
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2013/0246334 A1

Ahuja et al.

US 20130246334A1

(43) Pub. Date: Sep. 19, 2013

(54)

(75)

(73)

(21)

(22)

(51)

SYSTEMAND METHOD FOR PROVIDING
DATA PROTECTION WORKFLOWS INA
NETWORKENVIRONMENT

Inventors: Ratinder Paul Singh Ahuja, Saratoga,
CA (US); Bimalesh Jha, Pune (IN);
Nitin Maini, Pune Maharashtra (IN);
Sujata Patel, Pune (IN); Ankit R. Jain,
Indore (IN); Damodar K. Hegde,
Cupertino, CA (US); Rajaram V.
Nanganure, Santa Clara, CA (US);
Avinash Vishnu Pawar, Pune (IN)

Assignee: McAfee, Inc.

Appl. No.: 13/337.737

Filed: Dec. 27, 2011

Publication Classification

(52) U.S. Cl.
USPC 707/600; 707/736; 707/E17.005;

707/E17.044

(57) ABSTRACT

A method is provided in one example and includes receiving
first sets of metadata elements representing objects of an
inventory and generating a first Summary of a first Subset of
the objects. The method further includes receiving second
sets of metadata elements and corresponding category infor
mation representing objects of the first Subset that are classi
fied based on a first category and generating a second Sum
mary of a second subset of the classified objects. In yet further
embodiments, the method includes initiating a protection task
for objects of the second subset of the classified objects. In
more specific embodiments, the protection task includes
applying a remediation policy to the objects of the second
Subset or registering the objects of the second Subset. In yet
other embodiments, the second Summary includes at least one

Int. C. of a total count and a total size of the objects in the second
G06F 7/30 (2006.01) subset.

paratasar
O

out E. f" (CCRC s iiABASE

ar iSCERSYSE:

l CRAW. INVENTORY |Eiji
f f AAEASE

a 740 740
i.ca 750 N. CONTENT
RSSEs fe CASSFAO -e E.

Kits f CE AAEASE
S

2. CRAW. REMEDIAtion wnwua -3: A FEC is |- sty. - REEAE
RODE MODULE NCIDENTSS

Y re- pa 3.
70- 77 76 r

our--- f f

- - - - ------------ 774 r -

cross - EXASE
tox ar VV r

*

5 i-MPF - - T 772 746
',

712 S 730 -?-
OBEGISTORE SEARCH oBJECT seARch
MODLE ENGINE A£EASE

- - - - - - - - - - - - - - -

SER NEiiORK s MEMORY
iNTERFACE NERC PROCESSOR ELEMENT

N ^,
t f

US 2013/0246334 A1 Sep. 19, 2013 Sheet 1 of 37 Patent Application Publication

††#######anlayo

US 2013/0246334 A1

TETETT |_XSW 1

| aindow | Hoºvas

Sep. 19, 2013 Sheet 2 of 37 Patent Application Publication

Patent Application Publication

MODULE

Sep. 19, 2013 Sheet 3 of 37

F.G. 3
AA ANAGER

SEARCH CENRA
MODULE

OBEC
SEAC

DATABASE

8EC
SORE

312-1 CLASSIFICATION O

CAPTURE
30 - MODULES

NETWORK
34

AA FRO
ROERNEWORK

AABASE

US 2013/0246334 A1

SEARCH -314
ENGINE

Patent Application Publication Sep. 19, 2013 Sheet 4 of 37 US 2013/0246334 A1

32

EC SR, i.

322 324 N. CONTENSORE -314

326-FILESPONTERs
SEAR
ENGE

AG
AAEASE

3

KEYWORD EAAA

OBJECT INDEX(s) INDEX(s)
CASSIFICATION

312 - MODULE o

FG. 4

505 - COPYPOWE CECAA

CREATE KEYWORD ENDEXES/ENTRIES
507 FORCAPTURED CONTENT

CREATE METADATANDEX(ES/ENTRIES
SO BASE ON CARE CONEN

Patent Application Publication Sep. 19, 2013 Sheet 5 of 37

REFERENCES)

REFERENCE REFERENCE3
REFERENCE REFERENCE 2

33 - x ER

CONFENA

NORAN

KEY: R)

KEYFOR)

METADATA REFERENCES)
EAAA A FR: ECO REFERENCE REFERENCE 3

EAAA2 C REFERENCE REFERENCE3
iAAA 3 REFERENCE REFERENCE4

US 2013/0246334 A1

F.G. 6

QUERY ONE ORMORE KEYWORD - 120
INDEXES FOR KEYWORD(S)

QUERY ONE ORMORE METADATA - 1203
INDEXES FOR MEADATA

NERSEC RESS OF KEYOR
AN EAAA (RERES 25

RETRIEVE INTERSECTED
DOCUMENTS FILEINFORMATION N 1207

Patent Application Publication Sep. 19, 2013 Sheet 6 of 37 US 2013/0246334 A1

DAAAA GER

XYMMYMMVMXXXYYX YXXXXYY MOMXYMMY MOMXYM CENRA

CONRO AABASE
PAHS - IIIT- N
28 N.

s:- DISCOVER SYSTEM -
INVENTORY METADATA

www YYYYYYY MODULE AARASE

742- - - asr
CONEN

Be CASSFC
OE

CATEGORY
NFORiATON

DATABASE
40 -

CRA, traw
- AND FEC is -ke REEAN 3. REEAON

iODE MODULE INCIDENTSS

REGSRAON

L. St.
/ rf, 6

index TABLE

REGSRAN
SYSE

------------- n
OSEC

CLASSIFICATION -->
i.

s ... OBECSEARCH .
MODULE ENGINE AAEASE

MEMORY
ELEMENT

A

- - - - - - - - - - - - - - -

NEX
O

NEFORK
ERACE

as

PROCESSOR
706

Patent Application Publication Sep. 19, 2013 Sheet 7 of 37 US 2013/0246334 A1

8 (START) Y
892- CREATE TASK (NVENTORY

OR CLASSIFICATION)

8S- CLASSFY DATA (F
CLASSIFICATION TASK)

RESENT VE. O.

DATA TOUSER
808

8 8.

REFINE TASK
FILTERs

1CLASSIFICATIONNYES
NASKCREATED1

No

1REGISTRATIONYYEs
N TASKCREATED 1

82 N O

REMEDIATION NNO
NTASKCREATED1

84 Es

816-1 REFINETASKFTERs REFNETASKFILTERs N-822
38/. CRAW. REPOSITORYES) CRAWREPOSITORYES N-824
820- REEAE ENFE OBJECTS REGSERENFE BECS -828

Patent Application Publication Sep. 19, 2013 Sheet 8 of 37 US 2013/0246334 A1

9. CREATEREFINE
TASKDEFINITION OR 9.
SEARCHDEFINITION -'

SEARCH OBJECTLYES,
STORE MODULE

/
950 93

SEARCHS

NO
3TASKTYPE)

^Inventory CASSCAN

TASK STAR TASK START
cric F.G.38

crawl. 921N cRAwAND FETCH CRA

9 OSEC OEEC
922- . CLASSIFICATION 98O CASSIFICATION Y-932

content scNATUREL POLICYCONTENTSIGNATURE
ANALYSIS ENGINE ANALYSS

coNTENT
924- CLASSIFICATION

CENTRAL (Y
230-1 DATABASE

907 "OLAPMODELAND"
Y- n CUBE POPULATION Y-94

NO-1ANIPULATEYES e

REMEDIATION
INCIDENTSLIST Y-762

GENERA ESIARES
(INVENTORY,

CASSEFECATION, OR
SEARCHRESULTS)

FEE 72
SYSE

730
YX /

INDEX OBJECT STORE I
MODULE MODULE 906 95 ow or

Patent Application Publication Sep. 19, 2013 Sheet 9 of 37 US 2013/0246334 A1

FROf F. 3A

REGSRAON I
940 - ?REGISTRATIONY

\ TASK START /

941 - CRAWL
AND FETCH

942 - OBJECT
CLASSIFICATION

content -- policy ENGINE - 960 943 n SiGNA RE
ANA YSS

945/ REGISTRATION

OBJECT I
M ME SORE
M ODE

Patent Application Publication Sep. 19, 2013 Sheet 10 of 37 US 2013/0246334 A1

Ye

g

g
'pass

..

444/. O
is a

S o s
S K

S is "
wocaacy

..

r

r

s

US 2013/0246334 A1 Sep. 19, 2013 Sheet 12 of 37 Patent Application Publication

aexx~ -||·?aevae?onsxaan?
04.J.

US 2013/0246334 A1 Sep. 19, 2013 Sheet 13 of 37 Patent Application Publication

Patent Application Publication Sep. 19, 2013 Sheet 14 of 37 US 2013/0246334 A1

T pride
COUNT TABLE

S.

54
5.

R
COUNT

OPERATION ExPRESSION
1503- El-EMENT

EXPRESSION
1504.1 ELEMENT2 .

F.G. 5

in c TABLE SIZE

542 544

Patent Application Publication Sep. 19, 2013 Sheet 15 of 37 US 2013/0246334 A1

y ra SO

SAR REGSRAON Y ?
S CREAON

602- FEC FRS EEAA FE

6. FEC FRS RECORD
OF EAE). AAFE

1606- DENTIFY START OF FIRST
DATAELEMENT IN RECORD

608- ERFOR EXTRACTION,
TOKENIZATION, AND STORAGE

1 MORE N
K DATAELEMENTS IN >
N RECORD? 1

ENY SAR
NEXAA
E.E.E.N.

1 MOREN
1 RECORDS EN
N DELIMITED DATA 1 Roko

NFILE1 - TNT

FEC

- ORE

< DELIMITED DATA >
Ya FILES 1 M

1618 Y

FC NEX
EE
AAFE

?o 1620
EN)

F.G. 6A

Patent Application Publication

/1 sTARTEXTRACTION, N
VTOKENIZATION, AND STORAGE/

SEARC REGAR
EXRESSONS FOR ONGES
ACO AA Eli N

852

654, 1\
N- OES
1 DATAELEMENTYN ves

< MATCHA REGULAR > EXPRESSION 1

86 FN END OF AAEEEN

S
STOP WORD) CWORD A

864. N6
SECR

CKENE FOROR.A.E.
EXPRESSON EEEN

store TokEN INTUPE
O REGSRAONS

EN)

Sep. 19, 2013 Sheet 16 of 37 US 2013/0246334 A1

1608
-1

s

EXTRACT
EXPRESSION
EEEN

656

NORMA.ZE
EXPRESSION --
EEEN 658

Patent Application Publication Sep. 19, 2013 Sheet 17 of 37 US 2013/0246334 A1

SAR NEX O
ABE CREAON ?

GENERAE RECON
ABE FOR OKENS

7 2

EFY FRSE
NREGSRAONS

f 4.

76. SEARC RECON A3.
N FORKENNER

TiE ONES FREENCY

1708- SELECTOKEN - E
LOWEST FREQUENCY ASAKEY

1710. SEARCHALL INDEXES
FOR A MATCHING KEY

1 FOUND N. YES
< INDEX WITH A MATCHING >
N KEY 1
1712

CREAE ENDEX SCE

176. low:ST FREQUENCY TOKEN KEY
AD to ANE
FFSE O NOEX,
iACN KEY

STUFE->" | IDENTIFYNEXTTUPE
1720 yas 72

FG. 7

US 2013/0246334 A1 Sep. 19, 2013 Sheet 18 of 37 Patent Application Publication

US 2013/0246334 A1 Sep. 19, 2013 Sheet 19 of 37 Patent Application Publication

US 2013/0246334 A1 Sep. 19, 2013 Sheet 20 of 37 Patent Application Publication

US 2013/0246334 A1 Sep. 19, 2013 Sheet 21 of 37 Patent Application Publication

58 #####

--|---&--+--

US 2013/0246334 A1 Sep. 19, 2013 Sheet 22 of 37

?LEIS? Il dissºno ILS?T? IETEIL??IJUSIE?

Patent Application Publication

US 2013/0246334 A1 Sep. 19, 2013 Sheet 23 of 37

5 TOE

Patent Application Publication

US 2013/0246334 A1 Sep. 19, 2013 Sheet 24 of 37 Patent Application Publication

Patent Application Publication Sep. 19, 2013 Sheet 25 of 37

2410 F.G. 243

Welcome admin logout My Profile Help
POLICES classify systEM

Discover Scan Operations Data Classification

Fieve
32K y

3K

23K

SK

Ak

K

SK

f3K -

FileType:
Share:
Count of Number of Records:

pg
0.60.73.6. PROJECT-Ata-Nig
29, 65

4K -

i K

s

K eter:: r

r is . rere re. is 5 is $ 3.5 & 5 is is 3 is is is & S : s waw

US 2013/0246334 A1

US 2013/0246334 A1 Sep. 19, 2013 Sheet 26 of 37 Patent Application Publication

No.N||||||||||||||| §§--------

US 2013/0246334 A1 Sep. 19, 2013 Sheet 27 of 37 Patent Application Publication

US 2013/0246334 A1 Sep. 19, 2013 Sheet 28 of 37

SINEd?oni || E. WOH

Ez D? (,?
9Z "DIH OS/2

Patent Application Publication

US 2013/0246334 A1 Sep. 19, 2013 Sheet 29 of 37 Patent Application Publication

Il aeissvio JD sapnod

§§§

::

(@) ezis: iungo º?

US 2013/0246334 A1 Sep. 19, 2013 Sheet 30 of 37

TEWOHN

Patent Application Publication

US 2013/0246334 A1 Sep. 19, 2013 Sheet 31 of 37

ITSEÕITORITTE:5T| SINHGIONI || HWOH 0 £ "{}{}({000€

Patent Application Publication

US 2013/0246334 A1 Sep. 19, 2013 Sheet 32 of 37 Patent Application Publication

----------------------------------s?j?,

00,8

US 2013/0246334 A1 Sep. 19, 2013 Sheet 33 of 37 Patent Application Publication

Ozz

| DISEBEJDETEEEEE|

US 2013/0246334 A1 Sep. 19, 2013 Sheet 35 of 37

º 10%

Patent Application Publication

US 2013/0246334 A1 Sep. 19, 2013 Sheet 36 of 37 Patent Application Publication

011

US 2013/0246334 A1 Sep. 19, 2013 Sheet 37 of 37 Patent Application Publication

LENGIRINO:

~¤55557

Esvo || SINEGIONI

US 2013/0246334 A1

SYSTEMAND METHOD FOR PROVIDING
DATA PROTECTION WORKFLOWS INA

NETWORKENVIRONMENT

TECHNICAL FIELD

0001. The present disclosure relates to computer networks
and, more particularly, to a system and a method for providing
data protection workflows in a network environment.

BACKGROUND

0002 Computer networks have become indispensable
tools for modern business. Enterprises can use networks for
communications and, further, can store data in various forms
and at various locations. Critical information, including con
fidential, proprietary, or other sensitive data, frequently
propagates over a network of abusiness enterprise. Moreover,
even in a small computer network the amount of objects (e.g.,
data files, software files, etc.) containing Such information
can rapidly increase to enormous proportions, making the
task of manually controlling Such information impossible.
Accordingly, modern enterprises often rely on numerous
tools to control the dissemination of Such information and
many of these tools attempt to keep outsiders, intruders, and
unauthorized personnel from accessing valuable or sensitive
information. Commonly, these tools can include firewalls,
intrusion detection systems, and packet Sniffer devices. Nev
ertheless, obtaining knowledge of the amounts, locations, and
types of confidential, proprietary, or otherwise sensitive data
in a computer network is often a time-consuming and labori
ous task.
0003. The ability to offer a system or a protocol that pro
vides an effective data management system, capable of secur
ing and controlling the movement of important information,
can be a significant challenge to security professionals, com
ponent manufacturers, service providers, and system admin
istrators alike.

BRIEF DESCRIPTION OF THE DRAWINGS

0004 To provide a more complete understanding of the
present invention and features and advantages thereof, refer
ence is made to the following description, taken in conjunc
tion with the accompanying figures, wherein like reference
numerals represent like parts, in which:
0005 FIG. 1 is a simplified block diagram illustrating an
example network environment in which a system for provid
ing data protection workflows can be implemented in accor
dance with the present disclosure;
0006 FIG. 2 is a simplified block diagram illustrating
additional details of a data manager in example embodiments
of the data protection workflows system according to the
present disclosure;
0007 FIG. 3 is a simplified block diagram illustrating
additional details of a capture system in example embodi
ments of the data protection workflows system according to
the present disclosure;
0008 FIG. 4 is a simplified block diagram illustrating
additional details of an object store module and an index
module in example embodiments of the data protection work
flows system according to the present disclosure;
0009 FIG.5 is a simplified flow chart illustrating example
operations that may be associated with indexing objects in
embodiments of the data protection workflows system in
accordance with the present disclosure;

Sep. 19, 2013

0010 FIG. 6 is a possible embodiment of keyword and
metadata indexes at a particular point in time for one example
scenario;
0011 FIG. 7 is a simplified block diagram illustrating
additional details of a discover system in example embodi
ments of the data protection workflows system according to
the present disclosure;
0012 FIG. 8 is a simplified high level flow chart illustrat
ing example operations associated with embodiments of the
data protection workflows system in accordance with the
present disclosure;
(0013 FIGS. 9A and 9B are simplified flow charts illus
trating example operations and data flows of the data protec
tion workflows system according to the present disclosure;
0014 FIG. 10 illustrates an embodiment of using meta
data elements to generate an online analytical processing
(OLAP) cube:
0015 FIG. 11 graphically illustrates an embodiment of a
method for the generation of an OLAP cube:
0016 FIG. 12 illustrates a simplified example search flow
using metadata and keyword indexing;
0017 FIG. 13 is a block diagram of a possible registration
system in the data protection workflows system in accordance
with embodiments of the present disclosure;
0018 FIG. 14 is a block diagram of various data file struc
tures in the registration system in accordance with embodi
ments of the present disclosure;
0019 FIG. 15 is a simplified block diagram with example
data input and output in accordance with one aspect of the
registration system of the present disclosure;
(0020 FIGS. 16A and 16B are simplified flowcharts illus
trating example operations that may be associated with
embodiments of the registration system in accordance with
the present disclosure;
(0021 FIG. 17 is a simplified flowchart illustrating further
example operations that may be associated with the registra
tion system in accordance with the present disclosure;
0022 FIG. 18 illustrates file contents in an example sce
nario associated with the registration system in accordance
with the present disclosure;
0023 FIG. 19 is a simplified interaction diagram illustrat
ing potential operations and data flow associated with an
inventory task of the data protection workflows system in
accordance with the present disclosure;
0024 FIGS. 20-23 are screen display diagrams showing
example user interface (UI) screens associated with an inven
tory task and analytics on inventoried objects for one example
network environment in accordance with embodiments of the
present disclosure;
0025 FIG. 24A-C are graphical diagrams illustrating
potential graphical representations of data for the example
network environment in accordance with embodiments of the
present disclosure;
0026 FIG.25 is a simplified interaction diagram illustrat
ing potential operations and data flow associated with a clas
sification task of the data protection workflows system in
accordance with the present disclosure;
0027 FIGS. 26-31 are screen display diagrams showing
example UI Screens associated with a classification task and
analytics on classified objects for the example network envi
ronment in accordance with embodiments of the present dis
closure;
0028 FIG. 32 is a simplified interaction diagram illustrat
ing potential operations and data flow associated with a reme

US 2013/0246334 A1

diation task of the data protection workflows system in accor
dance with the present disclosure;
0029 FIGS. 33-34 are screen display diagrams showing
example UI screens associated with a remediation task for the
example network environment in accordance with embodi
ments of the present disclosure;
0030 FIG. 35 is a simplified interaction diagram illustrat
ing potential operations and data flow associated with a reg
istration task of the data protection workflows system in
accordance with the present disclosure; and
0031 FIG. 36 is a screen display diagram showing
example UI screens associated with a registration task for the
example network environment in accordance with embodi
ments of the present disclosure.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Overview

0032. A method is provided in one example embodiment
and includes receiving first sets of metadata elements repre
senting objects of an inventory and generating a first Sum
mary of a first subset of the objects. The method further
includes receiving second sets of metadata elements and cor
responding category information representing objects of the
first subset that are classified based on a first category. The
method also includes generating a second Summary of a sec
ond subset of the classified objects. In further embodiments,
the method includes initiating a protection task for objects of
the second subset of the classified objects. The protection task
can include applying a remediation policy to the objects of the
second Subset or registering the objects of the second Subset.
0033. In other embodiments, a method includes receiving
sets of metadata elements and corresponding category infor
mation representing objects of a data storage location that are
classified based on a category. The method further includes
generating a Summary of a Subset of the classified objects and
initiating a protection task for objects of the Subset. In more
specific embodiments, the protection task includes applying a
remediation policy to the objects of the subset. Another pro
tection task includes registering the objects of the Subset.
0034. A method is provided in yet another example
embodiment and includes receiving first sets of metadata
elements representing an inventory of objects in a data Stor
age location of a network environment and presenting an
inventory view of the objects to a user. The inventory view
includes a first summary of the inventory objects. The method
further includes receiving a request from the user to manipu
late the inventory view based on a first selected dimension
group and presenting to the user a manipulated inventory
view that includes a second summary of a first subset of the
inventory objects.

Example Embodiments
0035 FIG. 1 is a simplified block diagram illustrating an
embodiment of a system for providing data protection work
flows based on analytics over various dimensions (e.g., meta
data) and over classifications of objects in an example net
work environment 10. Network environment 10 can include
content repositories 40 containing data at rest. The data pro
tection workflows system may include a discover system 70
and a data manager 20 implemented in network environment
10 to provide workflows for protecting data on content reposi

Sep. 19, 2013

tories 40. Although a single discover system 70 will be
described herein, the data protection workflows system can
accommodate any number of discover systems distributed
throughout network environment 10 or other associated net
works (e.g., geographically distributed networks of an enter
prise), which could access other content repositories in net
work 10, in other associated networks, or otherwise
accessible to a discover system. Network environment 10
may also include a variety of other components including, for
example, capture systems 30a-30b, an email gateway 12, a
web gateway 13, a switch 14, a router 15, and a firewall 16.
Firewall 16 may provide a suitable connection with other
networks including Internet 19.
0036. In network environment 10, other networkelements
such as capture systems 30a-30b (referred to herein in the
singular as capture system30) can enable discovery of data in
motion in the network. For example, capture system 30a can
enable discovery of network traffic leaving network environ
ment 10 through, for example, email gateway 12 and web
gateway 13. Another capture system 30b could enable dis
covery of all ingress and egress network traffic of network
environment 10. Data manager 20 and capture systems 30a-b
may be configured in the data protection workflows system to
provide data protection workflows for captured data in
motion of network environment 10.

0037. The network environment illustrated in FIG.1 may
be generally configured or arranged to represent any commu
nication architecture capable of exchanging packets. Such
configurations may include separate divisions of a given busi
ness entity (e.g., a marketing segment, a sales segment, a
production segment, a financial segment, etc.). Network 10
may also be configured to exchange packets with other net
works, such as Internet 19, through firewall 16, and other
associated networks that could be accessed through Internet
19, for example.
0038 A system for providing data protection workflows
can help organizations develop information protection strat
egies for data in their network environments. Embodiments of
the data protection workflows system enable workflows man
aged by users (e.g., network administrators) in which analyti
cal techniques (e.g., online analytical processing (OLAP))
can be applied to metadata and classifications of information
assets, which have been inventoried and/or classified based
on one or more categories. Information assets can include any
objects from a network environment (e.g., data at rest and/or
data in motion) and these objects can be inventoried and/or
classified based on categories as part of the workflows. Meta
data can be derived from each object and classifications can
be derived by evaluating the content of the objects based on
one or more categories.
0039. By applying analytical techniques to metadata and
classifications of information assets that have been invento
ried or classified during a workflow, analytic views of the
inventoried or classified objects can be created. An analytic
view of objects can be a summarized view by one or more
dimensions. Dimensions can include, but are not limited to,
metadata types such as device (e.g., discover or capture
device), data storage location (e.g., content repository and/or
share), file type, file size, mode of transmission (e.g., for data
in motion), and file owner. Other dimensions can include
completed tasks (e.g., inventory or classification tasks) and
classifications (i.e., category information for categories used
to classify the objects).

US 2013/0246334 A1

0040. A summarized view of objects can present multiple
summaries that reveal the distribution of the objects across
various data storage locations and the quantification of the
objects and Subsets of the objects in the data storage locations.
Each subset of the objects can be associated with a different
combination of metadata elements and possibly categories.
The Summarized views can be presented on a display Screen
of a computer and configured to allow users to create and
execute information protection tasks in an efficient manner to
remediate, register, or otherwise protect data within a net
work environment from unauthorized disclosure, transmis
Sion, modification, deletion, or any other unauthorized action.
Protection tasks can include, for example, remediation tasks
and/or registration tasks for data at rest (e.g., objects stored in
a content repository) within a network environment.
0041. For purposes of illustrating the techniques of a data
protection workflows system, it is important to understand the
activities and security concerns that may be present in a given
network such as network environment 10 shown in FIG. 1.
The following foundational information may be viewed as a
basis from which the present disclosure may be properly
explained. Such information is offered earnestly for purposes
of explanation only and, accordingly, should not be construed
in any way to limit the broad scope of the present disclosure
and its potential applications.
0042. A challenge in many network environments is the
ability to control confidential or other sensitive data in the
network. In particular, information security teams in large
enterprises are confronted with protecting exceedingly large
amounts of unstructured data including, for example, files
(also referred to hereinas objects or assets) kept in numer
ous data storage locations, such as servers or other network
elements referred to herein as content repositories, and
more specific data storage locations such as shares of a file
server. In addition, security teams are also typically tasked
with protecting some or all of the information traversing their
networks. In many instances, the nature (i.e., classification)
and the quantity of these information assets are unknown.
Consequently, implementing effective data loss prevention
(DLP) policies can behindered.
0043. As used herein, the terms object, information
asset, and asset are intended to include any file containing
data in a network environment. Data, as used herein, refers to
any type of numeric, alphanumeric, Voice, video, or script
data, any type of Source or object code, assembly code, or any
other information in any form suitable for use with a com
puter. The term data at rest refers to data in objects stored in
content repositories, such as hard drives, file servers, backup
mediums, and any other Suitable electronic storage. The term
data in motion refers to data formatted for transmission
(e.g., HTML, FTP, SMTP. Webmail, etc.) that streams across
a network (i.e., network traffic) and that resides in objects
extracted from network traffic and stored in temporary or
archival storage. Examples of information assets (or objects)
include word processing documents, portable document for
mat (PDF) files, spreadsheets, databases, electronic mail
(email) messages, email attachments, plaintext files, human
language text files, Source code files, object code files, binary
files, HyperTextMarkup Language (HTML) files, executable
files, etc.
0044 Current approaches to network security, and specifi
cally data loss prevention, generally include a manual process
in which data protection policies are created and applied. For
data at rest, data protection teams typically conduct an audit

Sep. 19, 2013

of all servers, shares on those servers, and an inventory of the
files in each of the shares. This could potentially include
enormous sets of data, possibly peta-bytes of unstructured
data. Additionally, data protection teams also need to quantify
the assets on the shares, determine the type and nature of the
assets, and determine whether the assets should be protected.
These planning stages are necessary because executing data
protection policies on large amounts of data (e.g., peta-bytes
of data) may be prohibitive in terms of time and resources
needed to protect the data, particularly when the data is not
critical. Similarly, for data in motion, an infinite stream of
information could flow across any given network. Thus, data
protection teams need to obtain all of the relevant information
about data in motion so that data protection policies can be
appropriately targeted and, for example, not unnecessarily
applied to the data in motion.
0045 Quantifying assets and determining a type and
nature of assets can be difficult for data protection teams
because they typically lack visibility to data in their networks.
A tremendous amount of data in a network can compound the
difficulty in identifying and protecting the data. For any given
network environment, a determination typically needs to be
made as to the type and amount of data in the network, where
the data resides, who owns the data, and which data should be
protected.
0046. One strategy that is used to identify and protect data

is referred to as sampling. In this approach, a selected number
(or sample) of files from servers and other data storage loca
tions (e.g., share points, databases, infrastructure elements,
etc.) are identified in the network. For example, a few hundred
files may be identified on each server. Existing DLP solutions
or other inspection mechanisms may then be used to evaluate
the file samples. Suchanapproach, however, can result in data
protection policies being applied in an over-inclusive and/or
under-inclusive approach. Over-inclusive approaches may
result in data protection policies being be applied to all files
found on a share of a server if protectable data was found in a
sample from that share, even though numerous other files in
the same share may not contain sensitive data. Conversely, if
a sample happens to miss critical data on a server, then when
data protection policies are not applied to that server (or
specific server share), critical data on the server (or specific
server share) could remain unprotected.
0047 Another strategy involves trial runs with policies.
Selected policy parameters (e.g., confidential materials, spe
cific product names, code names, intellectual property docu
ments, etc.) may be used to perform trial runs on various
servers, shares, databases, and other network elements. If one
selected policy parameter does not yield any results, other
policy parameters may be selected for trial runs. For example,
if a first trial run searching for confidential information
produces no results, than another trial run may be performed
using proprietary information. Such a trial-and-error
approach can be extremely labor-intensive and time-consum
ing and can consume valuable network resources.
0048. A system for providing data protection workflows as
outlined by FIG. 1 can resolve many of these issues. In accor
dance with one example embodiment, a data protection work
flows system provides a process for identifying an inventory
of objects in a network environment, classifying objects
based on categories, and protecting objects as needed (e.g., by
remediating and/or registering objects). In one example data
protection workflow, a user can initially select any one or
more network elements, such as content repositories 40, for

US 2013/0246334 A1

the system to inventory. The inventory task can involve
obtaining an object listing of metadata from the selected
repositories or segments thereof. Analytic techniques, such as
online analytical processing (OLAP) can be applied to the
metadata elements to create an analytic view of the objects by
many dimensions (e.g., types of metadata). The analytic view
can be presented to a user via a user interface (UI). Such as a
graphical user interface (GUI) that includes dimension
groups within dimensions, which can be presented in a hier
archical arrangement. The types of metadata corresponding
to the dimensions include, for example, content repositories,
shares, file types, file size, file owners, etc. A dimension group
can include specific metadata elements of the same type of
metadata and a user may select any one or more dimension
groups from the analytic inventory view to obtain a more
detailed view of the metadata elements in the selected dimen
sion group relative to other dimensions in the hierarchy.
0049. A classification task can be independently instanti
ated or derived from an analytic inventory view (based on
metadata) or from an analytic classification view (based on
classifications by categories and metadata). The targeted
objects can be found on one or more selected content reposi
tories (or shares of content repositories). The contents of the
targeted objects can be evaluated in order to identify occur
rences of particular data associated with predefined catego
ries and to classify objects by category accordingly. An ana
lytic view of the objects classified by category can be
presented to a user via the UI.
0050. A remediation task may also be available to allow a
user to select and remediate one or more objects from an
analytic inventory view or from an analytic classification
view. The user can select any appropriate remediation policy
to be applied to protect the selected objects. Remediation
policies could include, for example, deleting objects or par
ticular data within objects, quarantining objects, moving
objects to a designated content repository, adding access
requirements to objects, performing various actions to effec
tively block or allow execution of objects (e.g., adding pro
gram files to a whitelist, adding program files to a blacklist,
removing, renaming, or quarantining program files, etc.).
encrypting objects, etc. Thus, a user is provided with a system
that enables data protection workflows to obtain an inventory
offiles within a network, to classify files of selected subsets of
the inventoried files by various categories, and to remediate
files of any selected subsets of the inventoried or classified
files as needed.
0051 Finally, a registration task may also be provided to
allow a user to select and register one or more objects from an
analytic inventory view or from an analytic classification
view. Any suitable registration technique could be imple
mented. One example registration technique includes regis
tering combinations or sets of data elements in selected
objects that are desired to be protected. Once an object has
been registered, the combinations or sets of data elements of
the object can be detected by a detection system imple
mented, for example, in a capture system Such as capture
systems 30a and/or 30b when network traffic includes the
particular combinations or sets of data elements. Any appro
priate policies may be implemented to appropriately handle
captured objects containing the registered combinations or
sets of data elements including, for example, blocking the
network traffic.

0052 Turning to the infrastructure of FIG. 1, the data
protection workflows system can be implemented in exem

Sep. 19, 2013

plary network environment 10, which may be configured as
one or more networks in any Suitable form including, but not
limited to local area networks (LANs), wireless local area
networks (WLANs), virtual local area networks (VLANs).
metropolitan area networks (MANs), wide area networks
(WANs) such as the Internet, virtual private networks
(VPNs), Intranets, Extranets, any other appropriate architec
ture or system, or any suitable combination thereofthat facili
tates communications in a network environment. Generally,
network environment 10 may be configured or arranged to
represent any communication architecture capable of
exchanging electronic packets. Moreover, network environ
ment 10 may be configured using various Suitable wired
technologies (e.g., Ethernet) and/or wireless technologies
(e.g., IEEE 802.11x).
0053 Network environment 10 can be operably coupled to
Internet 19 by an Internet Service Provider (ISP) or through
an Internet Server with dedicated bandwidth in example
embodiments. Network environment 10 could also be con
figured to exchange packets with other networks configured
as LANs or any other suitable network configuration. The
connection to Internet 19 and other logically distinct net
works may include any appropriate medium such as, for
example, digital subscriber lines (DSL), telephone lines, T1
lines, T3 lines, wireless, satellite, fiber optics, cable, Ethernet,
etc. or any suitable combination thereof. Numerous network
ing components such as gateways, routers, Switches (e.g.,
switch 14, router 15), etc. may be used to facilitate electronic
communication in network environment 10, Internet 19, and
any other logically distinct networks linked to network envi
ronment 10.

0054 Each of the elements of FIG. 1 may couple to one
another through simple network interfaces or through any
other suitable connection (wired or wireless), which provides
a viable pathway for network communications. Additionally,
any one or more of these elements may be combined or
removed from the architecture based on particular configura
tion needs. Network environment 10 may include a configu
ration capable of transmission control protocol/Internet pro
tocol (TCP/IP) communications for the transmission or
reception of packets in a network. Network environment 10
may also operate in conjunction with a user datagram proto
col/IP (UDP/IP) or any other suitable protocol where appro
priate and based on particular needs.
0055. In example network environment 10, network traffic
containing data in motion can flow through various network
elements. Email gateway 12 can allow client computers (not
shown), which are operably coupled to network environment
10, to send and receive email messages using Simple Mail
Transfer Protocol (SMTP) or any other suitable protocol.
Web gateway 13, may serve as an ingress and egress point for
other network traffic flowing in and out of network 10.
Accordingly, capture system30a can be configured to capture
and store network traffic flowing through network elements
such as emailgateway 12 and webgateway 13. Other network
traffic could be propagating through instant messaging (IM),
wikis, blogs, portals, and Web 2.0 technologies, and could
also be discovered by capture system 30a. Similarly, capture
system 30b can be configured to capture and store any or all
ingress and egress network traffic by performing real-time
scanning and analysis of network traffic in network 10.
0056. In one example embodiment, the packets of data
captured by capture systems 30a and/or 30b can be assembled
into objects (or files) and the objects can then be classified

US 2013/0246334 A1

based on file type, indexed, and stored (e.g., internally or
externally in a capture database) with information Such as
sender and recipient identifications. In accordance with
embodiments in this disclosure, capture systems 30a-b can
search their respective capture databases (or a combined cap
ture database) to obtain a file listing of the stored network
traffic, including metadata of objects, and to identify objects
in network traffic containing particular content.
0057 Data at rest is represented in network environment
10 by content repositories 40 (referred to herein in the singu
lar as content repository 40 to refer to one content repository).
Content repositories 40 can include any suitable memory
element for storing data in a network, including magnetic or
optical disks, hard disk drives, file servers, backup mediums,
removable cartridges, flash drives, and any other suitable data
storage. Additionally, repositories 40 could also include com
puter memory. In some embodiments, content repositories 40
comprise logical partitions, or shares, which can be uniquely
identified and shared with other users based on credentials.
0058 Data manager 20, discover system 70, and capture
systems 30a-b can be configured in network appliances or any
other suitable network element as part of the data protection
workflows system in network environment 10. For example,
one or more of data manager 20, discover system 70, and
capture systems 30a-b could be implemented in conjunction
with (or included within) a network element such as a router,
Switch, gateway, bridge, loadbalancer, server, or any other
Suitable device, component, element, or object operable to
exchange information in a network environment. Moreover,
data manager, discover system, and capture systems may
include any Suitable hardware, Software, components, mod
ules, interfaces, or objects that facilitate the operations
thereof. This may be inclusive of appropriate algorithms and
communication protocols that facilitate the data protection
workflows operations detailed herein.
0059. These network appliances (or other network ele
ments) in which the systems can be implemented may be able
to access communication pathways associated with the net
work configuration, such that one or more appliances have
access to e-mail traffic, other network traffic, or data that is
simply residing somewhere in the infrastructure (e.g., on a
server, a repository, a database, a windows share, etc.). In
particular, network appliances with discover system 70 can be
deployed in network 10 for access to repositories 40, which
may contain sensitive data elements. In one embodiment,
discover system 70 can generate metadata of objects found in
repositories 40, can evaluate the content of selected objects or
groups of objects for classifying by category, and can reme
diate and/or register an object or group of objects as needed.
0060 Data manager 20 can be operably connected to a
user system 22 having a display monitor 24 (e.g., personal
computer, user workstation, terminal station, laptop, etc.).
User system 22 can be configured to allow a user to execute
data protection workflows through, for example, a graphical
user interface (GUI) on display monitor 24. In one embodi
ment, a user interface interacts with a web server (not shown)
to provide the user with Web-based access to data manager 20
via user system 22.
0061. In example embodiments, inventory, classification,
remediation, and registration tasks may be selected and
applied to various content repositories containing data at rest.
Additionally, search queries may be selected and applied to
indexed data, which can include data at rest and/or captured
data in motion. When an inventory task is created, discover

Sep. 19, 2013

system 70 can obtain metadata of objects from a selected one
or more content repositories or shares thereof and provide the
metadata to data manager 20. Data manager 20 can perform
analytics on the metadata, generate Summaries based on vari
ous dimensions of the inventoried objects, and display an
analytic inventory view on display monitor 24.
0062. When a classification task is created (from an ana
lytic view or from being independently instantiated), discover
system 70 fetches objects identified in accordance with
selected parameters (e.g., metadata elements and/or catego
ries) and evaluates the contents of those objects in order to
classify the fetched objects into appropriate categories. Data
manager 20 can generate Summaries based on various dimen
sions of the classified objects and display an analytic classi
fication view on display monitor 24. Data manager 20 can
also be configured to allow a user to create a remediation task
or a registration task to be applied to Subsets of objects
selected through an analytic view displayed on display moni
tor 24.
0063 Data manager 20 may also be configured to allow a
user, Such as an authorized security professional (e.g., net
work administrator), to determine which categories should be
used when executing a classification task. The security pro
fessional can select from predefined categories and/or alter
natively, may create their own unique categories or add to
search criteria for existing categories.
0064 Data protection workflows system is also scalable as
distributed networks can include additional discover systems
and capture Systems for performing inventory, classification,
remediation, registration, and search query activities across
distributed network segments (e.g., having separate access
points, being geographically dispersed, being logically sepa
rated by functionality, etc.) of a network infrastructure. Data
manager 20 may continue to coordinate data flow to discover
system 70 and capture systems 30, in addition to potential
discover systems and capture systems provided in distributed
segments of network 10.
0065 Turning to FIG. 2, a simplified block diagram is
shown with additional details that may be associated with
data manager 20 of a data protection workflows system. Data
manager 20 can include various modules and other compo
nents such as an online analytical processing (OLAP) module
210, a presentation module 220, a search module 222, a task
module 224, and a central database 230. OLAP module 210
can include a transform module 212, an OLAP generator 214,
and an analytics module 216. Data manager 20 can also
include a user interface (UI) 202, a network interface 204, a
processor 206, and a memory element 208 to facilitate opera
tions related to the various modules and other components.
0.066 User input can be received by data manager 20 from
user system 22 through user interface 202, which could be a
graphical user interface (GUI). Numerous display screens
may be provided by presentation module 220 to presenta user
with Summarized views of objects and task creation options.
User interface elements can enable automation of workflows
with user selections being processed and appropriately
directed by presentation module 220.
0067. In a first workflow scenario, display screens pre
sented to a user on user system 22 allow the user to select one
or more data storage locations (e.g., a single network address
of a selected content repository, a range of network addresses
of selected content repositories, one or more shares of a
selected content repository, etc.) and to select an inventory or
classification task to perform on the one or more selected

US 2013/0246334 A1

repositories or shares. Task module 224 can communicate a
task request including the selected task parameters, via a
control path 26a to the appropriate discover system (e.g.,
discover system 70). For an inventory or classification task,
discover system 70 can generate inventory data (e.g., sets of
metadata elements) or classification data (e.g., sets of meta
data elements and category information) of objects on the one
or more selected content repositories or shares. This inven
tory or classification data can be loaded into central database
230. In some embodiments central database 230 can be con
figured as a relational database such as a structured query
language (SQL) table, and may include aggregated inventory
and/or classification data from multiple distributed discover
systems.
0068 Central database 230 can be loaded into an OLAP
cube, analytics can be applied, and Summaries of the data can
be generated by OLAP module 210. A transform module 212
can transform the data in central database 230 into a desired
number of buckets (or axes) for an OLAP cube. Each bucket
(or axis) includes a group of related information (e.g., objects
on a particular share, objects associated with a particular
owner, objects of a particular file type, etc.). OLAP generator
214 can load the buckets into an OLAP cube and analytics
module 216 can apply analytics to the cube to generate ana
lytical Summaries of inventoried objects (if an inventory task
was performed) or classified objects (if a classification task
was performed). Display screens showing analytic inventory
or classification views can be generated by presentation mod
ule 220 and presented to a user through user interface 202. For
ease of reference, OLAP cube' is referred to herein although
any other appropriately dimensioned container could be con
figured for the data load from central database 230.
0069. A user can manipulate summarized views by drill
ing down any desired data dimension group that contains
specific metadata elements associated with a particular type
of metadata. In example embodiments of the data protection
system, analytic inventory and classification views can
include clickables representing each dimension group and a
user can select a desired dimension group by activating its
corresponding clickable. As used herein, the term 'clickable
is intended to mean an active area in a graphical user interface
(GUI) that can be triggered or activated by a user by, for
example, clicking amouse, touchpad, or screen, by highlight
ing the active area and hitting enter on a keyboard, etc. A
user can also manipulate the view by slicing and dicing
particular dimensions and/or particular metadata elements to
filter out or remove from the view.

0070 User interface 202 can receive a dimension group
selection from a user via user system 22 and provide it to
analytics module 216, which can drill down into the selected
dimension group and provide another Summarized view of
the data to the user, listing specific metadata elements of the
selected dimension group and measures (e.g., count, size)
associated with the metadata elements. For example, if a user
selects an owner dimension group in an analytic inventory
view by clicking on a corresponding clickable, then analytics
module 216 can use the OLAP cube to identify all of the
owners of the inventoried objects. Analytics module 216 can
also quantify Subsets of the inventoried objects (e.g., by gen
erating measures such as counts and sizes), where each Subset
is associated with a respective owner. If another dimension
group (e.g., file types dimension group) is selected, and if that
newly selected dimension group is associated with one of the
enumerated owners (e.g., Owner Admin), then analytics

Sep. 19, 2013

module 216 can use the OLAP cube to identify all of the files
types of the Owner Admin’s objects. In addition, analytics
module 216 can also generate measures corresponding to
each new subset of the inventoried objects, where each new
subset is associated with the Owner Admin and a respective
file type. At any point, the user can select another task of
interest Such as 1) a new inventory or classification task on a
different content repository or share, or 2) a classification,
remediation, or registration task on a currently displayed
inventory or classification view.
0071 Presentation module 220 may also present a search
query option to a user to select a database (or other Suitable
storage) containing data in motion captured in the network or
containing data at rest fetched during a classification, reme
diation, or registration task. Thus, when a search query is
selected, search module 222 can communicate a search
request including selected search parameters via a control
path 26b to the appropriate system (i.e., capture system 30 or
discover system 70) with access to the selected database.
Alternatively, the selected database may be provided sepa
rately in a storage element in the network and search module
222 could be configured to directly access and search these
separate storage elements. The system performing the search
can retrieve metadata and category information of objects
indexed and stored in the selected database. This metadata
and category information can be loaded into central database
230 and processed in a similar manner as metadata and cat
egory information obtained from a classification task.
0072 Capture System
0073 Turning to FIG. 3, a simplified block diagram is
shown with additional details that may be associated with
capture system 30 of a data protection workflows system. In
operation, capture system 30 can intercept data leaving a
network (such as network 10), data being communicated
internally to a network, or data being communicated within a
network. Capture system 30 can reconstruct objects (e.g.,
documents) in network traffic (e.g., leaving the network) and
store them in a searchable fashion. Capture system 30 can
then be used to search and sort through all documents that
have left the network. There are many reasons why such
documents may be of interest, including: network security
reasons, intellectual property concerns, corporategovernance
regulations, and other corporate policy concerns. Example
documents include, but are not limited to, Microsoft Office
documents (such as Word, Excel, etc.), text files, images
(such as JPEG, BMP, GIF, PNG, etc.), Portable Document
Format (PDF) files, archive files (such as GZIP ZIP TAR,
JAR, WAR, RAR, etc.), email messages, email attachments,
audio files, video files, source code files, executable files, etc.
0074 FIG. 3 shows an embodiment of capture system 30
in more detail and it includes a network interface module 304,
capture modules 310 (which could include a packet capture
module and an object assembly module in example embodi
ments), an object classification module 312, an object store
module 320, an index module 330, a search engine 314, and
an object search database 316. In addition, a user interface
302, a processor 306, and a memory element 308 are provided
in capture system 30 to facilitate the operations related to the
various modules and other components. A capture system
(such as capture system 30a or 30b) may also be referred to as
a content analyzer, content/data analysis system, or other
similar name.

(0075 Network interface module 304 receives (captures)
data, Such as data packets, from a network or router. Example

US 2013/0246334 A1

network interface modules 304 include network interface
cards (NICs) (for example, Ethernet cards). More than one
NIC may be present in a capture system. The captured data is
passed from network interface module 304 to capture mod
ules 310, which can extract packets from the captured data.
Capture modules 310 may extract packets from data streams
with different sources and/or destinations. One such case is
asymmetric routing where a packet sent from Source 'A' to
destination “B” travels along a first path and responses sent
from destination “B” to source 'A' travel along a different
path. Accordingly, each path could be a separate “source' for
capture modules 310 to obtain packets. Additionally, packet
data may be extracted from a packet by removing the packets
header and checksum.

0076. When an object is transmitted, such as an email
attachment, it is broken down into packets according to vari
ous data transfer protocols such as Transmission Control
Protocol/Internet Protocol (“TCP/IP), UDP, HTTP, etc.
Capture modules 310 can also reconstruct the original or a
reasonably equivalent document from the captured packets.
For example, a PDF document broken down into packets
before being transmitted from a network is reassembled to
form the original, or reasonable equivalent of the, PDF from
the captured packets associated with the PDF document. A
complete data stream is obtained by reconstruction of mul
tiple packets. The process by which a packet is created is
beyond the scope of this application.
0077 One or more tables may be included in or accessible
to capture system30. In other embodiments, these tables may
be provided externally to these elements, or consolidated in
any suitable fashion. The tables are memory elements for
storing information to be referenced by their corresponding
network appliances. As used herein in this document, the term
table is inclusive of any suitable database or storage medium
(provided in any appropriate format) that is capable of main
taining information pertinent to the operations detailed herein
in this Specification. For example, the tables may store infor
mation in an electronic register, diagram, record, index, list,
or queue. Alternatively, the tables may keep Such information
in any suitable random access memory (RAM), read only
memory (ROM), erasable programmable ROM (EPROM),
electronically erasable PROM (EEPROM), application spe
cific integrated circuit (ASIC), Software, hardware, or in any
other Suitable component, device, element, or object where
appropriate and based on particular needs.
0078 Capture modules 310 group (assemble) received
packets into at least one unique flow. A Transmission Control
Protocol/Internet Protocol (TCP/IP) flow contains an ordered
sequence of packets that may be assembled into a contiguous
data stream by capture modules 310. An example flow
includes packets with an identical source IP and destination
IP address and/or identical TCP source and destination ports.
In other words, a packet stream (flow) may be assembled by
sender and recipient. Thus, a flow is an ordered data stream of
a single communication between a source and a destination.
0079 Capture modules 310 may separate flows by proto
cols (e.g., HyperText Transfer Protocol (HTTP), File Trans
fer Protocol (FTP), Kerberos authentication packets, etc.)
based on, for example, associate TCP port numbers. In addi
tion, signature filters may be applied to a flow to classify the
protocols based on the transported data itself, rather than the
associated port number. Because this protocol classification
is performed independent of which port number was used

Sep. 19, 2013

during transmission, the capture system monitors and con
trols traffic that may be operating over non-standard ports.
0080 Capture modules 310 output each flow, organized
by protocol, representing the underlying objects being trans
mitted. These objects are passed to object classification mod
ule 312 for classification based on content type. A classified
flow may still contain multiple content type objects depend
ing on the protocol used. For example, a single flow using
HTTP may contain over 100 objects of any number of content
types. To deconstruct the flow, each object contained in the
flow is individually extracted and decoded, if necessary, by
object classification module 312.
I0081. Object classification module 312 uses the inherent
properties and/or signature(s) of various documents to deter
mine the content type of each object. For example, a Word
document has a signature that is distinct from a PowerPoint
document or an email. Object classification module 312
extracts each object and sorts them according to content type.
This classification prevents the transfer of a document whose
file extension or other property has been altered. For example,
a Word document may have its extension changed from .doc
to dock but the properties and/or signatures of that Word
document remain the same and detectable by object classifi
cation module 312. In other words, object classification mod
ule 312 functions beyond simple extension filtering.
I0082) Object classification module 312 may also deter
mine whether each object should be stored or discarded. This
determination is based on definable capture rules used by
object classification module 312. For example, a capture rule
may indicate that all Web traffic is to be discarded. Another
capture rule may indicate that all PowerPoint documents
should be stored except for ones originating from the CEO’s
IP address. Such capture rules are implemented as regular
expressions or by other similar means.
I0083 Capture rules may be authored by users of a capture
system and, further, may include virtually any item (in addi
tion to those items discussed herein). The capture system may
also be made accessible to any network-connected machine
through network interface module 304 and/or user interface
302. In one embodiment, user interface 302 is a graphical user
interface providing the user with easy access to the various
features of capture system30. For example, user interface 302
may provide a capture rule-authoring tool that allows any
capture rule desired to be written. These rules are then applied
by object classification module 312 when determining
whether an object should be stored. User interface 302 may
also provide pre-configured capture rules that the user selects
from along with an explanation of the operation of Such
standard included capture rules. Generally, by default, the
capture rule(s) implemented by object classification module
312 captures all objects leaving the network that the capture
system can access. If the capture of an object is mandated by
one or more capture rules, object classification module 312
may determine where in object store module 320 the captured
object should be stored.
0084. With reference to FIG. 4, FIG. 4 illustrates more
detailed views of object store module 320 and index module
330 of capture system 30, which may also be provided in
discover system 70. According to this embodiment, object
store module 320 includes a tag database 322 and a content
store 324. Within content store 324 are files 326 grouped by
content type. For example, if object classification module 312
determines that an object is a Word document that should be
stored, it can store it in file 326 reserved for Word documents.

US 2013/0246334 A1

Object store module 320 may be internal to a capture system
or external (entirely or in part) using, for example, some
network storage technique Such as network attached storage
(NAS), storage area network (SAN), or other database.
0085. In regards to the tag data structure, in example
embodiments, content store 324 is a canonical storage loca
tion that is simply a place to deposit the captured objects. In
another embodiment (as described with reference to discover
system 70), pointers to the objects (e.g., Stored in a database),
rather than the objects themselves, are stored in content store
324. The indexing of the objects stored in content store 324
can be accomplished using tag database 322. Tag database
322 is a database data structure in which each record is a “tag”
that indexes an object in content store 324 and contains rel
evant information about the stored object. An example of a tag
record in tag database 322 that indexes an object stored in
content store 324 is set forth in Table 1:

TABLE 1.

Field Name Definition (Relevant Information)

MAC Address NICMAC address
Source IP Source IP address of object
Destination IP Destination IP address of object
Source Port Source port number of object
Destination Port Destination port number of the object
Protocol Protocol that carried the object
Instance Canonical count identifying object within a protocol

capable of carrying multiple data within a single
TCP/IP connection

Content Content type of the object
Encoding Encoding used by the protocol carrying object
Size Size of object
Timestamp Time that the object was captured
Owner User requesting the capture of object (possibly rule

author)
Configuration Capture rule directing the capture of object
Signature Hash signature of object
Tag Signature Hash signature of all preceding tag fields
Attribute One or more attributes related to the object

I0086. There are various other possible tag fields and some
tag fields listed in Table 1 may not be used. In an embodiment,
tag database322 is not implemented as a database and another
data structure is used. The mapping of tags to objects may be
obtained by using unique combinations of tag fields to con
struct an object's name. For example, one such possible com
bination is an ordered list of the source IP, destination IP,
Source port, destination port, instance, and timestamp. Many
other Such combinations, including both shorter and longer
names, are possible. A tag may contain a pointer to the storage
location where the indexed object is stored. The tag fields
shown in Table 1 can be expressed more generally, to empha
size the underlying information indicated by the tag fields in
various embodiments. Some of the possible generic tag fields
are set forth in Table 2:

TABLE 2

Field Name Definition

Device Identity Identifier of capture device
Source Address Origination Address of object
Destination Destination Address of object
Address
Source Port Origination Port of object
Destination Destination Port of the object
Port

Sep. 19, 2013

TABLE 2-continued

Field Name Definition

Protocol Protocol that carried the object
Instance Canonical count identifying object within a protocol

capable of carrying multiple data within a
single connection

Content Content type of the object
Encoding Encoding used by the protocol carrying object
Size Size of object
Timestamp Time that the object was captured
Owner User requesting the capture of object (rule author)
Configuration Capture rule directing the capture of object
Signature Signature of object
Tag Signature Signature of all preceding tag fields
Attribute One or more attributes related to the object

I0087. For many of the above tag fields in Tables 1 and 2.
the definition adequately describes the relational data con
tained by each field. For the content field, the types of content
that the object can be labeled as are numerous. Content type
is also referred to herein as file type. Some example choices
for content types (as determined, in one embodiment, by the
object classification module 312) are JPEG, GIF, BMP, TIFF,
PNG (for objects containing images in these various formats);
Skintone (for objects containing images exposing human
skin); PDF, MSWord, Excel, PowerPoint, MSOffice (for
objects in these popular application formats); HTML, Web
Mail, SMTP, FTP (for objects captured in these transmission
formats); Telnet, Rlogin, Chat (for communication conducted
using these methods); GZIP ZIP TAR (for archives or col
lections of other objects); Basic Source, C++ Source,
C Source, Java Source, FORTRAN Source, Verilog
Source, VHDL Source, Assembly Source, Pascal Source,
Cobol Source, Ada Source, Lisp Source, Perl Source,
XQuery Source, Hypertext Markup Language, Cascaded
Style Sheets, JavaScript, DXF Spice, Gerber, Mathematica,
Matlab, AllegroPCB, ViewLogic, TangoPCAD, BSDL,
C. Shell, K. Shell, Bash Shell, Bourne Shell, FTP, Telnet,
MSExchange, POP3, RFC822, CVS, CMS, SQL, RTSP,
MIME, PDF, PS (for source, markup, query, descriptive, and
design code authored in these high-level programming lan
guages); C Shell, K. Shell, Bash Shell (for shell program
scripts); Plaintext (for otherwise unclassified textual objects);
Crypto (for objects that have been encrypted or that contain
cryptographic elements); Englishtext, Frenchtext, German
text, Spanishtext, Japanesetext, Chinesetext, Koreantext,
Russiantext (any human language text); Binary Unknown,
ASCII Unknown, and Unknown (as catchall categories).
I0088. The signature contained in the Signature and Tag
Signature fields can be any digest or hash over the object, or
Some portion thereof. In one embodiment, a well-known
hash, such as MD5 or SHA1 can be used. In one embodiment,
the signature is a digital cryptographic signature. In one
embodiment, a digital cryptographic signature is a hash sig
nature that is signed with the private key of capture system30.
Only capture system 30 knows its own private key, thus, the
integrity of the stored object can be verified by comparing a
hash of the stored object to the signature decrypted with the
public key of capture system 30, the private and public keys
being a public key cryptosystem key pair. Thus, if a stored
object is modified from when it was originally captured, the
modification will cause the comparison to fail.
I0089. Similarly, the signature over the tag stored in the Tag
Signature field can also be a digital cryptographic signature.
In Such an embodiment, the integrity of the tag can also be

US 2013/0246334 A1

verified. In one embodiment, verification of the object using
the signature, and the tag using the tag signature is performed
whenever an object is presented, e.g., displayed to a user. In
one embodiment, if the object or the tag is found to have been
compromised, an alarm is generated to alert the user that the
object displayed may not be identical to the object originally
captured.
0090 When a user searches over the objects captured by
capture system 30, it is desirable to make the search as fast as
possible. One way to speed up searches is to perform searches
over the tag database instead of the content store, since the
content store may be stored on disk, which can be far more
costly in terms of both time and processing power than to
search a database.
0091. The objects and tags stored in object store module
320 may be interactively queried by a search query initiated
via user interface 202 (e.g., through user system 22) of data
manager 20. The objects in the object store module 320 are
searchable for specific textual or graphical content using
exact matches, patterns, keywords, and/or various other
attributes. For example, user interface 202 of data manager 20
may provide a query-authoring tool (not shown) to enable
users to create complex searches of object store module 320.
These search queries are provided to a data-mining engine
(not shown) that parses the queries to object store module
320. For example, tag database 322 may be scanned and the
associated object retrieved from content store 324. Objects
that matched the specific search criteria in the user-authored
query are counted and/or displayed to the user (e.g., by user
interface 202 on user system 22).
0092 Searches may be scheduled to occur at specific
times or at regular intervals. User interface 202 may provide
access to a scheduler (not shown) that periodically executes
specific queries. Reports containing the results of these
searches are made available to the user at runtime or later Such
as generating an alarm in the form of an e-mail message, page,
system log, and/or other notification format.
0093. A user query for a pattern is generally in the form of
a regular expression. A regular expression is a string that
describes or matches a set of Strings, according to certain
Syntax rules. There are various well-known syntax rules Such
as the POSIX standard regular expressions and the PERL
Scripting language regular expressions. Regular expressions
are used by many text editors and utilities to search and
manipulate bodies of text based on certain patterns. Regular
expressions are well known in the art. For example, according
to one syntax (UNIX), the regular expression 4\d{15} means
the digit “4” followed by any fifteen digits in a row. This user
query would return all objects containing Such a pattern.
0094 Certain useful search categories cannot be defined
well by a single regular expression. As an example, a user may
want to query all emails containing a credit card number.
Various credit card companies used different numbering pat
terns and conventions. A card number for each company can
be represented by a regular expression. However, the concept
of credit card number can be represented by a union of all
Such regular expressions. For such categories, the concept of
attribute is herein defined. An attribute, in one embodiment,
represents a group of one or more regular expressions (or
other such patterns). The term “attribute’ is merely descrip
tive. Such concept could just as easily be termed “regular
expression list” or any other descriptive term.
0095. In one embodiment, the attributes are completely
user-configurable. A user interface provides an attribute edi

Sep. 19, 2013

tor that allows a user to define attributes by creating an
attribute and associating a group of one or more regular
expressions with the created attribute. The capture device
may come preconfigured with a list of common or popular
attributes that may be tailored specifically to the industry into
which the capture device is sold.
0096. In one embodiment, capture device 30 may create
new attributes automatically. For example, capture device 30
may observe that a certain regular expression is being
searched with some threshold frequency (generally set to be
above normal). The capture device creates an attribute to be
associated with this regular expression and begins tagging the
newly defined attribute when capturing new objects. In
another embodiment, capture device 30 may suggest that a
new attribute be created whena regular expression is searched
frequently. In yet another embodiment, capture device 30
may suggest that an attribute be deleted if infrequently used to
make room for another more useful attribute. In terms of the
query generation, example embodiments of the present inven
tion allow objects and/or their associated metadata to be
searchable upon request. For example, emails, documents,
images, etc. may be processed by capture system 30 and
searched.
(0097. Indexing
0.098 FIGS. 4-6 illustrate components, modules, opera
tional flows, and examples that may be associated with index
ing and searching objects in a capture database (e.g., object
store module 320 of capture system 30). Searching for infor
mation about captured objects stored on a disk (either local or
networked) is generally slow as each object must first be
retrieved from the disk and then examined against the search
criteria. Searching over the tag database is one way to accel
erate a search query. Another approach, as described below,
includes creating one or more fast storage (such as Random
Access Memory, flash, processor cache, etc.) indexes con
taining information (Such as metadata information and/or
keywords) about the objects (and therefore the content) stored
on a disk. Consequently, the task of searching for information
regarding captured objects can be performed quicker. Similar
indexing and searching techniques may also be provided for
certain objects identified by a discover system (e.g., discover
system 70).
0099 FIG. 4 illustrates additional details of an index mod
ule 330 in an example embodiment of capture system 30
utilizing indexing, and which may also be used in discover
system 70 as further described herein. Index module 330 of
capture system 30 includes an indexer 332 to create entries
into keyword indexes 334, which can include a dictionary (or
lists) of keywords found in all captured content (flows, docu
ments, etc.) and/or entries into metadata indexes (or lists) 336
based on captured content. In example embodiments, indexer
332 could be a part of object classification module 312. Key
word indexes 334 may point to a data structure containing the
objects containing the keyword and/or point to a list of objects
containing the keyword. A keyword is a word, phrase, name,
or other alphanumeric term that exists within common textual
content such as an email, Microsoft Office document, or
similar content. Typically, only currently used indexes are
stored in cache or RAM on the capture device, however, one
or more of these indexes may also be stored on disk either
locally or remotely. The persistence of these indexes to disk
may be done on command or periodically. However, search
ing is faster if more indexes are in RAM or other fast storage
device rather than on disk.

US 2013/0246334 A1

0100 Metadata index 336 can be a tree structure for an
individual property (such as IP address) and a Subsequent list
of captured objects in a capture storage device (e.g., object
store module 320) that have said property (such as “transmit
ted from the specific IP addresses'). Metadata of captured
objects includes properties describing the network character
istics of the content containing keywords. Examples of net
work characteristics include, but are not limited to, the Source
and destination addresses (Internet Protocol (IP) addresses),
time, and date of the transmission, size, and name of the
content, and protocol used to transmit the content. Additional
descriptive properties may be used to describe the device
upon which the content was captured, the user, the owner, the
object type, the object size, the viewer of the captured content
or security settings of the captured content, or any other
suitable metadata. Much of this information is also found in
tags as described earlier. While keyword index 334 and meta
data index 336 are illustrated as a being separate entities, they
may be a part of a single file per time period.
0101 Because of the two-index system, textual and
numeric properties may be indexed using different indexing
algorithms (for example, a keyword index may be a hash list
and a metadata index a B-tree, etc.). Furthermore, metadata
indexes that represent properties that may be enumerated
(that have a limited number of possible values) may use
different algorithms than those with unbounded properties.
An example of an enumerated property is “protocol. as there
are a limited and known number of protocols that are Sup
ported by a network capture device. An example of an
unbounded property is "size.” as an infinite number of pos
sible sizes exist for the content that will be captured by a
network capture device.
0102 Indexer 332 can utilize adaptive time-based dictio
nary granularity and creates new indexes over time, to there
fore prevent any specific index from growing unbounded.
Accordingly, a specific maximum search time to find an arbi
trary element in a tree or hash list may be maintained. The
temporal basis for creating a new index is determined by a
plurality of factors including, but not limited to: a) the number
of keywords or metadata elements that have been inserted into
the index; b) the number of captured objects listed in the
index; c) the aggregate size of the index; and d) the aggregate
size of captured content being indexed. In an embodiment, the
creation of new indices is additionally controlled by a user or
administrator employing different heuristics to optimize
search performance.
0103) Search engine 314 searches the indexes and returns
a list of captured documents from object storage module 320
that match specified search criteria. This search (or query)
searches for each criteria component individually to retrieve
a list of tags associated with objects in object storage module
320 for each criteria and then selects only those tags associ
ated with objects that exist within all returned lists. Alterna
tively, selections may be made based on a captured object not
existing within a returned list. An example of such a selection
is the evaluation of the criteria “contains keyword confiden
tial but not keyword sample.” In this case, only objects that
exist within the first returned list (contains “confidential') but
not within the second returned list (contains “sample') would
be qualified because of the search. While search engine 314 is
illustrated as a component inside of capture system 30, it may
alternatively exist on an external system (e.g., data manager
20).

Sep. 19, 2013

0104 FIG. 5 illustrates an example indexing flow. At step
501, a packet stream is captured. This packet stream is ana
lyzed at step 503 and a copy of the object and/or object data is
moved to a storage device at step 505. The capturing and
analyzing of packet streams and moving objects and/or object
data has been previously described. Keyword index entries
for the captured content are created at step 507. This entry
creation is performed by indexer 332 or equivalent. Keyword
index 334 may also be created, as necessary, at this point.
Metadata index entries for the captured content are created at
step 509. This entry creation is performed by indexer 332 or
equivalent. Metadata index 336 may also be created, as nec
essary, at this point. Thus, captured objects are stored and
indexed such that search queries can be performed on meta
data and/or keywords in a quick and efficient manner.
0105 FIG. 6 illustrates an example of keyword and meta
data indexes 334 and 336, respectively, at a particular point in
time. Each entry in keyword index 334 includes both a key
word found in a document and a reference to that document.
For example, keyword index 334 data structure includes key
words “confidential” and “information.” The keyword “con
fidential was found by the capture system to be in documents
“1” and “3.” Accordingly, keyword index 334 includes refer
ences to those documents for “confidential.” The keyword
“information' was found by the capture system to be in docu
ments “1” and “2. Accordingly, keyword index 334 includes
references to those documents for “information.” Similarly,
each entry in metadata index 336 data structure includes both
metadata data associated with a document and a reference to
that document. For example, metadata index 336 data struc
ture includes metadata “mail from Leopold' (indicating that
an email originated from someone named "Leopold' con
tained a specific document), “health care information (HCl)
(indicating that a document included, generically, HCl), and
“PDF (indicating that a document was a PDF file).
0106 The use of both a keyword index 334 and a metadata
index 336 allows for queries not possible with either a tradi
tional keyword or metadata query. For example, by creating a
new index periodically (thereby having multiple indexes), a
query of documents by time in addition to content is possible.
In contrast, while a normal Internet search engine may be able
to determine if a particular website has a particular keyword,
that same search engine cannot determine if it had that same
keyword 15 minutes ago, 1 week ago, etc. as these search
engines employ one large index that does not account for
time.
0107 Additionally, previously there were no queries that
could sort through both keyword and metadata. For example,
a search for an email from a person named “Leopold,” that
contains a PDF attachment, HCl, and includes (either in the
PDF or in the body of the email) the words “confidential and
“information' was impossible. Database queries only search
for metadata stored in indexed columns (e.g., Such as if the
content is a PDF file, mail from information, etc.). These
queries do not account for keywords, in other words, they
cannot search for a particular document containing the words
“confidential and “information.” Keyword queries (such as a
Google query) cannot search for metadata Such as the meta
data described above.

0108. In one embodiment of the data protection workflows
system, captured objects (e.g., objects stored in object store
module 320) meeting search criteria are identified during a
search of the selected database (e.g., object store module 320)
by search engine 314. Metadata related to the identified

US 2013/0246334 A1

objects and classification data (e.g., keywords) related to the
identified objects can be stored in object search database 316
of capture module 30. Various metadata could be retrieved for
the captured objects identified by search engine 314 includ
ing, for example, device (e.g., capture system 30), file type,
file size, owner, database partition, and mode of transmission.
These examples are not intended to be limiting and any Suit
able metadata related to the identified objects could be
retrieved.
0109 The retrieved metadata and category information
can be stored in object search database 316 of capture system
30. Data in object search database 316 can be pushed to
central database 230 of data manager 20 and loaded into an
OLAP cube. Analytics could be applied to the OLAP cube
and summaries of the captured objects identified by search
engine 314 according to the search criteria could be generated
and presented in an analytic classification view. Any Suitable
combination of retrieved metadata for the identified objects
could be used to present summarized views of the identified
objects over various dimensions (e.g., metadata and category
information).
0110 Discover System
0111 Turning to FIG. 7, FIG. 7 illustrates additional
details that may be associated with discover system 70 of the
data protection workflows system. In operation, discover sys
tem 70 can receive a task request (e.g., inventory, classifica
tion, remediation, or registration) from data manager 20 via
control path 26a. These task requests can be initiated, for
example, by a user through user system 22 (shown in FIG. 2).
Discover system 70 can perform the requested task on objects
of one or more selected content repositories 40 or portions
thereof (e.g., server shares, partitions, etc.). For inventory and
classification tasks, discover system 70 provides information
(e.g., metadata and category information) to data manager 20,
to which analytics can be applied and Summarized views of
the data presented to a user. For remediation tasks, discover
system 70 applies requested remediation policies to selected
Subsets of the objects that are presented in an analytic view.
For registration tasks, discover system 70 registers content of
selected Subsets of the objects that are presented in an analytic
view. The results of remediation and registration tasks may be
presented to the user through, for example, a dashboard via
user system 22 or other appropriate communication mecha
nism (e.g., reports, emails, alerts, etc.).
0112 Additionally, discover system 70 can fetch objects
(e.g., documents) from content repositories 40 during, for
example, classification, remediation, and/or registration tasks
and store the fetched objects or pointers to the objects in a
searchable fashion. These fetched objects may be classified
by content type and indexed, and pointers to the objects (e.g.,
stored in content repository 40) may be stored (e.g., in object
store module 720 of discover system 70) in a similar manner
as described with reference to FIG. 4 and capture system 30.
Discover system 70 can receive a search query from a user via
control path 26b and can perform a search of objects, based on
search criteria provided by the user. The search can be per
formed in a similar manner as the search described with
reference to search engine 314 and object store module 320.
When searching object store module 720 of discover system
70, however, once a pointer to an object has been identified,
the pointer may be used to actually retrieve (or fetch) the
associated object from a content repository.
0113. As shown in FIG. 7, discover system 70 includes
various modules and storage elements for performing inven

Sep. 19, 2013

tory, classification, remediation, and registration tasks and for
performing search queries on object store module 720 for
previously fetched objects. A crawl module 710, an inventory
module 740, and a metadata database 742 can enable an
inventory task. A crawl and fetch module 711, a content
classification module 750, and a category information data
base 752 can enable a classification task. Crawl and fetch
module 711, a remediation module 760, and a remediation
incidents list 762 can enable a remediation task. Crawl and
fetch module 711, a registration system 770, and a registra
tion database 772 containing a registration list 774 and an
index table 776 can enable a registration task. Finally, crawl
and fetch module 711, an object classification module 712,
object store module 720, index module 730, a search engine
714, and an object search database 716 can enable content
type classification, indexing and storing objects (or pointers
to the objects) fetched from content repositories 40 and can
enable Subsequent search queries over the previously fetched
objects. A user interface 702, a network interface 704, a
processor a 706, and a memory element 708 may also be
provided in discover system 70 to facilitate the operations
related to the various modules and other components.
0114. If a user selects an inventory task for content reposi
tories 40 (or shares of content repositories 40), task module
224 of data manager 20 can communicate an inventory task
request via control path 26a to discover system 70. Crawl
module 710 crawls the content repositories 40 (or selected
shares thereof) and retrieves metadata associated with stored
objects. As used herein, crawling refers to searching a tar
geted location in a Suitable manner to identify (or discover)
objects stored in the targeted location (e.g., a particular con
tent repository, a particular share of a server, etc.). Accord
ingly, crawl module 710 searches selected content reposito
ries 40 and identifies objects stored in selected content
repositories 40. Additionally, crawl module 710 can retrieve
metadata associated with the identified objects.
0115 For each object identified by crawl module 710,
metadata associated with the identified object can be retrieved
and inventory module 740 can store the metadata in metadata
database 742. By compiling sets of metadata elements for
each object, an inventory of objects (e.g., a raw file inventory
or incremental file listing) can be produced. An inventory of
objects is a compiled list of objects from a defined data
storage location (e.g., one or more selected content reposito
ries, one or more selected shares of a server, all content
repositories of a network, one or more selected workstations,
etc.), where each object can be represented by data or a set of
data that identifies the object. In one example implementa
tion, a set of metadata elements that represents an object can
include a device (e.g., the particular discover system crawling
the repository), a content repository (e.g., the particular
server where the object is stored), a share (e.g., the logical
data structure in the server where the object is stored), a file
type (e.g., actual file type of the object Such as portable
document format (pdf), Word document (.doc), Excel
spreadsheet (.xls), C programming language code (c), hyper
text markup language (.html), etc.), an owner of the file (e.g.,
user or system identification), and a file size (e.g., byte size).
0116. In example embodiments, metadata database 742
can be a structured query language (SQL) table instantiated in
discover system 70. An extract, transform, and load (ETL)
process can be employed to extract the metadata from meta
data database 742 and load it into central database 230 of data
manager 20, which can contain aggregated metadata from

US 2013/0246334 A1

multiple discover systems, which could each obtain metadata
of objects from any number of content repositories. In alter
native embodiments, metadata database 742 could be imple
mented separately from discover system 70 in any other suit
able data storage element.
0117. A classification task can be created by a user from an
analytic inventory or classification view of data resulting
from an inventory task or classification task, respectively.
Alternatively, a classification task can be independently cre
ated (e.g., without relying on Summarized views of data from
a previous task). In either scenario, example embodiments
can be implemented Such that a classification task can be
created through a user system of a data manager (e.g., user
system 22 of data manager 20) and instantiated on discover
system 70. Task module 224 of data manager 20 can commu
nicate the classification task request to discover system 70 via
control path 26a, including parameters selected during the
classification task creation from an analytic view of data
(inventory or classification) or including parameters selected
during an independent task creation. After receiving the clas
sification task request and associated parameters, crawl and
fetch module 711 crawls the appropriate content repositories
(or selected shares thereof) and fetches identified objects.
Content repositories 40 are searched and objects are identi
fied therein based on the parameters provided with the clas
sification task.

0118 For each object identified by crawl and fetch module
711, the actual object itself can be fetched and stored in
temporary storage while content classification module 750
analyzes the contents of the object and classifies the object
based on selected and/or default categories. Generally, cat
egories represent a class of ideas, terms, or things that can be
used to distinguish between objects. Classification puts
objects into buckets labeled with the categories. Example
buckets could include legal documents, confidential data,
manufacturing processes, etc. These labels may be applied to
objects based on the contents of the objects. In one example
scenario, for 200 objects having a C source code file type,
only 10 of those objects contain crypto algorithms and there
fore, only those 10 objects are placed in the crypto code
bucket (i.e., classified as 'crypto code).
0119 Categories may be stored in a categories database
50, which can be provided in a memory element in each
discover system 70 or data manager 20, or otherwise suitably
provisioned in network 10 or in another network or a cloud
accessible to discover system 70, such as through Internet 19.
Categories can include standard predefined categories, user
defined categories, or any Suitable combination thereof.
0120 In one embodiment, categories can be implemented
using a concept building protocol. Concepts can include a
collection of expressions and a dictionary of terms having a
mathematical relationship. An expression is a pattern of char
acters defining a particular item and a term is a textual token
that often appears in proximity to another expression. For
example, a drivers license concept may include a set of
expressions Supporting different numerical representations of
drivers’ license numbers, for example:

Sep. 19, 2013

Terms commonly used when specifying a drivers’ license
could include, for example:
(0.125 Term Expression 0: \iDrivers.\Lic\p
0.126 Term Expression 1: \D\,\Lic\p
(O127 Term Expression 2: \iDrivers\Lic\p
I0128 Term Expression 3: \iDrivers\License\p
I0129. Term Expression 4: \iDrivers\License\p
0.130. In the drivers’ license concept example above, an
object may be placed in the drivers’ license bucket (classified
as a drivers’ license document) if any of the expressions for
the numerical representation of a drivers license number is
found in the object within a predefined proximity of one or
more of the terms.
I0131) A data protection workflows system can be config
ured with any number (e.g., hundreds) of concepts, with
associated expressions and terms, covering U.S. (and foreign)
government regulations, health codes, legal matters, medical
diagnoses, employee compensation and benefits, confidential
information, financial information, etc. The system may be
configured to allow users to create additional concepts with
associated expressions and terms and conditions (e.g., proX
imity of expressions and terms of a concept) to be satisfied in
order for an object to be classified based on a category (or
concept).
0.132. When an object has been classified according to one
or more concepts (i.e., the object has been analyzed and
determined to contain expressions and terms of the concept in
accordance with any required conditions), object category
information can be stored in category information database
752, which can be a SQL table instantiated in discover system
70. The object category information can be any suitable data
that indicates the particular category or categories associated
with the object. In addition, metadata associated with the
classified objects may also be stored in database 752. In one
example the stored metadata can be configured as sets of
metadata elements that represent respective objects. The
metadata and category information of category information
database 752 can be extracted and loaded, using an ETL
process, for example, into central database 230 of data man
ager 20. Central database 230 may contain aggregated meta
data and category information of objects from multiple dis
cover systems, which could each obtain metadata and
category information of objects from any number of content
repositories. In alternative embodiments, metadata database
742 could be combined with category information database
752 and the combined database could be implemented sepa
rately from discover system 70 in any other suitable data
storage element.
0.133 Discover system 70 may also classify (based on
content type), index, and store objects (or pointers to objects)
when crawl and fetch module 711 fetches objects from con
tent repositories 40. Discover system 70 may include object
classification module 712, object store module 720, index
module 730, and search engine 714. In example embodi
ments, these modules and the search engine may be config
ured similarly to object classification module 312, object
store module 320, index module 330, and search engine 314
of capture system 30, previously described herein.
0.134 Object classification module 712 of discover system
70 receives objects fetched from content repositories 40 (as
opposed to reassembled objects extracted from a network
flow in capture system 30). Object classification module 712
can also use the inherent properties and/or signature(s) of
various documents to determine the content type of each

US 2013/0246334 A1

fetched object and can sort the objects according to content
type. Object store module 720 can be configured in a similar
manner to object store module 320 (shown in FIG. 4), includ
ing a content store that groups files by content type. However,
a content store of object store module 720 may store pointers
to objects in content repositories, rather than the actual
objects themselves. Additionally, the objects fetched from
content repositories may not have an associated tag as many
tag fields of captured objects do not apply to fetched objects
from content repositories. Object store module 720 may be
internal to a discover system or external (entirely or in part)
using, for example, some network storage technique Such as
network attached storage (NAS), storage area network
(SAN), or other database.
0135 Index module 730 of discover system 70 may be
configured in a similar manner to index module 330 of cap
ture system 30 (shown in FIG. 4), including an indexer, key
word indexes, and metadata indexes. Like indexer 332, the
indexer of index module 730 can create entries into keyword
indexes consisting of a dictionary (or lists) of keywords found
in the content of fetched objects and/or entries into metadata
indexes (or lists) based on metadata of the fetched objects. In
one embodiment, a keyword can indicate a category, for
example, as a term of a concept. Keyword indexes of index
module 730 can be configured similarly to keyword indexes
334, and may point to a data structure containing the objects
that contain the keyword and/or point to a list of objects (or
pointers to objects) that contain the keyword.
0.136 Metadata indexes of index module 730 can also be
configured similarly to metadata indexes 336, for example, as
a tree structure for an individual property (Such as a network
address of a content repository) and a Subsequent list of
fetched objects in a data storage location that have said prop
erty (such as “stored in the specific content repository').
Additionally, metadata elements of metadata indexes in dis
cover system 70 may include properties describing the
objects containing keywords. Examples of Such properties
include, but are not limited to, device associated with a con
tent repository where the object is stored (e.g., discover
device 70), content repository where the object is stored,
share where the object is stored, and file type, file name, file
owner, and file size of the object. Keyword indexes and meta
data indexes may be separate entities or combined into a
single entity.
0.137 Search engine 714 of discover system 70 may per
form searches in a similar manner as previously described
herein with reference to search engine 314 of capture system
30. Search engine 714 can search the indexes and return a list
of objects from content repositories 40 that match specified
search criteria. This list can include object pointers from
object store module 720 that point to the stored objects in
content repositories 40. In other embodiments, the objects
fetched from content repositories 40 could be stored in object
store module 720 just as captured objects are stored in object
store module 320 of capture system 30.
0138 Search engine 714 can search for each search crite
rion individually to retrieve a list of pointers (or other suitable
identifiers) associated with objects stored in content reposi
tories 40 that satisfy a particular criterion. Once pointer lists
have been obtained for each criterion, then only those pointers
that exist within all returned lists may be selected. Alterna
tively, selections may be made based on a pointer to an object
not existing within a returned list. An example of Such a
selection is the evaluation of the criteria “contains keyword

Sep. 19, 2013

confidential but not keyword sample. In this case, only point
ers to objects that exist within the first returned list (contains
“confidential”) but not within the second returned list (con
tains “sample') would be qualified because of the search.
While search engine 714 is illustrated as a component inside
of discover system 70, it may alternatively exist on an external
system (e.g., data manager 20).
0.139. Search engine 714 can store results of a search query
in object search database 716. In example embodiments,
object search database 716 can store metadata (e.g., content
repository, share, file type, etc.) and category information
(e.g., keywords or other information indicating the keywords)
associated with each identified object. In one embodiment,
object search database 716 can be configured as an SQL table
instantiated on discover system 70. An ETL process can be
employed to extract data from object search database 716 and
load it into central database 230 of data manager 20. Central
database 230 can containaggregated data from search queries
performed by multiple discover systems on multiple data
bases (e.g., object store modules instantiated on each discover
system) containing indexed objects (or pointers to indexed
objects) fetched from one or more content repositories.
0140 Search query data loaded into central database 230
can be processed similarly to classification task data. Search
query data can be loaded into an OLAP cube and analytics can
be applied to generate Summaries of the data and present a
classification view of the search query data to a user. Such
searches may be preferable to classification tasks in certain
cases. For example, whena classification task is performed on
a desired set of objects, the desired set of objects can be
indexed and pointers to the objects can be stored in object
store module 720. A search query over object store module
720 may then be used to further classify the objects and
present additional information to a user through another clas
sification view. In this instance, the search query may be
performed rather than another classification task, because a
classification task may use significantly more processing
resources to crawl and fetch objects from content repositories
thana search query uses when searching over the indexed data
in object store module 720.
0141 Consider one example scenario. If a classification
task has been performed to categorize Health Insurance Port
ability and Accountability Act (HIPAA) documents on a par
ticular share of a content repository, then object store module
720 could be loaded with indexed HIPAA classified objects
from the particular share. If a user then wants to understand
the set of HIPAA objects on the share, the user may simply
query the index of object store module 720 (e.g., by initiating
a search query) with the additional desired classification
terms (e.g., XYZ Corp. Confidential). Thus, this subsequent
classification (into HIPAA documents from the desired share
that contain XYZ Corp. Confidential) may be performed
more efficiently by instantiating a search query rather than
another classification task in which the targeted share would
be crawled again and identified objects would be fetched
again.
0142. A remediation task can be created by a user and can
be derived from an analytic inventory or classification view of
data. The remediation task can be created through a user
system of a data manager (e.g., user System 22 of data man
ager 20) and instantiated on discover system 70. Task module
224 of data manager 20 can communicate a remediation task
request to discover system 70 via control path 26a, including
parameters that were automatically populated or manually

US 2013/0246334 A1

selected during the task creation. Parameters can include
criteria for identifying objects or subsets of objects to be
remediated (e.g., metadata and/or category information) and
remediation policies that indicate actions to be applied to the
identified objects or otherwise performed.
0143. After receiving the remediation task request and
associated parameters, crawl and fetch module 711 crawls the
appropriate content repositories (or selected shares thereof)
and identifies objects based on the parameters provided with
the remediation task. Remediation policies could include any
suitable actions allowed by an enterprise or authorized user of
the system. Example remediation policies could include
reporting findings, alerting an appropriate administrator or
other user, encrypting objects or particular content of objects,
fingerprinting objects or particular portions of objects, delet
ing objects, moving objects, quarantining objects, or modi
fying content of objects. Such remediation actions are pro
vided for illustrative purposes and accordingly, any other
Suitable remediation actions could also be implemented in
remediation policies of the system.
0144. For each object identified by crawl and fetch module
711, the actual object itselfmay be fetched, depending on the
particular remediation policy being applied. For example, a
remediation policy to delete selected objects may simply
delete the identified objects from the content repository, and
therefore, such objects may not be fetched from the content
repository. In another example, a remediation task could be
created to apply a policy to objects that requires analysis of
the contents in the objects (e.g., HIPAA policy). Accordingly,
when objects are identified in content repositories 40 by crawl
and fetch module 711, the identified objects may be fetched
and provided to object classification module 712 for classi
fying (based on content type), indexing, and storing activities.
The analysis activities may be performed on the fetched
object or on data in object store module 720. Additionally,
other remediation actions such as encryption may be per
formed on the fetched objects and the newly encrypted
objects could be stored in content repositories 40 to replace
the corresponding unencrypted objects.
0145 Remediation module 760 can store incidents (or
results) from applying the remediation policy in remediation
incidents list 762. For example, if a remediation task includes
a remediation policy to encrypt certain objects (e.g., objects
with a social security number), then each time an object is
identified that matches the specified parameters, an incident
can be created and stored in remediation incidents list 762.
Incidents can include any suitable information related to
applying the remediation policy Such as, for example, iden
tification of the remediated object, actions performed, date
and time stamp, etc. The incidents can then be presented to a
user, for example, via a dashboard view on user system 22, in
any Suitable format.
0146 A registration task can be created by a user and can
be derived from an analytic inventory or classification view of
data. The registration task can be created through a user
system of a data manager (e.g., user System 22 of data man
ager 20) and instantiated on discover system 70. Task module
224 of data manager 20 can communicate a registration task
request to discover system 70 via control path 26a, including
parameters that were automatically populated or manually
selected during the registration task creation. Parameters can
include criteria for identifying objects or subsets of objects to
be registered (e.g., metadata and/or category information).

Sep. 19, 2013

0.147. After receiving the registration task and associated
parameters, crawl and fetch module 711 crawls the appropri
ate content repositories 40 (or selected shares thereof) and
identifies objects based on the parameters provided with the
registration task. For each object identified by crawl and fetch
module 711, the actual object itself can be fetched. Accord
ingly, when objects are identified in content repositories 40 by
crawl and fetch module 711 for a registration task, the iden
tified objects may be fetched and provided to object classifi
cation module 712 for classifying (based on content type),
indexing, and storing activities.
0148 Registration system 770 could be configured to
implement any suitable registration techniques in a data pro
tection workflows system. Generally, registration system 770
can be implemented to create a signature set of some content
in an object to be registered such that the original content can
be detected (e.g., if the registered object is attached to an
email being sent out of the network) and a plagiarized form of
the content can be detected (e.g., if the original content is
copied and pasted into another document that is attached to an
email).
0149. In one example embodiment of a registration tech
nique that is further described herein with reference to FIGS.
13-18, registration system 770 identifies and registers com
binations of information that could reveal confidential or
sensitive information (e.g., name, address, phone number,
and Social Security number). In this embodiment, registration
system 770 generates tuples for combinations of information
in an object and builds an internal numerical representation
and a corresponding index Such that the presence of any
transformed or transmuted representation of the original data
can be detected. The numerical representation and index can
be stored in registration list 774 and index table 776, respec
tively.
0150. Another registration technique provides for calcu
lating a signature or a set of signatures of an object. A signa
ture associated with an object may be calculated in various
ways. An example signature consists of hashes over various
portions of the object, such as selected or all pages, para
graphs, tables and sentences. Other possible signatures
include, but are not limited to, hashes over embedded content,
indices, headers, footers, formatting information, or font uti
lization. A signature may also include computations and
metadata other than hashes, such as word Relative Frequency
Methods (RFM)—Statistical, Karp-Rabin Greedy-String
Tiling-Transposition, vector space models, diagrammatic
structure analysis, etc.
0151. The signature or set of signatures associated with an
object can be stored in a signature database (not shown). The
signature storage may be implemented as a database or other
appropriate data structure as described earlier. In example
embodiments, the storage database is external to discover
system 70. Pointers to registered documents in content
repositories 40 can be stored as pointers in object store mod
ule 720 according to the rules set for the system. In other
embodiments, registered documents can be stored as objects
in object store module 720. In example embodiments, only
documents or pointers are stored in object store module 720,
as these documents have no associated tag since many tag
fields may not apply to registered documents.
0152. When registration module 770 has completed a reg
istration task, the results of the registration process can be
presented to a user, for example, via a dashboard on user
system 22 in any suitable format.

US 2013/0246334 A1

0153 Data Protection Workflows
0154 Turning to FIG.8, FIG.8 illustrates a high level flow
800 of possible operations that may be associated with a data
protection workflows system. Flow 800 illustrates operations
that could occur in data manager 20 and discover system 70.
Flow begins at 802 where an inventory or classification task is
created. The task can be created in data manager 20 and
communicated to discover system 70 on control path 26a
along with associated parameters indicating what repositories
(or shares) should be searched. Once the task and associated
parameters are received by discover system 70, repositories
or shares of repositories indicated by the parameters can be
crawled at 804. If the task is a classification task, then at 806,
objects identified during the crawl can be fetched and classi
fied according to predefined categories, which could be
default categories or categories selected by a user.
0155 Analytics can be applied to the inventory or classi
fication data and Summarized views of the data can be pre
sented to a user at 808. The presentation can occur in data
manager 20 on, for example, user system 22. If a classifica
tion task is created at 810 (e.g., on top of an inventory view or
a classification view), then task filters can be refined at 812
(e.g., an inventory or classification view can be drilled down
to select one or more Subsets of objects and/or categories not
previously used to classify the objects can be selected). The
classification task request and refined filters (or parameters)
are communicated to discover system 70, and flow passes
back to 804 where the repositories or shares of repositories
indicated by the refined parameters can be crawled.
0156. If a classification task is not created at 810, then if a
registration task is created, as determined at 812, flow passes
to 822 where task filters can be refined (e.g., an inventory or
classification view can be drilled down to select one or more
Subsets of objects to be registered). The registration task
request and associated parameters can be communicated to
discover system 70 on control path 26a. Once the registration
task and associated parameters are received by discover sys
tem 70, the repositories or shares of repositories indicated by
the parameters can be crawled at 824. The objects identified
on the repositories can be fetched and registered at 826.
0157. If a registration task is not created, as determined at
812, then if a remediation task is created as determined at 814,
flow passes to 816 where task filters can be refined (e.g., an
inventory or classification view can be drilled down to select
one or more subsets of objects to be remediated). In addition,
a remediation policy can be selected to apply to the selected
one or more Subsets of objects. The remediation task request
and associated parameters, including the remediation policy,
can be communicated to discover system 70 on control path
26a. Once the remediation task request and associated param
eters, including the remediation policy, are received by dis
cover system 70, the repositories or shares of repositories
indicated by the parameters can be crawled at 818. The
objects identified on the repositories can be fetched, depend
ing on the particular remediation policy being applied, and
can be appropriately remediated at 820 in accordance with the
selected remediation policy.
0158 Turning to FIGS. 9A-9B, more detailed workflows
900, of possible operations and data flow that may be associ
ated with a data protection workflows system are illustrated,
which could occur in data manager 20, discover system 70.
and capture system 30. Numerous workflow scenarios are
possible with the data protection system. In one typical work
flow, a user can begin with an inventory task to generate a raw

Sep. 19, 2013

inventory of objects, apply analytics to the inventory, create a
classification task, and then potentially create a protection
task for selected data. In another workflow, a user can begin
with an inventory task to generate a raw inventory of objects,
apply analytics to the inventory, and then potentially create a
protection task for selected data. In yet another possible
workflow, a user can create a classification task to generate
classification data of objects based on selected parameters,
apply analytics to the classification data, and potentially cre
ate a protection task for selected data. In an additional work
flow, a user can create a search definition (e.g., on top of a
classification view) to generate classification data of objects
based on the search criteria, apply analytics, and potentially
create a protection task for selected data. Moreover, other
tasks, searches, and manipulations of inventory views and/or
classification views of the data may also be included in any of
the above-identified workflows.

0159. With reference to FIG.9A, flow begins at 901 where
a search definition may be created or refined. A search defi
nition can be created based on metadata and/or categories
(e.g., keywords) and can be performed on captured objects in
object store module 320 of capture database 30 or on object
store module 720 of discover system 70. In a typical workflow
scenario involving data at rest (e.g., data in content reposito
ries), one or more classification (and possibly remediation
and/or registration) tasks are generally created and performed
before a search is requested, because during the classification
(and remediation and registration) task, objects are fetched,
indexed, and appropriately stored (e.g., pointers) such that
searches may subsequently be performed over the indexed
objects. For data in motion (e.g., objects from network traffic
stored in capture databases such as object store module 320),
however, a search definition could be created anytime in order
to see a Summarized view of objects captured and extracted
from network traffic.

0160 A task definition may also be created or refined at
901. In example embodiments described herein, tasks can
include inventory, classification, remediation, and registra
tion. An inventory task can be independently instantiated and
can be performed on a selected location of stored objects
(e.g., repositories or server shares). A classification task can
be derived from an analytic view (either an inventory view or
another classification view), or alternatively, can be indepen
dently instantiated. Registration and remediation tasks can
also be derived from analytic inventory or classification
W1WS.

0.161 Inventory and classification tasks are generally the
tasks that retrieve data (e.g., sets of metadata) from selected
content repositories or shares to generate Summaries of the
associated objects, which can be presented in Summarized
views (inventory or classification) by dimensions of interest.
Presentations of analytical Summaries over a raw inventory of
objects (inventory view or analytic inventory view) and/or
analytical classification Summaries (classification view or
analytic classification view) can reveal the distribution of
objects (e.g., files) across various data storage locations and
the quantification of the objects and subsets of the objects in
the data storage locations. Users can manipulate the views by
selecting different dimension groups in order to generate
different Summaries of the objects such as counts and com
bined sizes of subsets of the objects associated with different
combinations of metadata elements. A dimension group rep
resents a group of specific metadata elements associated with
the same type of metadata. For example, pdf, Xls, doc.html. c.

US 2013/0246334 A1

and cpp. are file types and could be grouped together to form
a dimension group of file types. When a user finds a mean
ingful view of assets by drilling down dimension groups
(e.g., a large number of certain program files on a particular
share, a large number of certain program files classified as
confidential, etc.), then the user can create a remediation
task or a registration task over the meaningful view (which
could be one or more subsets of objects presented in either an
inventory or classification view), if desired, to protect the data
in the one or more Subsets of objects that define the meaning
ful view.
0162. In one potential workflow scenario a user may ini

tially create an inventory task at 901. There is no search
definition as determined at 902, and 903 directs the inventory
task flow to 910 where an inventory task request and associ
ated parameters are communicated to discover system 70 via
control path 26a. Parameters can include content repositories
or particular shares of content repositories to be targeted for
the inventory task. In one example, a range of network
addresses (e.g., IP addresses) may be provided for an inven
tory task to be performed on multiple content repositories
(e.g., a cluster of file servers), with each server potentially
containing multiple shares.
0163 The selected content repositories or shares indicated
by the parameters can be crawled at 911 to obtain a raw
inventory of objects, which can comprise a listing of sets of
metadata elements. In example implementations, each set of
metadata elements represents one of the objects identified
during the crawl and each metadata element in a set is a
distinct type of metadata. Example types of metadata include,
but are not limited to, device, content repository, share of
content repository, file type, file owner, and file size. A task
type initiating the crawl and generating the data for the ana
lytic Summaries could also be tracked.
0164. The metadata retrieved from crawling can be stored
in metadata database 742. The metadata is then extracted and
loaded into central database 230 of data manager 20, which
could be merged with metadata from other metadata data
bases associated with other distributed discover systems and
content repositories in the network or in other associated
networks. For example, if multiple content repositories,
accessed by different discover systems, were specified in the
inventory task parameters, the inventory task requests could
be communicated to multiple discover systems and, Subse
quently, each of the multiple discover systems could load
central database 230 with their respective inventory metadata.
0.165 At 904 an OLAP cube is generated and populated
with metadata from central database 230. The OLAP cube
drives the analytics to generate Summaries of the inventoried
objects by various dimensions at 905. The summaries can be
used to create and present an inventory view to a user at 906.
In example embodiments, the presentation can be a GUI
display Screen that allows the user to manipulate the inventory
view by drilling down into different dimension groups of the
data in order to see different inventory views of the data. The
GUI display Screen may also be configured to allow a user to
slice and dice different dimensions and/or specific metadata
elements to obtain a focused view of particular objects.
0166 Initially, an inventory view could display a total
count indicating the total number of inventoried objects rep
resented in the current inventory view and a total size indi
cating the total combined size of all of the inventoried objects.
Dimensions of the inventoried objects can be displayed in a
hierarchical order (e.g., from left to right), which can be

Sep. 19, 2013

selectively reordered by a user to obtain a different view of the
data. For ease of explanation with regard to FIG. 9, assume
that dimensions are displayed in the following order, with the
first dimension being at the top of the hierarchy: Device,
Repository, Share, File Type, File Owner, and File Size.
0.167 A user can manipulate the inventory view by drilling
down a dimension group. That is, if the user selects a dimen
sion group at 907. Such as a device dimension group, then
analytics can be applied to the OLAP cube at 905 and new
Summaries can be generated for each of the devices (of the
selected devices dimension group). Thus, the Summaries can
be used to create a different inventory view that can be pre
sented to the user at 906. In this scenario, a total count and
total size can be computed and listed for each subset of
objects associated with one of the enumerated devices.
0168 If a user selects another dimension group at 907,
Such as a repositories dimension group that corresponds to
one of the enumerated devices (e.g., 'DISCOVER DEVICE
1), then analytics can be applied to the OLAP cube at 905 and
new Summaries can be generated for each of the repositories
(of the selected repositories dimension group) associated
with DISCOVER DEVICE-1. Thus, the summaries can be
used to create a different inventory view that can be presented
to the user at 906. In this scenario, a total count and total size
can be computed and listed for each subset of objects identi
fied in one of the enumerated content repositories crawled by
DISCOVER DEVICE-1.
0169. In yet another example of manipulating the view by
drilling down, if the user selects a file types dimension group
at 907 that corresponds to one of the enumerated content
repositories (e.g., DIANA), then analytics can be applied to
the OLAP cube. New summaries can be generated at 905 for
each of the file types (of the selected file types dimension
group) associated with the DIANA content repository and the
corresponding DISCOVER DEVICE-1. The summaries can
be used to create a different inventory view that can be pre
sented to the user at 906. In this scenario, a total count and
total size can be computed and listed for each new subset of
objects having one of the enumerated file types, which were
identified in the DIANA content repository crawled by DIS
COVER DEVICE-1 during the inventory task.
0170 A classification, remediation, or registration task
can be created on top of an inventory view presented at 906.
In particular, ifa user is presented with a meaningful analytic
view at 906, which could be either an initial inventory view or
any Subsequent manipulated view, the user can create a clas
sification, remediation, or registration task using data from
that view. Accordingly, if the user does not manipulate the
inventory view at 907, flow passes back to 901 where the user
can create or refine a new task or search definition. As previ
ously explained herein, a search definition typically may not
be created for data at rest until a classification task has been
performed. If the previous task was an inventory task, how
ever, a search definition could be created for different data
(e.g., data in motion captured by a capture system, data at rest
fetched and stored by a previous task other than an inventory
task).
(0171 If a classification task is created at 901, it can be
created from an inventory or classification view presented at
906, or it can be independently instantiated (i.e., created
independently without incorporating data from a previous
task). To create a classification task from an inventory or
classification view, a user can select a classification option for
a subset (or multiple subsets) of the inventoried or classified

US 2013/0246334 A1

objects, where each object in the subset is associated with a
desired combination of metadata elements and possibly one
or more categories, and where each object in the Subset is
associated with the same metadata element for at least one of
the types of metadata (e.g., each object of one Subset is owned
by the CEO, each object of another subset is an Excel file and
is located on a content repository for the Finance Department,
each object of yet another subset is classified as a HIPPA
document, etc.). The metadata elements may be presented in
a desired hierarchical arrangement of dimensions. From an
inventory or classification view, a user can manipulate the
view by drilling down one or more dimension groups and/or
slicing and dicing dimensions and/or specific metadata ele
ments until a view is presented with a combination of meta
data elements representing a desired Subset (or multiple com
binations representing multiple Subsets) of the objects. In one
example, the user can then create a classification task for the
Subset (or multiple Subsets) presented in the manipulated
view by selecting a classification option (e.g., by activating a
classification clickable).
0172. Selecting the classification option can then produce
another display screen in which parameters for the classifi
cation task are automatically populated from the selected
subset (or subsets) of the previous screen. Parameters can
include metadata elements specifying a location of the
objects to be classified (e.g., content repositories, shares,
devices) and other metadata elements associated with the
selected Subset. The combination of metadata elements may
also be independently selected or refined by a user. In addi
tion, if the classification task is derived from a classification
view (resulting from a previous classification task or a search
query) then the category information associated with the
selected Subsets can populate the parameters for the new
classification task. That is, classified objects can be further
classified. Furthermore, the user could potentially adjust the
conditions and values of the metadata elements associated
with the targeted objects.
0173 Example combinations of metadata elements for a
classification task could include: 1) objects having a particu
lar file type on selected content repositories (e.g., all
Microsoft(R) Office documents such as files ending in .doc,
.docx, .xls, pdf, and ppt, on a file server for a legal depart
ment), 2) objects having a particular owner on a particular
share of a content repository, 3) objects on a particular share
of a content repository, 4) objects having particular file types
and a particular owner on any content repository searched by
a particular discover device (e.g., files ending in c or .cpp
owned by a particular Software engineer), etc.
0174. When a classification task is created at 901 and there
is no search definition as determined at 902, then at 903 the
classification task flow is directed to 920 where a classifica
tion task request and associated parameters are communi
cated to discover system 70 via control path 26a. When dis
cover system 70 receives the classification task parameters,
the selected one or more content repositories (or shares) indi
cated by the parameters can be crawled at 921 to identify and
fetch objects associated with the other parameters (e.g., file
type, owner, file size). When an object matching the all of the
classification task parameters is identified, its contents can be
fetched from the content repository. The object can be clas
sified by content type at 922 and its content signatures can be
analyzed at 923 according to policies of policy engine 960.
The fetched object is classified according to type, as previ
ously described herein with reference to object classification

Sep. 19, 2013

module 712 of discover system 70. Additionally, the fetched
object can be indexed by metadata and keywords as previ
ously described herein with reference to index module 730 of
discover system 70. A pointer to the location in the content
repository where the fetched object was stored can be stored
in object store module 720.
0.175. After the fetched object has been classified by type,
analyzed, indexed and suitably stored, at 924 content classi
fication module 750 of discover system 70 can classify the
fetched object based on one or more categories by evaluating
the objects content. In example embodiments, content clas
sification can be accomplished by using predefined categories
(default categories and/or categories created by an authorized
user) that may be selected by the user when creating the
classification task. Each object can be evaluated and classified
based on one or more of the selected categories. Sets of
metadata representing each of the objects and the correspond
ing category information associated with each of the objects
can be stored in category information database 752. The sets
of metadata elements and the corresponding category infor
mation for the objects is then extracted and loaded into central
database 230, which could be merged with metadata and
category information from other discover systems distributed
in the network or in other associated networks.
0176). At 904 an OLAP cube is generated and populated
with metadata and category information from central data
base 230. The OLAP cube drives the analytics to generate
Summaries of the classified objects by various dimensions at
905. The summaries can be used to create and present a
classification view to a user at 906. In example embodiments,
the presentation can be a GUI display screen that allows the
user to manipulate the classification view by drilling down
into different dimension groups in order to see different clas
sification views. The GUI display screen may also be config
ured to allow a user to slice and dice different dimensions
and/or specific metadata elements, including particular cat
egories, to obtain a focused view of particular objects.
0177. Initially, a classification view could list each cat
egory associated with one or more of the classified objects.
For each category, a corresponding total count could indicate
the total number of objects identified during the classification
task crawl that were classified in that category. The total size
could indicate the total combined size of those classified
objects.
0.178 If a user manipulates the view by selecting a par
ticular dimension group at 907, such as a repositories dimen
sion group that corresponds to a particular category (e.g.,
Health Insurance Portability and Accountability Act
(HIPAA)), then analytics can be applied to the OLAP cube at
905 and new summaries can be generated for objects associ
ated with each of the repositories (of the selected repositories
dimension group) and classified as HIPPA documents. Thus,
the Summaries can be used to create a different classification
view that can be presented to the user at 906. In this scenario,
a total count and total size can be computed and listed for each
new subset of objects identified in one of the enumerated
content repositories (of the selected repositories dimension
group) and classified as HIPPA documents.
0179 If a user selects another dimension group at 907,
Such as a file owner dimension group) that corresponds to one
of the enumerated content repositories (e.g., DIANA) and to
one of the categories (e.g., HIPPA) in the classification view,
then analytics can be applied to the OLAP cube. New sum
maries can be generated at 905 for objects associated with

US 2013/0246334 A1

each of the file owners (of the selected file owners dimension
group), the DIANA content repository, and the HIPPA cat
egory. The Summaries can be used to create a different clas
sification view that can be presented to the user at 906. In this
scenario, the total count and total size can be computed and
listed for each new subset of the objects, which are classified
as HIPPA documents and associated with one of the enumer
ated file owners (of the selected file owners dimension group)
and the DIANA content repository.
0180 A remediation or registration task can be created on
top of a classification view presented at 906. In particular, if a
user is presented with a meaningful analytic view at 906,
which could be either an initial classification view or any
Subsequent manipulated view, the user can create a remedia
tion or registration task using data from that view. Alterna
tively, a user may create a search definition to search object
store module 720 that has been loaded with objects (or point
ers to objects) fetched during the classification task. Accord
ingly, if the user does not manipulate the classification view at
907, flow passes back to 901 where the user can create or
refine a new task or search definition.
0181. A search definition may be used, when possible, to
more quickly analyze objects by avoiding the use of resources
needed to crawl content repositories and fetch objects from
them. A search definition could be defined at 901 to search
objects that were fetched during a previous task (e.g., a clas
sification task), indexed (e.g., in index module 730), and
stored (e.g., objects or pointers to the objects stored in object
store module 720). The search definition could further refine
previous search criteria and enable quick processing without
consuming unnecessary resources. For example, if a classifi
cation view includes a category of objects associated with
HIPAA, then a user may select that category of objects and
define search criteria for “Enterprise Name Confidential” in
order to find all HIPAA documents identified during the pre
vious classification task that are explicitly labeled as confi
dential for the enterprise.
0182. If a search definition is created, as determined at
902, then the search can be performed at 950 over object store
module 720 and pointers from object store module 720 can be
used to quickly retrieve the actual objects identified during
the search from the appropriate content repository.
0183 Sets of metadata and category information (e.g.,
keywords or Suitable data identifying the keywords) associ
ated with objects identified during a search of object store
module 720 can be stored in object search database 716 and
then loaded into central database 230. The data loaded in
central database 230 can then be processed in a similar man
ner at 904-907 as described with reference to a classification
task. Thus, data retrieved from a search of object store module
720 can be presented to a user in a classification view and may
be manipulated by the user to see different views of the data.
Accordingly, additional classification tasks or searches, a
remediation task, and/or a registration task could be derived
from a classification view generated from a search query.
0184. If a search definition is created at 901 for a capture
database of a capture system, however, then the search defi
nition could be defined to search captured objects (from net
work traffic) that were indexed and stored in object store
module 320 of capture system 30, for example. The search
definition could refine search criteria, including keyword and/
or metadata indexes. The search can be performed at 950 over
object store module 320 and objects matching the search
criteria can be retrieved from object store module 320.

Sep. 19, 2013

0185. Metadata and category information (e.g., keywords
or suitable data identifying the keywords) associated with
objects identified during the search of object store module
320 can be stored in object search database 316 of capture
system30 and then loaded into central database 230. The data
loaded in central database 230 can then be processed in a
similar manner at 904-907 as described with reference to a
classification task. Thus, data related to captured objects
retrieved from a search of object store module 320 can be
presented to a user in a classification view and may be
manipulated by the user to see different classification views
of the data. Accordingly, additional searches could also be
performed on subsets of the classified objects from the search
query. Generally, appropriate remediation and/or registration
techniques can be performed at the time an object is captured
from network traffic.

0186. With reference again to 901, a remediation task can
be created from an inventory or classification view. To create
a remediation task from an inventory or classification view, a
user can select a remediation option for a Subset (or multiple
subsets) of the inventoried or classified objects, where each
object in the subset is associated with a desired combination
of metadata elements and possibly one or more categories,
and where each object in the subset is associated with the
same metadata element for at least one of the types of meta
data. The metadata elements may be presented in a desired
hierarchical arrangement of dimensions. From an inventory
or classification view, a user can manipulate the view by
drilling down dimension groups and/or slicing and dicing
dimensions and/or specific metadata elements until a view is
presented with a combination of metadata elements repre
senting a desired Subset (or multiple combinations represent
ing multiple Subsets) of the objects. In one example, the user
can then create a remediation task for the Subset (or multiple
Subsets) presented in the manipulated view by selecting a
remediation option (e.g., by activating a remediation click
able).
0187. The selection to remediate can then produce another
display screen in which parameters for the remediation task
are automatically populated from the selected subset (or sub
sets) of the previous screen. Parameters can include metadata
elements specifying a location of the objects to be remediated
(e.g., content repositories, shares, devices) and other meta
data elements associated with the selected subset. The com
bination of metadata elements may also be independently
selected or refined by a user. In addition, if the remediation
task is derived from a classification view (resulting from a
previous classification task or a search query) then the cat
egory information associated with the selected Subsets can
populate the parameters for the remediation task. Addition
ally, in example embodiments the user could adjust the con
ditions and values of the metadata elements associated with
the targeted objects.
0188 Parameters for a remediation task can also include
one or more remediation policies specifying particular reme
diation actions to be performed. Remediation policies can be
selected and/or defined by a user. Remediation actions could
include encrypting, deleting, quarantining, moving, modify
ing, reporting, or any other Suitable action.
(0189 Policies can be created to define remediation actions
for particular types of documents. In one example scenario, a
state privacy law policy could be created to define how to
remediate documents covered by state privacy laws. In this
example, a user could drill down one or more dimension

US 2013/0246334 A1

groups in a classification view to identify a particular Subset
of the classified objects subject to State privacy laws. The user
could select a remediation option for the Subset, and metadata
elements and category information associated with objects of
the Subset could automatically populate remediation task
parameters in the next display Screen. The user could then
selecta State Privacy Laws' policy to be applied to the subset.
0190. When a remediation task is created at 901 and there

is no search definition as determined at 902, then at 903 the
remediation task flow is directed to 930 where a remediation
task request and associated parameters, including a remedia
tion action or policy, are communicated to discover system 70
via control path 26a. When discover system 70 receives the
remediation task parameters, the selected one or more content
repositories indicated by the parameters can be crawled at 931
to identify and possibly fetch objects associated with the
other parameters (e.g., share, file type, owner, file size, cat
egories). The identified objects may be fetched depending
upon the type of remediation actions requested. For example,
a remediation task to delete certain files could simply crawl
the repository, identify the objects, and delete them. On the
other hand, a remediation task to encrypt files using encryp
tion services on a particular server could crawl the repository,
identify the objects, fetch the objects, provide them to the
encryption services, and store the encrypted objects back in
the repository.
0191) When an object is fetched during a registration task,
the object can be classified by content type at 932, its content
signatures can be analyzed at 933, and the object can be
indexed and appropriately stored via index module 730 and
object store module 720. These activities can be accom
plished as previously described herein with reference to
object classification 922, content signature analysis 923,
index module 730, and object store module 720.
0.192 An identified or fetched object can be remediated at
935 according to the remediation policy or remediation action
provided in the remediation task parameters. Additionally,
remediation incidents list 762 can be updated to reflect the
remediation action taken, the objects affected by the reme
diation action, and any other relevant information related to
the remediation task. In example embodiments a system
dashboard may be displayed to the user on user system 22, for
example, providing information associated with remediation
incidents list 762.

0193 With reference again to 901, a user may create a
registration task from an inventory or classification view.
Creation of a registration task can be accomplished as
described with reference to creating a remediation task at 901.
A user can manipulate (e.g., by drilling down, slicing, and/or
dicing) an inventory or classification view to display a desired
subset (or multiple subsets) of the inventoried or classified
objects. A registration task can be created for the desired
Subset (or Subsets) by selecting a registration option (e.g., by
activating a registration clickable). Additionally, parameters
for the registration task can be automatically populated from
the selected subset, as described with reference to creating a
remediation task. Also, the user could adjust the conditions
and values of the metadata elements associated with the tar
geted group of objects.
0194 When a registration task is created at 901 and there

is no search definition as determined at 902, then at 903 the
registration task flow is directed to 940 where a registration
task request and associated parameters are communicated to
discover system 70 via control path 26a. When discover sys

Sep. 19, 2013

tem 70 receives the registration task parameters, the selected
one or more content repositories indicated by the parameters
can be crawled at 941 to identify and possibly fetch objects
associated with the other parameters (e.g., share, file type,
owner, file size, categories). The identified objects may be
fetched depending upon the type of registration actions
requested.
0.195. When an object is fetched during a registration task,
the object can be classified by content type at 942, its content
signatures can be analyzed at 943, and the object can be
indexed and appropriately stored via index module 730 and
object store module 720. These activities can be accom
plished as previously described herein with reference to
object classification 922, content signature analysis 923,
index module 730, and object store module 720.
0196. An identified or fetched object can be registered
945. In one example embodiment for registering objects,
registration list 774 and index table 776 may be created and
stored in one or more Suitable memory elements. Such as
registration database 772. A system dashboard may also be
displayed to the user on user system 22, for example, provid
ing information pertaining to the registration of the selected
objects.
(0197) Turning to FIG. 10, FIG. 10 illustrates an embodi
ment of the data protection workflows system using central
database 230 of data manager 20 to generate an online ana
lytical processing (OLAP) cube 1000 (as indicated at 904 of
FIG. 9). In this example, a representative group of one hun
dred sixty-four sets of metadata elements, corresponding to
one hundred sixty-four identified objects, are used to generate
OLAP cube 1000, which can quickly provide answers to
analytical queries that are multidimensional in nature. As
illustrated in FIG. 10, an OLAP cube may be created from
attributes of objects, such as metadata elements, identified on
content repositories 40 during a classification, remediation or
registration task, or objects identified on an object store mod
ule 720 or 320 of discover system 70 or capture system 30,
respectively, during a search query. The use of OLAP (as
indicated in data protection workflows 900 of FIGS.9 at 904
and 905) to generate inventory and/or classification views,
allows a user to quickly see the type and quantification of
information stored in a network's content repositories (e.g.,
servers), which may have otherwise been buried in an extraor
dinarily large number (e.g., billions) of records. From these
Summaries, protection tasks such as remediation and/or reg
istration may be performed to protect selected data stored in
the objects of the content repositories.
0198 FIG. 10 illustrates three dimensions (i.e., owner,
object type, and share) of objects that have been identified by
a discover system. In this example, an inventory task has been
performed on three shares of a content repository and meta
data elements have been retrieved for objects found on the
targeted shares. OLAP cube 1000 has been created from the
retrieved information. For example, the inventory task found
that Mary/Level 1 is the owner of eight pdf documents and
that two of those pdf documents are on Marketing 3 share of
the targeted server. This information is readily visible using
an OLAP cube. If traditional techniques were used a user may
have to manually search through three different query results
(the separate results for owner, file type, and share) or create
a script or other filter to try to narrow down the results into the
desired data. Obviously, as the number of elements per axis
increases, the job of determining a specific combination
becomes more daunting. Moreover, a user would also have to

US 2013/0246334 A1

have some inclination as to how to narrow the search results
in order to filter them. Of course, the OLAP “cube' may have
more than three axes, corresponding to additional types of
metadata and/or category information.
0199 FIG. 11 graphically illustrates an embodiment of a
method for generating an OLAP cube and analytic views (i.e.,
inventory and/or classification) of the data in the OLAP cube.
At step 1101, information from central database 230 is trans
formed into “buckets.” A bucket consists of a group of related
information (e.g., corresponding to types of metadata associ
ated with objects identified by discover system 70 during an
inventory or classification task, or during a search query). For
example, one bucket shown in FIG.11 is object type. Abucket
may be further granulated into sub-buckets. For example, the
object type bucket could be granulated into pdf, doc, Xls, and
html buckets. Typically, the buckets are the basis for the axes
of an OLAP cube. Note that any type of OLAP data structure
(not just a cube) may be used in conjunction with the dis
cussed concept.
0200. At step 1103, the transformed data is assembled into
one or more OLAP cubes. Data workflows include the non
trivial extraction of previously unknown and potentially use
ful information from data in a network. The extraction can be
accomplished with inventory and classification tasks or with
a search query. The results of inventory and classification
tasks and search queries, can provide visibility into data
stored in a targeted location of a network (e.g., one or more
content repositories or one or more shares of a content reposi
tory).
0201 Analytic techniques can be applied at 1105 to an
OLAP cube such that information extracted from the targeted
location can be Summarized by various combinations of
dimension groups, specific metadata elements, and possibly
categories. The summaries can be presented to a user at 1107
as an inventory view resulting from an inventory task and
based on inventory dimensions such as metadata types, or as
a classification view resulting from a classification task or
search query and based on classification dimensions such as
categories and metadata types.
0202 The analytic view (inventory or classification) pre
sented to a user can be evaluated and manipulated at 1109. At
this point, the user can drill down into a dimension (e.g., by
clicking on a desired dimension group) or can slice and/or
dice selected dimensions and/or specific metadata elements.
The process then repeats beginning at 1105 to apply analytic
techniques to create a new analytic view based on the user's
manipulations.
0203. In one example illustration, assume the dimensions
from OLAP cube 1000 are presented to a user in the following
hierarchical order: share, object type, and owner. In an initial
inventory view of OLAP cube 1000, total counts and total
combined file sizes may be presented for all shares, all object
types, and all owners. A user could drill down into a dimen
sion group of object types to view Summaries for each specific
object type (i.e., .pdf..doc, Xls, and .html). Total counts and
file sizes for each specific object type associated with any of
the shares and any of the owners can be presented to the user
at 1107. At 1109 the new analytic view can be further evalu
ated and manipulated. For example, upon seeing that there are
53 total pdf files in the targeted shares, the user could drill
down into the owner dimension to find out the distribution of
the 53 pdf files across the owners. Total counts and file sizes
for pdf files associated with each owner can be presented to
the user at 1107.

20
Sep. 19, 2013

0204. It should be noted that the process of evaluating and
manipulating an analytic view, applying analytics, and pre
senting a new analytic view to a user can be repeated any
number of times. In addition, one or more of these operations
may be performed in parallel or in a different order than that
illustrated. Note also that from an initial starting point of
simple data (e.g., in a database/repository), the system has
achieved a new level of knowledge based on this data. This
valuable progress is depicted in FIG. 11.
(0205 Turning to FIG. 12, FIG. 12 illustrates a simplified
example querying flow using metadata and keyword index
ing, that may be performed by a search in a data protection
workflow (e.g., as indicated at 950 of data protection work
flows flow chart 900 of FIG.9). Searches can be performed on
object store modules 320 and 720 of capture and discover
systems 30 and 70, respectively. As previously described
herein, generally, actual contents of captured objects may be
stored in object store module 320 of capture system30, while
pointers to objects (e.g., indicating a location in a server) may
be stored in object store module 720 of discover system 70.
However, it is possible for either system to be configured
using pointers or actual object storage.
0206. At step 1201, one or more keyword indexes can be
queried for one or more keywords. For example, in the query
described with reference to the entries of FIG. 6, keyword
indexes 334 are queried for both “confidential” and “infor
mation.” The result of this query is that “confidential” and
“information' is only collectively found in reference 1.
Essentially, the result of the query is the intersection of a
query for “confidential” and a query for “information. Of
course any Boolean operator such as OR, NOT, etc. may be
used instead of or in conjunction with the Boolean operator
AND. In addition, natural language based queries may be
supported. Metadata indexes 336 are similarly queried at step
1203. For example, in the email query described above for the
entries of FIG. 6, metadata indexes 336 are queried for “HC1.
“mail from Leopold,” and “PDF.” The result of this query is
that this set of metadata is only collectively found in reference
1

0207 Because this search was not bound by a time frame,
all available keyword and metadata indexes would be queried
for these keywords. However, the number of keyword indexes
queried is reduced for a time frame limited search. At step
1205, the results of the previous queries are intersected to
create a set of references that satisfy the overall query. In the
example above, the result of this intersection would be refer
ence 1. Accordingly, only reference 1 would satisfy the col
lective query, as it is the only reference to have all of the
required criteria. At step 1207, the file information associated
with the references from the intersection of step 1205 may be
retrieved. As described earlier, for Some data (e.g., data in
motion) this information may be stored as a tag in a tag
database in an object store module and can be retrieved from
there. The actual documents associated with the references
may also be retrieved from object store module 320. For other
data (e.g., data at rest), however, actual documents may be
retrieved by locating the object in a content repository (e.g., a
file server) using a corresponding pointer from object store
module 720.
0208 While this simplified query flow queries a keyword
index prior to a metadata index query the reverse order may be
performed. Additionally, many other variations on the sim
plified flow are possible. For example, while not as efficient,
a query flow that performs an intersection after each index

US 2013/0246334 A1

query (or after two, three, etc. queries) may be utilized.
Another example is performing a query for a first specific
time period (querying a first particular set of one keyword and
one metadata index that were created/updated during the
same time period), intersecting the results of the first query,
performing a query on a second specific time period (query
ing a second particular set of one keyword and one metadata
index that were created/updated during the same time period),
intersecting the results of first query with the results of the
second query, etc. Yet another example is performing a query
for a first specific time period (querying a first particular set of
one keyword and one metadata index that were created/up
dated during the same time period), intersecting the results of
the first query, performing a query on a second specific time
period (querying a second particular set of one keyword and
one metadata index that were created/updated during the
same time period), intersecting the results of the second
query, etc. and when all (or some pre-determined number of)
queries have been performed and intersections calculated for
each specific time period, intersecting all of the specific
period intersection results.
0209. An optimization for the above-described system
uses adaptive cache alignment. Adaptive cache alignment
means that the indexer (or some other entity including a user)
aligns memory and/or disk data structures of the indexes (or
index entries) to be the size of the systems processor's cache
lines (for example, Level 2 (L2) memory cache within the
system's processor—this processor has not been illustrated in
this application in order to not unnecessarily clutter the FIG
URES). If the processor's capabilities are unknown, upon
initialization, the capture or discover device's processor is
examined and a determination of the appropriate cache align
ment is made based upon that examination. Of course, the
cache alignment may also be pre-determined if the exact
system specifications are known. In another embodiment, the
indexer (or other entity) examines the block size of the file
system (of the fundamental storage data structure) and uses
this size as part of the cache alignment. Additionally, memory
(such as RAM, cache, etc.) used by the indexer may be pre
allocated to remove the overhead of allocating memory dur
ing operation. Furthermore, algorithms operating on the
memory are tolerant of uninitialized values being present
upon first use. This allows for the usage of the memory
without the latency associated with clearing or resetting the
memory to a known state or value.
0210
0211 Turning to FIGS. 13-18, an example embodiment of
registration system 770 is illustrated. In accordance with an
example implementation, registration system 770 can be
implemented as part of a data combination protection system
that also includes one or more detection systems (not shown)
that can be implemented in the same or other network devices
(e.g., capture systems or other Suitably configured network
devices). Registration system 770 can create a registration list
of specified combinations or sets of data elements to be moni
tored. The registration system can recognize and register data
elements presented in various character formats or patterns
and provided in various electronic file formats having a pre
defined delimiter between each set of data elements. Multiple
detection systems can also be provided to evaluate captured
and/or stored objects in the network environment to deter
mine which objects contain one or more of the registered sets
of data elements. The detection systems may be configured to
recognize data elements within an object and to determine

Registration System

Sep. 19, 2013

whether each data element of a registered combination of data
elements is contained somewhere within the confines of the
object. The registration list may be indexed and searched by
the detection system in a manner that optimizes computer
resources and that minimizes network performance issues.
0212. With reference to FIG. 13, registration system 770
can include a registration list module 1310 and an index table
module 1320. Input to registration list module 1310 can
include a delimited data file 771 and a regular expressions
table 773 and output of registration list module 1310 can
include a registration list 774. In one embodiment, delimited
data file 771 may represent a plurality of delimited data files
generated for various databases and/or files in a network and
provided as input to registration list module 1310. These
delimited data files include specified combinations or sets of
data elements to be registered by registration system 770.
0213 Registration list module 1310 may perform the
functions of extraction 1312, tokenization 1314, and tuple
storage 1316. In one embodiment, delimited data file 771
includes a plurality of records delimited by a predefined
delimiter Such as, for example, a carriage return. Each record
may include one or more data elements, which are extracted
by extraction function 1312. The set of data elements within
a record can be a specified combination of related data ele
ments (e.g., a name, a phone number, a Social security num
ber, an account number, etc.) that requires safeguarding. Each
of the data elements of a record are tokenized by tokenization
function 1314 into a token (e.g., a numerical representation),
which can then be stored in a tuple or recordofregistration list
774 by tuple storage function 1316. Thus, a tuple in registra
tion list 774 may include numerical representations or tokens
of each data element in one particular combination of related
data elements that is sought to be protected.
0214. The data elements extracted and tokenized from
delimited data file 771 can include words and/or expression
elements, which can have multiple possible formats (e.g.,
phone number, date of birth, account number, etc.). A data
element can be compared to regular expressions table 773 to
determine whether the particular character pattern of the data
element matches a predefined expression pattern (i.e., a regu
lar expression). It will be apparent that regular expressions
table 773 used by data combination protection system 10 may
be configured in numerous other ways, as long as the table
773 includes the predefined expression patterns.
0215. In one embodiment, regular expressions table 773
includes numerous expression patterns, including a plurality
of expression patterns for the same concept. For example, a
telephone number concept could include the following regu
lar expression patterns: (nnn) nnn-nnnn, nnn-nnn-nnnn,
and nnn.nnn.nnnn with 'n' representing numbers 0-9. Simi
larly, different states use different sequences of characters and
separators for driver's license numbers. Thus, a driver's
license concept could include a regular expression pattern for
each unique sequence of characters and separators represent
ing possible numbers of a driver's license in different states.
For example, dinnn-nnnn-nnnn-nn, and dinnn-nnnn-nnnn
could be expression patterns for license numbers in Wiscon
sin and Illinois, with 'n' representing numbers 0-9 and 'd
representing letters A-Z.
0216 Expression patterns in regular expression table 773
may be user-configurable through an interface that allows a
user to define expression patterns for a particular concept. In
addition, Some expression patterns may be automatically gen
erated or may be preconfigured. For example, a list of com

US 2013/0246334 A1

mon or popular regular expression patterns can be preconfig
ured in regular expressions table 773 that may be tailored
specifically to the industry into which a data combination
protection system (e.g., registration system 770 and a
complementary detection system) is implemented.
0217 Index table module 1320 may perform the functions
of token count operation 1322, token key selection 1324, and
index storage 1326 to create index table 776. Token count
operation function 1322 processes registration list 774 to
count all of the occurrences of each token in registration list
774. A temporary prime count table 775 may be created to
store the count sums. Token key selection function 1324 can
then process each tuple and, using prime count table 775,
select the least frequently occurring one of the tokens from
each tuple as a token key. Each unique token key may then be
stored in an index of index table 776. Thus, index table 776
can contain a plurality of indexes, each having a unique token
key and each being associated with one or more tuples of
registration list 774.
0218 FIG. 14 provides a more detailed illustration of
exemplary file structures of delimited data file 771 with an
example record 1, registration list 774 with an example tuple
784, and index table 776 with an example index 782. Delim
ited data file 771 is shown with a detailed first record 780
illustrating a possible configuration of record 1 with an
example combination of data elements types (i.e., words and
expression elements). First record 780 corresponds to tuple
784 of registration list 774, where each word and expression
element from first record 780 corresponds to one token in
tuple 784. Tuple 784 is indexed in registration list 774 by
index 782 of index table 776, which includes a registration list
offset that is a pointer (i.e., offset 4) to the beginning (i.e.,
token 1) of tuple 784.
0219. In one example embodiment, delimited data file 771
may be configured as a file with a plurality of records (e.g.,
record 1, record 2, record 3, etc.) having a predefined delim
iter between each record. A delimiter can be any formatting
character or other character used to designate the end of one
record and the beginning of a next record. Some common
delimiters include carriage returns, line feeds, semi-colons,
and periods. However, any character could be designated as a
delimiter if the data file is appropriately configured with the
particular delimiter. In one example embodiment, if a car
riage return is defined as the delimiter for delimited data file
771, then each record would end with a carriage return.
0220. As shown in expanded first record 780, each record
may be comprised of a plurality of data elements (i.e., words
or expression elements). The data elements within each
record of delimited data file 771 are separated by at least one
separator (e.g., comma, space, dash, etc.). A word may be
comprised of a string of characters having one or more con
secutive essential characters without any separators. An
expression element may be comprised of a string of charac
ters having at least two words and one or more separators
between the words. In one embodiment, essential characters
can include a fundamental data structure in a written language
including numerical digits, letters of a written language, and/
or symbols representing speech segments of a written lan
guage (e.g., Syllabograms, etc.). Speech segments of a lan
guage can include words, syllables of words, distinct sounds,
phrases, and the like.
0221 Separators can include any character that is not an
essential character and that is not recognized as a predefined
delimiter indicating an end of a record in the data file.

22
Sep. 19, 2013

Examples of separators include punctuation marks, word
dividers and other symbols indicating the structure and orga
nization of a written language (e.g., dashes, forward slashes,
backward slashes, left parentheticals, right parentheticals,
left brackets, right brackets, periods, spaces, an at Symbol, an
ampersand symbol, a star symbol, a pound symbol, a dollar
sign symbol, a percent sign symbol, a quote, a carriage return,
a line feed, etc.). In some data file configurations, separators
can include characters that are equivalent to the predefined
delimiter for the data file. However, in such data files, the
equivalent character within a record must be differentiated
from the predefined delimiter that indicates an end of the
record. Thus, the equivalent character within the record
would be processed either as a separator between data ele
ments or as a separator included within an expression ele
ment.

0222. In an example embodiment, delimited data file 771
is a comma separated variable (CSV) list, which can be a text
format generated for a database or other file having a tabular
data format. A CSV list can include multiple data elements in
each record with the data elements being separated by com
mas. Each record in the CSV list includes a character desig
nated as a predefined delimiter to indicate an end of the
record. Such as a carriage return or line feed. These predefined
delimiters conform to Request for Comments (RFC) 4180, in
which carriage returns and line feeds within a record are
encapsulated in quotes or appropriately escaped in order to
differentiate them from a predefined delimiter indicating an
end of record. Additionally, in CSV lists, quotes may also be
used as separators between data elements or within an expres
sion element if appropriately escaped (i.e., an empty set of
quotes to indicate a literal quote).
0223 Generally, for a database or other file having a tabu
lar data format, each CSV record includes the same number of
data elements. Embodiments of registration system 770,
however, can accommodate varying numbers of data ele
ments in each record, because each record is delineated by a
predefined delimiter that is recognized by system 770. More
over, registration system 770 can also accommodate other
formats of delimited data file 771 as long as each record
(containing a desired combination of data elements) is delin
eated by a predefined delimiter, which is designated for the
data file 771 and recognized by registration system 770. For
example, a free form textual document, in which a variety of
separators (e.g., spaces, dashes, etc.) separate data elements,
may be provided as a delimited data file if a predefined delim
iter (e.g., line feed, carriage return, period, etc.) is used to
separate successive pairs of records and is designated as the
delimiter for the data file such that it is recognized by regis
tration system 770. In example embodiments of the data
protection workflows system, if objects fetched from content
repositories 40 during a registration task are not configured as
delimited data files, then the objects could be converted to a
CSV format or any other suitable delimited data file format.
0224. In the example first record 780 of FIG. 14, ten data
elements are shown, including two words, two expression
elements, and six words in Succession. A separator is pro
vided between each of the successive data elements and a
delimiter is provided at the end of first record 780. After a data
element has been identified and extracted from first record
780 by registration list module 1310 of registration system
770, the data element may be tokenized into one token (e.g.,
token 1 through token 10) and stored intuple 784 of registra
tion list 774. An end tag may also be provided to denote the

US 2013/0246334 A1

end of a tuple in registration list 774. Registration list module
1310 can process each record of delimited data file 771 and
create a separate tuple in registration list 774 corresponding to
each record.

0225. Once registration list 774 is complete with tuples
corresponding to each record of delimited data file 771, index
table module 1320 may process registration list 774 to create
index table 776. In the example shown in FIG. 14, index table
module 1320 generates index 782 to provide an index for
locating tuple 784 in registration list 774. Prime count table
775, which stores the sums of occurrences for each token in
registration list 774, can be generated. A token key for tuple
784 can then be computed by searching prime count table 775
to find a token from tuple 784 that appears with the least
frequency in the entire registration list 774, relative to the
other tokens intuple 784. In this example illustration, token 2
is shown as the token occurring with the least frequency (i.e.,
the lowest Sum of occurrences), compared to the Sums of
occurrences of token 1 and tokens 3-10. Thus, token 2 may be
selected as the token key and used to create index 782.
0226. In one embodiment, index table 776 can be gener
ated using a known technique of forcing hash numbers (e.g.,
token keys) into a narrow boundary with modulus, in which
the boundary is defined by a prime number. This can be
advantageous for particularly large amounts of data, where a
Smaller area of memory may be allocated to accommodate the
data and the data is generally distributed uniformly within the
allocated memory. Thus, extremely large amounts of data can
be more efficiently processed. The size of index table 776
could be generated by, for example, an administrative system
(e.g., data manager 20), based on resources selected by an
authorized user during resource provisioning of the datacom
bination protection system. Once the memory is allocated,
each index can be placed in a space within index table 776
corresponding to a value (e.g., a remainder) calculated by
performing a modulo operation on the token key with the
prime number size of the index table. If statistical collisions
occur (i.e., different token keys have the same result from a
modulo operation), then the different token keys can be link
listed in the same space of index table 776.
0227. A registration list offset, which points to a beginning
of tuple 784 (e.g., offset 4 pointing to token 1) may be added
to index 782 and associated with the token key. In addition, a
document identifier (“document ID' or “docID), which can
identify delimited data file 771 may also be added to index
782 and associated with the token key. Thus, when multiple
delimited data files are used to create registration list 774, the
document ID field in an index identifies which delimited data
file is associated with the tuple to which the accompanying
registration list offset points. In addition, if two or more token
keys are link-listed in a space within index table 776, then the
offsets and document IDs corresponding to a particular token
key are associated with that particular token key in the index.
0228. The <NEXT) field of index 782 represents addi
tional registration list offsets and document IDs that may be
associated with the same token key in index 782. For
example, a second tuple having a second offset in registration
list 774 may also contain token 2. If token 2 is the token in the
second tuple that occurs with the least frequency in the reg
istration list 774 relative to the other tokens in the second
tuple, then token 2 of the second tuple could be selected as the
token key for the second tuple. Thus, the same index 782

Sep. 19, 2013

could be used to designate the second tuple by adding a
second registration list offset and an appropriate document ID
after the <NEXT) pointer.
0229. Turning to FIG. 15, FIG. 15 is a simplified block
diagram illustrating example data input and a resulting prime
count table 1540, which may be generated by token count
operation 1322 of index table module 1320. Data element
1501 (word 1), data element 1502 (word 1), data element
1503 (expression element 1), and data element 1504 (expres
sion element 2) represent example data elements of a delim
ited data file, such as delimited data file 771, which are stored
as tokens in one or more tuples of a registration list Such as
registration list 774. Token count operation function 1322
may count the tokens generated for each of the data elements
1501, 1502, 1503, and 1504 and may produce prime count
table 1540. In one embodiment, prime count table 1540 may
include in entries 1542 with corresponding token sums 1544.
In this example, n is equal to a prime number and a modulo
operation is performed on each token to determine which
entry corresponds to the token Sum to be incremented. Thus,
in this example, entry 2 corresponds to tokens representing
data element 1501 (word 1) and data element 1502 (word 1)
and, therefore, has a token sum of 2. In addition, entries 4 and
7 correspond to tokens representing data element 1503 (ex
pression element 1) and data element 1504 (expression ele
ment 2), respectively, and each has a token sum of 1.
0230 Turning to FIGS. 16A, 16B, and 17, simplified flow
charts illustrate operational processing of registration system
770. FIGS. 16A and 16B are simplified flowcharts illustrating
example operational steps for registration list module 1310 of
registration system 770. FIG. 17 is a simplified flowchart
illustrating example operational steps for index table module
1320 of registration system 770.
0231 FIG. 16A shows the overall flow 1600 of registra
tion list module 1310, including the processing of one or more
delimited data files, the processing of each record of each
delimited data file, and the processing of each data element in
each record of the one or more delimited data files. Flow may
begin in step 1602 of FIG. 16A, where a first delimited data
file is obtained. In one embodiment, registration system 770
can be configured to crawl one or more content repositories
(e.g., databases on file servers) or other storage media con
taining data files. As previously discussed herein, in one
example, a database or other data file could be converted to a
comma separated variable list (CSV), which could be pro
vided as the delimited data file. Thus, when a registration task
is initiated on discover system 70, for example, parameters
associated with the registration task could be used to crawl
specified content repositories and to identify files (i.e.,
objects) to fetch and register based on the registration task
parameters. Identified files may be converted into delimited
data files if needed.

0232. Once the delimited data file is obtained, a first record
is fetched in step 1604. In step 1606 a start of a first data
element is identified in the fetched record. In step 1608,
applicable extraction, tokenization, and storage operations
are performed on the current data element, which will be
described in more detail herein with reference to FIG. 16B.
After applicable extraction, tokenization, and storage opera
tions have been performed for the current data element, flow
moves to decision box 1610 to determine whether more data
elements exist in the record. If more data elements exist in the
record, then a start of a next data element in the record is

US 2013/0246334 A1

identified in step 1612. Flow then loops back to step 1608 to
perform extraction, tokenization, and storage on the new data
element.
0233. With reference again to decision box 1610, if a
predefined delimiter is recognized in the record after the
current data element, then it is determined that no more data
elements exist in the record. Flow may then move to decision
box. 1614 to determine whether there are more records in
delimited data file. If more records exist in the delimited data
file, then a next record is fetched in step 1616 and flow loops
back to step 1606 to identify a start of a first data element in
the new record.

0234. If it is determined that no more records exist in
delimited data file in decision box 1614, however, then flow
passes to decision box 1618 to determine whether there are
more delimited data files to be processed. If it is determined
that one or more delimited data files exist that have not been
processed, then a next delimited data file is obtained in step
1620, flow loops back to step 1604, and a first record is
fetched from the new delimited data file. However, if it is
determined in decision box 1618 that all delimited data files
have been processed, then the flow ends.
0235 FIG.16B shows the overall flow of step 1608 in FIG.
16A, illustrating example operational steps to extract, token
ize, and store a data element from a record of a delimited data
file. Flow may begin in step 1652 where regular expressions
table 773 is searched to find a longest match to a character
pattern of a string of characters beginning at the start of the
data element. In one embodiment, expression patterns from
regular expressions table 773 are compared in order of size
from longest to shortest to determine if there is a match. In
decision box 1654 a query is made as to whethera match from
regular expressions table 773 was found.
0236. If it is determined that none of the regular expression
patterns match a character pattern of any string of characters
beginning at the start of the data element (i.e., the data ele
ment does not match any regular expression patterns in regu
lar expressions table 773), then the data element represents a
word and flow moves to step 1660 to find an end of the data
element (i.e., the word). The end of word is the last consecu
tive essential character beginning at the start of the data ele
ment. After the word is extracted in step 1662, flow passes to
decision box 1664, where the word may be evaluated to
determine whether it is a stop word. Stop words can
include any words determined by an administrator or other
wise specified as a stop word, such as simple grammar con
struction words (e.g., like, and, but, or, is, the, an, a, as, etc.).
If the word is determined to be a stop word, then it is ignored
and the flow ends without tokenizing or storing the word.
However, if the word is determined not to be a stop word, then
flow moves to step 1668 where the word may be stemmed. A
Stemming process such as, for example, a known porter stem
ming algorithm, may be applied to the word in which any
suffixes and/or affixes can be extracted off of a stem of the
word.
0237 After stemming has been performed if necessary,
flow may pass to step 1670 where the word (or stemmed
word) is tokenized. In one embodiment, tokenization
includes converting the word (or stemmed word) into a 32-bit
numerical representation or token. In step 1672, the token is
stored in a tuple of registration list 774, where the tuple
corresponds to the record from which the data element was
extracted. After the token has been stored, flow ends and
processing continues at step 1610 of FIG. 16A.

24
Sep. 19, 2013

0238. In one embodiment, the numerical representation
for the token is generated using a Federal Information Pro
cessing Standards (FIPS) approved hash function. Typically,
if the hash function has a lesser degree of numerical intensity,
and is, therefore, a less secure hash, then less computer
resources are used to calculate the hash. However, because
registration list 774 may be stored in multiple places through
out a network and potentially searched repeatedly by a plu
rality of detection systems, a greater numerical intensity may
be desirable for the hash function. Thus, it may be desirable to
generate more secure tokens for words and expression ele
ments containing personal and otherwise sensitive informa
tion, even if generating Such tokens requires more computer
SOUCS.

0239. Another consideration is the size of the numerical
representation used for the tokens. A 32-bit numerical value
alone may not be statistically viable. That is, one word or
expression element alone could generate many false positive
results if one of the detection systems searches a target docu
ment or file for only one 32-bit token representing the data
element. The probability of a false positive can be reduced,
however, when a record includes two or more data elements
that must be found in a document to validate a match. The
probability of a false positive can be reduced by 2” for each
additional token that is included in a tuple and that must be
found in a document to validate a match. For example, the
probability of a false positive for a pair of words is 2 and for
three words is 2'. Accordingly, in one embodiment, each
tuple includes at least two tokens.
0240 Referring again to decision box 1654, if it is deter
mined that a match was found between an expression pattern
of regular expression table 773 and the character pattern of a
string of characters beginning at the start of the data element,
then the data element represents an expression element and
has the same length as the matching expression pattern. The
expression element can be extracted at step 1656 and normal
ized in step 1658. In one embodiment, normalizing the
expression element may include eliminating any separators
from the expression element. For example, a phone number
could be normalized to nnnnnnnnnn with 'n' representing
any number 0 through 9. In other embodiments, normaliza
tion may include modifying separators and/or particular
essential characters of the expression element to achieve a
predefined standard form for the expression element. For
example, all dates could be standardized to the form YYYY
MM-DD with YYYY representing the year, MM repre
senting the month, and DD representing the day.
0241. Once the expression element has been extracted and
normalized, flow may move to step 1670 where the expres
sion element is tokenized and, in step 1672, the resulting
token is stored in a tuple of registration list 774. After the
token has been stored in registration list 774, flow returns to
step 1610 of FIG. 16A.
0242 Turning to FIG. 17, FIG. 17 shows the overall flow
1700 of index table module 1320, which generates index table
776 with token keys and associated offsets to the correspond
ing tuples stored in registration list 774. To reduce the over
head of processing by detection systems (not shown), each of
the tuples can be indexed by a token key. In one embodiment,
a token key can be a token that, compared to other tokens in
the same tuple, has the lowest frequency occurrence in all
tuples of the entire registration list 774. Thus, if multiple
delimited data files are used to create registration list 774, a

US 2013/0246334 A1

token key could be selected having the lowest frequency of all
tuples created from the multiple delimited data files.
0243 In one example embodiment, a token key can be
determined using a prime count table. Such as prime count
table 775 shown in FIG. 13, and further illustrated in an
example prime count table 1540 in FIG. 15. Beginning in step
1702 offlow 1700, prime count table 775 can be generated for
the tokens stored in registration list 774 using the known
technique, as previously described herein, of forcing hash
numbers (e.g., tokens) into a narrow boundary with modulus,
in which the boundary is defined by a prime number. Using a
prime count table can alleviate computer resources needed to
process data elements potentially numbering in the billions.
Theoretically, the 32-bit numerical representation (2) could
represent greater than 4 billion possible tokens. In a real
world example scenario, if an enterprise has four different
entries of sensitive data for 300 million individuals, then the
number of entries would exceed 1 billion. Computer
resources may not be able to adequately perform processing
functions if each individual entry is counted to produce index
table 776. The use of prime count table 775, however, allows
a smaller area of memory to be allocated and used to count the
tokens in registration list 774 and select lowest frequency
tokens as token keys.
0244. In one embodiment, the size of a prime count table
may be generated by, for example, an administrative system
(e.g., data manager 20), based on resources selected by an
authorized user during resource provisioning of the datacom
bination protection system. In one example scenario, for an
enterprise having collected sensitive data for 300 million
people, if 100 million entries are determined to be adequate to
count tokens, then the size of the prime count table could be
defined by the next closest prime number (e.g., 100,000.007).
Thus, a table with 100,000,007 entries can be created and
each of the entries cleared with a Zero value.

0245. Once memory has been allocated and defined for a
prime count table, each token in registration list 774 can be
processed to determine which entry to increment in prime
count table 775. In one embodiment, registration list 774 may
be sequentially processed from the first token in the first tuple
to the last token in the last tuple. For each token, a modulo
operation can be performed using the prime number and the
numerical value of the particular token. The remainder value
of the modulo operation is located in prime count table 775
and incremented by 1. Some statistical collisions may occur
in which tokens generated for two different data elements
result in the same remainder. In this case the same entry in
prime count table 775 can be incremented, thus artificially
increasing the number count of the entry, which corresponds
to more than one token. However, an artificial increase of a
word count does not significantly diminish the viability of
determining the token in each tuple having the lowest fre
quency in the registration list.
0246. After prime count table 775 is generated in step
1702, flow passes to step 1704 where a first tuple is identified
in registration list 774. Steps 1706 through 1722 then perform
looping to determine a token key for each tuple and to gen
erate index table 776. Accordingly, the loop begins in step
1706 where prime count table 775 is searched to determine
which one of the tokens in the current tuple has the lowest
count or frequency. In step 1708, the token of the current tuple
having the lowest frequency according to prime count table
775 is selected as a token key for the current tuple.

Sep. 19, 2013

0247. After selecting the token key for the current tuple,
flow may pass to step 1710 where all indexes in index table
776 can be searched for a matching token key. With reference
to decision box 1712, if no index is found with a token key
matching the selected token key for the current tuple, then
flow passes to step 1716, where a new index is created in
index table 776 using the selected token key. Flow then passes
to step 1718 where a document identifier and offset are added
to the new index. In one embodiment, the document ID may
be obtained from header information of the corresponding
tuple in registration list 774. The offset may be a pointer or
index to the corresponding tuple in registration list 774. For
example, the offset can be an index number of the first token
appearing in the corresponding tuple.
0248. With reference again to decision box 1712, if an
index is found in index table 776 with a token key matching
the selected token key for the current tuple, then an index has
already been created for another tuple using the same token
key. In this scenario, flow may pass to step 1714 where the
current tuple information can be added to the existing index.
A pointer (e.g., <NEXT pointer) can be added to the end of
the existing index and then a document ID and offset corre
sponding to the current tuple can be added. Thus, any number
of tuples having the same token key can use the same index.
0249. After the index is created in step 1718 or updated in
step 1714, flow passes to decision box 1720 to determine
whether the current tuple is the last tuple in registration list
774. If the current tuple is not the last tuple, then the next tuple
is identified in step 1722 and flow passes back to step 1706 to
begin processing the next tuple to select a token key and
update index table 776. However, if it is determined in deci
sion box 1720 that the current tuple is the last tuple in regis
tration list 774, then all tuples have been processed and flow
1700 ends.

0250) Selecting a lowest frequency token as a token key
for a tuple helps improve processing efficiency during detec
tion processing activities. By using lowest frequency tokens
as token keys in the index table, tuples in the registration list
need not be compared to an object being evaluated unless the
object contains a data element that, when tokenized, is
equivalent to a token key in the index table. Thus, more tuples
may be excluded from unnecessary processing in this
embodiment than if a more commonly occurring token is
selected as a token key.
0251 Alternative embodiments could be implemented to
reduce the processing required to generate the lowest fre
quency token keys for an index table. Although Such embodi
ments could reduce the backend registration processing, addi
tional processing may be required by a detection system. In
one such alternative embodiment, a different token key selec
tion criteria (i.e., other than the lowest frequency selection
criteria) may be used. For example, tokens from tuples could
be selected as tokenkeys based upon a predetermined column
or position of a data element in a record. Although the index
table may be more quickly generated as result, more tuples
may be evaluated during detection processing, particularly if
at least some of the token keys correspond to more commonly
occurring data elements. Nevertheless, this embodiment may
be desirable based on the particular needs of an implementa
tion. In addition, the token key selection criteria may be
user-configurable, such that an authorized user can determine
the selection criteria to be used by registration system 770
when selecting the token keys.

US 2013/0246334 A1

0252 FIG. 18 illustrates a scenario in which a record 1802
with example data elements is processed by registration sys
tem 770. Record 1802 is an example single record of a delim
ited data file, such as delimited data file 771, which may have
a plurality of records. Record 1802 includes data elements
separated by spaces and ending with a carriage return, which
is the predefined delimiter. Each of the data elements is evalu
ated to determine if it is a word or an expression element. The
data elements represented as words (i.e., Carol, Deninger,
123, Apple, Lane, Boise, Id. and 99999) are extracted and
tokenized. The data elements which are determined to match
a regular expression pattern, are extracted and normalized. In
this example case, normalizing the expression element
includes removing any nonessential characters. The normal
ized expression element is then tokenized.
0253) The following table represents the type of data, the
example data element contents of record 1802 corresponding
to each type of data, and the tokens generated for each data
element:

TABLE 1.

Data Element Token (Numerical
Normalized Data Representation of Data

Type of Data Element Element)

First Name Carol 23
LastName Deninger 55
Social Security OOO-OO-OOOOf 99
Number OOOOOOOOO
Date of Birth 1960-01-01, 19600101 69
StreetAddress 1 123 19
StreetAddress 2 Apple 44
StreetAddress 3 Lane 32
City Boise 73
State ID 29
Zip Code 99999 O7

0254. A tuple 1812 of registration list 1810 is created by
registering record 1802. Tokens 1804 generated from record
1802 may be stored in sequential order in tuple 1812 of
registration list 1810. In one embodiment tuple 1812 includes
header information (not shown) including a document iden
tifier identifying the delimited data file or associated data
storage (e.g., Customer records database in Sales) associated
with record 1802. Also, an end of each tuple in registration list
1810 can be defined by a termination entry such as a zero, as
shown at the end of tuple 1812. In addition, offsets 1814 are
provided with registration list 1810, with each offset pointing
to a separate token entry in registration list 1810.
0255 Index table 1820 may be generated for registration

list 1810, with index 1822 corresponding to tuple 1812. Index
1822 includes a token key (55), which is shown as the second
occurringtoken intuple 1812. Token key (55) may be selected
if it is the token of tuple 1812 having the lowest frequency
occurrence in the entire registration list 1810, as previously
described herein. In addition, offset (1001) is provided with
token key (55) and points to the first occurring token (23) in
tuple 1812. Thus, offset (1001) indicates the beginning of
tuple 1812. Index 1822 may also include a docID or docu
ment identifier indicating the delimited data file or data stor
age associated with record 1802.
0256. One or more detection systems may be implemented
in various network elements (e.g., capture system 30, dis
cover system 70, other suitably configured network devices)
to detect whetheran object stored in a content repository oran
object captured from network traffic includes data elements

26
Sep. 19, 2013

registered by registration system 770. A detection system can
include an evaluate module that processes an input object
(e.g., an object fetched or captured from a content repository,
another network device, network traffic, etc.), to extract and
tokenize each data element of the input object in substantially
the same manner that registration system 770 extracted and
tokenized data elements of delimited data file 771. Thus,
extracted and tokenized data elements from the input object
can be compared to the extracted and tokenized data elements
from the delimited data file 771. If it is determined that the
input object contains data elements that, when tokenized,
correspond to all of the tokens for a registered tuple, or cor
respond to a predetermined threshold amount thereof, then
the input object may be flagged as containing a registered
combination of data elements and any suitable remediation
actions may be taken.
0257 Data Protection Workflow Tasks
0258 FIGS. 19-24 illustrate various types of diagrams
associated with an inventory task of the data protection work
flows system. FIG. 19 is a simplified interaction diagram
1900 illustrating potential operations that may be associated
with an inventory task of example embodiments of the data
protection workflows system of network environment 10.
FIGS. 20-23 illustrate example display screen diagrams that
may be presented during inventory task operations and will be
referenced herein to illustrate the interactions shown in FIG.
19.

(0259 FIG. 19 illustrates presentation module 220, OLAP
module 210, and task module 224 of data manager 20, in
addition to crawl module 710 and inventory module 740 of
discover system 70. Initially, a display screen such as display
screen 2000 of FIG. 20 can be presented to a user via presen
tation module 220 offering options for initiating an inventory
task or a classification task. A registration task option may
also be presented, but selecting a registration task before an
inventory and/or classification task would require a user to
already have knowledge of which objects to register and a
location of the object to be registered. Enabling a workflow
that includes inventory and/or classification tasks being per
formed prior to registration (and remediation) tasks allows a
user to have visibility into data in the network and therefore,
a better understanding of what objects need registration and/
or remediation in order to appropriately protect the data
within the network.
0260 Additionally, search query options (not shown) may
also be presented in the display screen. A search query pre
sented prior to a classification task may only be available for
searching capture databases (e.g., object store module 320 of
capture system30). However, a search query option presented
after a classification task may be available for searching data
in motion (e.g., object store modules 320 of capture system
30) or data at rest (e.g., object store module 720 of discover
system 70).
0261. In FIG. 19, a user can select desired parameters at
1905 to initiate an inventory task. As shown in the example
scenario of display screen 2000, an inventory task is selected
at 2002, a discover device titled manganure-63.lab. groupx.
net is selected at 2004, and a content repository having an IP
address of 172.25.11.30 is selected at 2006. In other Sce
narios, multiple discover devices may be selected, a range of
IP addresses may be selected, or one or more shares of a
server may be selected. Moreover, particular IP addresses or
shares may also be explicitly excluded from the inventory
task at 2008.

US 2013/0246334 A1

0262. With reference again to the interaction diagram
1900, the user can submit the parameter selections made in
display screen 2000 to task module 224 via 1905, by activat
ing an appropriate clickable on display screen 2000, or by
invoking any other Suitably configured Submission mecha
nism. Thus, data manager 20 can receive user input to initiate
an inventory task. At 1910, the inventory task request includ
ing the selected parameters can be communicated to crawl
module 710 of selected discover system 70 (e.g., manganure
63.lab. groupx.net) via a control path. At 1915, crawl module
710 can crawl the selected content repository 40 (e.g., located
at IP address 172.25.11.30). At 1920, crawl module 710 can
provide information retrieved from content repository 40 to
inventory module 740; however, in some embodiments, crawl
module 710 and inventory module 740 may not be logically
distinct. At 1925, inventory module 740 can store the infor
mation in metadata database 742. The information can
include, for example, sets of metadata elements of all objects
identified in the crawled content repository including, for
example, identifications of the content repository, share, file
type, file size, and owner associated with each object.
0263. An extract, transform, and load (ETL) process can
be used at 1930 to load central database 230 of data manager
20 with metadata information of database 742. Sets of meta
data elements from multiple discover systems (e.g., distrib
uted in network environment 10) can be loaded in central
database 230. At 1935, metadata elements from central data
base 230 can be provided to OLAP module 210, which can
generate an OLAP cube (or other appropriate structure) and
populate the cube with the metadata elements. OLAP module
210 can also apply analytics to the OLAP cube and, at 1940,
can provide Summaries of inventoried objects to presentation
module 220.

0264. Presentation module 220 can present an analytic
inventory view of objects identified during the inventory task
and Summarized by many dimensions. Objects represented in
the summaries of an analytic inventory view are referred to
herein as inventoried objects. The summaries of the inven
tory view can include measures that quantify the inventoried
objects by various dimensions. In example embodiments,
measures include a total count and/or a total combined size
for all inventoried objects and/or for each displayed subset of
the inventoried objects.
0265. In one implementation, an analytic view generated
from an inventory task could present a total count and total
size measure for all of the inventoried objects, for example, on
a first line of the analytic inventory view. Dimensions can be
displayed in the analytic inventory view from left to right in a
hierarchical order. For each dimension, a group of metadata
elements (dimension group) associated with all of the
inventoried objects could be represented, for example, by a
clickable. These clickables could be displayed such that the
dimension groups visually correspond to the total count and
total size measures (e.g., by displaying them on the same
line). In example implementations, each dimension group
includes metadata elements having the same metadata type
(e.g., devices, content repositories, shares, file types, owners)
represented by the corresponding dimension.
0266. Any one or more of the dimension groups could be
selected by the user (e.g., by activating a clickable represent
ing the selected dimension group), in order to drill down and
view specific metadata elements of each dimension group and
view corresponding measures of the metadata elements.
Accordingly, at 1940, a selected dimension group can be

27
Sep. 19, 2013

communicated to OLAP module 210 and analytics can be
further applied to the OLAP cube to render specific metadata
elements for the selected dimension group and corresponding
CaSUS.

0267 At 1940, updated summaries can be provided back
to presentation module 220, which can present an updated
analytic inventory view to the user. The updated view can
include measures for each new subset of the inventoried
objects represented in the updated view, where each new
Subset corresponds to a specific metadata element of the
selected dimension group. In one embodiment, dimension
groups that are listed to the right of a selected dimension
group, and therefore, are lower than the selected dimension
group in the hierarchy of dimensions, can be subdivided into
multiple dimension groups, where each Subdivided dimen
sion group is associated with one of the metadata elements of
the selected dimension group. A user can continue to select
different dimension groups (including Subdivided dimension
groups) in the analytic inventory views and the flow of data at
1940 between presentation module 220 and OLAP module
210 can occur any number of times.
0268. In FIG. 21, an example analytic inventory view is
shown in display screen 2100, where device, task, repository,
share, and file type dimension groups have each been sequen
tially selected by a user and drilled down to specific metadata
elements within those dimension groups. Specifically, a
device dimension group 2101 includes a single device ele
ment (i.e., manganure-63. lab.groupX.net). A task dimension
group 2103 (associated with the manganure-63.lab. groupx.
net device) includes four task elements (i.e., three classifica
tion tasks and one inventory task). A repositories dimension
group 2105 (associated with the Inventory task and the man
ganure-63. lab. groupX.net device) includes a single repository
element (i.e., DIANA). A shares dimension group 2107 (asso
ciated with the DIANA repository, the Inventory task, and the
manganure-63.lab. groupX.net device) includes a single share
element (i.e., Discover Testing). A file types dimension group
2109 (associated with the Discover Testing share, the DIANA
repository, the Inventory task, and the manganure-63.lab.
groupX.net device) includes eight file type elements (i.e., pdf,
doc, Xls, <unknown, marker, html, c, and cpp.). In the
example display screen 2100, however, additional file types
may not be visible as a user may need to scroll down on a
display device, such as a computer monitor, to see them. An
owners dimension group corresponding to file types dimen
sion group 2109 is subdivided into eight file types dimension
groups, each corresponding to one of the specific file type
elements.

0269. As shown in FIG. 21, measures 2113 can be dis
played for all inventoried objects presented in the inventory
view. The first line in the inventory view indicates that a total
of 2,920,688 inventoried objects having a total combined size
of 805,407,684,077 KB are presented and summarized by
dimensions. The Summaries can also include measures 2113
(i.e., some type of quantification Such as count and/or total file
size) displayed for subsets of the inventoried objects. A subset
of the inventoried objects (or classified objects in a classifi
cation view) can be defined by a hierarchical path, as shown
in an analytic view (inventory or classification), from a higher
dimension to a lower dimension (e.g., from left to right) in
which the path has levels corresponding to the dimensions.
Each level in the path includes either a dimension group (or
Subdivided dimension group) or a single metadata element of
a dimension group, and at least one of the levels in the path

US 2013/0246334 A1

includes a single metadata element. Each object of the Subset
is characterized by (and therefore, associated with) the
dimension groups and the specific metadata elements in the
path.
0270. An example hierarchical path can be illustrated with
reference to line 2117 in display screen 2100. One subset of
the inventoried objects, represented in line 2117, has a total
count of 753 objects and a total size of 1,850,173,069 KB. A
hierarchical path of dimensions associated with the subset
includes a specific device element (i.e., the manganure-63.
lab. groupX.net device), a specific task element (i.e., the Inven
tory task), a specific repository element (i.e., the DIANA
repository), a specific share element (i.e., the Discover Test
ing share), a specific file type element (i.e., the pdf file type),
and a dimension group (i.e., Subdivided owner dimension
group 2111). Thus, in this example, the analytic view can
provide a user with the knowledge that there are 753 pdf
documents in Discover Testing share of DIANA repository
that were identified during an Inventory task by manganure
63.lab. groupx.net discover device and that the combined size
of the 753 pdf documents is 1,850,173,069 KB. Any owners
could be associated with the pdf documents.
0271 In display screen 2100, a user may continue to drill
down by selecting Subdivided owner dimension groups asso
ciated with each of the file type elements. By selecting a
Subdivided owner dimension group corresponding to one of
the file type elements, a user could view all of the owners
associated with the particular file type. In addition, respective
count and size measures could be displayed for new subsets of
the inventoried objects (created by selecting owner dimen
sion group 2111), in which each new Subset is associated with
a different one of the owners of the selected file type, and in
which each new subset is also associated with the Discover
Testing share element, the DIANA repositories element, the
Inventory task element, and the manganure-63.lab. groupX.
net device element.
0272. The data protection workflows system may also
allow a user to filter and scope what is displayed in analytic
views (inventory or classification), and to change the hierar
chical order of the dimensions (e.g., by selecting a different
dimension as the starting dimension or top of the hierarchy).
The user can activate OLAP icon 2115 (e.g., by clicking on
the icon using a mouse, by highlighting the icon and hitting
enter on a keyboard) and then select which dimension to use
as the starting dimension and filter the view. For example, the
analytic inventory view of display screen 2100 of FIG. 21
shows a device dimension as the starting dimension. Once the
user activates OLAP icon 2115, the user can select another
dimension to be the starting dimension, and can also apply
filters to view only selected data and/or selected dimensions.
(0273. In the example display screen 2200 of FIG. 22, a
new analytic inventory view is illustrated with a new starting
dimension and applied filters. In the new analytic inventory
view, the file type dimension has been selected as the starting
dimension and filters have been applied Such that only data
related to C and C++ source code files is displayed. In addi
tion, the device, repository, and task dimensions have been
filtered or sliced out. Thus, the starting dimension is a file type
(or Extension Type’) dimension 2209, and only the filtered
file type elements (i.e., C and C++ file types) are displayed. A
share dimension 2207 and owner dimension 2211 are
included in the analytic inventory view, along with measures
2213 of the C and C++ objects. Also shown in FIG. 22 is the
create task option 2202 to allow a user to select remediation,

28
Sep. 19, 2013

registration, or classification tasks based on the inventory
view presented. Thus, by selecting one of the task options, the
filtered information displayed in the analytic inventory view
can be automatically populated in a Subsequent display
screen to allow a user to potentially refine and initiate the
selected task.
0274. In another example, shown in display screen 2300 of
FIG. 23, device, repository, and task dimensions are filtered
or sliced out and the owner dimension has been selected as the
starting dimension. Without a filter for particular metadata
elements of a dimension group, all metadata elements of the
dimension group can be displayed. Thus, in the analytic view
of display screen 2300 all owners of owner dimension group
2311 are listed. Measures 2313 shown on the first line of the
inventory view can reflect the total count and total size of all
inventoried objects presented in the inventory view. Other
count and size measures in FIG. 23 represent subsets of the
inventoried objects associated with either 1) a corresponding
specific owner and any share and file type or 2) a correspond
ing specific owner, any share, and a corresponding specific
file type (i.e., Englishtext or Ascii).
0275 FIGS. 24A-C are graphical diagrams illustrating
potential graphical representations of databased on specific
metadata elements of various dimension groups. FIG. 24A
illustrates a display screen 2400 in which a pie chart 2405
illustrates the distribution of objects across eight different
shares of a particular content repository having an IP address
of 10.60.73.16. In one embodiment, if a curser is used to
hover over a particular slice of pie chart 2405, other analytic
data may be presented in a pop-up such as a total count of
objects (or records) in the particular share.
(0276 FIG.24B illustrates a display screen 2410 in which
a bar graph 2415 illustrates a total count of objects (records)
for each file type. In one embodiment, if a curser is used to
hover over aparticular bar, other analytic data associated with
that particular file type may be presented in a pop-up Such as,
share and total count of the number of objects in the share.
(0277 FIG.24C illustrates a display screen 2420 in which
another bar graph 2425 represents a total count of objects for
each share. Each bar is shaded to represent counts of each file
type on the share represented by the bar. For example in the
share named PROJECT-Budget Engr, the largest majority of
file types is xls (e.g., approximately 1700). Additionally, the
shaded bar indicates that the PROJECT-Budget Engr share
includes approximately 100 Word documents.
(0278 FIGS. 25-31 illustrate various types of diagrams
associated with a classification task of the data protection
workflows system. FIG.25 is a simplified interaction diagram
2500 illustrating potential operations that may be associated
with a classification task of example embodiments of the data
protection workflows system of network environment 10.
FIGS. 26-31 illustrate display screen diagrams that may be
presented during classification task operations and will be
referenced herein to illustrate the interactions shown in FIG.
25.

(0279 FIG. 25 illustrates presentation module 220, OLAP
module 210, and task module 224 of data manager 20, in
addition to crawl and fetch module 711 and content classifi
cation module 750 of discover system 70. A classification
task can be independently instantiated as shown in display
screen 2600 of FIG. 26, which is a partial view showing a
mode 2602 with classification selected. A classification task
can also be created over an inventory or classification view, as
shown in display screen 2700 of FIG. 27, which is a partial

US 2013/0246334 A1

view of an example analytic inventory view showing create
task options 2702 with classification option highlighted.
These display screens 2600 and 2700 can be presented to a
userby presentation module 220, for example, on user system
22.

0280 A user can select desired parameters at 2505 to
initiate a classification task. As shown in the example scenario
of display screen 2600 of FIG. 26, a classification task is
selected at 2602. In addition, one or more discover devices,
one or more content repositories, and/or one or more shares of
a server may be selected for an independently instantiated
classification task. Certain content repositories or shares may
also be explicitly excluded from the classification task. Addi
tionally, a user may select particular categories (or concepts)
or sets of categories for the classification task. In other sce
narios, a user may simply rely on default categories for a
classification task.

(0281 Display screen 2700 of FIG. 27 illustrates that a
classification task can be created over an analytic inventory
view. The user can select classification from create task
options 2702 and the data displayed in the inventory view can
automatically populate a Subsequent display screen (e.g., dis
play screen 2600) in which the user is allowed to refine the
parameters (if desired) for the classification task and initiate
the classification task.

0282. With reference again to the interaction diagram
2500, the user can submit user selections to task module 224
via 2505, by activating an appropriate clickable on display
screen 2600 or by invoking any other suitably configured
Submission mechanism. Thus, data manager 20 can receive
user input to initiate a classification task. At 2510, the classi
fication task request including the selected parameters can be
communicated to crawl and fetch module 711 of selected
discover system 70 via a control path. At 2515, crawl and
fetch module 711 can crawl selected content repository 40
and fetch identified objects. At 2520, crawl and fetch module
711 can provide the fetched objects from content repository
40 to content classification module 750. Content classifica
tion module 750 can evaluate each fetched object and classify
the object based on one or more selected or default categories.
At 2525, content classification module 750 can store object
category information and metadata elements (e.g., metadata)
for the fetched and classified objects in category information
database 752. The stored information can include, for
example, sets of metadata elements of all objects identified in
and fetched from the crawled content repository including,
for example, identifications of the content repository, share,
file type, file size, and owner associated with each object.
Additionally, the stored information can also include each
category associated with each object.
0283 An extract, transform, and load (ETL) process can
be used at 2530 to load central database 230 of data manager
20 with information from category information database 752.
Object category information and metadata elements from
multiple discover systems (e.g., distributed in network envi
ronment 10) can be loaded in central database 230. At 2535,
categories and metadata elements from central database 230
can be provided to OLAP module 210, which can generate an
OLAP cube (or other appropriate structure) and populate the
cube with the categories and metadata elements. OLAP mod
ule 210 can also apply analytics to the OLAP cube and, at
2540, can provide summaries of classified objects to presen
tation module 220.

29
Sep. 19, 2013

0284 Presentation module 220 can presenta classification
view of objects identified during a classification task and
Summarized by many dimensions. Objects represented in the
Summaries of a classification view are referred to herein as
classified objects. The summaries of the classification view
can include measures that quantify the classified objects by
categories and other various dimensions. In example embodi
ments, measures include a total count and total combined size
for each displayed subset of classified objects, where each
Subset is associated with a particular category.
0285. In one implementation, a classification view gener
ated from a classification task, or possibly a search query,
could present a total count and total size measure for all of the
classified objects in a category, for example, on a first line
corresponding to the category. Respective total count and
total size measures could be provided for all categories dis
played in the analytic classification view. Dimensions (e.g.,
representing types of metadata) can be displayed in the ana
lytic classification view from left to right in hierarchical order
after each category. For each dimension, a dimension group
associated with the classified objects in the category could be
represented, for example, by a clickable. These clickables
could be displayed to make it apparent that the dimension
groups correspond to the total count and total size measures of
classified objects in the category (e.g., by displaying them on
the same line). In example implementations, a dimension
group represents metadata elements having the same meta
data type represented by the corresponding dimension.
0286 Any one or more of the dimension groups could be
selected by the user (e.g., by activating a clickable represent
ing the selected dimension group), in order to drill down and
view specific metadata elements of each dimension group and
view corresponding measures of Subsets associated with the
respective metadata elements. Accordingly, at 2540, a
selected dimension group can be communicated to OLAP
module 210 and analytics can be further applied to the OLAP
cube to render specific metadata elements for the selected
dimension group and corresponding measures.
0287. At 2540, updated summaries can be provided back
to presentation module 220, which can present an updated
classification view to the user. The updated view can include
measures for each new Subset of classified objects in a cat
egory that are represented in the updated view, where each
new Subset corresponds to a specific metadata element of the
selected dimension group. In one embodiment, dimension
groups that are listed to the right of a selected dimension
group, and therefore, are lower than the selected dimension
group in the hierarchy of dimensions, can be subdivided into
multiple dimension groups in the same manner as in analytic
inventory views, previously described herein. A user can con
tinue to select different dimension groups (including Subdi
vided dimension groups) in the analytic classification views.
Thus, the flow of data at 2540 between presentation module
220 and OLAP module 210 can occur any number of times.
(0288. In the example screen display 2800 of FIG. 28, an
analytic classification view is shown with share, file type, and
owner dimensions provided for each category 2810. Other
dimensions (e.g., device, content repository, task) are filtered
out in this view, but may be included in other views. Measures
2813 are provided for each category and can include all
classified objects associated with the respective category. For
example, a total of 4,978 objects (out of all of the objects
identified and fetched during the classification task) with a
total combined size of 222,198.994 KB, were classified as

US 2013/0246334 A1

Board Meeting Minutes documents. Any of the dimension
groups shown (i.e., share, file type, or owner) corresponding
to any category (e.g., Board Meeting Minutes category) can
be selected to drill down to specific metadata elements within
those dimension groups. Selecting dimension groups to drill
downto specific metadata elements can function as described
with reference throughout this specification and particularly
with reference to FIG. 21.

0289. In display screen 2900 of FIG. 29, the file type and
owner dimensions have been filtered out and shares dimen
sion group 2907, associated with the Board Meeting Minutes
category 2910, has been selected by a user and drilled down to
view specific metadata elements (i.e., specific shares from
which the Board Meeting Minutes’ objects were fetched). By
selecting shares dimension 2907, the user can view all of the
shares containing objects classified as Board Meeting Min
utes’ objects, in addition to measures 2913 (e.g., total count
and total size) for those objects on each of the shares. For
example, there are 1838 documents classified as Board
Meeting Minutes documents in the mill 1 share and the com
bined size of those objects is 30,431,190 KB.
0290. In display screen 3000 of FIG.30, from the analytic
classification view of FIG. 28, the user has filtered out the file
type dimension and drilled down on owner dimension group
3011 corresponding to Board Meeting Minutes category
3010. By selecting owner dimension 3011, the user can view
all of the owners of objects classified as Board Meeting
Minutes objects, in addition to measures 3013 (e.g., total
count and total size) for those objects for each owner. For
example, there are 4850 objects classified as Board Meeting
Minutes objects having an owner identified as BUILTIN/
Administrators and the combined total size of those objects is
219,942,802 KB.
0291. In display screen 3100 of FIG.31, from the analytic
classification view of FIG. 28, the user has filtered out the
owner dimension and drilled down on share dimension group
3107 associated with California Drivers License Law cat
egory 3110. In addition, the user may have filtered out other
categories from the view. The user has also drilled down on
each of the file type dimension groups 3109a, 3109b,3109c,
and 3109d corresponding to share dimension group 3107 and
each of the specific metadata elements of share dimension
group 3107 (e.g., mil 1, mil 0, mil 5). These selections
enable the user to view all of the file types of objects on each
server share that are classified as California Drivers License
Law objects. Specifically, these classified objects are found
on three shares (i.e., mill 1, mil 0, and mil 5) and the classi
fied objects on each of those shares comprise three different
file types (i.e., MSWord, PDF, and Excel). Additional shares
and corresponding file types may be visible if a user Scrolls
down display screen 3100. Finally, measures 3113 (e.g., total
count and total size) for these classified objects may be dis
played. For example, there are 329 pdf documents, classified
as California Drivers License Law objects, on mil 0 share,
having a total combined size of 3,682,458 KB.
0292 FIGS. 32-34 illustrate various types of diagrams
associated with a remediation task of the data protection
workflows system. FIG.32 is a simplified interaction diagram
3200 illustrating potential operations that may be associated
with a remediation task of example embodiments of the data
protection workflows system of network environment 10.
FIGS. 33 and 34 illustrate display screen diagrams that may

30
Sep. 19, 2013

be presented during remediation task operations and will be
referenced herein to illustrate the operations of interaction
diagram 3200 of FIG. 32.
0293 FIG. 32 illustrates presentation module 220, OLAP
module 210, and task module 224 of data manager 20, in
addition to crawl and fetch module 711 and remediation
module 760 of discover system 70. A remediation task can be
created over an analytic inventory or classification view. This
is illustrated in FIG.31, in which Remediation is selected in
a create task option 3102 for the classification view shown in
display screen 3100. Similarly, this is illustrated in FIG.22 in
which Remediation is selected in a create task option 2202
for the inventory view shown in display screen 2200. Once the
user selects the remediation option from an inventory or clas
sification view, by activating an appropriate clickable on the
display Screen or by invoking any other Suitably configured
Submission mechanism, Subsequent display Screens can be
displayed for the user to further refine and initiate the reme
diation task.

0294 FIG.33 illustrates one example of a display screen
3300 that may be presented to a user to refine a remediation
task. Remediation task parameters of display screen 3300
may be populated with metadata elements from the selected
analytic view (e.g., classification view of display Screen
3100) such as categories 3310 and file types 3309 defining
one or more subsets of the classified (or inventoried) objects
to be remediated. The user can refine the remediation task for
example, by selecting or deselecting particular file types and/
or categories associated with objects to be remediated. In
addition, one or more remediation policies 3314 (e.g., State
Privacy Laws/California Drivers License Law) can be
selected to be applied to objects of the one or more selected
Subsets.

0295 FIG. 34 illustrates another example of a display
screen 3400 that may be presented to a user to refine a reme
diation task. In the example scenario shown in display Screen
3400, parameters (or filters) may be refined for various
dimensions associated with the objects of the selected ana
lytic view (e.g., classification view of display screen 3100). In
addition, various conditions (e.g., exact match, equals, etc.)
may be defined for each parameter. For example, share
parameters 3407 may be created for shares that are exact
matches to mill 1, mil 0, and mil 5. In another example, a file
properties parameter 3409 may be created for a file extension
that equals.doc" (i.e., MSWord documents). A device param
eter 3401 (e.g., manganure-63.lab. groupX.net) may also be
populated from the selected analytic view. In addition,
although not shown in FIG. 34 other metadata elements such
as the associated content repositories can also automatically
populate remediation task parameters.
0296. With reference again to interaction diagram 3200 of
FIG. 32, the remediation display screens (e.g., display Screen
3300 and 3400) may be presented to the user via presentation
module 220. The user can submit selections made in the
display screens to task module 224 via 3205, by activating an
appropriate clickable on display screens 3300 or 3400, or by
invoking any other Suitably configured Submission mecha
nism. Thus, data manager 20 can receive user input to initiate
a remediation task. At 3210, the remediation task request
including the selected parameters can be communicated to
crawl and fetch module 711 of selected discover system 70
(e.g., manganure-63.lab. groupX.net) via a control path. At
3215, crawl and fetch module 711 can crawl selected content
repository 40 using selected parameters to identify targeted

US 2013/0246334 A1

objects. Depending on the particular remediation policy (and
action to be taken), crawl and fetch module 711 may fetch
identified objects (e.g., if an object is to be encrypted, moved,
etc.)
0297. At 3220, crawl and fetch module 711 can provide
the fetched object and/or information retrieved from content
repository 40 to remediation module 760. Remediation mod
ule 760 applies the selected remediation policy to targeted
objects. For example, if the remediation policy requires tar
geted objects to be deleted, remediation module 760 deletes
the identified objects from content repository via 3225. If the
remediation policy requires the targeted objects to be
encrypted, then remediation module 760 encrypts the fetched
objects and stores the encrypted objects back in content
repository 40, as indicated at 3225. At 3230, information
related to remediation performed by remediation module 760
may be stored in remediation incidents list 762. In one
embodiment, the incidents may be presented to the user via a
dashboard for example, on user system 22.
0298 FIGS. 35-36 illustrate various types of diagrams
associated with a registration task of the data protection work
flows system of network environment 10. FIG. 35 is a sim
plified interaction diagram 3500 illustrating potential opera
tions that may be associated with a registration task of
example embodiments of the data protection workflows sys
tem of network environment 10. FIG. 36 illustrates a display
screen diagram 3600 that may be presented during registra
tion task operations and will be referenced herein to illustrate
the operations explained with reference to interaction dia
gram 3500 of FIG. 35.
0299 FIG.35 illustrates presentation module 220 and task
module 224 of data manager 20, in addition to crawl and fetch
module 711 and registration system 770 of discover system
70. A registration task can be created over an analytic inven
tory or classification view. This is illustrated in FIG. 22, in
which Registration is listed as one of the create task options
2202 for the inventory view shown in display screen 2200.
Once the user selects the registration option from an inventory
or classification view, at least one Subsequent display Screen
can be displayed for the user to further refine the registration
task.

0300 Display screen 3600 of FIG. 36 illustrates one
example of a display screen that may be presented to a user to
refine a registration task. Registration task parameters of dis
play screen 3600 may be populated with metadata elements
from the selected analytic view (e.g., inventory view of dis
play screen 2200) such as and file type 2209, share 2207, and
owner 2211, defining one or more subsets of the inventoried
objects to be registered. The user can refine the registration
task for example, by selecting or deselecting particular file
types, shares, and/or owners associated with objects to be
registered.
0301 In the example scenario shown in display screen
3600, parameters (or filters) may be refined for various
dimensions associated with the objects of the selected ana
lytic inventory or classification view (e.g., inventory view of
display Screen 2200). In addition, various conditions (e.g.,
exact match, equals, etc.) may be defined for each parameter.
For example, a share parameter 3607 may be for a share that
is an exact match to Discover Testing. In another example, file
properties parameters 3609 may be created for file extensions
that equal .c' or .cpp. A particular device parameter 3601
(e.g., manganure-63. lab. groupX.net) may also be populated
from the selected analytic view. In addition, although not

Sep. 19, 2013

shown in FIG. 36 other metadata elements such as the asso
ciated content repositories can also automatically populate
registration task parameters.
0302. With reference again to interaction diagram 3500 of
FIG. 35, the registration display screen (e.g., display Screen
3600) may be presented to the user via presentation module
220. The user can submit the selections made in the display
screen to task module 224 via 3505, by activating an appro
priate clickable on display screen 3600, or by invoking any
other Suitably configured Submission mechanism. Thus, data
manager 20 can receive user input to initiate a registration
task. At 3510, the registration task request including the
selected parameters can be communicated to crawl and fetch
module 711 of selected discover system 70 (e.g., manganure
63.lab. groupx.net) via a control path. At 3515, crawl and fetch
module 711 can crawl a selected share (e.g., Discover Test
ing) of content repository 40 using selected parameters to
identify targeted objects. Crawl and fetch module 711 may
fetch identified objects (e.g., objects to be registered). At
3520, crawl and fetch module 711 can provide the fetched
object and/or information retrieved from content repository
40 to registration system 770, which can register the fetched
objects. During the registration process, registration system
770 updates registration database 772, including registration
list 774 and index table 776, at 3530, which can be used by a
detection system to determine whether an object contains at
least a portion of registered content. In one embodiment,
information related to the registrations may be presented to
the user via a dashboard for example, on user system 22.
0303 Software for achieving the data protection work
flows operations outlined herein can be provided at various
locations (e.g., the corporate IT headquarters, network appli
ances distributed in a network, etc.). In some embodiments,
this software could be received or downloaded from a web
server (e.g., in the context of purchasing individual end-user
licenses for separate networks, devices, servers, etc.) in order
to provide this system for providing data protection work
flows. In one example implementation, this Software is resi
dent in one or more network elements sought to be protected
from a security attack (or protected from unwanted or unau
thorized manipulations of data).
0304. In various examples, the software of the system for
providing data protection workflows in a computer network
environment could involve a proprietary element (e.g., as part
of a network security solution with McAfee R Network Data
Loss Prevention (NDLP) products such as DLP Discover,
DLP Monitor, DLP Prevent, and DLP Manager products,
etc.), and could be provided in (or be proximate to) these
identified elements, or be provided in any other device, server,
network appliance, console, firewall, Switch, information
technology (IT) device, etc., or be provided as a complemen
tary solution (e.g., in conjunction with a firewall), or provi
sioned somewhere in the network.

0305 Any of the elements of FIG. 1 can include memory
for storing information to be used in achieving the operations
as outlined herein. Such memory can include any Suitable
memory element (random access memory (RAM), read only
memory (ROM), erasable programmable ROM (EPROM),
electrically erasable programmable ROM (EEPROM), appli
cation specific integrated circuit (ASIC), etc.), software,
hardware, or in any other Suitable component or device,
where appropriate and based on particular needs. Any of the
memory items discussed herein (e.g., memory elements 208,
308, and 708, content repositories 40, central database 230,

US 2013/0246334 A1

object search database 316, object store modules 320 and
720, indexes 334 and 336, metadata database 742, category
information database 752, remediation incidents list 762, reg
istration list 774, index table 776, object search database 716,
etc.) should be construed as being encompassed within the
broad term memory element. Moreover, information and
data being tracked or sent through network environment 10
could be provided in any database, register, table, index,
control list, cache, or storage structure, all of which can be
referenced at any suitable timeframe. Any such storage
options may also be included within the broad term memory
element as used herein.
0306 In certain example implementations, some or all of
these elements (e.g., discover systems 70, capture systems 30,
data manager 20) include Software (or reciprocating soft
ware) that can coordinate, manage, or otherwise cooperate in
order to achieve the data protection workflows operations, as
outlined herein. One or more of these elements may include
any suitable algorithms, hardware, Software, components,
modules, interfaces, or objects that facilitate the operations
thereof. In the implementations involving software, such a
configuration may be inclusive of logic encoded in one or
more tangible, non-transitory media (e.g., embedded logic
provided in an application specific integrated circuit (ASIC),
digital signal processor (DSP) instructions, Software (poten
tially inclusive of object code and source code) to be executed
by a processor, or other similar machine, etc.). In some of
these instances, one or more memory elements (e.g., memory
elements 208,308,708) can store data used for the operations
described herein. This includes the memory element being
able to store software, logic, code, or processor instructions
that are executed to carry out the activities described in this
Specification.
0307 Additionally, these elements may include a proces
sor (e.g., 206, 306, 706) that can execute software or an
algorithm to perform the activities as discussed in this Speci
fication. A processor can execute any type of instructions
associated with the data or information to achieve the opera
tions detailed herein in this Specification. In one example, the
processor could transform an element oran article (e.g., data)
from one state or thing to another state or thing. In another
example, the activities outlined herein may be implemented
with fixed logic or programmable logic (e.g., Software/com
puter instructions executed by a processor) and the elements
identified herein could be some type of a programmable pro
cessor, programmable digital logic (e.g., a field program
mable gate array (FPGA), an erasable programmable read
only memory (EPROM), an electrically erasable program
mable read only memory (EEPROM)), or an ASIC that
includes digital logic, Software, code, electronic instructions,
or any suitable combination thereof.
0308 Any of the potential processing elements (e.g., pro
cessors 206, 306, 706), modules, and machines described in
this Specification should be construed as being encompassed
within the broad term processor. Each of the network ele
ments may also include Suitable interfaces for receiving,
transmitting, and/or otherwise communicating data or infor
mation in a network environment.

0309 These elements, modules and components can
cooperate with each other in order to perform the activities in
connection with the data protection workflows system as
discussed herein. In other embodiments, certain features may
be provided external to the elements, included in other
devices to achieve these intended functionalities, or consoli

32
Sep. 19, 2013

dated in any appropriate manner. For example, Some of the
processors (e.g., processors 206, 306, 706) associated with
the various elements may be removed, or otherwise consoli
dated Such that a single processor and a single memory loca
tion are responsible for certain activities. In a general sense,
the arrangements depicted in FIGS. 1-4 and 7 may be more
logical in their representations, whereas a physical architec
ture may include various permutations, combinations, and/or
hybrids of these elements, modules, and components.
0310. Note that with the numerous examples provided
herein, interaction may be described in terms of two, three,
four, or more network elements and modules. However, this
has been done for purposes of clarity and example only. It
should be appreciated that the system can be consolidated in
any Suitable manner. Along similar design alternatives, any of
the illustrated modules, components, and elements of FIG. 1
may be combined in various possible configurations, all of
which are clearly within the broad scope of this Specification.
In certain cases, it may be easier to describe one or more of the
functionalities of a given set of flows by only referencing a
limited number of network elements. It should be appreciated
that the system of FIG. 1 (and its teachings) is readily scalable
and can accommodate a large number of components, as well
as more complicated/sophisticated arrangements and con
figurations. Accordingly, the examples provided should not
limit the scope or inhibit the broad teachings of data protec
tion workflows system as potentially applied to a myriad of
other architectures.

0311. It is also important to note that the operations
described with reference to the preceding FIGURES illustrate
only some of the possible scenarios that may be executed by,
or within, the system. Some of these operations may be
deleted or removed where appropriate, or these steps may be
modified or changed considerably without departing from the
Scope of the discussed concepts. In addition, the timing of
these operations may be altered considerably and still achieve
the results taught in this disclosure. The preceding opera
tional flows have been offered for purposes of example and
discussion. Substantial flexibility is provided by the system in
that any Suitable arrangements, chronologies, configurations,
and timing mechanisms may be provided without departing
from the teachings of the discussed concepts.

1. A method, comprising:
receiving first sets of metadata elements representing

respective objects of an inventory in a data storage loca
tion of a network environment;

generating an initial Summary of the objects, wherein the
initial Summary includes first dimension groups corre
sponding to respective dimensions that represent respec
tive types of metadata, wherein the dimensions are in a
hierarchical arrangement, and wherein each metadata
element of each first set corresponds to one of the dimen
sions;

presenting, on a display screen of a computer, an initial
inventory view of the objects, wherein the initial inven
tory view includes the initial Summary:

receiving a request to manipulate the initial inventory view:
generating a first Summary of a first Subset of the objects,

wherein the first subset is defined by a hierarchical path
in the hierarchical arrangement with levels of the path
corresponding to the dimensions, wherein at least one
level of the hierarchical path includes a single metadata
element;

US 2013/0246334 A1

presenting, on the display screen of the computer, a
manipulated inventory view including the first Sum
mary:

receiving a request to classify the first Subset based on a
first category:

receiving second sets of metadata elements and corre
sponding category information representing objects of
the first subset that are classified based on the first cat
egory:

generating a first classification Summary of the classified
objects, wherein the first classification Summary
includes the first category and second dimension groups,
the first category corresponding to a category dimension
and the second dimension groups corresponding to the
respective dimensions representing the respective types
of metadata, wherein the respective dimensions are in
the hierarchical arrangement with the category dimen
sion at a top of the hierarchical arrangement; and

presenting, on the display screen of the computer, a clas
sification view of the classified objects, wherein the
classification view includes the first classification Sum
mary.

2. The method of claim 1, further comprising:
creating an Online Analytical Processing (OLAP) data

structure to represent the first sets of metadata elements,
wherein the first summary of the first subset is generated

from the OLAP data structure.
3. The method of claim 1, wherein the types of metadata

include one or more of devices, content repositories, shares,
file types, file size, and owners.

4. The method of claim 1, wherein the request to manipu
late the initial inventory view includes a selection of one of
the first dimension groups.

5. The method of claim 1, wherein at least one other level
of the hierarchical path includes one of the first dimension
groups, the one of the first dimension groups including two or
more metadata elements.

6. The method of claim 1, wherein the first summary
includes at least one of a total count and a total size of the
objects in the first subset.

7. (canceled)
8. The method of claim 1, further comprising:
creating an Online Analytical Processing (OLAP) data

structure to represent the second sets of metadata ele
ments and the corresponding category information,

wherein the second Summary of the second Subset is gen
erated from the OLAP data structure.

9. The method of claim 8, wherein the types of metadata
include one or more of devices, content repositories, shares,
file types, file sizes, and owners.

10. The method of claim 1, further comprising:
receiving a request to manipulate the classification view:
generating a second Summary of a second Subset of the

classified objects, wherein the second subset is defined
by a second hierarchical path in the hierarchical arrange
ment with levels corresponding to the respective dimen
sions; and

presenting, on the display screen of the computer, a
manipulated classification view including the second
summary, wherein at least one level of the second hier
archical path includes another single metadata associ
ated with another corresponding dimension.

Sep. 19, 2013

11. The method of claim 1, further comprising:
receiving third sets of metadata elements and correspond

ing category information representing other objects of
the first subset that are classified based on a second
category; and

generating a second classification Summary of the other
classified objects, wherein the second classification
Summary includes the second category and third dimen
sion groups, the second category corresponding to the
category dimension and the third dimension groups cor
responding to the respective dimensions representing
the respective types of metadata, wherein the classifica
tion view includes the second classification Summary.

12. (canceled)
13. The method of claim 10, wherein the second summary

includes at least one of a total count and a total size of the
objects in the second subset of the classified objects.

14. The method of claim 1, further comprising:
receiving from a user a selection of one or more content

repositories to be searched for the objects of the inven
tory.

15. The method of claim 1, further comprising:
receiving from a user a selection of one or more shares of a

content repository to be searched for the objects of the
inventory.

16. The method of claim 10, further comprising:
initiating a protection task for objects of the second Subset

of the classified objects.
17. The method of claim 16, wherein the protection task

includes one of applying a remediation policy to the objects of
the second Subset and registering the objects of the second
subset.

18. Logic encoded in one or more non-transitory media that
includes code for execution and when executed by one or
more processors is operable to perform operations compris
ing:

receiving first sets of metadata elements representing
respective objects of an inventory in a data storage loca
tion of a network environment;

generating an initial Summary of the objects, wherein the
initial Summary includes first dimension groups corre
sponding to respective dimensions that represent respec
tive types of metadata, wherein the dimensions are in a
hierarchical arrangement, and wherein each metadata
element of each first set corresponds to one of the dimen
sions;

presenting, on a display screen of a computer, an initial
inventory view of the objects, wherein the initial inven
tory view includes the initial Summary:

receiving a request to manipulate the initial inventory view:
generating a first Summary of a first Subset of the objects,

wherein the first subset is defined by a hierarchical path
in the hierarchical arrangement with levels of the path
corresponding to the dimensions, wherein at least one
level of the hierarchical path includes a single metadata
element;

presenting, on the display Screen of the computer, a
manipulated inventory view including the first Sum
mary:

receiving a request to classify the first Subset based on a
first category:

receiving second sets of metadata elements and corre
sponding category information representing objects of
the first subset that are classified based on the first cat
egory:

US 2013/0246334 A1

generating a first classification Summary of the classified
objects, wherein the first classification Summary
includes the first category and second dimension groups,
the first category corresponding to a category dimension
and the second dimension groups corresponding to the
respective dimensions representing the respective types
of metadata, wherein the respective dimensions are in
the hierarchical arrangement with the category dimen
sion at a top of the hierarchical arrangement; and

presenting, on the display screen of the computer, a clas
sification view of the classified objects, wherein the
classification view includes the first classification Sum
mary.

19. An apparatus, comprising:
a memory element configured to store data; and
one or more processors operable to execute instructions

associated with the data, wherein the processor and the
memory element cooperate Such that the apparatus is
configured to:
receive first sets of metadata elements representing

respective objects of an inventory in a data storage
location of a network environment;

generate an initial Summary of the objects, wherein the
initial Summary includes first dimension groups cor
responding to respective dimensions that represent
respective types of metadata, wherein the dimensions
are in a hierarchical arrangement, and wherein each
metadata element of each first set corresponds to one
of the dimensions;

present, on a display Screen of a computer, an initial
inventory view of the objects, wherein the initial
inventory view includes the initial Summary;

receive a request to manipulate the initial inventory
V1ew;

34
Sep. 19, 2013

generate a first Summary of a first Subset of the objects,
wherein the first subset is defined by a hierarchical
path in the hierarchical arrangement with levels of the
path corresponding to the dimensions, wherein at
least one level of the hierarchical path includes a
single metadata element;

present, on the display screen of the computer, a manipu
lated inventory view including the first Summary:

receive a request to classify the first Subset based on a
first category:

receive second sets of metadata elements and corre
sponding category information representing objects
of the first subset that are classified based on the first
category:

generate a classification Summary of the classified
objects, wherein the classification Summary includes
the first category and second dimension groups, the
first category corresponding to a category dimension
and the second dimension groups corresponding to
the respective dimensions representing the respective
types of metadata, wherein the respective dimensions
are in the hierarchical arrangement with the category
dimension at a top of the hierarchical arrangement;
and

present, on the display screen of the computer, a classifi
cation view of the classified objects, wherein the classi
fication view includes the classification Summary.

20. The apparatus of claim 19,
wherein the first summary includes at least one of a total

countanda total size of the objects in the first subset, and
wherein the classification Summary includes at least one of

a total count and a total size of the classified objects.
k k k k k

