宫内膜异位治疗的方法，该方法包括下述步骤：

[0337] a. 测定 MELK 在自怀疑具有要治疗的癌症或子宫内膜异位的受者获得的癌细胞或组织中的表达水平；

[0338] b. 将 MELK 的表达水平与正常对照水平比较；

[0339] c. 若 MELK 的表达水平与正常对照水平相比升高的话，将受者诊断为具有要治疗的癌症或子宫内膜异位；并

[0340] d）若在步骤 (c) 中受试者被诊断为具有要治疗的癌症或子宫内膜异位的话，选择受者进行癌症或子宫内膜异位治疗。

[0341] 或者，此类方法包括下述步骤：

[0342] a. 测定 MELK 在自我怀疑具有要治疗的癌症或子宫内膜异位的受者获得的癌或子宫内膜异位细胞或组织中的表达水平；

[0343] b. 将 MELK 的表达水平与患病对照水平比较；

[0344] c. 若 MELK 的表达水平与患病对照水平相似或等同的话，将受者诊断为具有要治疗的癌症或子宫内膜异位；并
[0345] d) 若在步骤 c) 中受试者被诊断为具有要治疗的癌症或子宫内膜异位症的话，选择受试者进行癌症或子宫内膜异位症治疗。

[0346] 本发明还提供了用于确定患有能用本发明的 MELK 多肽来治疗的癌症或子宫内膜异位症的受试者的试剂盒，其亦可用于评价和/或监测癌症免疫疗法的功效。优选地，所述癌症包括但不限于乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、CML、慢性髓性白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴瘤、骨肉瘤、卵巢癌、胰腺癌、前列腺癌、肾细胞癌和 SCLC。更特别地，所述试剂盒优选包含至少一种在源自受试者的癌或子宫内膜异位症细胞中检测 MELK 基因表达的试剂，所述试剂可选自下组:

[0347] (a) 用于检测 MELK 基因的 mRNA 的试剂；
[0348] (b) 用于检测 MELK 蛋白的试剂；和
[0349] (c) 用于检测 MELK 蛋白的生物学活性的试剂。

[0350] 适于检测 MELK 基因 mRNA 的试剂包括特异性结合或识别 MELK mRNA 的核酸，诸如具有与 MELK mRNA 的一部分互补的序列的寡核苷酸。这类寡核苷酸的例子有针对 MELK mRNA 特异性的引物与探针。这类寡核苷酸可基于本领域众所周知的方法制备。如果需要，用于检测 MELK mRNA 的试剂可固定化在固相基质上。另外，在所述试剂盒中可包括多于一种检测 MELK mRNA 的试剂。

[0351] 另一方面，适于检测 MELK 蛋白的试剂包括针对 MELK 蛋白的抗体。所述抗体可为单克隆的或多克隆的。进一步，任何所述抗体的片段或修饰（例如，嵌合抗体、scFv、Fab、F(ab')2、Fv 等等）均可用作所述试剂，只要所述片段或经修饰抗体保留与 MELK 蛋白的结合能力。为检测蛋白制备此类抗体的方法在本领域是众所周知的，且可在本发明中使用任何方法制备上述抗体及其等价物。进一步，所述抗体可与产生信号的分子通过直接连接或间接标记技术进行标记。标记物与标记抗体以及检测抗体与标记抗体的结合的方法在本领域是众所周知的，且本发明可使用任何标记物与方法。另外，在所述试剂盒中可包括多于一种用于检测 MELK 蛋白的试剂。

[0352] 所述试剂盒可包含多于一种前述的试剂。举例而言，从没有癌症或子宫内膜异位或患有癌症或子宫内膜异位的受试者获取的组织样本可用作有用的对照试剂。本发明的试剂盒可进一步包括其它从商业或用户角度而言期望的材料，包括缓冲液、稀释剂、滤器、针头、注射器和带有使用说明书（例如，书本的、磁带、CD-ROM 等等）的装置箱。这些试剂的可标上标签包含在容器中。合适的容器包括瓶、管状瓶（vials）和试管。所述容器可用多种材料制造，例如玻璃或塑料。

[0353] 在本发明的一个实施方案中，当所述试剂是针对 MELK mRNA 的探针时，所述试剂可固定化于固体基质例如多孔板上，以形成至少一个检测位置。所述多孔板的测量或检测区域可包含多个位置，每个都包含核酸（探针）。测量条亦可包含阴性和/或阳性对照的位置。或者，对照位置可位于与测试条不同的条。任选地，不同的检测位置可包含不同量的固定化核酸，即，在第一个检测位置上量较大而在后面的位置上量较小。在加入测试样品之后，显示可检测信号位置的数目提供了在样品中存在的 MELK mRNA 量的定量指征。所述检测位置可设置成具有任何合适可检测的形状，通常是横向测试条宽度的条状或点状。

[0354] 本发明所述试剂盒可进一步包括阳性对照样品和 MELK 标准样品。本发明的所述阳性对照样品可通过收集 MELK 阳性样品，随后测定其 MELK 水平来制备。此外，可将纯化的
MELK蛋白或多核苷酸添加到不表达MELK的细胞中以形成所述阳性样品或MELK标准品。在本发明中，纯化的MELK可以是重组蛋白。例如，阳性对照样品的MELK水平大于截留值。

[0355] 在一个实施方案中，本发明进一步提供了一种诊断试剂盒，其包括能够特异性识别本发明抗体的蛋白或其部分蛋白或其免疫原性片段。

[0356] 本发明的蛋白的组成部分的示例包括由本发明蛋白的氨基酸序列中的至少8个、优选15个、和更优选20个连续氨基酸构成的多肽。癌症或子宫内膜异位可通过使用本发明的蛋白或肽（多肽）检测样品（例如血液、组织）中的抗体来诊断。上文描述了用于制备本发明的肽或蛋白质的方法。

[0357] 本发明用于诊断癌症或子宫内膜异位的方法可通过如上所述测定抗MELK抗体量和相应对照样品中的量之间的差异来进行。若受试者的细胞或组织含有针对该基因的表达产物（MELK）的抗体和抗MELK抗体的量测定为大于截留值（与正常对照中的水平相比）的，则该受试者怀疑患有癌症或子宫内膜异位。

[0358] 在另一个实施方案中，本发明的诊断试剂盒可包括本发明的肽及与它结合的HLA分子。使用抗原性肽和HLA分子检测抗原特异性CTL的合适方法已由Altman JD et al.,Scien.1996,274(5284):94-6。因此，本发明肽和HLA分子形成的复合物可用于检测方法来检测肿瘤抗原特异性CTL。由此能够较早检测癌症的复发和/或转移。进一步，它可用于选择适合包含本发明肽作为活性组分的药物的受试者或评估该药物的治疗效果。

[0360] 本发明进一步提供了使用如本文所述的肽表位来评估受试者的免疫应答的方法或诊断试剂。在本发明的一个实施方案中，本文所述的HLA限制肽可能作为试剂来评估或预测受试者的免疫应答。要评估的免疫应答可以是通过在体外或在体内使免疫原接触具有免疫能力的细胞和诱导的。在优选的实施方案中，用于评估免疫应答的有免疫能力的细胞可以选自外周血、外周血淋巴细胞（PBL）和外周血单个核细胞（PBMC）。用于收集或分离此类有免疫能力的细胞的方法是本领域公知的。在一些实施方案中，任何可导致识别和结合肽表位的抗原特异性CTL的生成的物质或组合物均可用作所述试剂。肽试剂无须用作免疫原。用于此方法的测定系统包括相对较新的技术，诸如四聚体、胞内淋巴因子染色和干扰素释放测定法，或ELISPOT测定法。在一个优选的实施方案中，要与肽试剂接触的有免疫能力的细胞可以是抗原呈递细胞，包括树突细胞。

[0362] 与HLA分子结合的肽在相应HLA重链和β2-微球蛋白存在下重折叠以生成三分子复合物。在该复合物中，重链的羧基末端在先前工程化到蛋白质中的位点处被生物素化。
然后，将链霉亲合素添加至复合物以形成由三分子复合物和链霉亲合素组成的四聚体。借助荧光标记的链霉亲合素，四聚体能用于对抗原特异性细胞染色。然后可鉴定细胞，例如通过流式细胞术。此类分析可用于诊断或预后目的。通过该配体鉴定的细胞也可用于治疗目的。

[0364] 肽还可作为试剂用于评估疫苗的效果。可使用例如上述方法来分析自疫苗接种免疫原的患者获得的PBMC。测定患者的HLA型，并选择识别患者中存在的等位基因特异性分子的肽表位试剂进行分析。疫苗的免疫原性可通过PBMC样品中表位特异性CTL的存在来指示。本发明的肽还可用于制备抗体，使用本领域公知技术（参见例如 CURRENT PROTOCOLS IN IMMUNOLOGY, Wiley/Greene, NY；和 Antibodies A Laboratory Manual, Harlow and Lane, Cold Spring Harbor Laboratory Press, 1989），其可作为试剂用于诊断、检测或监测癌症或子宫内膜异位。此类抗体可包括识别HLA分子背景中的肽的抗体，即结合肽-MHC复合物的抗体。

[0365] 本发明还提供了多种其他应用，本文中描述了其中一些。例如，本发明提供了一种用于诊断或检测与MELK免疫原性多肽表达为特征的病症的方法。这些方法涉及检测MELK HLA结合肽、或MELK HLA结合肽与I类HLA分子形成的复合物在生物学样本中的表达。肽或肽和I类HLA分子形成的复合物的表达可通过用针对肽或复合物的结合配偶体测定来测定或检测。在一个优选的实施方案中，针对肽或复合物的结合配偶体可以是识别和特异性结合肽的抗体。MELK在生物学样本诸如肿瘤或子宫内膜异位活检中的表达也可使用MELK引物通过标准PCR扩增方案来测试。本文中呈现了肿瘤表达的一个例子，而且用于MELK扩增的示性条件和引物的进一步公开内容可见于WO2003/27322。

[0366] 优选地，诊断方法涉及使自受试者分离的生物学样品接触对MELK HLA结合肽特异性的作用剂以检测MELK HLA结合肽在生物学样品中的存在。如本文中使用的，“接触”意味着在适宜条件（例如浓度、温度、时间、离子强度）下放置生物学样品使其足够接近所述作用剂，以容许作用剂和生物学样品中存在的MELK HLA结合肽之间的特异性相互作用。一般地，作用剂接触生物学样品的条件是本领域普通技术人员知道的可促进生物学样品中分子与其关联物（例如蛋白质与其受体关联物、抗体与其蛋白质抗原关联物、核酸与其互补序列关联物）之间的特异性相互作用的条件。用于促进分子与其关联物之间的特异性相互作用的示性条件记载于授权给Low等人的美国专利No. 5, 108, 921。

[0367] 本发明的诊断方法可以在体内和/或在体外实施。因而，生物学样品在本发明中可位于体内或体外。例如，生物学样品可以是体内组织，而且可使用对MELK免疫原性多肽特异性的作用剂来检测此类分子在组织中的存在。或者，可在体外收集或分离生物学样品（例如血液样品、肿瘤活检、组织提取物）。在一个特别优选的实施方案中，生物学样品可以是含有细胞的样品，更优选自要诊断或治疗的受试者收集的含有肿瘤或子宫内膜异位细胞
的样品。

前者，诊断可使用如许通过对荧光素标记的 HLA 多聚体复合物染色而直接定量抗
原特异性 T 细胞的方法来进行（例如 Altman, J.D. et al., 1996, Science 274:94; Altman, J.
染色和分剂素 Y 释放测定法或 ELISpot 测定法。多聚体染色、胞内淋巴因子染色
和 ELISpot 测定法都表现出比常规的测定法灵敏至少 10 倍（Murali-Krishna, K.et

例如，在一些实施方案中，本发明提供一种用于诊断或评价被施用至少一种本
发明的 MELK 肽的受试者的免疫应答的方法，所述方法包括上述步骤：

(a) 在适合诱导对原特异性的 CTL 的条件下使免疫原与具有免疫能力的细胞
接触；

(b) 检测或测定步骤 (a) 中诱导的 CTL 的诱导水平；和

(c) 将所述受试者的免疫应答与所述 CTL 诱导水平相关联。

在本发明中，免疫原是下述中至少一种：(a) 选自 SEQ ID NO:6.35-45 中的氨基酸
序列的 MELK 肽，具有所述氨基酸序列的肽；和具有所述氨基酸序列中已经过 1 个、2 个或
更多个氨基酸替代而修饰的氨基酸序列的肽。同时，适合诱导免疫原特异性 CTL 的条件是本
领域公知的。例如，可以在体外在免疫原存在下培养具有免疫能力的细胞来诱导免疫原特异
性 CTL。为了诱导免疫原特异性 CTL，可以将任何刺激因子添加至细胞培养物。例如，IL-2
是用于 CTL 诱导的优选的刺激因子。

在一些实施方案中，对要用体癌症疗法治疗的受试者的免疫应答的监测或评价步
骤可以在治疗之前、之中和 / 或之后进行。一般而言，在癌症治疗过程中，反复地对要治疗
的受试者施用免疫原性肽。例如，可以每周施用免疫原性肽 3-10 周。相应地，可以在整个
癌症治疗程序中评价或监测受试者的免疫应答。或者，评价或监测免疫应答的步骤可以在
治疗程序完成时进行。

根据本发明，免疫原特异性 CTL 的诱导相对于对照增强，表明要评价或诊断的受
试者对已施用的免疫原免疫应答。用于评价免疫应答的合适的对照可包括，例如，具有免疫
能力的细胞未接触肽时的 CTL 诱导水平，或者与具有 MELK 肽之外的氨基酸序列（例如随机
氨基酸序列）的对照肽接触时的 CTL 诱导水平。

在优选的实施方案中，以序列特异性的方式评价受试者的免疫应答，方法是在
施用给受者的各种免疫原之间比较免疫应答。具体地，即使当数种 MELK 肽的混合物被
施用给受者时，免疫应答也会依赖于肽而改变。在这种情况下，通过比较每种肽的免疫应
答，可以鉴定出受者对其显示更高应答的肽。

XI 抗体

本发明进一步提供了与本发明的肽结合的抗体。优选的抗体特异性结合本发明的
肽且不会结合（或会微弱结合）非本发明的肽。或者，抗体能结合本发明的肽及其同源物。针
对本发明肽的抗体可用于癌症或子宫内膜异位诊断和预后测定法、及成像方法。类似地，
此类抗体可用于其它癌症或子宫内膜异位的治疗、诊断、和 / 或预后，只要癌症或子宫内膜
异位患者中也表达或过表达 MELK。此外，胞内表达的抗体（例如单链抗体）在治疗上可用于治疗涉及 MELK 表达的病症或子宫内膜异位，这样的病症的例子包括但不限于乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、CML、慢性髓系白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴瘤、骨肉瘤、卵巢癌、胰腺癌、前列腺癌、肾细胞癌和 SCLC。

【0379】本发明还提供了多种免疫学测定法，用于检测和/或定量 MELK 蛋白（SEQ ID NO:47）或其片段，包括具有源自 SEQ ID NO:35, 41, 44 的氨基酸序列的多肽。此类测定法可根据需要包括一种或多种能够识别和结合 MELK 蛋白或其片段的抗 MELK 抗体。在本发明的语境中，能与 MELK 多肽结合的抗 MELK 抗体优选识别具有源自 SEQ ID NO:35, 41, 44 的氨基酸序列的多肽。抗体的结合特异性可用抑制测试来确认。即，当要分析的抗体与全 MELK 多肽之间的结合在任何具有源自 SEQ ID NO:35, 41, 44 的氨基酸序列的片段多肽存在下受到抑制时，证明此抗体特异性结合该片段。在本发明的语境中，此类免疫学测定法以本领域公知的多种免疫学测定形式实施，包括但不限于各种类型的放射免疫测定法、免疫层析技术、酶联免疫吸附测定法（ELISA）、酶联免疫荧光测定法（ELIFA）、等等。

【0380】本发明的相关免疫学的但非抗体的测定法还可包括 T 细胞免疫原性测定法（抑制性的或刺激性的）以及 MHC 结合测定法。另外，本发明还提供能够检测表达 MELK 的癌症或子宫内膜异位的免疫学成像方法，包括但不限于使用经标记的本发明抗体的放射闪烁成像方法。此类测定法在临床上可用于表达 MELK 的子宫内膜异位或癌症的检测、监测、和预后。此类癌症的例子包括但不限于乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、CML、慢性髓系白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴瘤、骨肉瘤、卵巢癌、胰腺癌、前列腺癌、肾细胞癌和 SCLC。

【0381】本发明还提供了与本发明的肽结合的抗体。本发明的抗体可以以任何形式使用，例如单克隆或多克隆抗体，而且包括通过用本发明的肽免疫动物（诸如家兔）而获得的抗血清。所有种类的多克隆和单克隆抗体，及通过遗传重组生成的人抗体和人源化抗体。

【0382】本发明的作用原用于获得抗体的肽可来源于任何动物物种，但优选来源于哺乳动物，诸如人、小鼠或大鼠，更优选来源于人。来源于人的肽可以由本文所公开的核苷酸或氨基酸序列获得。

【0383】根据本发明，用作免疫抗原的肽可以是完整的蛋白质或蛋白质的部分肽。部分肽可以包含例如本发明肽的氨基（N）末端或羧基（C）末端片段。

【0384】在本文中，抗体定义为能与 MELK 蛋白的全长或片段起反应的蛋白质。在一个优选的实施方案中，本发明的抗体识别具有源自 SEQ ID NO:35, 41, 44 的氨基酸序列的 MELK 的片段肽。用于合成寡肽的方法是本领域公知的。合成后，可任选在作为免疫原使用之前纯化肽。在本发明的语境中，寡肽（例如 9 或 10 聚物）可与担载体缀合或连接以增强免疫原性。匙孔槭血蓝蛋白（KLH）作为担载体是公知的。用于缀合 KLH 和肽的方法也是本领域公知的。

【0385】或者，可以将编码本发明肽或其片段的基因插入已知的表达载体，然后用该载体转化本文所述宿主细胞。可以通过任何标准方法从宿主细胞外部或内部回收所需肽或其片段，然后可将其用作抗原。或者，表达肽的完整细胞或其溶胞物或者化学合成的肽也可用作抗原。

【0386】可以用抗原免疫任何哺乳动物，但优选考虑与用于细胞融合的亲本细胞的相容
性。通常，可使用啮齿目（Rodentia）、兔形目（Lagomorpha）或灵长目（Primate）的动物。啮齿科动物包括例如小鼠、大鼠和仓鼠。兔形科动物包括例如家兔。灵长科动物包括例如狭鼻猿（Catarrhini）（东半球猴（old world monkey）），诸如食蟹猴（Macaca fascicularis）、恒河猴（rhesus monkey）、狒狒（sacred baboon）和黑猩猩（chimpanzee）。

[0387] 用抗原免疫动物的方法是本领域已知的。腹膜内注射或皮下注射抗原是免疫哺乳动物的标准方法。更具体的说，可以在适量的磷酸盐缓冲盐水（PBS）、生理盐水等中稀释和悬浮抗原。如果需要，可将抗原悬浮液与适量的标准佐剂诸为弗氏（Freund）完全佐剂混合，制成乳状液，然后施用于哺乳动物。优选的是，其后每4-21天施用数次与适量弗氏不完全佐剂混合的抗原。还可使用适宜的担载体进行免疫。如上所述进行免疫后，可通过标准方法检验血清中所需抗体的量的增加。

[0388] 可以如下制备针对本发明肽的多克隆抗体：从经过免疫的哺乳动物（该哺乳动物经检验其血清中所需抗体增加）收集血液，并通过任何常规方法从血液中分离血清。多克隆抗体包括含有多种抗原抗体的血清，并且可以从所述血清中分离的、含有该多克隆抗体的血清。可以使用例如偶联有本发明肽的亲和柱从仅识别本发明肽的组分中制备免疫球蛋白G或M，并进一步使用蛋白A或蛋白G柱纯化该组分。

[0389] 为了制备单克隆抗体，从经过抗原免疫并如上所述检查出血清中所需抗体水平升高的哺乳动物收集免疫细胞，并进行细胞融合。用于细胞融合的免疫细胞可优选自脾。其它要与上述免疫细胞融合的优选亲本细胞包括例如哺乳动物的骨髓瘤细胞，更优选具有为了用药物选择融合细胞而获得的特性的骨髓瘤细胞。

[0391] 对于由细胞融合得到的杂交瘤，可在标准选择培养基如HAT培养基（含次黄嘌呤、氨基蝶呤和胸腺的培养基）中培养它们以进行选择。通常，细胞培养在HAT培养基中连续进行数天至数周，培养的时间足以使除了所需杂交瘤之外的所有其它细胞（非融合的细胞）死亡，然后，可进行标准有限稀释（standard limiting dilution）来筛选和克隆生成所需抗体的杂交瘤细胞。

[0392] 除了上述用抗原免疫非人动物来制备杂交瘤的方法外，还可以在体外用胚胎、表达胚胎的细胞或其溶胞物免疫人淋巴细胞，诸如那些感染了EB病毒的人淋巴细胞。然后，使经过免疫的淋巴细胞与能够无限分裂的源自人的骨髓瘤细胞诸如U266融合，以产生期望的生成能够与所述肽结合的人抗体的杂交瘤（已公开但未审查的日本专利申请No. Sho 63-17688）。

[0393] 随后将所得杂交瘤移植入小鼠腹腔，并抽取腹水。所得的单克隆抗体可通过例如硫酸铵沉淀、蛋白A或蛋白G柱、DEAE离子交换层析或偶联有本发明肽的亲和柱进行纯化。本发明的抗体不仅可用于纯化和检测本发明的肽，还可以用作本发明肽的激动剂和拮抗剂的候选物。

[0394] 或者，可以通过腐败基因使生成抗体的免疫细胞（诸如经过免疫的淋巴细胞）永生化，并用于制备单克隆抗体。

[0395] 如此获得的单克隆抗体也可以使用遗传工程技术来重组制备（参见例如Borrebaek and Larrick, Therapeutic Monoclonal Antibodies,由 MacMillan
Publishers LTD 在美国出版 (1990))。例如，可以从生成抗体的免疫细胞诸如杂交瘤或经免疫的淋巴细胞克隆编码抗体的 DNA，将该 DNA 插入合适的载体，并导入宿主细胞以制备重组抗体。本发明还提供如上所述制备的重组抗体。

[0397] 抗体可以通过与多种分子诸如聚乙二醇 (PEG) 缀合来修饰。本发明提供了经过这样修饰的抗体。可通过化学修饰抗体来获得经过修饰的抗体。这些修饰方法是本领域常规的。

[0399] 也可以使用完全的人抗体，这样的抗体除了人框架区和恒定区外还包括人可变区。此类抗体可使用本领域已知的多种技术来制备。例如，体外方法包括使用展示在噬菌体上的人抗体片段的重组文库（例如 Hoogenboom & Winter, J Mol Biol. 227:381 (1991))。类似的，可通过将人免疫球蛋白基因座导入转基因动物，例如内的免疫球蛋白基因部分或完全灭活的小鼠，来生成人抗体。该方法记载于例如美国专利 Nos. 6, 150, 584 ; 5, 545, 807 ; 5, 545, 806 ; 5, 569, 825 ; 5, 625, 126 ; 5, 633, 425 ; 5, 661, 016。

[0400] 可以将上述获得的抗体纯化至同质。例如，可依照用于一般蛋白质的分离和纯化方法进行抗体的分离和纯化。例如，可以通过适当选择和组合使用柱层析诸如亲
和层析、过滤、超滤、盐析、透析、SDS 聚丙烯酰胺凝胶电泳和等电聚焦来分出和分离抗体 (Antibodies: A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory (1988)), 但并不局限于此。蛋白 A 柱和蛋白 G 柱可以用来选择和柱。示例性的可使用蛋白 A 柱包括例如 Hyper D, POROS 和 Sepharose F.F. (Pharmacia)。

[0401] 除亲和层析外的示例性层析包括例如离子交换层析、疏水层析、凝胶过滤、反相层析、吸附层析，等等 (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press (1996))。可以通过液相层析来进行层析流程，诸如 HPLC 和 FPLC。

[0402] 例如，可使用吸光度测量、酶联免疫吸附测定法 (ELISA)、酶免疫测定法 (EIA)、放
射免疫测定法（RIA）和或免疫荧光来测量本发明抗体的抗原结合活性。在ELISA中，将本发明的抗体固定化在板上，将本发明的肽施加到该板上，在施加含有所需抗体的样本，诸如生成抗体的细胞的培养物上清液或纯化的抗体。然后施加酶（诸如碱性磷酸酶）标记的、识别第一抗体的第二抗体，将板温育。接着，在洗涤后，向板中加入酶底物，诸如磷酸对硝基苯酯，并测量吸光度以评估样品的抗原结合活性。可以使用肽的片段，诸如C-末端或N-末端片段作为抗原来评估抗体的结合活性。可以使用BIAcore（Pharmacia）来评估本发明抗体的活性。

[0403] 上述方法允许通过将本发明的抗体暴露于假定含有本发明肽的样品，并检测或测量由抗体与肽形成的免疫复合物，来检测或测量本发明的肽。

[0404] 因为依照本发明的肽检测或测量方法可特异性的检测或测量肽，所以该方法可用于使用肽的各种实际实验。

[0405] XII、载体和宿主细胞

[0406] 本发明还提供了导入有编码本发明肽的核苷酸的载体和宿主细胞。本发明的载体可用于在宿主细胞中维持本发明的核苷酸，尤其是DNA，用于表达本发明的肽，或者用于使用本发明的核苷酸以用于基因疗法。

[0407] 当宿主细胞为大肠杆菌且在大肠杆菌（例如JM109、DH5α、HB101或XL1Blue）中大量扩增和生成载体时，载体应具有能在大肠杆菌中扩增的“（复制）起点”和用于选择经过转化的大肠杆菌的标志基因（例如通过药物诸如氨苄青霉素、四环素、卡那霉素、氯霉素等进行选择的药物抗性基因）。例如，可以使用M13系列载体、pUC系列载体、pBR322、pBluescript、pCR-Script等。另外，与上述载体一样，pGEM-T、pDIRECT和pT7也可以用于亚克隆和提取cDNA。当使用载体来生成功能的蛋白质时，表达载体是有用的。

[0409] 除了大肠杆菌外，还可以使用例如源自哺乳动物的表达载体（例如pCDNA3（Invitrogen）和pEGF-BOS（Nucleic Acids Res 18(17):5322(1990））、pEF、pCDM8）、源自昆虫细胞的表达载体（例如“Bac-to-BAC杆状病毒表达系统”（GIBCO BRL）、pBacPAK8）、源自植物的表达载体（例如pMH1、pMH2）、源自动物病毒的表达载体（例如pHSV、pMV、pAdexLuc）、源自逆转录病毒的表达载体（例如pZIPneo）、源自酵母的表达载体（例如“毕赤酵母表达试剂盒”（Invitrogen）、pNV11、SP-Q01）及源自枯草芽孢杆菌的表达载体（例如pPL608、pKTH50）来生成功能的多肽。

[0410] 为了在动物细胞诸如CHO、COS或NIH3T3细胞中表达载体，载体应具有在所述细胞中进行表达所必需的启动子，例如SV40启动子（Mulligan et al., Nature

[0411] 提供下面的实施例来例示本发明及帮助本领域普通技术人员来制备和使用本发明。实施例并非意图以任何方式限制本发明的范围。

实施例
[0412] 材料和方法
[0413] 细胞系
[0414] 人白细胞抗原 (HLA)-A*2402 阳性 B+ 淋巴母细胞样细胞系 TISIS 购自 IHWG Cell and Gene Bank (Seattle WA)。OS7, MDA-MB-435S 和 T47D 购自 ATCC。KLM-1 和 KP-IN 分别购自 RIKEN 细胞库和 JCRB 细胞库。
[0415] 来源 MELK 的肽的候选者选择
[0416] 使用结合预测软件 "BIMAS" (www-bimas.cit.nih.gov/molbio/hla_bind) 预测了源 MELK 的结合 HLA-A*2402 分子的 9 聚体和 10 聚体肽, 该算法由 Parker et al. (J Immunol 1994, 152(1):163-75) 和 Kuzushima et al. (Blood 2001, 98(6):1872-81) 描述。受 HLA-A*2402 限制的 HIV 肽 (RRLRQLLGSQL (SEQ ID NO:48)) 用作对照。这些肽由 Biosynthesis (Lewisville, TX) 根据标准固相合成法合成, 并通过反相高效液相色谱 (HPLC) 纯化。分别通过分析型 HPLC 和质谱分析来确定肽的纯度 (>90%) 和身份。将肽以 20 mg/ml 溶解在二甲基亚砜 (DMSO) 中并保存于 -80°C。
[0417] 体外 CTL 诱导
[0418] 使用单核细胞衍生的树突细胞 (DC) 作为抗原呈递细胞 (APC) 来诱导针对呈现在 HLA 上的肽的细胞毒性 T 淋巴细胞 (CTL) 应答。如他处所述 (Nakahara S et al., Cancer Res 2003 Jul 15, 63(14):4112-8) 体外制备 DC。具体地说, 对于用 Ficoll-Plaque (Pharmacia) 溶液从三名健康供体 (称为供体 A, B, C) (HLA-A*2402 阳性) 分离的外周血单个核细胞 (PBMC), 通过粘附培养物组织培养盘 (Becton Dickinson) 加以分离, 以将它们作为单核细胞级分加以富集。将富集的单核细胞的群体在含 2% 热灭活的自体血清 (AS) 的 AIM-V 培养基 (Invitrogen) 中, 在 1,000 U/ml 的粒细胞 - 巨噬细胞集落刺激因子 (GM-CSF) (R&D System) 和 1,000 U/ml 白介素 (IL)-4 (R&D System) 的存在下培养。培养 7 天后, 将经细胞因子诱导的 DC 在 AIM-V 培养基中在 3 μg/ml β2- 微球蛋白存在下用 20 μg/ml 每一种合成肽于 37°C 沉积 3 小时。所生成的细胞表面在它们的细胞表面上表达 DC 相关分子, 诸如 CD80, CD83, CD86 和 HLA II 类 (数据未显示)。然后将这些经肽刺激的 DC 用 X 辐照 (20 Gy) 灭活, 并以 1:20 比例与用 CD8 阳性分离试剂盒 (Dynal) 通过正选择获得的自体 CD8+T 细胞混合。在 48 孔板 (Corning) 中设立这些培养物, 每个孔在 0.5 ml AIM-V/2% AS 培养基中有 1.5×10^4 个经肽刺激的 DC、3×10^5 个 CD8+T 细胞和 10 ng/ml IL-7 (R&D System)。3 天后, 给这些培养物补充 IL-2 (CHIRON) 至终浓度 20 U/ml。在第 7 天和第 14 天, 将 T 细胞用经肽刺激的自体 DC 进一步刺激, 每次通过与上文所述相同的方式来制备 DC。在第 21 天在第三轮肽刺激后针对经肽刺激的 A24LCL 细胞测试 CTL (Tanaka H et al., Br J Cancer 2001

[0423] 通过 PCR 来扩增编码靶基因可读框或 HLA-A*2402 的 cDNA。将 PCR 扩增产物克隆入 pCAGGS 载体。使用 Lipofectamine 2000 (Invitrogen) 依制造商推荐的规程将质粒转染入 COS7(靶基因和 HLA-A24 阴性的细胞系)。自转染起 2 天后，用 Versene (Invitrogen) 收获经转染的细胞，并用作 CTL 活性测定法的刺激细胞 (5x10⁴ 个细胞 / 孔)。

[0427] 抑制测定

[0428] 为了确认 HLA I 类限制性 CTL 活性，将刺激细胞与 10 μg/ml 抗 HLA I 类单克隆抗体 W6/32 (Biolegend) 或正常小鼠 IgG (Santa Cruz Biotechnology) 在 4℃一起温育 30 分钟。经过处理的细胞用作刺激物来检查 CTL 活性。

[0429] 结果

[0430] 来自 MELK 的 HLA-A24 结合肽的预测

[0431] 表 1A 和 1B 以高结合亲和力的顺序显示了源自 MELK 的 HLA-A24 结合性 9 聚体和
10 聚体肽。选择并考察了总共 34 个具有潜在 HLA-A24 结合能力的肽以确定表位肽。

[0432] [表 1A]

[0433] 源自 MELK 的 HLA-A24 结合性 9 聚体肽

<table>
<thead>
<tr>
<th>SEQ ID NO.</th>
<th>起始位置</th>
<th>氨基酸序列</th>
<th>结合得分</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>199</td>
<td>LYVLMCGFL</td>
<td>300</td>
</tr>
<tr>
<td>2</td>
<td>96</td>
<td>DYT1SQRDL</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>560</td>
<td>HYNTTTRL</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>373</td>
<td>DYDWCEDDL</td>
<td>200</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>KYEELHETI</td>
<td>144</td>
</tr>
<tr>
<td>6</td>
<td>87</td>
<td>EYCPGGELF</td>
<td>120</td>
</tr>
<tr>
<td>7</td>
<td>637</td>
<td>VYKRLVEDI</td>
<td>60</td>
</tr>
<tr>
<td>8</td>
<td>610</td>
<td>OPELEVCGQL</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>588</td>
<td>DFVQKGYTL</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>526</td>
<td>VFGSLEGL</td>
<td>24</td>
</tr>
<tr>
<td>11</td>
<td>567</td>
<td>RLVNPDLQLL</td>
<td>14.4</td>
</tr>
<tr>
<td>12</td>
<td>603</td>
<td>DFGKVTMQF</td>
<td>14</td>
</tr>
<tr>
<td>13</td>
<td>522</td>
<td>KAGKFGSL</td>
<td>13.4</td>
</tr>
<tr>
<td>14</td>
<td>326</td>
<td>RGKVPVLRL</td>
<td>13.4</td>
</tr>
<tr>
<td>15</td>
<td>450</td>
<td>KNOHKREIL</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>230</td>
<td>KWLSPPSIL</td>
<td>12</td>
</tr>
<tr>
<td>17</td>
<td>395</td>
<td>KYWTECSNGV</td>
<td>12</td>
</tr>
<tr>
<td>18</td>
<td>502</td>
<td>RCRSVELDL</td>
<td>11.2</td>
</tr>
<tr>
<td>19</td>
<td>145</td>
<td>KLKLDFGL</td>
<td>11.2</td>
</tr>
<tr>
<td>20</td>
<td>574</td>
<td>LLNEIMSIL</td>
<td>10.1</td>
</tr>
</tbody>
</table>
[0435] [表 1B]

[0436] 源自 MELK 的 HLA-A24 结合性 10 聚体肽

<table>
<thead>
<tr>
<th>SEQ ID NO.</th>
<th>起始位置</th>
<th>氨基酸序列</th>
<th>结合得分</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>637</td>
<td>VYKRLVEDIL</td>
<td>280</td>
</tr>
<tr>
<td>24</td>
<td>309</td>
<td>QYDIHTATYL</td>
<td>200</td>
</tr>
<tr>
<td>25</td>
<td>142</td>
<td>EYHKLLTDF</td>
<td>100</td>
</tr>
<tr>
<td>26</td>
<td>139</td>
<td>LFDEYHKLL</td>
<td>26.4</td>
</tr>
<tr>
<td>27</td>
<td>532</td>
<td>RGLDKVITVL</td>
<td>20.2</td>
</tr>
<tr>
<td>28</td>
<td>230</td>
<td>KWLSPSSILL</td>
<td>12</td>
</tr>
<tr>
<td>29</td>
<td>55</td>
<td>KTETEALKLN</td>
<td>12</td>
</tr>
<tr>
<td>30</td>
<td>295</td>
<td>RNRRQTMEDL</td>
<td>12</td>
</tr>
<tr>
<td>31</td>
<td>223</td>
<td>RGYDKVPKL</td>
<td>11.2</td>
</tr>
<tr>
<td>32</td>
<td>632</td>
<td>KGDAWYKRL</td>
<td>11.2</td>
</tr>
<tr>
<td>33</td>
<td>266</td>
<td>DYNYPVWQS</td>
<td>10.5</td>
</tr>
<tr>
<td>34</td>
<td>463</td>
<td>RYTTPSKARN</td>
<td>10</td>
</tr>
</tbody>
</table>

[0437] 起始位置表示自 MELK 的 N 末端起的氨基酸残基数

[0438] 结合得分由 “BIMAS” 获得

[0439] 使用预测的来自 MELK 的 HLA-A*2402 限制型肽诱导 CTL

[0440] 使用“材料和方法”中描述的规程制备了来自供体 A 的 PBMC 的针对那些源自 MELK 的肽的 CTL。通过 IFN-γ ELISPOT 测定法测定了肽特异性 CTL 活性（图 1）。下列孔号与对照孔相比显示了强的 IFN-γ 生成（a）刺激的 2 号孔，用 MELK-A24-9-87 (SEQ ID NO:6) (a) 刺激的 2 号孔，用 MELK-A24-10-637 (SEQ ID NO:23) (b) 刺激的 1 号和 3 号孔，用 MELK-A24-9-199 (SEQ ID NO:1) (d) 刺激的 8 号孔，和用 MELK-A24-9-78 (SEQ ID NO:21) (e) 刺激的 4 号孔。另一方面，用表 1 所示的其他肽刺激未能检测到特异性 CTL 活性，尽管那些肽具有可能的 HLA-A*2402 结合活性。例如，用 MELK-A24-9-96 (SEQ ID NO:2) 刺激的 CTL 应答的典型阴性数据示于图 1(c)。结果显示 4 种衍生自 MELK 的肽作为能够诱导强的 CTL 的肽被筛选出来。

[0441] 针对 MELK 特异性肽的 CTL 系和克隆的建立
对用 MELK-A24-9-87 (SEQ ID NO:6) 刺激的 2 号孔和用 MELK-A24-10-637 (SEQ ID NO:23) 刺激的 3 号孔中通过 IFN-γ ELISPOT 测定法检测显示出肽特异性 CTL 活性的细胞进行扩增，并建立 CTL 系。通过 IFN-γ ELISA 测定法测定那些 CTL 系的 CTL 活性（图 2）。与未经肽刺激的靶细胞相比，所有 CTL 系针对经 MELK-A24-9-87 (SEQ ID NO:6) (a) MELK-A24-10-637 (SEQ ID NO:23) (b) 和 MELK-A24-9-199 (SEQ ID NO:1) (c) 刺激的靶细胞均展现出强的 IFN-γ 生成。此外，如“材料与方法”中所述将 CTL 系稀释并培养以建立 CTL 克隆，并通过 IFN-γ ELISA 测定法测定这些 CTL 克隆针对用关联肽刺激的靶细胞的 IFN-γ 生成。在图 3 中，从用 MELK-A24-9-87 (SEQ ID NO:6) 和 MELK-A24-9-199 (SEQ ID NO:1) 刺激的 CTL 克隆测得有强的 IFN-γ 生成。

针对表达 MELK 和 HLA-A*2402 的靶细胞的特异性 CTL 活性

对针对 MELK-A24-9-87 (SEQ ID NO:6) 产生的建成 CTL 克隆，检查其识别表达 MELK 和 HLA-A*2402 基因的靶细胞的能力。使用经 MELK-A24-9-87 (SEQ ID NO:6) 刺激的 CTL 克隆测试了针对用全长 MELK 和 HLA-A*2402 基因同时转染的 COS7 细胞（表达 MELK 和 HLA-A*2402 基因的一种特异性模型）的特异性 CTL 活性。制备了用全长 MELK 基因或 HLA-A*2402 转染的 COS7 细胞作为对照。在图 4 中，经 MELK-A24-9-87 (SEQ ID NO:6) 刺激的 CTL 克隆针对表达 MELK 和 HLA-A*2402 二者的 COS7 细胞显示出强的 CTL 活性。另一方面，没有检测到针对对照的特异性 CTL 活性。因此，这些数据清楚地证明 MELK-A24-9-87 (SEQ ID NO:6) 被内源地加工并与 HLA-A*2402 分子一起被呈递在靶细胞上，并被 CTL 识别。

HLA-A24 结合性 MELK-A24-9-87 修饰肽的预测

然后，本发明人考察了自 MELK-A24-9-87 (SEQ ID NO:6) 替代一个氨基酸残基的、具有比野生型 MELK-A24-9-87 (MELK-A24-9-87_WT) (SEQ ID NO:6) 更高效地诱导 MELK-A24-9-87 特异性 CTL 的潜在能力的修饰肽。表 2 以结合亲和力的顺序显示了 MELK-A24-9-87_WT (SEQ ID NO:6) 的序列经修饰的候选肽。选择了总共 11 种预测具有比 MELK-A24-9-87_WT (SEQ ID NO:6) 更高的结合能力的肽，并检查免疫原性。

<table>
<thead>
<tr>
<th>SEQ ID NO.</th>
<th>肽名</th>
<th>氨基酸序列</th>
<th>结合得分</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>MELK-A24-9-87_1K</td>
<td>KYCPGGELF</td>
<td>240</td>
</tr>
<tr>
<td>36</td>
<td>MELK-A24-9-87_1R</td>
<td>RYCPGGELF</td>
<td>240</td>
</tr>
<tr>
<td>37</td>
<td>MELK-A24-9-87_9L</td>
<td>EYCPGGELL</td>
<td>240</td>
</tr>
<tr>
<td>38</td>
<td>MELK-A24-9-87_3E</td>
<td>EYEPGGELF</td>
<td>180</td>
</tr>
<tr>
<td>39</td>
<td>MELK-A24-9-87_31</td>
<td>EYIPGGELF</td>
<td>180</td>
</tr>
<tr>
<td>40</td>
<td>MELK-A24-9-87_3L</td>
<td>EYLPGGELF</td>
<td>180</td>
</tr>
<tr>
<td>41</td>
<td>MELK-A24-9-87_3M</td>
<td>EYMPGELF</td>
<td>180</td>
</tr>
<tr>
<td>----</td>
<td>-----------------</td>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>42</td>
<td>MELK-A24-9-87_3N</td>
<td>EYMPGELF</td>
<td>180</td>
</tr>
<tr>
<td>43</td>
<td>MELK-A24-9-87_3P</td>
<td>EYMPGELF</td>
<td>180</td>
</tr>
<tr>
<td>44</td>
<td>MELK-A24-9-87_7N</td>
<td>EYCPGELF</td>
<td>144</td>
</tr>
<tr>
<td>45</td>
<td>MELK-A24-9-87_7Q</td>
<td>EYCPGELF</td>
<td>144</td>
</tr>
<tr>
<td>6</td>
<td>MELK-A24-9-87_WT</td>
<td>EYCPGELF</td>
<td>120</td>
</tr>
</tbody>
</table>

[0450] 结合得分为“BIMAS”得出

[0451] 用来自 MELK-A24-9-87 的修饰肽诱导 CTL

[0452] 根据“材料与方法”中描述的程序生成对表 2 中的修饰肽的反应性 CTL。通过 IFN-γ ELISPOT 测定法测定肽特异性 CTL 活性。图 5A 显示了对从供体 B 的 PBMC 诱导的 CTL 的 IFN-γ ELISPOT 测定的结果。下面的孔与对照孔相比展现了强的 IFN-γ 生成：用 MELK-A24-9-87_1K (SEQ ID NO:35) (a) 刺激的 1 号、3 号和 12 号孔；用 MELK-A24-9-87_3M (SEQ ID NO:41) (b) 刺激的 2 号孔；以及用 MELK-A24-9-87_7N (SEQ ID NO:44) (c) 刺激的 10 号和 12 号孔。另一方面，从用 MELK-A24-9-87_WT (SEQ ID NO:6) (d) 刺激的 PBMC 没有检测到特异性的 IFN-γ 生成。

[0453] 对另一供体 C 的 PBMC 也用表 2 中的修饰肽进行了刺激。图 5B 显示用 MELK-A24-9-87_7N (SEQ ID NO:44) 刺激的第 14 号孔与对照相比显示了强的 IFN-γ 生成。另一方面，从用 MELK-A24-9-87_WT (SEQ ID NO:6) (b) 刺激的 CTL 以及供体 B 的 PBMC 没有检测到特异性的 IFN-γ 生成。

[0454] 这些结果显示 MELK-A24-9-87_1K (SEQ ID NO:35), MELK-A24-9-87_3M (SEQ ID NO:41) 和 MELK-A24-9-87_7N (SEQ ID NO:44) 与 MELK-A24-9-87_WT (SEQ ID NO:6) 相比具有更好的免疫原性。

[0455] 通过用 MELK 修饰肽刺激来建立 CTL 系和克隆

[0456] 对来自供体 B 的用 MELK-A24-9-87_1K (SEQ ID NO:35) 刺激的 1 号孔，用 MELK-A24-9-87_3M (SEQ ID NO:41) 刺激的 2 号孔，以及来自供体 C 的用 MELK-A24-9-87_7N (SEQ ID NO:44) 刺激的 12 号孔中，以及来自供体 B 的用 MELK-A24-9-87_7N (SEQ ID NO:44) 刺激的 14 号孔中通过 IFN-γ ELISPOT 测定法检测显示肽特异性 CTL 活性的细胞进行扩增，以建立 CTL 系。对用 MELK-A24-9-87_WT (SEQ ID NO:6) 刺激的 4 号孔中显示较弱 IFN-γ 生成的细胞也进行了扩增。

[0457] 通过 IFN-γ ELISPOT 测定法测定了那些 CTL 系的 CTL 活性。在图 6 中，来自供体 B 的用 MELK-A24-9-87_1K (SEQ ID NO:35) (a), MELK-A24-9-87_3M (SEQ ID NO:41) (b) 和 MELK-A24-9-87_7N (SEQ ID NO:44) (c) 刺激的 CTL 系针对用 MELK-A24-9-87_WT (SEQ ID NO:6) 刺激的靶细胞与针对用无关 HIV 肽冲激的靶细胞相比显示了强的 IFN-γ 生成。来自供体 C 的用 MELK-A24-9-87_7N (SEQ ID NO:44) 刺激的 CTL 系也显示了 MELK-A24-9-87_WT (SEQ ID NO:6) 肽特异性的 IFN-γ 生成 (d), 而用 MELK-A24-9-87_WT (SEQ ID NO:6) 刺
激的扩增的细胞对用 MELK-A24-9-87_WT (SEQ ID NO:6) 冲激的靶细胞没有显示 IFN-γ 生成 (e)。

[0458] 下接来，如“材料与方法”中所述通过有限稀释建立 CTL 克隆并通过 IFN-γ ELISA 测定法测定那些 CTL 克隆的 CTL 活性。从来自供体 B 的用 MELK-A24-9-87_1K (SEQ ID NO:35)，MELK-A24-9-87_3M (SEQ ID NO:41) 和 MELK-A24-9-87_7N (SEQ ID NO:44) 刺激的 CTL 克隆（图 7a-c）、以及来自供体 C 的 MELK-A24-9-87_7N (SEQ ID NO:44) （图 7d）刺激的 CTL 克隆针对用 MELK-A24-9-87_WT (SEQ ID NO:6) 冲激的靶细胞相比于针对用无关的 HIV 冲激的靶细胞检测到了强的 IFN-γ 生成。

[0459] 与这两名供体的 CTL 诱导的结合结合起来看，显示 MELK-A24-9-87_1K (SEQ ID NO:35)，MELK-A24-9-87_3M (SEQ ID NO:41) 和 MELK-A24-9-87_7N (SEQ ID NO:44) 与 MELK-A24-9-87_WT (SEQ ID NO:6) 相比具有更好的诱导强 MELK-A24-9-87 反应性 CTL 的免疫原性。

[0460] 针对表达 MELK 和 HLA-A*2402 的靶细胞的特异性 CTL 活性

[0461] 对建成的 CTL 系和克隆，检查它它们识别表达 MELK 和 HLA-A*2402 的靶细胞的能力。在图 8a 中，经 MELK-A24-9-87_7N (SEQ ID NO:44) 刺激的 CTL 系显示了针对肿瘤细胞系 MDA-MB-435S (MELK+, A24+) 和 KLM-1 (MELK+, A24+) 的强的 CTL 活性，而对 T47D (MELK+, A24-) 和 KP-1N (MELK+, A24-) 不显示 CTL 活性。为了确认这种 CTL 活性是以 HLA I 类限制性的方式引起的，进行了抑制测定，使用抗 HLA-I 类单克隆抗体来阻断 CTL 的抗原特异性应答。在图 8b 中，与正常小鼠 IgG 相比，CTL 针对 KLM-1 (MELK+, A24+) 的 IFN-γ 生成完全被抗 HLA-I 类单克隆抗体抑制。这些结果明显地显示用 MELK-A24-9-87_7N (SEQ ID NO:44) 诱导的 CTL 能够以 HLA-I 类限制性的方式识别靶细胞上天然表达的与 HLA-A*2402 分子一起的 MELK 表位肽。作为典型地阴性数据，图 9 显示 MELK-A24-9-199 (SEQ ID NO:1) 特异性 CTL 克隆针对用 MELK-A24-9-199 (SEQ ID NO:1) 冲激的靶细胞 (a) 与肿瘤细胞系 KLM-1 (MELK+, A24+) 和 KP-1N (MELK+, A24-) (b) 的 IFN-γ 生成。尽管 MELK-A24-9-199 (SEQ ID NO:1) 特异性 CTL 克隆具有识别经肽冲激的靶细胞的能力，其针对肿瘤细胞系 KLM-1 (MELK+, A24+) 未显示 IFN-γ 生成。这些结果提示 MELK-A24-9-199 (SEQ ID NO:1) 不被天然地呈递在表达 MELK 的肿瘤细胞上。

[0462] 对抗原肽的同源性分析

[0463] 经 MELK-A24-9-87 (SEQ ID NO:6)，MELK-A24-10-637 (SEQ ID NO:23)，MELK-A24-9-87_1K (SEQ ID NO:35)，MELK-A24-9-87_3M (SEQ ID NO:41) 和 MELK-A24-9-87_7N (SEQ ID NO:44) 刺激的 CTL 显示出显著的且特异的 CTL 活性。这个结果可能是由于 MELK-A24-9-87 (SEQ ID NO:6)，MELK-A24-10-637 (SEQ ID NO:23)，MELK-A24-9-87_1K (SEQ ID NO:35)，MELK-A24-9-87_3M (SEQ ID NO:41) 和 MELK-A24-9-87_7N (SEQ ID NO:44) 的序列与其它已知可使人免疫系统致敏的分子衍生的肽同源。为了排除这种可能性，使用 BLAST 算法 (www.ncbi.nlm.nih.gov/blast/blast.cgi) 使用这些肽序列作为检索项实施了同源性分析，没有发现具有显著同源性的序列。同源性分析的结果指出 MELK-A24-9-87 (SEQ ID NO:6)，MELK-A24-10-637 (SEQ ID NO:23)，MELK-A24-9-87_1K (SEQ ID NO:35)，MELK-A24-9-87_3M (SEQ ID NO:41) 和 MELK-A24-9-87_7N (SEQ ID NO:44) 的序列是独特的，因此，就我们所知，这些分子产生对一
些无关分子的不期望的免疫学应答的可能性很小。

[0464] 总之，鉴定了新的源自 MELK 的靶位肽，它们具有修饰的 MELK-A24-9-87 (SEQ ID NO:6) 的序列。这里呈现的结果证明了 MELK-A24-9-87_7N (SEQ ID NO:44)，来自 MELK-A24-9-87 (SEQ ID NO:6) 的修饰的肽，与 MELK-A24-9-87 (SEQ ID NO:6) 相比，高效地诱导 CTL，所述 CTL 识别表达 MELK 的靶细胞并显示强的 CTL 活性。

[0465] 工业应用性

[0466] 本发明提供了新的 TAA，特别是源自修饰的 MELK 肽的新 TAA，它们可诱导强而特异性的抗肿瘤免疫应答，并且可应用于范围广泛的疾病，包括癌症。这样的 TAA 可以用作针对与 MELK 过表达相关的疾病，例如子宫内膜异位或癌症，更具体地说，乳腺癌、膀胱癌、宫颈癌、胆管细胞癌、CML、慢性髓性白血病、结肠直肠癌、食道癌、胃癌、肝癌、NSCLC、淋巴瘤、骨肉瘤、卵巢癌、胰腺癌、前列腺癌、肾细胞癌和 SCLC 的肽疫苗。

[0467] 虽然本文中参照其具体实施方案详细地描述了本发明，但是要理解，上面的描述本质上是例示性的和解释性的，而且意图例示本发明及其优选实施方案。经由常规实验，本领域技术人员会容易地认识到，可以对本发明进行各种变化和修饰，而不偏离本发明的精神和范围，本发明的边界和范围由所附权利要求来限定。
序列表

[0001]

表列

<110> 蟲癌療法科技股份有限公司 (ONCOTHERAPY SCIENCE, INC.)

<210> 修飾的 MELK 蛋白及包含它的疫苗

<213> ONC-A1001P

<54> US 61/397,996

<51> 2010-01-25

<52>

<70> PatentIn version 3.5

<210> 1

<211> 9

<212> PRE

<213> 人工的

<220> 人工合成肽

Leu Tyr Val Leu Met Cys Gly Phe Leu

1 5

<210> 2

<211> 9

<212> PRE

<213> 人工的

<220> 人工合成肽

Asp Tyr Ile Ile Ser Gin Asp Arg Leu

1 5

<210> 3

<211> 9

<212> PRE

<213> 人工的

<220> 人工合成肽

His Tyr Asp Val Thr Thr Thr Arg Leu

1 5

<210> 4

<211> 9

<212> PRE

<213> 人工的

<220> 人工合成肽

Asp Tyr Asp Trp Cys Gin Asp Asp Leu

1 5

<210> 5

<211> 9

<212> PRE

<213> 人工的

<220> 人工合成肽

<400> 5
<table>
<thead>
<tr>
<th>序号</th>
<th>氨基酸序列</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lys Tyr Tyr Glu Leu His Glu Thr Ile</td>
</tr>
<tr>
<td>2</td>
<td>Glu Tyr Cys Pro Gly Gly Glu Leu Phe</td>
</tr>
<tr>
<td>3</td>
<td>Val Tyr Lys Arg Leu Val Glu Asp Ile</td>
</tr>
<tr>
<td>4</td>
<td>Gin Phe Glu Leu Glu Val Cys Gin Leu</td>
</tr>
<tr>
<td>5</td>
<td>Asp Phe Val Gin Lys Gly Tyr Thr Leu</td>
</tr>
<tr>
<td>6</td>
<td>Val Phe Gly Ser Leu Glu Arg Gly Leu</td>
</tr>
<tr>
<td>序列</td>
<td>氨基酸序列</td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>1-5</td>
<td>Arg Leu Val Asp Pro Asp Glu Leu</td>
</tr>
<tr>
<td>6-10</td>
<td>Lys Gly Ala Lys Val Phe Gly Ser Leu</td>
</tr>
<tr>
<td>11-15</td>
<td>Arg Gly Lys Pro Val Arg Leu Arg Leu</td>
</tr>
<tr>
<td>16-20</td>
<td>Lys Asp Cln His Lys Arg Glu Ile Leu</td>
</tr>
<tr>
<td>21-25</td>
<td>Lys Trp Leu Ser Pro Ser Ser Ile Leu</td>
</tr>
</tbody>
</table>

[0004]
<table>
<thead>
<tr>
<th>序列表</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys Tyr Trp Thr Glu Ser Asn Gly Val</td>
</tr>
<tr>
<td>Arg Cys Arg Ser Val Glu Leu Asp Leu</td>
</tr>
<tr>
<td>Lys Leu Lys Leu Ile Asp Phe Gly Leu</td>
</tr>
<tr>
<td>Leu Leu Asp Glu Ile Met Ser Ile Leu</td>
</tr>
<tr>
<td>Thr Ala Asn Ile Gly Phe Met Val Leu</td>
</tr>
</tbody>
</table>

[0005]
<table>
<thead>
<tr>
<th>序列号</th>
<th>序列</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>人工合成肽</td>
</tr>
<tr>
<td>23</td>
<td>10</td>
<td>人工合成肽</td>
</tr>
<tr>
<td>24</td>
<td>10</td>
<td>人工合成肽</td>
</tr>
<tr>
<td>25</td>
<td>10</td>
<td>人工合成肽</td>
</tr>
<tr>
<td>26</td>
<td>10</td>
<td>人工合成肽</td>
</tr>
<tr>
<td>27</td>
<td>10</td>
<td>人工合成肽</td>
</tr>
</tbody>
</table>

Val Tyr Lys Arg Leu Val Glu Asp lie Leu

Gln Tyr Asp His Leu Thr Ala Thr Tyr Leu

Glu Tyr His Lys Leu Lys Leu lie Asp Phe

Leu Phe Asp Glu Tyr His Lys Leu Lys Leu

Arg Gly Leu Asp lys Val lie Thr Val Leu
序列表

Lys Trp Leu Ser Pro Ser Ser Ile Leu Leu
1 5 10

Thr Glu Ile Glu Ala Leu Lys Asn Leu
3 5 10

Arg Asn Asn Arg Glu Thr Met Glu Asp Leu
1 5 10

Arg Gly Lys Tyr Asp Val Pro Lys Trp Leu
1 5 10

Lys Gly Asp Ala Trp Val Tyr Lys Arg Leu
1 5 10

Asp Tyr Asn Tyr Pro Val Glu Trp Gln Ser
1 5 10

[0007]
序列表

Arg Tyr Thr Thr Pro Ser Lys Ala Arg Asn
1 5 10

Lys Tyr Cys Pro Gly Gly Glu Leu Phe
1 5

Glu Tyr Cys Pro Gly Gly Glu Leu Leu
1 5

[0008]
序列表

Glu Tyr Leu Pro Gly Gly Glu Leu Phe
1 5

Glu Tyr Met Pro Gly Gly Glu Leu Phe
1 5

Glu Tyr Asn Pro Gly Gly Glu Leu Phe
1 5

Glu Tyr Pro Pro Gly Gly Glu Leu Phe
1 5

Glu Tyr Cys Pro Gly Gly Asn Leu Phe
1 5

[0009]
Glu Tyr Cys Pro Gly Gin Leu Phe
1 5

<210> 46
<211> 2591
<212> DNA
<213> 人

<220>
<221> CDS

<400> 46
cgagaggatt cctggagag ccctagcccg cctctcttctt agagacag acagtctgccc 60
tctgtggg ccctgctcag ccctgcctag gttttttttaatccau 120
taaaatngaagact atg aag gat tat tat gat gaa ctt gta aag tat tat 171
met lys tyr asp glu gin leu leu lys tyr tyr
1 5 10

=aa =al =ala =al
<table>
<thead>
<tr>
<th>序 列 表</th>
</tr>
</thead>
<tbody>
<tr>
<td>apc att ctc ctt caa caa ctc cag gil gac cac uag gag ugg ser ilu leu leu leu glu glu met leu glu val asp pro lys lys arg</td>
</tr>
<tr>
<td>240</td>
</tr>
<tr>
<td>aat tct atg aam aat ctc tgg acc cac ctc cag ttc gnt cag uua gag tac iler ser met lys ana leu leu ana pro trp ille met glu asp tyr</td>
</tr>
<tr>
<td>255</td>
</tr>
<tr>
<td>acc tat cct gat ugg caa aap agc uag uat cct ttt acc cac ctc gat ann tyr pro val glu trp glu ser lys ana pro phe ille his leu leu</td>
</tr>
<tr>
<td>270</td>
</tr>
<tr>
<td>gat gag tgc gla aca gas otu tct glu caa uag uac uag cac uac agc uac asp asp cys val thr glu leu ser val val his his arg asp arg asp</td>
</tr>
<tr>
<td>285</td>
</tr>
<tr>
<td>aca agc gag gla tta att tca cgt ttc gag ttc cac cac ctc uag uag uag ggt gga aam cca ggt gat thr met glu asp leu ille ser leu trp glu tyr asp his leu leu ala</td>
</tr>
<tr>
<td>300</td>
</tr>
<tr>
<td>acc tat ctt ctc ctc ggc nag nag gct cgg gga aam cca ggt gat thr tyr leu leu leu leu ala lys lys lys ala gly lys pro val arg</td>
</tr>
<tr>
<td>320</td>
</tr>
<tr>
<td>tta agg ctt tct tct ttc ttc gga cac ggc act gct gat acc cca ttc leu arg leu ser ser phe ser cys gly gla ala seer ala thr pro phe</td>
</tr>
<tr>
<td>335</td>
</tr>
<tr>
<td>aca gag tca aat aat cgg act gat gac gag gat gag gac gac gac thr asp ile lys ser ser asn atm trg ser leu glu asp val trh ala</td>
</tr>
<tr>
<td>350</td>
</tr>
<tr>
<td>gat aaa sat tat gil gog gga tla ala uac gac tat sat tgg ugt gas sat ans lys ans tyr val ala gly leu ile asp tyr asp cys glu asp</td>
</tr>
<tr>
<td>362</td>
</tr>
<tr>
<td>gat tia tna tna uac ggt gtt ctc ctc gcc cca gct ttt acc asp leu ser ser thr gly ala ala thr pro arg asp pro leu ser ser phe ser thr lys</td>
</tr>
<tr>
<td>380</td>
</tr>
<tr>
<td>tca tgg acc cca gag tca atg ggc gat gaa tot aat tca tta ac tccc cgc tyr trp thr glu ser asp ala val gliu ser leu leu thr pro ala</td>
</tr>
<tr>
<td>400</td>
</tr>
<tr>
<td>tta tgc aga uac ctt gca uat cac tta uac uag uaa uaa uaa gas sat gta tat lou cys arg thr pro ala ans lys lou lys glu ans val tyr</td>
</tr>
<tr>
<td>415</td>
</tr>
<tr>
<td>act cct aag agg gct gaa aat sat gag tgg aag gag tag ttt gta aat ctc act gag thr pro leu ser ala val lys val glu gly tyr phe met phe pro glu</td>
</tr>
<tr>
<td>430</td>
</tr>
<tr>
<td>cca sag act cca gtt sat sac ccc cac cac cac cac cac cac cgc pro lys thr pro val ans lys ans gla his lys arg ille lys leu thr</td>
</tr>
<tr>
<td>445</td>
</tr>
<tr>
<td>agg cca nat cgt tcc act scc ccc tta aag sat get sgg sac cac cag tgc ctt thr pro aa ana arg tyr thr pro thr pro ser lys ala arg asp gly lys</td>
</tr>
<tr>
<td>460</td>
</tr>
<tr>
<td>ana gas nat cca att nas ata ccc gas sat tca acc gga cac gcc gas sat ctc act lys glu thr pro ille lys ille pro val ans thr gly thr thr asp lys</td>
</tr>
<tr>
<td>480</td>
</tr>
<tr>
<td>tta ant cca gtt gic att age oct gag agg cgg tgg ccc ctc taa gta gaa leu met thr gly val iile ser pro ser arg arg arg arg lys met thr thr</td>
</tr>
<tr>
<td>495</td>
</tr>
<tr>
<td>tgt gas ctc aac cga cal atg gag gas act cca aam aag aag ugg leu asp leu asn gli ala his met gliu thr pro lys arg lys pro</td>
</tr>
<tr>
<td>510</td>
</tr>
<tr>
<td>ggc gaa ggg tgg ugg gas ccc ctt gau ugg ugg ugg ugg gas sat gat sat sat act alan lys val phe gly ser leu glu arg gly leu asp lys val ille thr</td>
</tr>
<tr>
<td>525</td>
</tr>
<tr>
<td>gtt ctc acc agg acc uaa agg nag gat ttt gcc uga ugg ggc ccc cag val leu thr arg ser lys arg lys gly ser ala arg arg gly pro arg</td>
</tr>
<tr>
<td>540</td>
</tr>
<tr>
<td>序列表</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>1851</td>
</tr>
<tr>
<td>1899</td>
</tr>
<tr>
<td>1947</td>
</tr>
<tr>
<td>1995</td>
</tr>
<tr>
<td>2043</td>
</tr>
<tr>
<td>2091</td>
</tr>
<tr>
<td>2144</td>
</tr>
<tr>
<td>2204</td>
</tr>
<tr>
<td>2264</td>
</tr>
<tr>
<td>2284</td>
</tr>
<tr>
<td>2304</td>
</tr>
<tr>
<td>2384</td>
</tr>
<tr>
<td>2444</td>
</tr>
<tr>
<td>2501</td>
</tr>
</tbody>
</table>

Mot Lys Asp Tyr Asp Glu Leu Leu Lys Tyr Tyr Glu Leu His Glu Thr

<table>
<thead>
<tr>
<th>1</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le 5</td>
<td>15</td>
</tr>
</tbody>
</table>

Ile Gly Thr Gly Gly Phe Ala Lys Val Lys Ala Cys His Ile Leu

<table>
<thead>
<tr>
<th>20</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thr 25</td>
<td>35</td>
</tr>
</tbody>
</table>

Thr Gly Glu Met Val Ala Ile Lys Ile Met Asp Lys Asn Thr Leu Gly

<table>
<thead>
<tr>
<th>40</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ser 45</td>
<td>60</td>
</tr>
</tbody>
</table>

Ser Asp Leu Pro Arg Ile Lys Thr Gin Gin Leu Ala Lys Asn Leu

<table>
<thead>
<tr>
<th>50</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arg 55</td>
<td>80</td>
</tr>
</tbody>
</table>

Arg His Gin His Ile Cys Gin Leu Tyr His Val Leu Gin Thr Ala Asn

<table>
<thead>
<tr>
<th>65</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lys 70</td>
<td>90</td>
</tr>
</tbody>
</table>

Lys Ile Phe Met Val Leu Tyr Gin Cys Pro Gly Gly Glu Leu Gin Phe

<table>
<thead>
<tr>
<th>85</th>
<th>95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tyr 90</td>
<td>110</td>
</tr>
</tbody>
</table>

**Tyr Ile Ile Ser Gin Asp Arg Gin Gin
Lys Leu Lys Leu Ile Asp Phe Gly Leu Cys Ala Lys Pro Lys Gly Asn 145 150 155 160
Lys Asp Tyr His Leu Gin Thr Cys Gly Ser Leu Ala Tyr Ala Ala 165 170 175
Pro Glu Leu Ile Gin Gly Lys Ser Tyr Leu Gly Ser Glu Ala Asp Val 180 185 190
Trp Ser Met Gly Ile Leu Leu Tyr Val Leu Met Cys Gly Phe Leu Pro 195 200 205
Phe Asp Asp Asp Val Met Ala Leu Tyr Lys Lys Ile Met Arg Gly 210 215 220
Lys Tyr Asp Val Pro Lys Trp Leu Ser Pro Ser Ser Ile Leu Leu Leu 225 230 235 240
Glu Gin Met Leu Gin Val Asp Pro Lys Arg Ile Ser Met Lys Asn 245 250 255
Leu Leu Asn His Pro Trp Ile Met Gin Asp Tyr Asn Pro Val Glu 260 265 270
Trp Gin Ser Lys Asn Pro Phe Ile His Leu Asp Asp Cys Val Thr 275 280 285
Glu Leu Ser Val His His Arg Asn Arg Gin Thr Met Glu Asp Leu 290 295 300
Ile Ser Leu Trp Gin Tyr Asp His Leu Thr Ala Thr Tyr Leu Leu Leu 305 310 315 320
Leu Ala Lys Lys Ala Arg Gly Lys Pro Val Arg Leu Arg Leu Ser Ser 325 330 335
Phe Ser Cys Gly Gin Ala Ser Ala Thr Pro Phe Thr Asp Ile Lys Ser 340 345 350
Asn Asn Trp Ser Leu Glu Asp Val Thr Ala Ser Asp Lys Asn Tyr Val 355 360 365
Ala Gly Leu Ile Asp Tyr Asp Trp Cys Glu Asp Leu Ser Thr Gly 370 375 380
Ala Ala Thr Pro Arg Thr Ser Gin Phe Thr Lys Tyr Trp Thr Glu Ser 385 390 395 400
Asn Gly Val Glu Ser Lys Ser Leu Thr Pro Ala Leu Cys Arg Thr Pro 405 410 415
Ala Asn Lys Leu Lys Asn Lys Glu Asn Val Tyr Thr Pro Lys Ser Ala 420 425 430
Val Lys Asn Glu Glu Tyr Phe Met Phe Pro Glu Pro Lys Thr Pro Val 435 440 445
Asn Lys Asn Gin His Lys Arg Glu Ile Leu Thr Thr Pro Asn Arg Tyr 450 455 460
<table>
<thead>
<tr>
<th>Thr</th>
<th>Thr</th>
<th>Pro</th>
<th>Ser</th>
<th>Lys</th>
<th>Ala</th>
<th>Arg</th>
<th>Asn</th>
<th>Gin</th>
<th>Cys</th>
<th>Leu</th>
<th>Lys</th>
<th>Thr</th>
<th>Pro</th>
<th>Ile</th>
</tr>
</thead>
<tbody>
<tr>
<td>465</td>
<td>470</td>
<td>475</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Ile</td>
<td>Pro</td>
<td>Val</td>
<td>Asn</td>
<td>Ser</td>
<td>Thr</td>
<td>Gly</td>
<td>Thr</td>
<td>Asp</td>
<td>Lys</td>
<td>Leu</td>
<td>Met</td>
<td>Thr</td>
<td>Gly</td>
</tr>
<tr>
<td>485</td>
<td>490</td>
<td>495</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Ser</td>
<td>Pro</td>
<td>Gly</td>
<td>Arg</td>
<td>Arg</td>
<td>Ser</td>
<td>Val</td>
<td>Cys</td>
<td>Arg</td>
<td>Ser</td>
<td>Val</td>
<td>Gly</td>
<td>Leu</td>
<td>Asp</td>
</tr>
<tr>
<td>500</td>
<td>505</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>His</td>
<td>Met</td>
<td>Glu</td>
<td>Gin</td>
<td>Thr</td>
<td>Pro</td>
<td>Lys</td>
<td>Arg</td>
<td>Lys</td>
<td>Gly</td>
<td>Ala</td>
<td>Lys</td>
<td>Val</td>
<td>Phe</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Leu</td>
<td>Glu</td>
<td>Arg</td>
<td>Gly</td>
<td>Leu</td>
<td>Asp</td>
<td>Lys</td>
<td>Val</td>
<td>Ile</td>
<td>Thr</td>
<td>Val</td>
<td>Leu</td>
<td>Thr</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Arg</td>
<td>Lys</td>
<td>Gly</td>
<td>Ser</td>
<td>Ala</td>
<td>Arg</td>
<td>Asp</td>
<td>Gly</td>
<td>Pro</td>
<td>Arg</td>
<td>Arg</td>
<td>Leu</td>
<td>Lys</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Asn</td>
<td>Val</td>
<td>Thr</td>
<td>Thr</td>
<td>Thr</td>
<td>Leu</td>
<td>Val</td>
<td>Asn</td>
<td>Pro</td>
<td>Asp</td>
<td>Gin</td>
<td>Leu</td>
<td>Leu</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Ile</td>
<td>Met</td>
<td>Ser</td>
<td>Ile</td>
<td>Leu</td>
<td>Pro</td>
<td>Lys</td>
<td>Val</td>
<td>His</td>
<td>Val</td>
<td>Asp</td>
<td>Phe</td>
<td>Val</td>
<td>Gin</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Tyr</td>
<td>Thr</td>
<td>Leu</td>
<td>Lys</td>
<td>Cys</td>
<td>Gin</td>
<td>Thr</td>
<td>Gin</td>
<td>Ser</td>
<td>Asp</td>
<td>Phe</td>
<td>Gin</td>
<td>Lys</td>
<td>Val</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>Gin</td>
<td>Phe</td>
<td>Glu</td>
<td>Leu</td>
<td>Glu</td>
<td>Val</td>
<td>Cys</td>
<td>Gin</td>
<td>Leu</td>
<td>Gin</td>
<td>Lys</td>
<td>Pro</td>
<td>Asp</td>
<td>Val</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ile</td>
<td>Arg</td>
<td>Arg</td>
<td>Gin</td>
<td>Arg</td>
<td>Leu</td>
<td>Lys</td>
<td>Gly</td>
<td>Asp</td>
<td>Ala</td>
<td>Trp</td>
<td>Val</td>
<td>Tyr</td>
<td>Lys</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Val</td>
<td>Glu</td>
<td>Asp</td>
<td>Ile</td>
<td>Leu</td>
<td>Ser</td>
<td>Ser</td>
<td>Cys</td>
<td>Val</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210>	48
<211>	10
<212>	PRT
<213>	人工酶

| <220> | 人工合成肽 |
| <223> | 人工酶 |

| <400> | 48 |
| Arg | Tyr | Leu | Arg | Gin | Gin | Leu | Leu | Gly | Ile | 1 | 5 | 10 |

<210>	49
<211>	22
<212>	DNA
<213>	人工酶

| <220> | 人工序列 |
| <223> | 人工酶 |

| <400> | 49 |
| glutacougs cattegetic at |

<210>	50
<211>	24
<212>	DNA
<213>	人工酶

[0014]
<table>
<thead>
<tr>
<th>序列</th>
<th>人工序列</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ctagcttgac cacactgca cgcgt</td>
</tr>
<tr>
<td>B</td>
<td>ttagaaacct tttcttcca c</td>
</tr>
<tr>
<td>C</td>
<td>ctggctctg gatcttctt tttc</td>
</tr>
</tbody>
</table>
图 2
图 5A
图 5B
图 7
a

MELK-A24-9-87_7N 系

IFN-γ (pg/ml)

KLM-1 (A2402+)
△ MDA-MB-435S (A2402+)
○ T47D (A2402−)
□ KP-1N (A2402−)

R/S 比

9.2 4.6 2.3 1.1 0.6 0.3

b

MELK-A24-9-87_7N 克隆

IFN-γ (pg/ml)

KLM-1 (A2402+)
■ KLM-1 / 小鼠 IgG
○ KLM-1 / 抗 I 类 HLA 单抗
□ KP-1N (A2402−)

R/S 比

4.6 2.3 1.2 0.6 0.3 0.1

图 8
图 9

图 9a: 说明某一种试剂的浓度与 IFN-γ (pg/ml) 的关系，不同浓度的试剂对 IFN-γ 的影响不同。

图 9b: 说明了不同细胞株 (KLM-1 和 KP-1N) 在不同 R/S 比下的 IFN-γ (pg/ml) 变化情况。