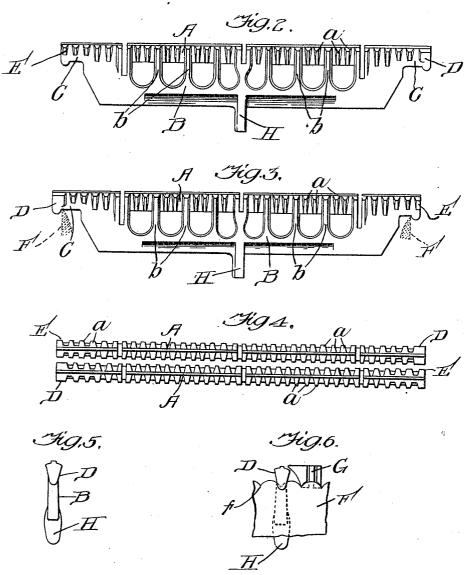

T. E. MARTIN.
FURNACE GRATE.
APPLICATION FILED MAY 14, 1906.


2 SHEETS-SHEET 1.

Witne,5,5,e,5! Tobert Allin Just Welson Inventor: Thomas E. Martin. By Bulkley Heraud

T. E. MARTIN. FURNACE GRATE. APPLICATION FILED MAY 14, 1906.

2 SHEETS-SHEET 2.

Wilric,5,5,e,5; Robert Allein Jnott Nelson

Invertor: By Bulkley Hurand Hitter

UNITED STATES PATENT OFFICE.

THOMAS E. MARTIN, OF BUFFALO, NEW YORK.

FURNACE-GRATE.

No. 838,431.

Specification of Letters Patent.

Patented Dec. 11, 1906.

Original application filed May 6, 1905, Serial No. 259,157. Divided and this application filed May 14, 1906. Serial No. 316,612.

To all whom it may concern:

Be it known that I, Thomas E. Martin, a citizen of the United States of America, and a resident of Buffalo, Erie county, New York, have invented a certain new and useful Improvement in Furnace-Grates, of which the following is a specification.

My invention relates to furnace-grates in which the grate-bars are adapted for suit-10 able rearrangement for the purpose of either staggering or alining the teeth thereof.

This application is a division of my prior application, Serial No. 259,157, filed by me in the United States Patent Office on the 6th

15 day of May, 1905.

In the said prior copending application I have claimed my invention broadly, while in the present application I have elected to prosecute specific claims for the furnace in 20 which the grate-bars can be reversed or turned end for end for the purpose of either staggering or alining the teeth thereof.

The object of my invention is to provide an improved construction and arrangement 25 whereby the size of the openings in the grate can be changed or varied with respect

to different kinds of fuel.

To the foregoing and other useful ends my invention consists in the matters hereinafter

30 set forth and claimed.

In the accompanying drawings, Figure 1 is a plan of a furnace-grate embodying the principles of my invention, it being understood that only a portion of the total num-35 ber of grate-bars is shown and that the bars at the right-hand side of the grate are so arranged that the teeth of one bar are opposite the teeth of adjacent bars, while the bars at the left-hand side of the grate are so 40 arranged that the teeth of one bar are opposite the spaces between the teeth of adjacent Fig. 2 shows one side of the grate-bar. Fig. 3 shows the other side of said grate-bar. Fig. 4 is a plan of two of my improved grate-45 bars mounted side by side and so arranged that the teeth of one bar are opposite the spaces between the teeth of the other bar. Fig. 5 is an end view of one of my improved grate-bars. Fig. 6 is a detail side elevation 50 of a portion of one of the bearing-bars, showing a rocking grate-bar and a stationary outer bar mounted thereon.

As thus illustrated, each grate-bar has an upper web A, provided with laterally-pro-55 jecting teeth a. A relatively heavy portion the outermost rocking B is connected with the said web by means more clearly in Fig. 6.

of uprights b. The opposite ends of the bar are preferably provided with knife-edge bearing portions C. The said teeth of the bar are so arranged that should the bar be reversed 60 or turned end for end the teeth at one side of the same will then occupy the positions previously occupied by the spaces between the teeth on the other side of the bar. Also the teeth on one side of the bar are preferably 65 opposite the teeth on the other side of the bar, and with this arrangement a reversal or turning of the bar end for end will bring all of the teeth thereof into the positions previously occupied by the spaces between the 70 teeth. Furthermore, in order to facilitate the arranging of the bars one end of each bar is provided with a relatively thick tooth D, and the other end of each bar is provided with a relatively thin tooth E. It will be 75 understood, of course, that the intermediate teeth a are evenly spaced between the said relatively thick and thin teeth. Thus by placing all of the bars with their thick tooth ends toward the front of the grate it is ob- 80 vious that the teeth of one bar will be brought opposite the teeth of adjacent bars. (See the grate-bars at the right-hand side of grate in Fig. 1.) Suppose then that the character of the fuel should require smaller openings 85 in the grate. In such event the alternate bars can be reversed or turned end for end, and by so doing the teeth of each bar will be brought opposite the spaces between the teeth of adjacent bars. (See Fig. 4 and the 90 bars at the left of the grate in Fig. 1.) After this should the alternate bars again be reversed or turned end for end the teeth thereof will then be brought into alinement. this way the bars can be rearranged for the 95 purpose of either staggering or alining the teeth, and for the purpose of thereby changing or varying the size of the grate-openings with respect to different kinds of fuel.

The bearing-bars F are provided with bearings f, adapted to receive the knife-edge
bearing portions C of the grate-bars. With this arrangement the grate-bars are suitably spaced apart and so arranged that each bar is adapted to rock its teeth opposite either 105 the teeth or the spaces between the same of

adjacent bars.

The outside or stationary bars G are adapted to rest upon the said bearing-bars and are also adapted to slightly overhang 110 the outermost rocking grate-bars, as shown

With respect to the character of the gratebars it will be seen that the web A of each grate-bar has an upper edge adapted to form the crest of the bar, the teeth of the bar stop-5 ping short of the said upper edge of the web. Also the said teeth are preferably rounded or sloped on their upper surfaces, so that the grate-bars may rock without causing the teeth to raise and lower the fuel supported 10 thereon. In addition each grate-bar may have its upper portion divided into sections, as shown more clearly in Figs. 2 and 3, in order to preclude or greatly reduce the tendency toward warping when the bar is sub-15 jected to high temperature. It will be understood, however, that for the broader purposes of my invention I do not limit myself to the exact character or formation of bars shown or described, nor do I limit myself to 20 rocking grate-bars.

Each grate-bar can be provided with a centrally-arranged stem H, adapted to engage a slotted opening in one of the shaker-bars I. It will be seen that these shaker-bars extend 25 across the furnace and are adapted to be operated by the shaft or shaker-rod J. this arrangement the bars can be rocked in order to shake the grate, and at the same time each bar is of such character that it can 30 be reversed or turned end for end in its bearings.

What I claim as my invention is—

1. A grate comprising in combination bearing-bars, and a plurality of grate-bars 35 supported in the bearings of said bearingbars, said grate-bars adapted to be reversed end for end in said bearings and provided with teeth extending laterally from the sides thereof, said teeth being so arranged that 40 when each bar is reversed those on one side of the bar will occupy the positions which were occupied by the spaces on the opposite sides before reversal.

2. In a furnace-grate, the combination of 45 bearing-bars, grate-bars mounted in the bearings of said bearing-bars, each grate-bar having an upper web provided with laterallyprojecting teeth, each grate-bar adapted to be reversed or turned end for end in said 50 bearings, and the teeth of each bar being so disposed thereon that the reversal of a bar will cause its teeth to then occupy the positions previously occupied by the spaces between the same.

3. In a furnace-grate, the combination of bearing-bars, reversible rocking grate-bars mounted in the bearings of said bearing-bars, each grate-bar provided with a centrallylocated stem, and shaker-bars engaging said 60 stems, each grate-bar provided with laterally-projecting teeth so disposed thereon that a reversal of any bar will cause the teeth thereof to then occupy the positions previously occupied by the spaces between the

4. In a furnace-grate, the combination of bearing-bars, and reversible grate-bars mounted upon said bearing-bars, each gratebar provided with thick teeth at one end and thin teeth at the other end, together with 70 evenly-spaced laterally-projecting teeth between said relatively thick and thin teeth, each grate-bar adapted to be reversed or turned end for end to bring the teeth thereon into the positions previously occupied by the 75 spaces between the same.

5. In a grate, the combination of bearing members, and reversible grate-bars mounted on said members, each grate-bar provided with an upper web having laterally-projecting 80 teeth thereon, said teeth and the spaces between the same being equal or substantially the same in wiath, and said teeth being so disposed that when a grate-bar is reversed or turned end for end the teeth thereof will then 85

occupy the positions previously occupied by

the spaces between the same.

6. In a furnace-grate, the combination of reversible rocking grate-bars suitably spaced apart, each bar provided with laterally-pro- 90 jecting teeth so arranged thereon that when a bar is reversed or turned end for end the teeth on one side thereof will then occupy the positions previously occupied by the spaces between the teeth on the other side of the 95

7. In a furnace-grate, the combination of a plurality of rocking reversible grate-bars suitably spaced apart and means for rocking the bars, each bar being provided with later- 100 ally-projecting teeth so arranged that by reversing the bar its teeth will be brought opposite either the teeth or the spaces between the teeth on adjacent bars.

8. In a furnace-grate, the combination of 105 a plurality of reversible rocking grate-bars suitably spaced apart, each bar being pro-vided with a depending leg midway its length and also with laterally-projecting teeth so arranged that by reversing the bar its teeth will 110 be brought opposite either the teeth or the spaces between the teeth on adjacent bars, and means engaging the depending legs for rocking the bars.

Signed by me at Buffalo, New York, this 115 10th day of May, 1906. THOMAS E. MARTIN.

Witnesses:

GEO. R. RIX, Aug. C. Glasser.